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Non Technical Summary
The goal of clustering is to partition the objects (here: persons) into
groups which ideally should be homogenous and well-separated (i.e. low
within-group and high between-groups heterogeneity). In the context
of data preparation, cluster analysis reveals underlying structures in
the data to provide subgroups that are easier to handle in subsequent
steps of the data analysis.
Most clustering techniques use a distance or dissimilarity matrix. Find-
ing a good—i.e. interpretable—distance measure for a particular clus-
tering task is hard. Therefore, a more direct approach to clustering
might perform better: Homogeneity and heterogeneity describe the two
extreme points of a measure of dispersion.
In this paper, a new clustering procedure for discrete-time discrete-
valued life course trajectories is introduced that does not depend on
a dissimilarity measure but on dispersions. The applied measure of
dispersion has to deal with nominal data appropriately. Moreover, a
discrete measure of association is needed to cope with the dependency
structure of the time series. Both measures are discussed, a model
for clustering discrete time series is introduced and the applicability of
the new algorithm is demonstrated on a quite large data set from the
German pension insurance.
This paper offers a technical foundation for accounting for the heteroge-
nous histories of the participants of observational studies with greater
precision, without immediately being confronted with the problems of
dimensionality. This is particularly useful for policy evaluation.



Das Wichtigste in Kürze
Die Cluster-Analyse ist eine Technik, um Objekte (hier: Personen)
in Gruppen einzuteilen, welche idealerweise homogen in sich und he-
terogen untereinander sind. Im Rahmen der Datenaufbereitung er-
reicht man so eine Sytematisierung der Beobachtungen einer ansonsten
schwer beherrschbaren Grundgesamtheit, auf welche in den nachfolgen-
den Analyseschritten Bezug genommen werden kann.
Die meisten Clustertechniken basieren auf der Definition von Distanz-
maßen, aber die Festlegung eines guten—d.h. interpretierbaren—Maßes
ist schwierig. Aus diesem Grund können direktere Methoden, welche auf
Streuungsmaßen basieren, häufig leichter interpretierbare Ergebnisse
erzielen, insbesondere wenn die Variablen kategoriell sind: Homogeni-
tät und Heterogenität können dann als die zwei Extrempunkte eines
Streuungsmaßes verstanden werden.
In diesem Papier wird eine neue Clustertechnik für diskrete Zeitrei-
hen mit kategoriellen Werten zum Clustern von Lebensläufen einge-
führt, welches anstatt auf Distanzmaßen auf Streuungsmaßen basiert
und auch nominale Werte berücksichtigen kann. Zusätzlich werden ka-
tegoriale Assoziationsmaße definiert um die temporale Abhängigkeit-
struktur der Zeitreihe zu berücksichtigen. Die Maßdefinitionen werden
diskutiert, ein Clustermodell eingeführt und die Anwendbarkeit des
neuen Algorithmus anhand eines recht großen Datensatz der Deutschen
Rentenversicherung demonstriert.
Dieses Papier liefert die technische Grundlage, um die heterogene Ver-
gangenheit von Personen in Beobachtungsstudien (beispielweise im
Rahmen von Politikevaluationen) präziser berücksichtigen zu können,
ohne sofort mit einem Dimensionalitätsproblem konfrontiert zu werden.
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1 Clustering life trajectories

Assume a data set with different persons and regularly repeated measurements of their
status. For example, samples from the population of some region and their labor mar-
ket statuses, ‘working’ or ‘not working’. For many reasons, it is interesting to group
these persons not simply according to time-constant variables—like sex, year of birth or
primary education—, but to use all the time-dependent information to identify ’simi-
lar’ life trajectories, such as health status health status or more detailed socio-economic
status descriptions. These groups might also present similar attitudes, socialisation and
they especially share similar histories. This can give you clues for future labour market
performance, health development etc. In particular, this is important for observational
studies, where treatment and control groups are balanced according to their observable
characteristics [10]. The grouping reveals some of the latent (potentially) unbalanced
characteristics.
The goal of clustering is to partition the objects (here: persons) into groups which ide-

ally should be homogenous and well-separated (i.e. low within-group and high between-
groups heterogeneity). Most clustering techniques use a distance or dissimilarity matrix.
Finding a good—i.e. interpretable—distance measure for a particular clustering task is
hard. Therefore, a more direct approach to clustering might perform better: Homo-
geneity and heterogeneity describe the two extreme points of a measure of dispersion.
Unfortunately, measures of dispersion are only available for single variables. However, if
the data is discrete (either in its nature or by grouping), it can be reduced to a single
variate (with all current combinations as different values) and dispersion-based clustering
is applicable.
Assume a data structure consisting of repeated measurements of a nominal quantity.

This is a discrete time-series, often known as panel data in econometrics. Life course
trajectories are highly dependent on their history, they are quite restricted in their length,
and show low in-series variability. The resulting dependency structure is quite special
as it nearly includes the whole history. Therefore, neatly reducing the dimensionality is
crucial for obtaining reliable clustering results.
Current methods for time-series clustering either require parametric model assump-

tions in order to estimate and compare parameters for different subgroups (e.g. Markov
chains), or rely on quite arbitrary assumptions for defining the ‘distance’ of two time
series [6]. Although the time series in question covers the entire life span of a person,
status transitions are quite rare, which complicates estimation of a transition matrix.
Moreover, transition rates are very likely to change over one’s lifetime. These render a
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homogenous Markov model unsuitable. We also lack the necessary number of transitions
for more heterogenous models.
There are two specifically designed approaches for life trajectory clustering: The first

one is optimal matching—although is was originally not designed for that purpose [5].
This distance measure has recently been used for clustering survey data on life trajectories
[9]. Optimal matching calculates the transformation costs that are needed to match two
sequences. Possible transformations are insertion, deletion, replacement or reordering
of subsequences of the trajectories. The optimal-matching algorithm searches for the
sequence of transformations with the lowest total costs. These costs are used as a measure
for dissimilarity. The costs for each type of transformation are predefined by the analyst.
At first sight, it seems that these costs can be directly interpreted; closer examination
reveals that finding plausible costs is often problematic. In addition, the solution strongly
depends on these transformation costs.
The other one depends on a more careful modelling of distances [4]. For each element

of the sequence, distances between the persons are calculated as usual. The combined
distance matrix of the trajectories is obtained by calculating the weighted sum of the
different distance matrices. The weights should be different for the different points in
time in order to reflect the ordering structure of time. The authors proposed a compound
interest model. The rationale behind this approach is the discounting of future develop-
ments: differences today or in the near future are more relevant. The argumentation may
be switched to the history instead of the future or even include both directions. Again,
the analyst has to define the (time-dependent) interest rate, which highly influences the
resulting partition. Moreover, the analysis is focused on a particular point in time. If
you are interested in the global partition, you have to find a way to “average” the results
for the different reference points.
These approaches basically use dissimilarities as the basis for their clustering algo-

rithms. In this paper, a new clustering procedure for discrete-time discrete-valued life
course trajectories is introduced that does not depend on a dissimilarity measure but on
dispersions. The applied measure of dispersion has to deal with nominal data appropri-
ately. Moreover, a discrete measure of association is needed to cope with the dependency
structure of the time series.
These measures are discussed in Section 2 together with some basic assumptions about

the data generating method, including the notion of ‘critical junctures’. The algorithm
itself is introduced in Section 3 and some interesting properties are derived. The appli-
cability of the introduced algorithm is demonstrated on a quite large data set from the
German pension insurance consisting of about 15 600 individuals with about 400 repeated
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measurements in Section 4.

2 Model

The intended application provides a panel data set with high dimensions, both in time
(variables) and individuals. The data is nominal by nature. Thus, the clustering proce-
dure has to deal with high dimensionality and a large set of objects.
The huge set of variables forming a large clustering space is characterised by a time-

dependent correlation structure. Preprocessing methods like factor analysis or feature
selection could help to reduce the number of variates. Such a preprocessing step would
reduce the dimensionality on a global scale. Here, local structures are of special inter-
est, especially to identify critical junctures in someone’s life. Therefore, an integrated
dimensionality reduction and clustering algorithm is needed.
Observational data is large, but not very precise. It is often contaminated with erro-

neous measurements and lacks details. However, the large number of observations allows
for reliable results. We chose a divisive hierarchical clustering algorithm because this
group of algorithms is well-suited for large sample sizes.
The next subsection introduces the basic assumptions of the model. We refer to the

term ‘model’ in a strictly nonparametric sense in this paper. Subsection 2.2 introduces
measures of dispersion and association needed to describe a clustering algorithm for
discrete, nominal data.

2.1 Clustering model

Clustering models allow us to derive some general properties of the solution of a clustering
algorithm.
Assume, persons are chosen from a finite number O of classes. These classes differ

in their probabilities that a member of the class is in a specific status at time t. These
groups of persons are mixed and we observe their status over time. This can be modelled
by a multinomial mixture with unknown mixing parameter (po)o∈O:

• Xt ∼M
(
1, p(c;X1, . . . , Xt−1)

)
• Xo = (X1, . . . , XT )

• X =
∑

o poXo

Life trajectories are highly dependent on their own history where everybody starts
at the same status: schooling. Afterwards, some people decide to continue education,
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some start to work and others become housewives or husbands. The life trajectory
develops according to the decisions, which are dependent on former decisions. This leads
to recurrent splitting of the groups; spawning a hierarchical structure,

∃E ⊂ {1, . . . , T}, E connected : D(XE |csuper) = A(XE |csub) for all csub ⊂ csuper .

This assumption of a hierarchical structure is slightly more general than described in
the former paragraph. It also allows for reunifications. Therefore, the resulting cluster
tree is not the corresponding tree of individual’s decisions.

2.2 Discrete measures of dispersion and association

Definition 1 (measure of dispersion, [7]). Let P denote the class of all finite stochastic
vectors, i.e. P is the union of the sets Pk comprising all probability vectors of length
k ≥ 2. D : P → [0,∞[ is a measure of dispersion, iff

DPI D
(
pσ(1), . . . , pσ(K)

)
= D(p1, . . . , pK) for all permutations σ

DMD D(p) = 0 iff p is an unit vector
DMA p <m q → D(p) ≥ D(q)

DSC D(p1, . . . , pk−1, r, s, pk+1, . . . , pk) ≥ D(p1, . . . , pk−1, pk, pk+1, . . . , pK)

DMP D
(
(1− r)p+ rq

)
≥ (1− r)D(p) + rD(q) for 0 < r < 1

DEC D(p1, . . . , pk, 0) ≥ D(p1, . . . , pK).

For convenience, the class D is restricted to functions

Dg(p) =
∑
k

g(pk)

with g continuous, concave on [0, 1] with g(0) = g(1) = 0 and 0 < g(t) for 0 < t < 1.
This class includes popular measures of dispersion like the Shannon entropy and the Gini
index DG(p) = 1−

∑
k p

2
k [7]. Dg(p) can efficiently be estimated from a multinomial i.i.d.

sample X1, . . . , Xn, p̂n = N−1
∑

iXi. The estimator Dg(p̂n) is the strongly consistent
ML-estimator of Dg(p):

Proposition 1 ([7], Prop. 3a). Let p be an interior point of P and Σ denote the asymp-
totic covariance matrix of limn→∞ L

(√
n(p̂n − p)

)
.

a) If p not uniform, then

Lp
(√

n
(
Dg(p̂n)−Dg(p)

))
→ N (0,Γg) ,
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where Γg = (. . . , g′(pk), . . . )Σ(. . . , g′(pk), . . . )
t.

b) If p uniform, i.e. p = uK , then

Lp
(
n
(
Dg(p̂n)−Dg(p)

))
→ L

(∑
k

λkY
2
k

)
,

where {Yk}k is a sample of gaussian variates and λk denotes the k-th eigenvalue of
Σ1/2diag(. . . , g′′(pk), . . . )Σ

1/2.

The measure of predictive association can be based upon measures of dispersion1:

Definition 2 (measure of predictive association, [2]). Let D be a measure of dispersion
and Lx an appropriate measure of location. Furthermore, let p = (pij)i,j be a two-way-
table2. Then is P : P → [0, 1] with

P (Y,X) = 1−
Lx
(
D(Y |X = x)

)
D(Y )

called a measure of predictive association.

The choice of Lx is quite arbitrary and usually you will take one of the standard
functionals. Choosing D is more delicate as it depends on the scaling [2]. The most
prominent example is Pearson’s R2, but there are also Kendall’s τb and others.

Definition 2 is quite general. For the purpose of this paper, we are only interested in
nominal measures and we focus on the room of two-way-tables. Again, we are interested
in the smaller class based upon a measure of dispersion Dg: PDg . For convenience, we
choose the average as measure of location L.

Then, distributional aspects can be established using the ∆-method:

Proposition 2. Let p = (pij)i,j be an interior point of a two-way-table, Σ as in Propo-
sition 1.

a) If (pij)i,j not uniform, then

Lp
(√

n
(
PDg(p̂n)− PDg(p)

))
→ N (0,Γg) ,

1 This is obviously related to the general proportional reduction-in-error principle.
2 i.e. p ∈ P, if indexed properly, e.g. row-wise.
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where Γg = dijΣd
t
ij with

dij =

(∑
i,j g(pij) · g′(p.j) · pij + g′(pij) ·

∑
j g(p.j)[∑

j g(p.j)
]2

)
ij

.

b) If (pij)i,j uniform, then

Lp
(
n
(
PDg(p̂n)− PDg(p)

))
→ L

(∑
k

λkY
2
k

)
,

where {Yk}k is a sample of gaussian variates and λk denotes the k-th eigenvalue of
Σ1/2diag(. . . , P ′′Dg

(pk), . . . )Σ
1/2.

Proof.

a) directly follows from the ∆ method.

b) follows from [11], Satz 5.127, p. 134.

The common way to reduce dimensionality is to find a (smaller) subspace under the
constraint of minimal loss in ’information’, which is often measured in correlation or
association between variables. Variable-combining methods like factor analysis, but also
variable selection methods like the lasso are based upon this principle.

Definition 3 (measure of association). A : P1,2 → [0, 1] is a measure of association, iff

API A
(
pσ1(1),σ2(1), . . . , pσ1(K1)σ2(K2)

)
= A(p1,1, . . . , pK1,K2) for all permutations σ1, σ2

ASY A(X,Y ) = A(Y,X)

ANO A = 0 if X ⊥ Y and A = 1 if X = f(Y ) with bijective f
AMP A

(
(1− r)p+ rq

)
≤ (1− r)A(p) + rA(q) for 0 < r < 1.

Axioms API, ASY, ANO are very common in literature (see [11, 8] for instance).
Axiom AMP is quite special but very useful for the application we have in mind. There
is no direct ordering axiom like DMA for measures of dispersion and AMP partly fills
this structural gap. This axiom is not very restrictive as popular measures of association
like Pearson’s correlation coefficient obeys this axiom (if added to the usual axioms
for measures of association for continuous variates). Other examples are the Cramér’s
V = χ(1+χ2)−1/2, the corrected contingency coefficient Ccorr = χ

(
min(d1, d2)−1

)−1/2,
where χ2 represents the χ2-coefficient on probabilities.
The measure of association which is based on the predictive measure of association,

AP = min
(
PD(Y,X), PD(X,Y )

)
, has an intuitive interpretation as the ‘minimal infor-

mation redundance’ that two variables X and Y share.
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Proposition 3. The minimal information redundance AP is a measure of association.

Proof. Axioms API, ASY and ANO are trivially true. AMP follows from DMP.

Proposition 4. Let p = (pij)i,j be an interior point of a two-way-table, Σ as in Propo-
sition 1.

a) If PDg(p) 6= PDg(pt), then

Lp
(√

n
(
PDg(p̂n)− PDg(p)

))
→ N (0,Γg) ,

where Γg = dijΣd
t
ij with

dij =


d
(1)
ij =

(∑
i,j g(pij)·g′(p.j)·pij+g′(pij)·

∑
j g(p.j)[∑

j g(p.j)
]2

)
ij

PDg(p) < PDg(pt)

d
(2)
ij =

(∑
i,j g(pij)·g′(pi.)·pij+g′(pij)·

∑
j g(pi.)[∑

j g(pi.)
]2

)
ij

PDg(p) > PDg(pt)

.

b) If p symmetric but not uniform, then

Lp
(√

n
(
APDg

(p̂n)−APDg
(p)
))
→ N (0,Γg) ,

where Γg = dijΣd
t
ij with dij = d

(1)
ij .

c) If p uniform, then

Lp
(
n
(
APDg

(p̂n)−APDg
(p)
))
→ L

(∑
k

λkY
2
k

)
,

where {Yk}k is a sample of gaussian variates and λk denotes the k-th eigenvalue of
Σ1/2diag(. . . , P ′′Dg

(pk), . . . )Σ
1/2.

d) If p asymmetric and PDg(p) = PDg(pt), then

Lp
(√

n
(
PDg(p̂n)− PDg(p)

))
→ N (0,Γ′g) ,

where Γ′g ≤ dijΣdtij with dij = maxv(d
(1)
ij , d

(2)
ij ) and maxv operates component-wise.

Proof.

a) Proposition 3, part a).
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b),c) symmetry implies differentiability of APDg
on all interior points of p. Proposition

3 for the results.
d) one-sided differentiability only allows for bounds on the convergence, Proposition

3, part a)

3 Algorithm

A clustering algorithm for trajectory data should be stable in the asymptotic sense, i.e.
for n→∞. Furthermore, it should deal with the time-series structure of the data. Both
requirements are met by using measures of association and dispersion. The data model
implies a hierarchical cluster structure that the clustering algorithm should find.

3.1 Clustering algorithm

The algorithm works as follows:

1 dimension reduction: cluster points in time

1.1 calculate association between neighbouring points in time

1.2 combine points in time with maximum association (a),
association between groups of dates is the minimum of the pairwise associa-
tions (complete linkage)

1.3 iterate steps 1.1 and 1.2 until each point in time provides additional informa-
tion (0 ≤ a < α ≤ 1)

2 calculate average (mode) values for groups of dates

3 split data set according to variable with maximal total dispersion reduction (CART-
like: mint,k p1D1 + p2D2)

4 iterate steps 1 to 3 until groups are homogeneous (0 ≤ dc < β ≤ 1)

At each split, perform a dimensionality reduction for the current subset of the data,
find the best split and iterate. The splitting procedure can be compared to the CART-
strategy [1, 7].
Steps 1 and 2 perform the dimensionality reduction. First, we look for similar variables

and connected clusters of them. Here, when saying connected, we mean variables that
represent neighbouring points in time. This clustering procedure is agglomerative3 and
3 Note that the hierarchical nature of this variable clustering procedure is as restrictive as any other

clustering heuristic because of the order structure.

8



we use the notion of complete linkage for the calculation of association between a single
variable and a cluster of variables. Again, we ensure that the predictive information of
the variable on the other variables in its cluster is sufficiently large. As a result, the time
line is divided into a set of periods of various lengths. This procedure obeys the ordering
of the variables that form our time-series. Now, we have to select a representative value
for each period (cluster of points in time) and we choose the mode. We get a set of new
variables, where each of the variables represents a set of points in time. This set is used
in the next steps for a particular split.
In step 3, the algorithm looks for the best split, i.e. the variable on which the split is

based that provides the maximal reduction in the dispersion measured over all (newly
defined) variables of the subgroups. The basic idea to minimise the dispersion in this
way has been transferred from CART [1] to cluster-trees in [7].
These steps are iterated for each newly defined subset until the homogeneity criterion

is met or all objects have become their own leafs in the cluster-tree. The exact choice of
the measure of dispersion and the measure of association is arbitrary to some extent. We
will use the Gini for dispersion and the minimised predictive association for association.
Other choices will provide slightly different results.
There are two tuning parameters that have to be fixed. The first parameter (α)

controls the clustering of variables in the dimensionality reduction step. It ensures that
the clusters contain only those variables that are sufficiently similar. The choice of the
parameter α highly influences the structure of the resulting tree and, thus, the parameter
has to be chosen carefully. The second parameter (β) controls the size of the cluster tree.
It represents the homogeneity criterion that the clusters have to meet.

3.2 Properties

The resulting partition should be stable, i.e. increasing the number of observations should
(after a certain point) not influence the partition found so far. Our data can grow in two
directions: The number of persons and the sampling frequency can both increase. While
it is classic that the partition stays stable for an increasing number of people, it is less
intuitive for increasing frequency. We assumed that the time series is discrete in time by
nature. This implies that the proportion of identical measurements increases with the
sampling frequency. This behaviour should not affect the resulting partition.

Theorem 1 (cluster stability). The algorithm generates a stable partition of the sample
into k ∈ N clusters:

9



a) Let Cnk (i) denote the cluster assignment4 of observation i for k clusters found in a
sample of size n. Then holds

P (Cnk (i) = Cn−1k (i))→p 1 ∀i .

b) Let Cfk (i) denote the cluster assignment of observation i for k clusters found with
sampling frequencies f ≥ f ′. Then holds

∃f∗∀f ′>f∗P (Cfk (i) = Cf
′

k (i))→p 1 ∀i .

Proof. Direct results from propositions 1, 2 and 4.

Note that the whole tree is stable in the sense of theorem 1 and not only the leaves.
The algorithm is designed for large data sets. Let n denote the number of persons and

T the length of the time series. Then it is true:

Theorem 2. The algorithm belongs to the computational complexity class O(n2 × T 3).

Proof. Calculation of two-way contingency tables: O(n × T 2) for the measures of asso-
ciation. Cluster tree induction: O(n× T ) for the measures of dispersion. Combined, we
have O((n× T 2)× (n× T )).

We can expect that the algorithm performs much better in the average case, especially
because of the reduced T after the dimensionality reduction step. Additionally, reusing
calculations from former splits reduces the calculation time significantly for certain con-
figurations of measures of dispersion and association.

4 Example

4.1 Data

We use the Versichertenkontenstichprobe (VSKT, sample of insured persons and their
insurance accounts) of the German Federal Pension Insurance [3]. It is an administrative
merged dataset with detailed monthly information on 60 821 individuals aged 15 to 67 of
2005. This sample is stratified to cover the whole range of covariates and keep the sample
quite small at the same time. The VSKT is a monthly panel that starts in January of

4 The identification of the clusters is straightforward. For example, you could use depth-first or
breadth-first search.
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the year in which the person becomes 16, and ends in December of the year in which the
person reaches 67. In total, there are up to 600 observations per individual.
We restrict the sample to the birth cohort 1940–1950. This includes 15 566 life course

trajectories, which correspond to 9 269 888 individuals. 8 979 observed persons are fe-
males which correspond to 4 798 073 individuals. Many of the observations at the begin-
ning and the end of the life courses are missing. Thus, we use only the months 49 to 432,
which is about age 18 to 50. The dataset includes a time series of the social-economic
status that is measured on a scale with thirteen different values. These thirteen values
are combined to four classes:

0 employed (full-time or part-time)

1 unemployed (with or without compensation)

2 absence from the labour market due to education, family responsibilities (children,
old-age care), military service

3 absence from the labour market due to long-term sickness, pension; and unknown
status

The results become more detailed if you opt for a less crude grouping of the thirteen
statuses. We, however, decided to use this more simplistic setup to demonstrate the
potential of the new algorithm.

4.2 Results

We use the Gini as measure for dispersion and the minimal predictive association for
measuring associations. The tuning parameters are fixed as α = 0.5 and β = 0.1. Addi-
tionally, we stopped the splitting process, if a node contains less than 1 000 observations.
Figure 1 shows the resulting tree. We labelled the nodes (clusters) by consulting table 1
and analysing figure 2.
Table 1 shows the distribution of sex and education among the clusters. Extraordinary

values are highlighted. These provides a first clue to the characteristics of the clusters.
Figure 2 shows employment rates for each of the clusters. Together, these two pieces of
information allow for a good interpretation of the various groups.
The most obvious groups are the two female dominated groups, early- and three-phases-

housewives. The first is characterised by a low lifetime labour market attachment whilst
females in the latter group interrupt their careers to raise children. Both groups represent
a quite small fraction of the population. Nevertheless, they represent two extremes that
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Figure 1: Cluster tree
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Table 1: Cluster sizes, sexual composition and distribution of educational degrees
long- educated less edu. pre- three- less edu. more edu.
term late late late carious & early phases unemp. & unemp. &

unempl. entrants entrants entrants housew. housew. housew. housew. housew.
size 56.4% 6.1% 9.2% 1.1% 7.6% 2.6% 5.7% 8.6% 2.6%

female 41.0% 67.7% 53.2% 58.9% 61.5% 99.0% 99.1% 52.7% 57.1%

missing/na. 54.5% 58.7% 41.3% 60.2% 85.1% 75.3% 73.1% 86.9% 75.3%
school 5.4% 10.3% 3.4% 12.4% 3.2% 6.3% 7.3% 3.0% 2.9%

voc. training 35.6% 25.0% 25.6% 25.5% 9.8% 17.4% 17.8% 9.0% 10.2%
high school 0.1% 0.0% 1.2% 0.0% 0.1% 0.0% 0.1% 0.2% 0.5%

h.s. & voc. tr. 1.0% 0.9% 5.1% 0.9% 0.5% 1.0% 0.1% 0.3% 1.4%
techn. college 2.3% 2.7% 4.1% 1.0% 0.7% 0.0% 0.3% 0.6% 0.4%

university 1.3% 2.5% 19.2% 0.1% 0.6% 0.0% 1.3% 0.0% 9.4%
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Figure 2: Employment rates for the nine clusters over time
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are clearly distinguishable from other life trajectories patterns. There are, of course,
housewives in the other leaves of the right branch of the cluster tree.
The critical junctures are found by looking at the split variables denoted in the cluster

tree. Whether a person will have a high labour market attachment is decided at life
trajectory month 71, which corresponds to the age of about 20. In contrast, Figure 2
suggests that the high labour market attachment becomes visible in the data only after
the age of about 24. The other critical junctures also lie around age 20. The latest
juncture is at the age of 21, where persons that show low overall employment rates
split. Only a few are coming back to the labour market after their 38th birthday. To
conclude, the life trajectory till the 20th or 21st birthday of a person strongly influences
the remaining trajectory.
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