Blumkin, Tomer; Margalioth, Yoram; Sadka, Efraim

Working Paper
The desirability of workfare as a welfare ordeal: Revisited

IZA Discussion Papers, No. 5130

Suggested Citation: Blumkin, Tomer; Margalioth, Yoram; Sadka, Efraim (2010) : The desirability of workfare as a welfare ordeal: Revisited, IZA Discussion Papers, No. 5130, Institute for the Study of Labor (IZA), Bonn, http://nbn-resolving.de/urn:nbn:de:101:1-201010132851

This Version is available at: http://hdl.handle.net/10419/44202

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
The Desirability of Workfare as a Welfare Ordeal - Revisited

Tomer Blumkin
Yoram Margalioth
Efraim Sadka

August 2010
The Desirability of Workfare as a Welfare Ordeal – Revisited

Tomer Blumkin
Ben-Gurion University,
CESifo and IZA

Yoram Margalioth
Tel-Aviv University

Efraim Sadka
Tel-Aviv University,
CESifo and IZA

Discussion Paper No. 5130
August 2010

IZA
P.O. Box 7240
53072 Bonn
Germany
Phone: +49-228-3894-0
Fax: +49-228-3894-180
E-mail: iza@iza.org

Any opinions expressed here are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but the institute itself takes no institutional policy positions.

The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center and a place of communication between science, politics and business. IZA is an independent nonprofit organization supported by Deutsche Post Foundation. The center is associated with the University of Bonn and offers a stimulating research environment through its international network, workshops and conferences, data service, project support, research visits and doctoral program. IZA engages in (i) original and internationally competitive research in all fields of labor economics, (ii) development of policy concepts, and (iii) dissemination of research results and concepts to the interested public.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.
ABSTRACT

The Desirability of Workfare as a Welfare Ordeal – Revisited

In this paper we challenge the conventional wisdom that using workfare as a supplementary screening device to means-testing is socially undesirable when the government objective is welfarist, namely, to ensure that all members of society will attain some minimal level of utility. Our argument suggests that when misreporting of income by welfare claimants is sufficiently manifest, introducing work requirements for welfare eligibility economizes on government expenditure and is socially desirable.

JEL Classification: D6, H2, H5

Keywords: workfare, welfare, means-testing, misreporting, utility maintenance

Corresponding author:

Tomer Blumkin
Department of Economics
Ben-Gurion University
P.O. Box 653
Beer-Sheva 84105
Israel
E-mail: tomerblu@bgu.ac.il
1. Introduction

Work (or training) requirements in means-tested programs (often called “workfare”) have seen resurgence in the past two decades in most OECD countries (OECD 2009).\(^1\) It started in the early 1990s with the US flagship program "Wisconsin Works" emphasizing “work first” strategy, followed by the passage of the Personal Responsibility and Work Opportunity Reconciliation Act (PRWORA) in 1996 that introduced work requirements on a national basis.\(^2\) It then spread, with variations, to many countries, including the Netherlands, the United Kingdom, Denmark, Ireland, Austria, Australia, New Zealand and Israel [OECD (2005). For further discussion of workfare amongst other forms of Active Labor Market Policies, see Kluve (2006).

Naturally, work or training requirements may serve to enhance the recipient’s job prospects by allowing the latter to acquire relevant on the job training, work experience and social skills. An additional role played by workfare, which is the focus of the current study, is in helping the government to screen welfare claimants.\(^3\) The screening role has gained much support during the past two decades, reflecting a strong public sentiment, especially in the US but also in Europe, that welfare should be paid only to those who cannot support themselves [see e.g., Konow (2000) and Fong (2007)].

\(^1\) The OECD Employment Outlook 2009 suggests, however, shifting somewhat the focus and resources behind activation from the “work-first” approach which tended to dominate prior to the current global economic crisis to a “train-first” approach for those at high risk of long-term unemployment.

\(^2\) The 1996 Act required a minimum of 20 hours of work (or work related activities, such as training) per week to be eligible for a welfare cash transfer. Compliance was assured by an extensive use of sanctions including benefit reductions [for further details see US DHHS (2002)].

\(^3\) Screening is difficult as poor individuals are often characterized by low earning ability and ill health – information that is hard to observe or verify (e.g., mental problems and back pains are commonly stated in claims for government income support).
The government uses various screening (direct and indirect) devices to overcome these difficulties. These include, inter alia: (1) means testing by reviewing documentation, conducting interviews and testing by specialists; (2) ‘tagging’ [a la Akerlof (1978)], namely, basing eligibility on observable attributes correlated with ability (e.g., old age, education level, observable disability); (3) offering in-kind transfers that intended beneficiaries would find more attractive (such as wheelchairs) and (4) setting welfare ordeals, namely, adding requirements that undeserving individuals would find relatively costly and, hence, would self-select out of the program [Nichols and Zeckhauser (1982)].

Workfare, even if completely useless in its effect on labor market skills, can serve as a form of welfare ordeal. This aspect has been emphasized in two influential papers by Besley and Coate [(1992) and (1995)]. Assuming that a training program does not contribute at all to the participants’ human capital (thus entailing pure deadweight loss), Besley and Coate have nonetheless demonstrated that when the government objective is income-maintenance, namely, the government seeks to ensure some minimal level of consumption, introducing work requirements as a supplement to means-testing can economize on government costs. The idea underlying the screening role played by work requirements lies in the fact that as participating in workfare is time-consuming, low-skill individuals incur a lower opportunity cost of participation compared with high-skill ones. Thus, by introducing workfare, the government can enhance the target efficiency of the welfare program. A key observation of Besley and Coate (1995) was that the desirability of using workfare for screening purposes crucially hinges on the government specified objective. When the objective is income maintenance the government ignores the
disutility (associated with forgone leisure) suffered by individuals from working and/or participating in training programs. However, when the government objective is welfarist, namely, when these costs are fully taken into the social calculus, Besley and Coate demonstrate that workfare becomes undesirable.

Cuff (2000) and Moffitt (2006) extended the Besley and Coate [(1992), (1995)] result (that workfare is desirable under income maintenance) by demonstrating that workfare may still be desirable even when the government accounts for disutility from labor. Both studies adopt a non-welfarist view, by defining social objectives that deviate from a social welfare function that is based only on individuals’ stipulated preferences. Cuff (2000) emphasizes the widely acknowledged importance of targeting benefits to the "deserving poor" by ignoring the "excessive" disutility from labor incurred by "lazy" individuals; whereas, Moffitt (2006) assigns an intrinsic value to work provided by sufficiently able individuals amongst welfare claimants, thereby capturing the common perception that work is important per se.

To sum up, the literature so far has established the case for workfare only when assuming non-welfarist objectives. In this paper we attempt to establish the case for workfare under the welfarist approach.4 We do so by extending the Besley and Coate framework to plausibly allow for welfare claimants to misreport their income when applying for means-tested benefits.5 We show that when misreporting of income by

4 We acknowledge the importance of the non-welfarist approach, reflecting the strong public support for tying welfare to notions of deservedness and the merits of work per se, and wish to show that even when assuming a welfarist objective [which is the standard approach to the normative analysis of the design of tax and transfer systems in line with Mirrlees (1971)], workfare can nonetheless be desirable.

5 Welfare fraud is very significant in the US and in most other countries and misreporting of income is the leading form of welfare fraud [Wolf and Greenberg (1986); Burtless (1986); Luna (1997); Romanov and Zussman (2001); and Martinelli and Parker (2009)]. There is widespread concern about the abuse of
welfare-claimants is sufficiently manifest, introducing work requirements for welfare eligibility is socially desirable.\(^6\)

The policy implications suggest that whether and the extent to which workfare should be used for screening purposes depends on the extent of misreporting. Evidence taken from the World Values Survey (WVS) database reveals significant differences across countries in the civic attitudes towards misreporting [see Algan and Cahuc (2009) for discussion].\(^7\) We argue that the use of workfare would be especially warranted in countries where norms of misreporting appear to be prevalent.

The structure of the remainder of the paper will be as follows. In the coming section we introduce a simple analytical framework. In section 3 we introduce the government problem. In section 4 we derive the properties of the social optimum. Section 5 concludes.

\(^6\) Our paper emphasizes the role of workfare in augmenting means-testing as a screening device, but it also contributes to the strand in the optimal tax literature that examines the design of tax-and-transfer systems in the presence of tax evasion [see, e.g., Cremer and Gavhari (1996)]. This literature usually focuses on enforcement through the probability of detection and the penalty function. We demonstrate the potential role of workfare in reducing the extent of misreporting.

\(^7\) Civic attitudes were measured using the following question: “Do you think it can always be justified, never be justified, or something in between to claim government/state benefits to which you have no rights.” Other indicators of civic attitudes, such as indicators of trustworthiness and trust, reached similar results.
2. The Model

Consider an economy with a continuum of individuals who differ in their innate earning ability, denoted by w. We assume that the targeted population consists of two types of individuals: low-ability and high-ability individuals, whose earning abilities are respectively denoted by w and \bar{w}, with $\bar{w} > w > 0$. There are in fact more than just two types in the economy, but we assume that these other types are of higher skills and none of them apply for welfare benefits. Taxing these higher-skill types would serve to finance the benefits claimed by the two types we consider explicitly. Without loss of generality we assume that the two ability groups in question are of equal size, normalized to unity. We further assume that the production technology (of the single consumption good, which price is normalized to unity) exhibits constant returns to scale and perfect substitution between the two skill levels. Assuming a competitive labor market, it follows that w denotes the wage rate of a w-type individual. We follow Mirrlees (1971) by assuming that earning abilities are private information, unobserved by the government, thus restricting ourselves to second best re-distributive policy rules.

Following Besley and Coate [(1992) and (1995)] and Diamond (1998) we assume that individuals’ preferences are represented by a quasi-linear utility function:

$$U(c, l, d, \alpha) = c - h(l) - \alpha \cdot d,$$

where c denotes consumption, l denotes the time allocated to non-leisure activities (such as work, training, workfare, etc.), h is strictly increasing and strictly convex and d is an indicator function which assumes the value of one, if the individual is cheating the welfare agency (that is, misreporting her income in order to be eligible for some transfer)
and zero otherwise. The parameter α denotes the individual cost associated with cheating measured in consumption terms. This parameter may reflect the moral (psychic) costs entailed by misreporting as well as the (expected) fine set by the administration (recalling the quasi-linear form). Typically, the first element may vary across individuals whereas the second element may be uniform. In any event, we assume that α, which captures both elements, varies across individuals. For concreteness we simplify by assuming that α is uniformly distributed over the support $[0, \alpha]$ for both types of individuals. Notice that in the limiting case where $\alpha \to \infty$, there is no-misreporting; namely, the set of cheaters is of zero measure (the standard case examined by the literature which would serve as a benchmark for our analysis).

The government is seeking to ensure a minimal standard of well-being for all individuals, denoted by some pre-specified utility level, \hat{u}. Denoting by \bar{V} and \bar{V}, the utility levels derived by a low-ability and a high-ability individuals, respectively, in the absence of government intervention, we assume that $V < \hat{u} < \bar{V}$. In words, the high-ability individuals attain by themselves a higher level of well-being than the minimal threshold set by the government, whereas the low-ability individuals can only achieve this level of well-being with government assistance.

In order to achieve the utility maintenance goal defined above, the government is offering means-tested (non-negative) transfers (we are thus considering a welfare maintenance program and not an income tax). The individuals choose whether to apply, Formally, $\bar{V} = \max \{ y - h(y/w) \}$ and $\bar{V} = \max \{ y - h(y/w) \}$, with y denoting the level of income given by $y = w \cdot l$.

Footnote: 8 Formally, $\bar{V} = \max \{ y - h(y/w) \}$ and $\bar{V} = \max \{ y - h(y/w) \}$, with y denoting the level of income given by $y = w \cdot l$.

7
at all, for benefits. In case they do apply, the level of transfer is based on their reported (not necessarily truthfully) level of income. Naturally, the government may induce the agents to report truthfully by an appropriate choice of detection probabilities and fines (or may otherwise, in certain circumstances, be able to verify the true level of income directly), but as we will focus on the role of workfare in addressing the issue of misreporting, we simplify by assuming that the transfers paid are based, solely, on the reported level of income.

3. The Government Program

The government offers transfers based on reported levels of income so as to ensure the pre-specified level of well-being at minimum cost. Note that the utility cost of misreporting, α, does not depend on the extent of misreporting but rather only on the decision whether to misreport or not.\footnote{This simplifying assumption is fairly realistic as the targeted population of welfare applicants is spanned over a limited range of low income levels, so that the extent of misreporting cannot vary considerably over this population.} Therefore, all individuals that decide to misreport will choose to report that level of income which makes them entitled to the highest level of transfer. This is true for both skill levels. As there are only two skill levels, it follows that there will be at most three reported levels of income: the true income of a low-skill individual, the true income of a high-skill one and the income level reported by “cheaters” (of both types). Thus, we can confine attention to transfer schedules that consist of only three different income-dependent transfers.
In fact, we can further restrict ourselves to schedules with only two income-dependent transfers. To see this, consider a schedule with three different income-dependent transfers (with all three levels of income being actually reported). Naturally, cheaters will report that income level which entails the highest transfer. Therefore, by construction, the two other levels of income (and associated transfers) must be chosen by high-skill and low-skill non-cheaters. The government can do better, then, by eliminating the highest transfer (that is, the transfer chosen by cheaters) from the offered schedule. This will certainly cut the cost of the program. At the same time the pre-specified level of (target) utility is still maintained, as the transfer accorded to a low-skill individual who truthfully reports her income suffices, by construction, to attain the minimum utility level. We thus restrict attention to schedules consisting of only two income-dependent transfers.

Denote by \(y \) (respectively, \(\tilde{y} \)) the income level reported by low- (respectively, high) skill non-cheating individuals.\(^{10}\) The transfers are such that those reporting an income of \(y \) (respectively, \(\tilde{y} \)) enjoy a consumption level of \(c \) (respectively, \(\tilde{c} \)). In other words, the transfers offered to those reporting an income of \(y \) (respectively, \(\tilde{y} \)) are given by \(c - y \) (respectively, \(\tilde{c} - \tilde{y} \)). As the government aims to raise the well-being of the low-skill individuals, it follows that \(c - y \geq \tilde{c} - \tilde{y} \), so that all cheaters will choose to report an income level of \(y \). Note, that all low-skill individuals, irrespective of whether or not they misreport their income, receive the same transfer, \(c - y \). Thus, the cost of the

\(^{10}\) With no loss in generality we can assume that the high-skill individual participates in the program. This follows, as we can always treat a program in which the high-skill individual does not participate, as one which offers a zero transfer at her laissez-faire choice of income.
transfer program depends only on how many high-skill individuals choose to cheat (and, naturally, on the two levels of transfer). Note also that as the disutility from misreporting rises with respect to \(\alpha \), it follows that there will be a cutoff level of \(\alpha \), denoted by \(\alpha_0 \), such that all high-skill individuals with \(\alpha \) below \(\alpha_0 \) will choose to cheat and all other high-skill individuals will truthfully report their income (\(0 \leq \alpha_0 \leq \bar{\alpha} \)). Recalling that \(\alpha \) is uniformly distributed over the interval [0, \(\bar{\alpha} \)], it follows that \(\alpha_0 / \bar{\alpha} \) measures the number of high-skill cheaters. Hence, the cost of the transfer program to the government is given by:

\[
E \equiv (1 + \alpha_0 / \bar{\alpha}) \cdot (\xi - y) + (1 - \alpha_0 / \bar{\alpha}) \cdot (\bar{c} - \bar{y}) .
\]

We further assume that in order to be eligible for the high transfer the individual must not only satisfy the means-testing (reporting an income level of \(y \)), but also abide by a work requirement (workfare). Denote by \(\Delta \) the work requirement set by the government, measured in hours. Following Besley and Coate (1992) and (1995), we assume that the workfare requirement serves for screening purposes only and does not affect the productivity of the individuals. By doing so, we attempt to establish a case for workfare under the most unfavorable circumstances where workfare entails a pure deadweight loss.

The government is seeking to minimize the cost given by equation (2), by choosing the 6-tuple \(\langle y, \bar{c}, \xi, \xi, \alpha_0, \Delta \rangle \) subject to the following constraints:

\[
\zeta - b[(\bar{y}/w) + \Delta] \geq \hat{u} ,
\]
where $\bar{V}(\Delta) = \max_{\bar{\Omega}} \left[y - h(\bar{y}/\bar{w}) + \Delta \right]$.

We turn next to interpret the constraints (3)-(7). The first constraint [condition (3)] ensures that the transfers are set so as to achieve the goal of attaining the pre-specified level of utility, \hat{u}. As was already explained, we assume with no loss of generality that high-skill individuals participate in the program. This is reflected in condition (4). Conditions (5) and (6) are the standard self-selection (incentive compatibility/no-mimicking) constraints for the high-ability and low-ability non-cheaters, respectively. The conditions state that each type is as well-off with her own bundle as she would be by pretending to be (mimicking) the other type. Notice that in order to be eligible for the transfer designed for the low-ability type (given by $\bar{c} - \bar{c}$) an individual has to satisfy both an income test (the reported income level has to be \bar{y}) and abide by the work requirement (a training period which lasts Δ hours). The final constraint [condition (7)] determines the level of misreporting in equilibrium. A high-ability individual with moral cost α_0 is just indifferent between truthfully reporting his income (\bar{y}), thereby receiving the transfer $\bar{c} - \bar{c}$, which provides him with the level of utility given by the expression on the right-hand side of (7); and misreporting, that is pretending to earn (reposting) \bar{y},
participating in the workfare program, thus being entitled to the transfer $\zeta - y$, but actually choosing to earn an (optimal) different level of income,

$$y^* = \arg\max_y \left[y - h(y/w + \Delta) \right],$$

thereby attaining the level of utility given by the expression on the left-hand side of equation (7). Evidently, all those high-ability individuals whose α is below α_0 will choose to misreport.\(^{11}\) Note, that as we assumed, with no loss of generality, that all individuals participate in the program, it follows that there is no need to introduce non-negativity constraints on the transfers.

Consider as a benchmark the Besley and Coate \((1992), (1995)\) model in which there is no misreporting. In our model this amounts to letting $\alpha \rightarrow \infty$. We will plausibly assume that there is some (but not an excessive level of) misreporting. That is, we will assume that α is sufficiently high but finite. This assumption will be made more precise in what follows.\(^{12}\) Also, note that when the desired minimal level of utility, \hat{u}, is sufficiently small (close to V), then the re-distributive policy is relatively easy to attain and is therefore of limited interest. Indeed, in this case, and in the absence of misreporting, the government can attain its objective without causing any distortion.\(^{13}\) We will therefore consider the plausible case of \hat{u} being sufficiently high.

\(^{11}\) Notice, that there are, naturally, also low-ability individuals who will choose to misreport in equilibrium (those with least moral inhibitions; namely, those incurring the lowest moral costs). However, as low-ability individuals are in any case entitled to the larger level of benefit, $\zeta - y$, this will not affect the government objective and optimization considerations. Notice further, that by revealed preference considerations, those individuals who choose to misreport will derive a higher level of utility than that derived by those individuals who report truthfully, thus the individual rationality (voluntary participation) condition will be satisfied and the level of utility will exceed the minimal threshold set by the government also for those who misreport.

\(^{12}\) See footnote 14 in the appendix.

\(^{13}\) To see this, note that the government can set y and y at their laissez faire levels, $\bar{c} = \bar{y}$ and set $\zeta > y$ to attain the minimal utility goal. As, by revealed preference, the high-skill individual strictly prefers her
We turn next to examine which of the inequality constraints (3)-(6) is binding in the optimal solution. Clearly, a cost-minded government would never choose to offer a level of transfer exceeding what is required to attain the pre-specified utility level, \(\hat{u} \); so that it is straightforward to show that constraint (3) is binding. Turning next to condition (4), we can show (see the appendix for details) that this constraint is not binding when the pre-specified utility level, \(\hat{u} \), is sufficiently large, as we indeed assume. We finally turn to the two incentive compatibility constraints given by the conditions in (5) and (6). First note that by the single crossing property of the individuals' indifference curves (which follows from the convexity of \(h \)), both constraints cannot simultaneously bind. The natural conjecture would be that the incentive constraint of the high-ability type will bind in the optimal solution. We can indeed confirm this conjecture under our assumption that \(\bar{\alpha} \) is sufficiently large (see the appendix for details).

Summarizing: constraints (3) and (5) are binding, whereas, constraints (4) and (6) are not binding, hence, dropped out when deriving the properties of the optimal solution.

4. Characterization of the Optimal Program

We suppose first that the workfare requirement (namely, \(\Delta \)) is fixed and derive the first-order conditions for the optimal solution. Let \(\lambda, \mu \) and \(\eta \) denote the multipliers (laissez faire) bundle to the (laissez faire) bundle chosen by the low-skill individual, it follows by continuity that when the desired minimum level is small enough, that is when \(\underline{c} \) is sufficiently close to \(\underline{y} \), the self-selection constraint of the high-skill individual will be satisfied and there will be no reason to introduce distortions (in order to mitigate this constraint).
associated with the binding inequality constraints (3) and (5), and the equality constraint (7), respectively. The \textit{Lagrangean} expression is then given by:

\[
L(\Delta) \equiv (1 + \alpha_0 / \alpha) \cdot (c - y) + (1 - \alpha_0 / \alpha) \cdot (\bar{c} - \bar{y}) - \lambda \cdot [c - h(y/w + \Delta) - \hat{u}]
- \mu \cdot [\bar{c} - h(y/\bar{w}) - c + h(y/\bar{w} + \Delta)] - \eta \cdot [c - y + \bar{V}(\Delta) - \alpha_0 - \bar{c} + h(y/\bar{w})],
\]

where \(\lambda, \mu > 0 \), by virtue of our earlier derivations. The first-order conditions are given by:

\[
\begin{align*}
\frac{\partial L}{\partial c} &= (1 - \alpha_0 / \alpha) - \mu + \eta = 0, \\
\frac{\partial L}{\partial y} &= -(1 - \alpha_0 / \alpha) + \mu \cdot h'(y/\bar{w})/\bar{w} - \eta \cdot h'(y/\bar{w})/\bar{w} = 0, \\
\frac{\partial L}{\partial \bar{c}} &= (1 + \alpha_0 / \alpha) - \lambda + \mu - \eta = 0, \\
\frac{\partial L}{\partial \bar{y}} &= -(1 + \alpha_0 / \alpha) + \lambda \cdot h'(y/\bar{w})/\bar{w} - \mu \cdot h'(y/\bar{w})/\bar{w} + \eta = 0, \\
\frac{\partial L}{\partial \alpha_0} &= [(c - y) - (\bar{c} - \bar{y})]/\alpha + \eta = 0.
\end{align*}
\]

Employing the first-order conditions in (9)-(13) one can obtain the standard properties derived by the literature; namely, a zero (implicit) marginal tax rate levied on the high-skill individual ["efficiency at the top", see Sadka (1976)] and a strictly positive (implicit) marginal tax rate imposed on the low-skill individual (see the appendix for details).

We turn next to examine the desirability of imposing a workfare requirement (as a supplement to means-testing). Specifically, we ask whether imposing some workfare requirement is better than none. To do this, we employ the envelope theorem and differentiate the \textit{Lagrangean} with respect to \(\Delta \), evaluating the derivative at \(\Delta = 0 \):
When the expression in (14) is negative, imposing some workfare requirement is desirable, as it results in a reduction in government expenditure. This turns out to be indeed the case when the underlying skill-gap is large and cheating is not viewed as highly immoral:

Proposition: There exist \(w_0 \) and \(\bar{\alpha}_0 \) such that workfare is a socially desirable supplement to income-testing for all \(\bar{w}/w > w_0 \) and \(\bar{\alpha} < \bar{\alpha}_0 \).

Proof: See the appendix. QED

The rationale underlying our result is as follows. When the skill gap is large, a workfare requirement can serve as an effective screening device, as it is much more costly for the high-ability individuals to take part in these programs relative to low-ability ones. However, workfare programs entail a large deadweight loss (in light of our assumption that they serve purely for screening purposes). The previous literature [Besley and Coate (1995)] has ignored an important phenomenon of misreporting by welfare claimants. In such a case it was shown that when income testing is employed for screening purposes, there is no desirable supplementary role played by workfare. However, when agents can misreport their income thereby rendering the income testing less effective, workfare can serve to mitigate the high-ability individuals’ incentive to misreport. Put differently, workfare makes it more costly for high-ability individuals to misreport, thereby enhancing the effectiveness of income-testing.
5. Conclusion

In a second best setting, an egalitarian government seeking to target benefits to the least well-off members of society is faced with a fundamental screening problem. The government often resorts to means-testing as a measure to enhance the target efficiency of its welfare system. In recent years, public outcry about welfare dependency and the allegedly weak incentives provided to claimants to leave welfare have caused many developed countries to introduce some form of work requirements (workfare) for welfare eligibility. In two influential papers Besley and Coate [(1992) and (1995)] have argued that the social desirability of introducing (non skill-enhancing) workfare merely as a supplementary screening device to means-testing crucially hinges on the specification of government objective. They demonstrated that using workfare is justified when the government objective is poverty alleviation (income maintenance) but unwarranted with a welfarist objective in mind (utility maintenance). The literature that followed has extended the analysis of Besley and Coate, but established the case for workfare only by invoking some form of non-welfarist government objective. In this paper we challenge this result and provide a welfarist justification for the use of workfare. We incorporate a realistic feature of misreporting into the standard framework, and show that when welfare claimants, who apply for means-tested benefits, can misreport their income, workfare becomes a desirable component of the welfare system even when the government objective is utility maintenance.

The contribution of the paper is thus twofold. First it provides a normative justification for the prevalent use of workfare along the lines of the welfarist approach which is the standard in the optimal taxation literature. Second, it incorporates an
important feature of misreporting to the analysis of the design of welfare system and demonstrates the potential role played by workfare in mitigating the claimants’ incentive to misreport their income in order to prove eligible for means-tested transfers.
References

Appendix: Proofs

Proof that constraint (4) is non-binding in the optimal solution

Let $\hat{u} = \bar{V}$. By virtue of (3), it follows that $e - h(y/w + \Delta) \geq \bar{V}$. Thus, $e - h(y/w + \Delta) > \bar{V}$; hence, by virtue of (5), $\bar{c} - h(y/w) > \bar{V}$. It follows that the constraint in (4) is satisfied as a strict inequality. By continuity considerations, the result extends to values of \hat{u} sufficiently close to \bar{V}. This completes the proof. QED

Proof that constraint (5) is binding in the optimal solution

Consider first the benchmark case in the absence of misreporting; namely, when $\bar{\alpha} \to \infty$. In this case we can ignore constraint (7), as the set of individuals who misreport is of zero measure. Suppose by way of contradiction that constraint (5) is not binding. Thus, as constraint (4) is also non-binding, then by continuity considerations, one can slightly reduce the level of \bar{c} without violating any of the constraints. This will economize on government expenditure and attain the desired contradiction to the presumed optimality.

Consider next the case where a non-zero measure of individuals is misreporting. A reduction in \bar{c} would have two effects on government expenditure, a mechanical effect and a behavioral one. As in the previous case with no misreporting, a reduction in \bar{c} would lower the level of government expenditure. However, as can be observed from condition (7), the number of high-ability individuals who misreport would then adjust in equilibrium. In particular, α_0 will increase (that is the number of individuals who
misreport will increase). This will result in a corresponding increase in government expenditure, which may all in all increase overall government expenditure. To see why an increase in α_0 will increase the government expenditure (other things equal), note that in the optimal solution it is necessarily the case, that $c - y \geq c - \bar{y}$. If it were not the case, one could replace the presumably optimal program with a universal system that would offer all agents a lump-sum transfer equal to $c - y$, which would trivially satisfy all constraints and reduce total government expenditure. Then, it follows from the objective in equation (2) that when the system is indeed means-tested (that is $c - y > c - \bar{y}$), an increase in α_0 does increase total government expenditure.

The overall impact on government expenditure of the combined mechanical and behavioral effects is generally ambiguous. However, by virtue of our assumption that the level of misreporting is not too large, the mechanical effect would prevail, and our result in the case of no misreporting extends by continuity consideration.

Signing the Optimal Marginal Tax rates

Substituting for the term $(1 - \alpha_0 / \bar{\alpha})$ from (9) into (10) and re-arranging yields:

$$w \frac{yh}{1} = \alpha_0 / \bar{\alpha}.$$

(A1) \[h'(\bar{y} / \bar{w}) = \bar{w}. \]

Thus, we obtain the standard ‘efficiency at the top’ result.

Substituting for the term $\alpha_0 / \bar{\alpha}$ from (11) into (12) and re-arranging yields:
(A2)

\[h'(\frac{y}{w})/w = 1 - \mu/\lambda \cdot [1 - h'(\frac{\lambda}{w})/w]. \]

By virtue of the single crossing property and the fact that the incentive constraint of high-skill individual [constraint (5)] is binding, \(\lambda > y \). Hence by virtue of (A1) and the convexity of \(h \), \(h'(\frac{y}{w})/w < 1 \). It follows that \(h'(\frac{y}{w})/w < 1 \). Thus, the (implicit) marginal tax rate levied on the low-skill individual is strictly positive.

Proof of the Proposition

The construction of the proof will be in three stages.

Stage I

We first turn to simplify the expression in (14), which is reproduced for convenience:

(A3)

\[\left. \frac{\partial L}{\partial \Delta} \right|_{\Delta=0} = \lambda \cdot h'(\frac{y}{w}) - \mu \cdot h'(\frac{\lambda}{w}) - \eta \cdot \frac{\partial V}{\partial \Delta} \right|_{\Delta=0}. \]

Substituting for the term \((\mu - \eta) \) from (9) into (11) and re-arranging yields:

(A4)

\[\lambda = 2. \]

By the definition of \(V(0) \) and by virtue of (A1) it follows that \(V(0) = \lambda - h(\frac{\lambda}{w}) \).

Substituting into (7) and re-arranging yields then:

(A5)

\[\alpha_0 = (\bar{c} - \bar{v}) - \bar{c} - \bar{y}. \]

Substituting into (13) yields:
Employing (A4) and (A6) to simplify (11) yields:

\(\mu = 1 - 2\alpha_0 / \bar{\alpha} \).

Differentiating \(\bar{V} \) with respect to \(\Delta \), employing the envelope theorem, yields:

\(\partial \bar{V} / \partial \Delta \bigg|_{\Delta=0} = -\bar{w} \).

Substituting into the expression in (14) yields:

\(\partial L / \partial \Delta \bigg|_{\Delta=0} = \lambda \cdot h'(y / w) - \mu \cdot h'(y / \bar{w}) + \eta \cdot \bar{w} \).

Finally, by employing conditions (12), (A4), (A6) and (A7), following some algebraic manipulations, one can obtain the following simplified form of the expression in (A9):

\(\partial L / \partial \Delta \bigg|_{\Delta=0} = \bar{w} \cdot (1 + \alpha_0 / \bar{\alpha}) - 2 \cdot (\bar{w} / w - 1) \cdot h'(y / w) \).

Step II

We next derive two useful properties of the optimal system that will be employed in what follows. In order to prove these properties we make an additional technical assumption that \(h'' \geq 0 \). Notice that when \(h \) takes an iso-elastic functional form, the assumption implies that the (constant) elasticity of labor supply is bounded above by unity, which is consistent with existing empirical evidence [see, e.g., Salanie (2003)].

Lemma: (i) \(\partial (\alpha_0 / \bar{\alpha}) / \partial \bar{\alpha} < 0 \), (ii) \(\partial y / \partial \bar{\alpha} < 0 \).
Proof:

(i) Substituting for λ, η and μ from (A4), (A6) and (A7) into (12) and re-arranging yields the following simplified expression:

\[h'(y/w)/w = 1 + \frac{(1 - 2\alpha_0/\bar{\alpha}) \cdot [h'(y/w)/\bar{w} - h'(y/w)/w]}{(1 + 2\alpha_0/\bar{\alpha})}. \]

Fully differentiating the expression in (A11) with respect to $\bar{\alpha}$ and re-arranging yields:

\[h''(y/w)/\bar{w} + \frac{\partial y}{\partial \bar{\alpha}} = \]
\[\left[-4 \frac{\partial (\alpha_0/\bar{\alpha})}{\partial \bar{\alpha}} \cdot [h'(y/w)/\bar{w} - h'(y/w)/w] \right] \]
\[+ \left[(1 - 4\alpha_0^2/\bar{\alpha}^2) \cdot [h''(y/w)/\bar{w}^2 - h''(y/w)/\bar{w}^2] \cdot \frac{\partial y}{\partial \bar{\alpha}} \right] \]
\[\frac{(1 + 2\alpha_0/\bar{\alpha})^2}{(1 + 2\alpha_0/\bar{\alpha})^2} \]

Now suppose by way of contradiction that $\partial (\alpha_0/\bar{\alpha})/\partial \bar{\alpha} > 0$. Then, as h is convex, $h''' \geq 0$, by assumption, and $\alpha_0/\bar{\alpha} < 1/2$, by our earlier derivations, it follows that $\partial y/\partial \bar{\alpha} > 0$, otherwise, it is straightforward to verify that the right-hand side of the expression in (A12) is positively signed, whereas, the left-hand side is negatively signed.

Now consider the figure below, which depicts the optimal solution for the government program in the net-income - gross-income (c, y) space. We denote by $U(w, c, y) \equiv c - h(y/w)$, the utility derived by an individual of type w with gross income y and net income c. Note first that by the convexity of h, the single crossing property holds and in particular, the indifference curve of the low-ability type is steeper than that
of the high-ability type [the slope of the indifference curve is given by $MRS(w) = h'(y/w)/w$]. By virtue of our earlier derivations, conditions (3) and (5) are binding in the optimal solution. Fixing the initial level of α, the equilibrium is given by the two bundles depicted as triangles in the figure. Now consider a downward shift in α; namely $\alpha' < \alpha$. By virtue of our presumption, $y(\alpha') < y(\alpha)$ and $\alpha_0'/\alpha' < \alpha_0'/\alpha$, hence, $\alpha_0' < \alpha_0$. By virtue of (A1) the gross income level chosen by the high-ability type remains unchanged (at the efficient level). The new equilibrium is then given by the two bundles depicted as squares in the figure.

Figure: The Optimal Solution for the Government Problem

By virtue of our earlier derivations, $h'(y/w)/w < 1$, thus the slope of the indifference curve of the low-ability type in the initial equilibrium (the triangle lying on the steeper indifference curve) is lower than unity. Thus, it follows that $c(\alpha') - y(\alpha') > c(\alpha) - y(\alpha)$.

\[\text{Diagram}
\text{C}
\text{Y}
\text{U}(w,c,y) = \hat{u}
\text{U}(w,c,y)
\text{c(α), c(α'), c(α'), c(α')}
\text{y(α'), y(α)} \]
As can be straightforwardly observed from the figure, $c'(\bar{\alpha}') - \bar{y}(\bar{\alpha}') < c'(\bar{\alpha}) - \bar{y}(\bar{\alpha})$. We thus conclude:

$$[c'(\bar{\alpha}') - \bar{y}(\bar{\alpha}') - [c'(\bar{\alpha}') - \bar{y}(\bar{\alpha}')] > [c'(\bar{\alpha}) - \bar{y}(\bar{\alpha})] - [c'(\bar{\alpha}) - \bar{y}(\bar{\alpha})].$$

However, by virtue of (A5) the last inequality implies that $\alpha'_0 > \alpha_0$. We thus obtain the desired contradiction.

(ii) This part follows immediately from the expression in (A12) and part (i).

Step III

Our final step would be to provide sufficient conditions for the expression in (A10) to be negative. By virtue of (A7) and as the incentive constraint of the high-skill individual is binding, it follows that $\alpha_0 / \bar{\alpha} \leq 1/2$. A sufficient condition for the expression in (A10) to be negative is hence:

(A13) $3/2 \cdot \bar{w} - 2(\bar{w}/w - 1) \cdot h'(y/w) < 0$.

By part (i) of the lemma, the term $\alpha_0 / \bar{\alpha}$ is decreasing with respect to $\bar{\alpha}$. Suppose that $\bar{\alpha}$ is sufficiently small such that the term $\alpha_0 / \bar{\alpha}$ attains its upper-bound; namely, $\alpha_0 / \bar{\alpha} = 1/2$ ($\mu = 0$).\(^\text{14}\) In this case, as the multiplier associated with the high-ability type's incentive compatibility constraint is equal to zero, it follows from (A11) that $h'(y/w) = w$. Substituting into (A13) then yields:

\[\text{One can show that in this case } \bar{\alpha} = 2 \left(\overline{y - h(y/w)} - \overline{y - h(y/w)} \right) > 0. \text{ Our assumption that the extent of misperception is not too large is then formally given by } \bar{\alpha} > 2 \left(\overline{y - h(y/w)} - \overline{y - h(y/w)} \right).\]
Taking the other limiting case, by letting $\alpha \to \infty$, it follows from (A4), (A6) and (A7), that $\mu = 1$ and $\eta = 0$ (and evidently, $\lambda = 2$). By the convexity of h, $h'(\frac{y}{w}) > h'(\frac{y}{\bar{w}})$.

It thus follows from (A9) that $\partial L / \partial A |_{\alpha=\alpha} > 0$. That is, imposing a workfare requirement in the case of no misreporting is undesirable. We thus replicate the result obtained by Besley and Coate (1995)]. Thus, the expression in (A10) is positive. Hence,

\begin{equation}
(A15) \quad \frac{3}{2} \cdot \bar{w} - 2 \cdot (\bar{w} - w) \cdot \frac{1}{\bar{w}} \cdot h'(\frac{y}{w}) > 0.
\end{equation}

By continuity, employing the intermediate value theorem, there exists some value of α for which:

\begin{equation}
(A16) \quad \frac{3}{2} \cdot \bar{w} - 2 \cdot (\bar{w} - w) \cdot \frac{1}{\bar{w}} \cdot h'(\frac{y}{w}) = 0.
\end{equation}

By virtue of the lemma, as the expression on the left-hand-side of (A16) is strictly increasing with respect to α, this value is uniquely defined. Denote it by α_0. It then follows that when the moral costs entailed by misreporting are sufficiently small15 ($\alpha < \alpha_0$), and when the difference between the skill levels is large enough ($\bar{w}/w > w_0 = 4$) imposing workfare is socially desirable as it economizes on government expenditure. This completes the proof.

\begin{footnote}{15} But higher than the lower bound defined in footnote 14. \end{footnote}