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Restrictions with an Application to the Value of a Statistical Life* 

 
Economists often analyze cross-sectional data to estimate the value people implicit place on 
attributes of goods using hedonic methods. Usually strong enough assumptions are made on 
the functional form of utility to point identify individuals’ willingness-to-pay (WTP) for changes 
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indifference curves are assumed to be increasing and convex in an attribute-cost space that 
is finitely bounded above. These shape restrictions provide informative partial identification 
without relying on functional form restrictions for utility. Identification given general, potentially 
discrete, as well as smooth price functions is analyzed. To illustrate this method, we 
contribute to the literature on the value of a statistical life (VSL) by analyzing labor market 
data to study people’s willingness to pay (WTP) for reductions in levels of fatal risk. The 
paper contrasts VSL estimates from conventional analysis with the bounds obtained under 
this new approach using a common data set. The data are shown to be consistent with a 
wide range of WTP values even given equilibrium and credible shape restrictions. This 
suggests that conventional estimates may be driven by functional form restrictions imposed 
on utility rather than by the data or properties of equilibrium. 
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1 Introduction

Economists often use hedonic analysis to learn about people’s preferences for particular
attributes of goods when explicit prices for each attribute separately are not available.
Attribute prices are not available because bundles of attributes, embodied in goods, are
traded in markets but the attributes themselves are not. Studied attributes of goods
include fatal occupational risks of jobs, air quality near houses [reviewed in Smith and
Huang (1995)], processor speed in computers [Pakes (2003)] and many others. Contingent-
valuation surveys and research designs based on policy discontinuities [e.g, Ashenfelter and
Greenstone (2004) and Powell (2009) on fatal risk; Black (1999) on school quality; Chay
and Greenstone (2005) on air quality] provide alternatives to hedonic analysis.

This paper focuses on identification of marginal willingness-to-pay (WTP) in a hedonic
model. How much would we need to compensate people to keep them indifferent between
some status quo and a ceteris paribus world where their consumption of the hedonic good
is changed marginally along one dimension? Hedonic analysis has been used to study
individual WTP and population average WTP (AWTP) for marginal changes in many
attributes of jobs, houses, and consumer products. This paper develops and applies its
results in a hedonic analysis of labor market choice, where workers trade wages against
fatal occupational risk in choosing a job. However, the identification approach developed
here could apply in any of these other hedonic settings.

There are two central challenges in hedonic analysis; this paper innovates on the second
challenge. The first challenge is to identify the set of choices available to each individual
when only their realized choices are observed. Knowing what options each individual
passed up in making the observed choice is the foundation for insight into preferences.
This budget set is commonly characterized using a function mapping hedonic attributes
into prices for a given individual consumer or worker. Although credibly identifying budget
sets is not trivial, this paper assumes it has been done in order to focus attention on
the innovation made towards the second challenge. That said, this paper does study
identification assuming price functions with a wide range of properties. This is important
because recent work [Eckland, Heckman, and Nesheim (2004); Bajari and Benkard (2005);
Pakes (2005)] has highlighted the relevance of considering discontinuous and potentially
discrete market price curves in hedonics. The second challenge is to translate information
about each consumer’s revealed preference for his or her observed choice into a useful
characterization of preferences. The paper’s main contribution lies here.

This paper develops a new approach to identification of willingness-to-pay (WTP) in
hedonic models based on imposing shape restrictions on individuals’ indifference curves.
The shape restrictions derive from weak conditions on preferences and generate informative
partial identification of WTP given cross-sectional data from a single market. The criti-
cal conditions are that individual’s indifference curves are assumed to be increasing and
convex in a finitely-bounded risk×wage (attribute×price) space. These shape restrictions
partially-identify individual WTP for changes in risk along the status-quo indifference
curve, i.e. they imply bounds on the indifference curve.1 These bounds depend on the
econometrician’s choice of parameters for the upper bounds on the attribute×price space,

1This builds from analysis of shape-restricted treatment response in Manski (2003).
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as explored in the model and the application. Combining the shape restrictions with in-
formation about the price function produces tighter bounds on WTP and AWTP. These
bounds are described by a series of propositions throughout Section 2.

This shape-restriction approach adds a new kind of tool to the hedonics literature,
which has generally relied on functional form assumptions on utility to point-identify (or
over-identify) preferences. One common approach is to assume that individuals have ho-
mogeneous preferences. This permits interpretation of the price function itself as an indif-
ference curve and of the function’s slope as AWTP. Although the theoretical limitations
of this approach are clear, many empirical papers estimate AWTP this way. Allowing for
heterogeneous preferences, the most common approach is to assume a convenient func-
tional form for utility that enables point identification of preferences from observation
of a single choice. These are typically either parametric or rely on additive separabil-
ity of the preference heterogeneity parameter [Eckland, Heckman, and Nesheim (2004)].
Recently, Heckman, Matzkin, and Nesheim (2010) proposed a strictly more general ap-
proach to point-identify nonparametric, nonadditive preferences. In weakening structural
requirements to obtain point-identification, this is a large theoretical step forward but point
identification still relies on a functional form assumption for utility. Here, in the equation
describing individuals’ marginal utility, preference heterogeneity is separable from observed
characteristics of individuals and hedonic goods.

In contrast, the bounds obtained in this paper describe the set of WTP values that
would be generated by considering the union of all utility functions (or underlying pref-
erences) consistent with the assumed shape restrictions on indifference curves. Observing
an individual making a single choice cannot give solid ground for a rich characterization of
preferences. If one demands point identification of preferences, one must necessarily invoke
strong structure. This is a fundamental problem in hedonic analysis of cross-sectional data.
Staying in the realm of cross-sectional data, rather than pushing so hard for AN answer,
this paper instead asks what range of answers are consistent with the data and credible
economic restrictions on preferences.2

A few other papers have studied partial identification in hedonic models. Motivated
by the new-goods problem in construction of price indices and building on early work by
Konüs (1939), Pakes (2003) develops bounds on the compensating variation necessary to
hold welfare constant as prices and choice sets change over time. He does not study the
additional identifying power of shape-restricted preferences. Bajari and Benkard (2005)
study partial identification of parametric consumer preferences in differentiated product
markets characterized by discrete price functions in order to identify demand and wel-
fare. Their parametric assumptions are strong enough to deliver point identification of
preferences from cross-sectional choice data assuming a smooth price function.

This paper develops and applies its model in the context of one active, important
strand of the hedonics literature – studying cross-sectional labor market data to estimate
AWTP for a marginal change in fatal risk. Since the seminal work of Thaler and Rosen
(1975), a large literature has used this approach to estimate the value of a statistical life

2If the econometrician can observe multiple choices, from either a within-population, across-markets
panel or within-individuals, across-time panel, a richer characterization is possible. The current paper
restricts attention to cross-sectional data.
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(VSL). Appealing to the theory of compensating differentials, workers in labor market
data are assumed to have implicitly traded wages against occupational safety in choosing
their preferred job. Understanding the value people implicitly put on risk is useful in
policymaking. In cost-benefit analysis, some factors are easy to monetize because they
commonly trade in the marketplace and have well-established prices, such as the cost of
installing a smokestack scrubber. However, some factors are difficult to monetize, even if
their non-monetary benefits are understood. In order to summarize the trade-off between
money and risk, the concept of VSL is used. A simple example illustrates the reasoning.
Suppose:

1. N people are exposed to a fatal risk at level r = Pr(death).

2. Individual-n is willing to pay WTPn to move to risk level r−Δ, meaning individual-n
is indifferent between the money-risk bundles (0, r) and (−WTPn, r −Δ).

3. Implementing policy would change the risk level from r to r −Δ and cost C.

Cost-benefit analysis suggests adopting policy if and only if C ≤
∑
WTPn. To facilitate

generalization across samples, levels of risk r, and risk increments Δ, the value of risk
reduction is summarized as the value of a statistical life: V SL(r,Δ) ≡ (NΔ)−1

∑
WTPn.

This is the average willingness to pay (AWTP) for a change in risk from some given level
r to the new level r − Δ, scaled by the increment of change. In the literature, the VSL
estimates most often presented are estimates of the AWTP for a marginal change (Δ→ 0)
in risk from the sample mean or median level of risk. This is equivalent to the average
slope of individual risk-wage indifference curves at that level of risk across the population.

Economists’ VSL estimates impact policies and lives. Many federal agencies use these
estimates to guide decision-making. Under-estimates of VSL may lead to policies that
do save enough lives. Over-estimates may lead to wasted resources. U.S. Environmental
Protection Agency guidelines recommend use of a VSL of $6.2 million (2000 US$). They
chose this value by calculating the arithmetic mean of 26 studies reviewed in Viscusi (1992).
In a February 5, 2009 memo, the Department of Transportation raised its baseline VSL
for cost-benefit analyses to $5.8 million, “based on our improved understanding of the
academic research literature [Duval and Gribbin (2009)].” The new baseline VSL is set
equal to the mean of 5 VSL estimates from recent analyses and meta-analyses [Mrozek and
Taylor (2002); Miller (2000); Viscusi (2004); Kochi, Hubbell, and Kramer (2006); Viscusi
and Aldy (2003)].

Unfortunately, estimates of VSL in the literature vary quite widely. Conventional
models assuming homogeneous preferences or functional forms for utility applied to U.S.
labor market data generally produce VSL estimates in the range of $4 -9 million although
the literature contains much higher and lower estimates [Viscusi and Aldy (2003)]. Other
researchers have used alternative strategies to estimate VSL and have also obtained widely
varying estimates. For instance, Ashenfelter and Greenstone (2004) use changes in state
speed limits to estimate AWTP for risk reductions and get an imprecise point estimate of
$1.54 million for VSL. Powell (2009) exploits variation in marginal tax rates across time
and and gets a VSL estimate of $50-75 million. To reflect uncertainty about VSL, the U.S.
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Department of Transportation now requires that cost-benefit analyses be presented based
on VSL of $3.2 and $8.4 million as well. These widely varying estimates trouble researchers
and policy makers, who would prefer a converging set of evidence.3

The later sections of the paper apply this new model to the kind of labor market data
conventionally used in VSL analysis and estimates bounds on VSL. Section 3.1 gives detail
about the data, which were previously used in Leeth and Ruser (2003a) and generously
shared. Section 4 presents results. This new approach illuminates the degree to which point
estimates in the VSL literature are due to data and to what degree they are due to strong,
convenient conditions imposed on utility. Observed data are shown to be consistent with
quite high and low VSL estimates. This wide range of possibility may help explain why
VSL estimates vary across studies with different specifications and models. The tightest
bounds estimated here are wide, between $2.3 and $58 million dollars, although they do
exclude some of the highest and lowest point estimates in the literature. Assuming different
values for the bounds on the risk×wage space gives wider bounds. Section 5 concludes.
An appendix provides formal proof of the propositions as well as intermediate results.
Additional tables and figures follow.

2 Model and Identification

A simple and weak nonparametric version of the model designed to clarify main ideas is
introduced in Section 2.1. Section 2.2 discusses the identifying power of shape restrictions
on indifference curves as well as the connection between bounds on:

1. indifference curves,

2. willingness-to-pay (WTP), and

3. average willingness-to-pay (AWTP).

The objective is not to generate strong results or to exploit rich detail. Section 2.3
moves in that direction by adding more structure to the model of the market.

2.1 Model with shape restrictions alone

Jobs differ in their level of fatal occupational risk, r ∈ R ⊆ ℝ. This affects worker utility
and firm profits and, hence, influence wages, w ∈ W ⊆ ℝ. Jobs are characterized by their
risk level and wage, that is their hedonic attribute and price. The econometrician observes
a random sample of N jobs, {(rn, wn)}Nn=1 from the population.

Each individual worker’s preferences over jobs can be expressed as either an individual-
specific utility function over jobs, Un(r, w), or a set of indifference curves in R × W .

3“Research into these values has been pursued for a generation, and estimating techniques, model
specifications, and sources of data have continued to evolve. Nevertheless, the uncertainty of estimates
has not been substantially reduced.... The standard we are adopting may be seen as a central tendency,
but there can be no assurance that the assumption of higher or lower values would not improve the net
benefits of decisions. Therefore, examination of a range of alternative values must be regarded as an
essential component of the analytical process [Duval and Gribbin (2009)].”
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Throughout the paper, attention will focus on one indifference curve for each individual –
the curve passing through (rn, wn), the worker’s observed, status quo job. This particular
curve is conventionally the focus of WTP estimation in the VSL literature and elsewhere.
It characterizes how much would someone be willing to pay to move from the status quo
to an alternative that differs only in its level of the hedonic attribute. The curve’s slope
describes WTP for a marginal change in attribute level from a given base level.

Consider any worker-n observed in job (rn, wn). Her status-quo utility level is ūn ≡
Un(rn, wn). The indifference curve in attribute-price space R ×W passing through this
job contains all job types that also produce utility ūn for individual-n. Let the function
�n : R → W be implicitly defined as equivalent to this status-quo indifference curve; �n
is defined such that ūn = Un(r, �n(r)). Given a risk level of interest, r, �n(⋅) returns the
wage required to keep individual-n indifferent between her status-quo job and a job with
risk level r. It is immediate that wn = �n(rn).

To understand VSL, we study individuals’ WTP for marginal changes in risk from a
given base level of risk r, that is the slope of the indifference curve, �′(r). Usually, interest
focuses on the sample mean or median level of risk. From the implicit function theorem,

�′n(r) = −
∂Un(r,w)

∂r
∂Un(r,w)

∂w

∣∣∣∣∣
(r,w=�n(r))

(1)

This �′n(r) is the marginal rate of substitution of risk for wages at r. Since we focus
on partial identification, we will ask what range of values of �′n are consistent with data
and the model. Following the VSL literature, we will aggregate across individuals to study
AWTP, denoted E�′ with the expectation taken across the population distribution.

Individual indifference curves are assumed to have the following properties.

Condition 1. �n is

a Weakly increasing: �n(r) ≤ �n(s) for r < s

b Weakly convex: �n(s)−�n(r)
s−r ≤ �n(t)−�n(s)

t−s for r < s < t

For notational convenience, �n is assumed twice differentiable.4 Then, part a of Con-
dition 1 (C1.a) is �′n ≥ 0 and C1.b is �′′n ≥ 0. The substantive results hold without
differentiability.

C1.a is uncontroversial. It requires only that a worker offered an alternative job at
a higher risk level would demand alternative wages at least as high in order to remain
indifferent. As reflected in equation 1, this would follow from workers strictly preferring
more wages and weakly preferring less risk.

Similar shape restrictions on indifference curves in attribute-price space will be credible
in many settings where interest centers on WTP and hedonic analysis is commonly used.
If utility increases in the attribute — sunshine as in Roback (1982) or faster computer
processors as in Pakes (2003) — rather than decreases, �n would decrease in the attribute
level rather increase. Analogous results can be derived in that setting.

4Un continuously differentiable in wages and twice continuously differentiable in risk would imply this.
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Substantively, C1.b means that as the risk level increases, workers require weakly in-
creasing amounts of wage compensation to remain indifferent to a marginal change in risk
levels. It is equivalent to a marginal rate of substitution that weakly increases in r. C1.b
follows from preferences convex on R ×W . C1.b is a nontrivial assumption but plausible
in many settings. Many have used it in the past including Rosen (1986), Pratt and Zeck-
hauser (1996), and Chay and Greenstone (2005) who use this kind of “weak restriction”
in their test for selection bias due to assortative matching. Consider an expected utility
maximizer with

Un(r, w) = (1− r)u(w) + rv(w)

where u is the state-dependent utility if the worker does not suffer a fatal injury and v the
utility if so injured. Then, �n is convex if and only if u′ > v′, that is if the marginal utility
of wages is lower in the case of a fatal injury than in the case without.5

Prior research on state-dependent preferences for occupational risks are consistent with
the idea that preferences are commonly convex. The estimates from the structural model of
worker preferences in Biddle and Zarkin (1988) suggest that the vast majority of individuals
have convex income-risk preferences. Viscusi and Evans (1990) estimate state-dependent
utility functions with regard to nonfatal occupational injuries under various parametric
specifications. In each case, their estimates suggest that preferences are convex on average.
C1.b assumes they are convex for every individual.

In addition to increasing, convex indifference curves, informative partial identification
requires that the attribute-price space under consideration is finitely bounded above. This
upper bound provides a necessary fulcrum against which the shape restrictions on �n gain
leverage for identification. The basic idea is illustrated in Figure 1 on page 8. Together
Conditions 1 and 2 (C1-2) bound individual-n’s status-quo indifference curve �n within the
unshaded region. Proposition 1 expresses these bounds.

Condition 2. Risk-wage space R×W is finitely bounded above

∀rU <∞,∃wU <∞ such that wU ≥ max
n∈N

�n(rU)

In the analysis, (rU , wU) must be chosen as parameters and the two values must be
understood together. Begin by considering a given risk level higher than all observed risk
levels. Call it rU . Then, wU will correspond to an upper-bound on wages that any worker
would require to accept rU and remain indifferent relative to the status quo job type she
is observed to have chosen.

If attention is restricted to moderate risk levels (like those found in workplaces rather
than war zones), the idea of a finite upper bound wU is plausible. Wages could be made
high enough to make any clerical worker (r = 0.5 fatalities per 100,000 workers) indifferent
to increasing her fatal occupational risk level to that of a construction worker (r = 12.9)
[of Labor Statistics (2005)]. However, there may not be wages high enough to induce her
to accept the risks faced by U.S. military personnel in Iraq (r = 392) [Preston and Buzzell
(2006)].

5�′ = u−v
(1−r)u′+rv′ so �′′ = (u+ v)[(1− r)u′ + rv′]−2(u′ − v′). The first two terms are positive. �′′ takes

the sign of u′ − v′.
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(rU,wU) 
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Not increasing (~I) 

Not convex (~C) 

~C 

~I 

Figure 1: Bounds on increasing, convex indifference curve �n passing through (rn, wn).
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To understand sensitivity in the application, estimation under a range of assumed values
will be carried out. For instance, the least conservative estimate presented sets rU equal to
250 annual fatalities per 100,000 workers per year. This is chosen to be 10 percent higher
than the highest risk level observed in the data: 226 for commercial fishers. The upper
bound on wages wU is set at $107 per hour, also 10 percent higher than the maximum
wage observed in the data.

2.2 Partial identification of AWTP with shape restrictions alone

This section studies the identifying power of the shape restrictions C1-2 alone for AWTP.
The approach draws from the analysis of shape-restricted treatment-response functions in
section 8.4 of Manski (2003). In the present analysis, risk levels are the “treatment” and
indifference curves are the response functions. Identification of AWTP proceeds in three
steps, each centered around a proposition. Proposition 1 describes how C1 and C2 impose
bounds on any individual’s indifference curve, �n. Bounds on �n imply bounds on its slope
at any point, �′n, expressed in Proposition 2. Taking expectations across individuals gives
bounds on AWTP, E�′, expressed in Proposition 3.

Step 1: Bound �n(⋅) The individual indifference curve, �n, must lie in the unshaded
region of Figure 1. �n passes through (rn, wn) by definition. Increasingness rules �n out of
the two rectangular regions labeled ˜I in Figure 1. For s < rn, if �n took values above wn
it would have to decrease to attain (rn, wn) violating increasingness. For r > rn, it would
have to decrease to take values lower than wn.

Convexity rules �n out of the two triangular ˜C regions. Suppose the function passed
through any point in a ˜C region. In order to also pass through (rn, wn) and to remain
increasing and convex, then �n(rU) ≥ wU , which would contradict C2. Note that convexity
gives useful restrictions only when rU and wU are finite, which motivated C2.

Proposition 1 formally describes the bounds on �n generated by C1-2. It describes the
interval of wage values within which an increasing, convex indifference curve must lie at a
given risk level s ∈ R.

Proposition 1. Bound on indifference curve �n
Given C1− 2, LB1(s) ≤ �n(s) ≤ UB1(s) for ∀s ∈ R with

LB1(s) ≡ UB1(s) ≡
wn wn + wU−wn

rU−rn
(s− rn) if s > rn

wn + wU−wn

rU−rn
(s− rn) wn if s < rn

These bounds are strict.

Proof. Consider the cases separately.

s > rn : C1.a gives the lower bound, �n(s) ≥ �n(rn) = wn. The upper bound is obtained
by applying Lemma 9 with rU ≡ t and r ≡ s.6

6Lemmas are in the Appendix.

9



s ≤ rn : Lemma 10 with s < rn < rU gives

�n(s) ≥ �n(rn) +
�n(rU)− �n(rn)

rU − rn
(s− rn)

To obtain the desired lower bound, use wn = �n(rn) and, by C2, wU ≥ �n(rU) noting
that (s− rn) < 0. The upper bound is from C1.a: �n(s) ≤ �n(rn) = wn.

Given these bounds on �n, its slope is also bounded.
Step 2: Bound �′n The lower and upper bounds on individual WTP are illustrated in

Figure 2 and stated formally in Proposition 2. The slope at risk level s is always maximized
by assuming that the function �n is at its lower bound at s.

If s > rN , the upper bound on the slope is wU−wn

rU−s
. This is consistent with �n constant

at value wn for all risk levels below s, then linear from (s, wn) to (rU , wU). This represents
a very strange preference — someone indifferent to additional risk up to s and abruptly
averse with a constant marginal rate of substitution for additional risk above s. However,
it is an extreme consistent with C1-2.

If s < rn, the upper bound on the slope is wU−wn

rU−rn
. Any greater slope would violate

convexity.
In every case, the lower bound on the slope is given by increasingness, �′n(s) ≥ 0. This

cannot be tightened without further assumption. The lower bound is always zero because
we have nothing to rule out a person who is indifferent to additional risk. So, indifference
curves could be flat.

Proposition 2. Bounds on �′n
Given C1-2, for ∀s ∈ R

0 ≤ �′n(s) ≤ wU − wn
rU − s

1[s > rn] +
wU − wn
rU − rn

1[s ≤ rn]

These bounds are strict.

Proof. In each case, the slope at s is maximized by assuming �n(s) is at its lower bound. In
case s ≥ rN , suppose �′n(s) > wU−wn

rU−s
. For t ∈ (s, rU), �′n(t) ≥ �′n(s) > wU−wn

rU−s
by convexity.

Therefore,

�n(rU) > �n(s) +
wU − wn
rU − s

(rU − s)

= �n(s) + wU − wn
≥ wU

This contradicts the definition of wU as an upper bound on �n proving �′n(s) ≤ wU−wn

rU−s
for s ≥ rn. The first inequality comes from the assumed conditions and by noting that a
linear function is the minimal convex function. The third line comes from Proposition 1’s
lower bound on �n(s). The logic of the other case proceeds analogously.
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Figure 2: Upper bound on individual WTP (�′n) by case
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Step 3: Bound on E�′ To obtain bounds on the AWTP, take the expectation of the
bounds with respect to the distribution of the population of indifference curves. This gives
the following proposition.

Proposition 3. Bounds on AWTP, E�′

Given C1-2, for ∀s ∈ R,

LB3(s) = 0 ≤ E[�′n(s)]

≤ E

[
wU − wn
rU − s

∣s > rn

]
Pr[s > rn] + E

[
wU − wn
rU − rn

∣s ≤ rn

]
Pr[s ≤ rn] ≡ UB3(s)

These bounds are strict.

Proof. Take expectation of Proposition 2’s bound on �′n across the population of individ-
uals.

The sample analogue of this expression estimates the upper bound on the AWTP at
any risk level s ∈ R. Given parameters (rU , wU) and data (rn, wn) for n = 1, 2...N , each
observation falls into either s > rn or s ≤ rn. Then, estimate the upper bound on the
average slope at risk level s with:

ÛB3(s) = N−1
∑
n

(
wU − wn
rU − s

1[s > rn] +
wU − wn
rU − rn

1[s ≤ rn]

)
(2)

Comparative statics illuminate how the Proposition 2 upper bound on WTP, UB2,
depends on parameters. The logic of Proposition 3 and AWTP is the same.

∙ Increasing wU strictly increases the bound UB2. Formally, this increases the numera-
tor in either case. Economically, increasing wU says that workers may demand higher
wages to remain indifferent between their status quo and a job with risk level rU ,
loosening the limit on the levels to which compensating differentials can rise and,
thereby, loosening the rate at which they can rise.

∙ Increasing rU strictly decreases the bound. Increases denominator. Economically,
this raises the risk level at which workers must be willing to accept a fixed wU in
exchange for the status quo. It rules out the highest levels of distaste for risk that
were consistent with a lower rU .

∙ Upper bound weakly increases in risk level. For s, t ∈ R with s < t, UB2(s) ≤ UB2(t).
This could happen for two reasons: case switching and increases within the rn < s < t
case. Holding parameters and data fixed, the upper bound on �

′
n(s) increases as the

case changes from s ≤ rn to rn < s. This is illustrated by the increasing slopes of the
dotted lines between cases in Figure 2. Therefore, if s and t are in different cases,
UB2(s) < UB2(t). If rn < s < t , then UB2(s) < UB2(t) because wU−wn

rU−s
< wU−wn

rU−t
. If

s < t < rn, then UB2(s) = UB2(t).
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This has important implications for the econometrician’s choice of parameters (rU , wU).
The upper bound on WTP and AWTP at any given risk level s can be made arbitrarily
large by setting rU to make (rU − s) arbitrarily small. This is true given any data and
assuming finite wU . For such a choice, all observations are in case s > rn and the bound on
all �

′
n(s), wU−wn

rU−s
, is made arbitrarily large. If research interest focuses on some particular

risk level, such as median or mean level of risk, one will want to set rU well above this level
and set wU given that choice.

2.3 Modeling the market

This section integrates the results developed above using only shape restrictions on status-
quo indifference curves with a conventional hedonic model of the market defining indi-
vidual’s opportunities. This models each worker’s budget set, among which the observed
job is assumed preferred. Prices and budget sets are equilibrium objects arising from the
interaction of workers and firms and are characterized by a pricing function for hedonic
attributes given worker characteristics. In the case considered here, the pricing function
maps job and worker characteristics to maximum wage offers.

The focus is not on identification of the price functions but on how knowledge of the
price function interacts with C1 and C2 to generate new restrictions on indifference curves
�n and, thereby, to generate tighter bounds on individual WTP, �′n, and AWTP, E�′n. Two
classes of pricing functions are considered, as in Bajari and Benkard (2005). The first is
general, allowing for discrete, discontinuous price functions. The second class is restrictive,
allowing wages to vary only smoothly and continuously with risk. This characterizes the
approach in most of the empirical VSL and broader hedonics literature.

First, we consider a pricing function that allows for a finite number of opportunities
for any individual worker. Knowledge of the pricing function generates new restrictions on
indifference curves by revealed preference. In combination with C1-2, this implies tighter
bounds than either shape restrictions alone (Propositions 1-3) or the price function alone,
as studied in Pakes (2003), give. Propositions 4 and 5 describe the tighter bounds so
obtained on �n and E�′ respectively.

Second, we consider the implications of a known smooth, continuous price function
for identification of WTP and AWTP. This type of market implies a tangency condition
between the price function and the status-quo indifference curve at the observed job. Most
conventional hedonic analysis uses this condition. Under C1-2, the tangency condition
tightens the bounds further but does not point identify preferences, WTP or AWTP.

This is interesting for two reasons. First, it is valuable to understand the identifying
power of this condition in order to estimate bounds on AWTP and VSL given our structure.
Second, it is interesting to see that AWTP is not point identified by the tangency condition
in a conventionally-defined, well-behaved market foregoing functional form restrictions on
utility.

Thus far, all worker and most job characteristics have been kept buried in the hetero-
geneity of Un and �n, as we studied only WTP for ceteris paribus changes in risk level.
In order to capture differences in the opportunities available to workers, the influence of
observed and unobserved worker and job characteristics are modeled.
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Let a ∈ A ⊆ Rna measure observable characteristics of the job (other than risk) that
affect wage. This might include measures of tasks required and working conditions. The
econometrician now characterizes jobs by (r, a, w). Similarly, let x ∈ X ⊆ Rnx measure
observable characteristics of workers that affect potential wages, for instance education.
Workers also have productive heterogeneity � ∈ H ⊆ R, which is known to workers and
firms and influences wages, but which the econometrician does not observe. Utility is now
Un(r, a, w), �n implicitly defined holding a = an, and data are {(rn, an, wn, xn)}Nn=1.

2.3.1 General price functions

Each worker type (x, �) takes a set of available market opportunities as given and chooses
a job optimally from it. This set can be expressed as a function mapping any available
job type (r, a) to the maximum available wage for that worker type. For any worker, her
market opportunity set is P : R × A × X × H → W defined by w = P (r, a, x, �). This
price function is an equilibrium object arising out of the interactions of workers and firms.
Workers are assumed to be price takers for whom P is fixed. No particular industrial
structure is assumed on the firm side of the market. The price function may be discrete
or discontinuous. Since all preferences are monotone in wage and risk, P must be weakly
monotone increasing in r or it could not be an equilibrium.

Assume that P (r, a;x, �) and �n are identified.

Condition 3. Each worker chooses an offer optimally from an identified P (r, a, x, �) which
clears the market and each worker’s �n is identified.

Identification is not trivial but the problem is well understood and can be addressed
in various ways depending on the setting. The problem of identifying P and �n can
often be separated from the problem of identifying features of preferences given that in-
formation. Bajari and Benkard (2005) discuss approaches to identifying P . One common
set of assumptions is E[�∣r, a, x] ≡ 0 and P (r, a;x, �) ≡ eH(r,a;x)+�. This identifies P
and rules out selection bias in estimation of its unknown features.7 It also implies that
�n = ln(wn) − H(rn, an;xn). An even more specific version of this will be assumed later
for the empirical analysis.

By revealed preference, choice of job (r = rn, a = an) by worker (x = xn, � = �n) implies
that her status-quo indifference curve �n(⋅) is bounded below in risk-wage space by the price
function P (⋅, an;xn, �n). Otherwise, the worker could attain higher utility by choosing a

7Credibly satisfying this condition when using hedonics to study VSL is challenging due to potential
correlations between workers’ tastes for risk and either their general or risk-reducing skills (Brown (1980);
Hwang, Reed, and Hubbard (1992); Shogren and Stamland (2002)). For instance, unobserved productivity
may be negatively correlated with taste for risk so that people observed in low risk jobs will also tend
to have higher unobserved productivity. This may lead to an underestimate of the market price for risk
and of VSL. A second problem may also arise especially in the hedonic analysis of labor markets, where
income is determined. Consider two workers who differ only in �. At any particular job (r, a), one would
be offered higher wages, which could lead to higher income. If job safety is a normal good, then that
worker may choose a lower risk job inducing a negative correlation between observed r and unobserved �
and violating E[�∣r, a, x] = 0. Despite these problems, such conditions are commonly maintained and are
maintained here.
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different job. For convenience, we can condition on any individual’s characteristics and
chosen amenities, suppress those variables and consider only the relationship between her
indifference curve �n and price function Pn(⋅) ≡ P (⋅, an;xn, �n).

C3 implies �n(rn) = Pn(rn) and ∀s ∈ R,

Pn(s) ≤ �n(s) (3)

This implies that model would be internally inconsistent if there existed s such that
UB1(s) < Pn(s), as Proposition 1 showed that �n(s) ≤ UB1(s). Given P , this implies a
lower bound on valid values of wU , call it wlub. One can choose wU high enough, which
raises UB1, to insure that this does not occur. In the application, this is done given P̂ .

The propositions from this section are not used in the empirical analysis but provide a
stepping stone to the study of continuous price functions and a set of theoretical restrictions
that could prove useful in other contexts. Combining inequality (3), which follows from C3,
with C1-2 tightens the lower bound on �n. The same kind of logic is used again although
the details differ.

The new lower bound on �n provided by Pn gives new fulcrums against which the
leverage of the shape restrictions C1− 2 can be exploited. For instance, information that
Pn takes values Pn(q) and Pn(t) newly rules �n out of the striped regions illustrated in
Figure 3. Considering the logic of this figure can give useful insight into this source of
identification. If �n were to take values in the diagonally-striped regions, �n would have to
violate C1 or C2. For s < q, �n(s) in the striped region violates convexity by logic exactly
analogous to that which gave a lower bound on �n in Proposition 1 for s < rn. If �n were
to take a value in the striped region it would need a steep slope to attain �n(q) ≥ Pn(q)
followed by a shallower slope to attain �n(rn) = wn, violating convexity. For s ∈ (rn, t),
�n(s) in the striped region violates convexity by a similar logic. For s ∈ [q, rn), �n(s) in
the striped region violates increasingness as Pn(q) ≤ �n(q) ≤ �n(s). For s > t, �n(s) in the
striped region violates convexity because it requires �′n to decrease somewhere between t
and s.

The mathematical expressions for the bounds (Propositions 4 and 5) are complicated
but they formalize the idea in this figure and generalize from information about Pn at
the two points q and t to information about Pn across any set of risk levels. Translating
information about Pn at many values into a bound on �n(s) for any particular s requires
searching over appropriate ranges in R to see which constraints bind most tightly at a
given risk level of interest s. They tighten the lower bound on �n.

Proposition 4. Given C1-3, for any s ∈ R
LB4(s) ≤ �n(s) ≤ UB1(s) with LB4(s) defined as
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Figure 3: Bounds on �n given knowledge of two points on Pn below �n
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max

⎧⎨⎩
LB1(s),

wn + max
�∈(rn,s)

Pn(�)−Pn(rn)
�−rn (s− rn),

max
�∈(s,rU )

Pn(�) + wU−Pn(�)
rU−�

(s-�)

⎫⎬⎭ if s > rn

max

⎧⎨⎩
LB1(s),

wn + min
q∈(s,rn)

Pn(rn)−Pn(q)
rn−q (rn − s),

max
�∈(rL,r)

Pn(�)

⎫⎬⎭ if s < rn

Proof. For s > rn, the lower bound on �n(s) is the maximum across three arguments.
The first argument comes from the lower bound in Proposition 1. The second comes from
searching across all values of risk � between rn and s for identification as pictured in the
far right of Figure 3 and proved in Lemma 11. The third argument is from searching across
all values of risk � between s and rU for identification as pictured in the (rn, s) region of
Figure 3. To prove it holds, use Lemma 10 with s < � < rU to obtain

�n(s) ≥ �n(�) +
�n(rU)− �n(�)

ru − �
(s− �)

Using C3: Pn(�) ≤ �n(�) and C2: �n(rU) ≤ wU gives the desired expression for any
� ∈ [s, rU ]. Since this holds for any such � , the maximum across all such � gives the tightest
lower bound from this source of identification. The upper bound is from Proposition 1.

For s < rn, the lower bound is again the maximum of three arguments. The first
argument is from Proposition 1. The second argument is proved in Lemma 12 with s ≡ p.
It exploits information about Pn over values between s and rn to achieve identification as
pictured in Figure 3 at values below q. The third argument follows from Pn(�) ≤ �n(�) ≤
�n(s) for any and all � < s. The first inequality comes by Pn bounding � below. The
second comes by �n increasing. It exploits information about Pn at values below s to
achieve identification as pictured at values between q and rn. The upper bound is from
Proposition 1.

Given these bounds on the individual indifference curves �n, bounds on the slopes of the
individual indifference curves �′n and the average indifference curve across the population
E�′n can be obtained.

Proposition 5. Bounds on AWTP with discrete P
Given C1-3, for ∀s ∈ R

E
[
LB4(s)−wn

s−rn ∣s > rn

]
Pr[s > rn] ≤ E[�′n(s)]

≤ E
[
wU−LB4(s)

rU−s
∣s > rn

]
Pr[s > rn] + E

[
wn−LB4(s)

rn−s ∣s ≤ rn

]
Pr[s ≤ rn]
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Proof. For the lower bound, individual WTP �′n could be 0 for s < rn. For s ≥ rn, the
minimum slope is given by that of a line from (rn, wn) to (s, LB4(s)). Any lower value
would violate Proposition 4. Any higher value would not be a lower bound.

For the upper bound, individual WTP �′n are maximized by searching across t > s to

minimize UB4(t)−LB4(s)
t−s . Any higher values for this slope would violate C1.b or C2. Any

lower values is not the upper bound. For s > rn, the relevant t is rU , which gives UB4(t) =
UB4(rU) = wU . For s < rn, the relevant t is rn, which gives UB4(t) = UB4(rn) = wn.

Taking the expectation across individuals’ �′n bounds gives the bound on AWTP.

With this expression and information about a discrete price function P , one can com-
pute bounds on AWTP and, hence, on VSL. However, in this application, we will assume
a continuous price function. This generates another restriction, which is integrated into
the analysis in the next section.

2.3.2 Continuous price functions

With a few exceptions (Heckman, Matzkin, and Nesheim (2005); Pakes (2003); Pakes
(2005); Bajari and Benkard (2005)), most hedonic analyses assume a continuous price
function. At each point, its slope is the market price for accepting marginally more risk.
Optimal choices by each worker implies a tangency condition between the individual in-
difference curve and the market price curve at the observed job – the individual chooses
a job which sets her marginal rate of substitution of money for risk equal to the market
price of risk. This identifies �′n(rn) = P ′n(rn). In most hedonic analysis, enough structure
is imposed on preferences to point-identify preferences from this tangency condition. This
requires convenient assumptions about the known functional form of utility. In the current
structure (C1− C3), tangency generates new restrictions but still does not produce point
identification. It will tighten the bounds on �n(⋅) obtained previously, leading to yet tighter
bounds on AWTP than Propositions 5 gave. Given an additional condition, concave Pn,
identification and estimation are simplified considerably. As the data appear consistent
with concave Pn, this will be exploited in the empirical analysis.

Consider a smoothness condition on P .

Condition 4. Smooth market price curve. The quantity of workers supplied at all values
of (r, a, x, �) is positive (dense market) and P is twice continuously differentiable in r.

C4 is a substantive assumption made here and elsewhere for theoretical and notational
convenience. As Heckman, Matzkin, and Nesheim (2005) show, smoothness is not generally
a property of price curves, even when workers’ preferences and firms’ profit functions are
smooth. However, it ensures that the equilibrium market price of risk is well-defined as
the partial derivative of P with respect to r.

Utility maximization by workers implies that, at the observed job, each worker’s status
quo indifference curve is tangent to the market price curve. Each worker selects the job
with risk and amenity level (r∗, a∗) that maximizes Un(r∗, a∗, w∗) subject to wage offers
w∗ = P (r∗, a∗, xn, �n). She chooses a job along the price curve that sets the marginal utility
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of wages times the marginal wage with respect to risk equal to the marginal disutility of
risk.8

The first-order condition is

∂Un(r∗, a∗, w∗)

∂w
⋅ ∂P (r∗, a∗;xn, �n)

∂r
+
Un(r∗, a∗, w∗)

∂r
= 0

For any worker-n, her observed job (rn, an, wn) is revealed to be (r∗, a∗, w∗), implying that
the slope of the price function with respect to risk equals the slope of her status quo
indifference curve at that point,

mn ≡
∂P (rn, an;xn, �n)

∂r
= −

∂Un(rn,an,wn)
∂r

∂Un(rn,an,wn)
∂w

= �′n(rn) (4)

First, mn is defined as the slope of the price function at individual-n’s observed job. The
next equality comes by rearranging the FOC. The third equality comes from equation (1).
It is just a version of the regular tangency condition between an optimizing agent’s indif-
ference curve and her budget constraint. Figure 4 illustrates an optimizing worker’s status
quo indifference curve in risk-wage space tangent to the market-price curve P conditional
on a fixed (a, x, �).

If P were not smooth at rn, if C4 did not hold, then the market price for a marginal
change in risk would not be well-defined. While WTP would still be well-defined for workers
observed at rn as a property of the indifference curve, it would no longer be identified by
equation 4.

Equation 4 adds a new restriction to those embodied in Proposition 4 and 5. The basic
idea is illustrated in Figure 5. Given that �′n(rn) = mn, �n(rn) = Pn(rn) = wn and �n
increasing and convex, then �n is bounded out of the region shaded with horizontal stripes.
This shaded region is bounded above by a line passing through (rn, wn) with slope mn.

Proposition 6. Bounds on �n with smooth P
Given C1-4, for any s ∈ R,
max{LB4(s), wn +mn(s− rn)} ≤ �n(s) ≤ UB4(s).

Proof. All the conditions generating the proposition 4 bounds still hold. To them, the
tangency condition (equation 4) adds one more restriction. For s > rn (s < rn), by
convexity, the slope of the line connecting (s, �n(s)) to (rn, wn) must be greater (less) than

or equal to mn so �n(s)−wn

s−rn ≥ mn (wn−�n(s)
rn−s ≤ mn). Rearranging yields the implication.

The individual slopes and AWTP are bound by the exact analogue of Proposition 5
with max{LB4(s), wn +mn(s− rn)} substituted for LB4.

In general, any of these four conditions, three from LB4 and one from the tangency
condition, might be the binding lower bound for a given s. However, if market price is
concave in risk, then the restriction generated by the tangency condition will necessarily
bind more tightly than those newly-derived in the previous section and expressed in Propo-
sition 4 because concave P ensures that Pn lies below the wn +mn(s− rn) line. This case
is illustrated in Figure 5

8A second-order condition is also required: ( ∂2Un

∂w∂r + ∂2Un

∂2w
∂P
∂r )∂P

∂r + ∂Un

∂w
∂2P
∂2r + ∂2Un

∂2r + ∂2Un

∂r∂w
∂P
∂r < 0.
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Figure 4: WTP at rn given smooth equilibrium price function
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Figure 5: Bounds on �n given smooth equilibrium price function

Condition 5. P concave in R: Pn(s)−Pn(r)
s−r ≥ Pn(t)−Pn(s)

t−s for r < s < t

Propositions 7 and 8 describe the bounds on �n and E�′ respectively assuming smooth,
concave P .

Proposition 7. Bounds on �n with smooth, concave P
Given C1-5, for any s ∈ R
max{LB1(s), wn +mn(s− rn)} ≤ �n(s) ≤ UB1(s).

Proof. P concave and nondecreasing implies that mn = P ′n(rn) ≥ Pn(�)−Pn(rn)
�−rn . This im-

mediately implies that the new restriction binds tighter than the second restriction in
Proposition 4 for s > rn,

wn +mn(s− rn) ≥ wn + max
�∈(rn,s)

Pn(�)− Pn(rn)

�− rn
(s− rn)

Next, we prove that the new restriction binds tighter than the third restriction in
Proposition 4. Note that wU ≥ wlub ensures that

wU ≥ wn +mn(rU − rn) (5)

Also, given wn = Pn(rn) and mn = P ′n(rn), at � > rn, a concave price function must be
below a linear function through (rn, wn) with slope mn,
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Pn(�) ≤ wn +mn(� − rn) (6)

Substituting in inequalities 5 and 6 implies that,

wU − Pn(�) ≥ wn +mn(rU − rn)− wn −mn(� − rn)

Rearranging implies,

wU − Pn(�)

rU − �
≥ mn (7)

For � > s > rn,

Pn(�) +
wU − Pn(�)

rU − �
(s− �) ≤ Pn(�) +mn(s− �)

≤ wn +mn(� − rn) +mn(s− �)

= �n(rn) +mn(s− rn)

The first line comes from inequality 7. The second from inequality 6. The third line
collects terms and uses wn = �n(rn). As this is true for any � > s, it is true for the
maximum of all such � . This proves that the new restriction binds tighter than the third
restriction of Proposition 4 for s > rn. Similar arguments prove that the new restriction
binds more tightly than the second and third restriction in that proposition for s < rn.

This implies the following bounds on AWTP.

Proposition 8. Bounds on AWTP with smooth, concave P
Given C1-5, for any s ∈ R,

LB8(s) ≡ E [mn∣s ≥ rn] Pr[s ≥ rn] ≤ E[�′(s)]

≤ E

[
wU − wn − (s− rn)mn

rU − s
∣s ≥ rn

]
Pr[s ≥ rn] + E[mn∣s < rn] Pr[s < rn] ≡ UB8(s)

Proof. Illustrated in Figure 5. Logic as in earlier propositions. To maximize �′n(s), set
�n(s) at its Proposition 7 lower bound and search over t > s for the Proposition 7 upper

bound �n(t) that minimizes �n(t)−�n(s)
t−s . For s > rn, the relevant t = rU . For s < rn,

t = rn.

3 Application: the value of a statistical life (VSL)

3.1 Data

The data was originally described and analyzed in Leeth and Ruser (2003a). Individual-
specific data is drawn from the Current Population Survey (CPS) over the years 1996 to
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1998, producing a cross-section of 158,756 observations. These data include individual
hourly wage w as well as individual and job covariates used in explaining wages a, such as
indicators of usually works less than 20 hours per week, usually works 45 or more hours
per week, union member, married, major industry group, major occupation group, race,
gender, born outside US of foreign parents, and educational attainment. Age is also given.
Characteristics of individual’s home town and state are included in the wage covariate
vector to allow for compensating differentials for local conditions. These variables include
indicators for hometown population size, residence in a central city, and state of residence
as well as a continuous measure of the state’s workers compensation generosity. Workers
in the public, mining, agricultural and a few other sectors are omitted. To avoid problems
with top-coded wages, individuals with wages of $99 or more were dropped. The CPS data
also includes each individual’s 3-digit census occupational code.

One hopes to include all compensated differences between jobs in the model. Other-
wise, estimates of the price of marginal differences in risk could be biased. To facilitate
this kind of analysis, the Bureau of Labor Statistics (BLS) developed “generic leveling fac-
tors” measuring 10 dimensions of jobs’ duties and responsibilities and designed to capture
differences between jobs. As part of the National Compensation Survey, jobs were rated
along these dimensions. Leeth and Ruser generated a score for each 3-digit occupation by
calculating an average in each dimension for the workers in that occupation. The “work
environment” dimension, which is closely correlated with injury risk measures, is omitted.
The other 9 leveling variables are included among the wage-influencing convariates a.

The fatal and nonfatal injury risk level assigned is the average within the individual’s
3-digit census occupation code. The data contain 434 unique occupations, each with its
own fatal and nonfatal injury risk. This risk level reflects the number of injuries over the
number of workers in that ocucpation. The number of nonfatal workplace injuries comes
from the BLS’s Survey of Occupational Injuries and Illnesses. The number of fatal injuries
comes from the Census of Fatal Occupational Injuries. These are the numerators in the risk
levels. The number of full-time equivalent employees in each occupation is from the CPS.
Leeth and Ruser (2003b) describe the procedure used to construct these risk measures
in more detail.9 The fatal injury risk is r. Nonfatal injury risk is considered another job
attribute and included in a. The correlation between fatal and nonfatal risk is 0.43, leaving
some independent variation in the two types of risk.

Table 3.1 presents summary statistics on selected variables’ sample distribution. The
empirical distribution of fatal risk is presented in Figure 6. Consequently, 82 percent of
observations have fatal risk levels below the mean. For this reason, this paper focuses on
VSL estimates at the the median level of fatal risk. Also, in some analysis, observations
at high levels of risk are trimmed.

9There are two differences between the data they and I use. They analyze men and women separately
to investigate gender differences in the risk premium; I pool men and women together. Second, they use
race and gender specific risk occupational risk measures; I use the risk measures unconditioned on race
and gender.
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Table 1: Sample summary statistics

Variable Mean S.D. Med. Min. Max.

Hourly wage 14.08 8.20 2.21 98.13

Fatal injury risk/100,000FTE 3.71 8.27 1.40 0 226.7

Nonfatal injury risk/100FTE 1.83 2.07 1.04 0 16.7

Age 37.6 11.5 18 65

Black 0.090

Hispanic 0.088

Other non-white 0.046

High school grad. only 0.35

Some college, no degree 0.22

Vocational assoc. degree 0.05

Academic assoc. degree 0.04

Bachelors degree 0.17

Masters degree 0.04

Professional degree 0.01

PhD 0.01

Less than 20 hours/week 0.04

More than 40 hours/week 0.19

Foreign-born 0.11

Union member 0.10

City 0.23
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Figure 6: Distribution of fatal occupational risk in the sample. The data contain a few
people in very high risk occupations. Eighty-two percent are at levels below the mean level.
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4 Analysis

4.1 Estimating the market price function P

The most common empirical approach assumes some form of parametric P . In their review
of the VSL literature, Viscusi and Aldy (2003) mention only that quadratic risk terms are
sometimes significant and make no mention of semiparametric or nonparametric meth-
ods. Heckman, Matzkin, and Nesheim (2005) use simulation to show that hedonic models
generally yield highly nonlinear market price curves. Therefore, parametric methods may
obscure important features of the price function. However, at this stage, to keep attention
focused on the innovation at hand, a parametric model is assumed. In this vein, we follow
Leeth and Ruser (2003a) and assume that P is quadratic in fatal risk. This also allows a
simple test of P concave (C5): is �2 ≤ 0?

log(w) = �0 + �1r + �2r
2 + �a+ � (8)

To assess sensitivity, estimates from 3 other specifications are presented. Specifications
vary by the order of fatal and nonfatal risk terms included. For brevity, the specifica-
tions will be referred to by the pair order(fatal risk)− order(nonfatal risk). For instance,
specification 2-1 has linear and squared fatal risk terms and a linear nonfatal risk term.
We analyze 2-0, 0-1, 2-1, and 2-2. All equations also include the other worker and job
characteristics described above in a.10

Table 2 presents the regression estimates. It is common to interpret the slope of the
price function with respect to risk as AWTP and, hence VSL, which can be justified given
homogeneous preferences. The table’s bottom panel describes the VSL estimates implied
by these four specifications. Evaluated at median fatal risk level, the VSL estimates range
from $3.0 million when nonfatal risk terms are included to $6.3 million when they are
omitted. Evaluating at the mean fatal risk level, rather than the median, changes each
estimate by very little. These results are consistent with the conventional VSL literature,
which typically uses these same methods and obtains VSL estimates in the $4 - 9 million
range [Viscusi and Aldy (2003)].

Two standard errors for each estimated coefficient are presented. Standard errors ro-
bust to heteroskedasticity appear in parentheses. Those corrected for correlation of errors
within occupation appear in brackets. Assigning the same fatal and nonfatal injury risk
levels to all individuals within the same 3-digit occupation undoubtedly produces within-
occupation correlation of errors making the bracketed ones more appropriate. To reflect
that uncertainty in the VSL estimate, Table 2 also includes standard errors for the VSL
estimates correcting for within-occupation correlation of errors.

Even under the strong homogeneous preference assumptions required here, the VSL
estimates are somewhat imprecise. The 95% confidence intervals for the VSL estimates at

10Regressions also include as independent variables a constant, age, age squared, nine occupation generic
leveling variables, a measure of state workers’ compensation generosity, and binary variables for four race
categories, nine levels of completed education, married, foreign born, usually works less than 20 hours
per week, usually works 45 or more hours per week, union member, eleven major occupations, six major
industries, residence in a central city, six city population sizes, and residence in each of 50 states or D.C.
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Table 2: Results from various parametric specifications of model 1

Dependent variable: log(wage) Specification

Independent variables 2-0 0-1 2-1 2-2

Fatal injury risk/100 0.251 0.119 0.123

(0.031)** (0.031)** (0.031)**

[0.116]* [0.127] [0.125]

(Fatal injury risk/100)2 -0.136 -0.060 -0.052

(0.027)** (0.027)* (0.027)

[0.067]* [0.071] [0.072]

Nonfatal injury risk/100 1.766 1.687 4.505

(0.085)** (0.087)** (0.203)**

[0.586]** [0.599]** [1.598]**

(Nonfatal injury risk/100)2 -28.10

(1.88)**

[11.606]*

V̂ SLHP (Mean(r)), millions $6.2 $2.9 $3.1

[2.8] [3.10] [3.06]

V̂ SLHP (Median(r)), millions $6.3 $3.0 $3.1

[2.9] [3.18] [3.14]

* (**) denotes significance at the 5 (1) percent level.

mean risk level range from -$0.6 to 11.7 million under 2-0, from -$3.2 to 9.0 million under
2-1 and 2-2. The results are similar when the VSL is estimated at the median level of risk.
These are wide ranges. The range of VSL values they cover would have widely different
policy implications if interpreted naively.

4.2 Partial identification of AWTP/VSL

We present bounds on the VSL estimated both under the shape restrictions alone (C1-2)
and assuming smooth, concave P (C1-5), applying the results of Propositions 3 and 7
respectively. Results are presented in Table 3. Without using information about the price
function and using the least conservative parameters (rU = 2.1, wU = $107), the VSL
is estimated to be bounded between $0 and UB̂3 = $75 million. With equilibrium and
a smooth, concave price function, both the upper and lower bounds tighten to put VSL
between LB̂8 = $2.3 and UB̂8 = $58 million. These bounds are wide enough to include
the majority of estimates in the literature, although they do exclude the estimates found
by Ashenfelter and Greenstone (2004) and Powell (2009).

The bounds are sensitive to the choice of values for rU and wU , as described theo-
retically at the end of section 2.2. This is explored with reference to UB̂3, although the
same patterns hold for LB̂8 and UB̂8. The choice of parameters can be informed by the
distribution of the data as well as the logical bounds. We can restrict attention to a subset
of the logical bounds that holds but does not greatly exceed most of the values present in
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Table 3: Estimated bounds on VSL assuming shape restrictions on indifference curves
C1− 2, (rU , wU) = (2.1, $107), and trimming data with rn > 2

Conditions on price function Lower bound Upper bound

LB̂3 UB̂3

None 0 $75 million

LB̂8 UB̂8

Smooth and concave C3− 5 $2.3 million $58 million

our data. This allows one to focus on the area where data is dense and not try to analyze
sparse-data areas. In analyzing fatal risk, logically rL = 0 and rU = 1. However, on this
scale, all the fatal occupational risk data is in the [0, 0.0025) interval, i.e. from 0 to 250
fatalities per 100,000 FTE workers per year. More than 95 percent of the data is in less
than a tenth of that interval: [0, 0.0002) or from 0 to 20 fatalities per 100,000 FTE. Setting
the bound on the wage space is more difficult. There is no logical upper bounds on the
level of wages a worker might need to remain indifferent between her observed job and an
otherwise similar job at a different risk level. Ultimately, the choice is somewhat ad hoc.

In order to illustrate the sensitivity of the estimates to the (rU , wU) parameters, data
are held constant and estimation is carried out across various combinations of (rU , wU).
Two graphs with estimates of the functions UB̂3 are presented: figures 7 and 8. They
differ primarily in the value of rU used and secondarily in the range of wU values chosen.
Consequently, they also differ in scale. Figure 7 uses rU = 250, a value 10 percent above
the maximum risk level observed in the data. Figure 8 uses rU = 2.1, a value just above
the median. With rU = 2.1, not all the data can be included in the analysis. In order to
hold data constant across the two analyses, observations with risk levels above r > 2 are
trimmed from both. They constitute 35 percent of the data.

Each figure presents four estimated bounds, distinguished by the choice of wU . These
values were chosen as multiples of the maximum wage observed in the data. A range of
values is chosen to illustrate how estimated bounds respond to this parameter. Ideally, the
choice of wU should satisfy wU > max

n∈N
�n(rU). That is, it should exceed the highest wage

needed to keep each individual indifferent between their observed job and a job with risk
rU . However, there is no obvious way to implement this.

Consider the results in Figure 7. With the larger rU and at the median risk level
(Median(r) = 1.4), the upper bound on the VSL ranges from $75 million under the
assumption that wU = $107 to about $465 million under the assumption that wU = $491.
As the risk level analyzed increases, so does the bound.

Assuming smaller rU increases the bounds for all values of wU and all risk levels. Figure
8 illustrates how dramatically the bounds can change. Now, still using the median risk
level and the same values of wU , the VSL bound ranges from $28 billion to $173 billion
(not million). Reducing rU by a factor of 120 increased the bound on the VSL by a factor
of 2,700 for wU = $107.
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Figure 7: UB̂ assuming rU = 250 and various wU .
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Figure 8: UB̂ assuming rU = 2.1 and various wU .
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To further illustrate how the estimated bound on the VSL responds to the choice of
parameters rU and wU , consider Figure 9. It presents the estimated upper bound on
the VSL evaluated at the median fatal risk level – UB̂3(1.4) – as a function of the two
space bounding parameters. These parameters vary across the ranges rU ∈ [2.1, 290] and
wU ∈ [107, 584]. As expected from the comparative statics, the tightest bound is attained
when rU is highest and wU is lowest. It rises dramatically as rU approaches the region
containing the data. As stated before, this bound could be made arbitrarily large by
setting wU arbitrarily large or rU arbitrarily close to the risk level of interest.

Figure 9: Upper bound on VSL at median(r) under various parameter values.

5 Conclusion

This paper has implications for both policymakers and economists. For policymakers,
it warns that the VSL estimates produced by common types of analysis are sensitive to
the particular, strong assumptions made. In fact, under other assumptions, the data are
consistent with a wide range of VSL estimates. This should give policy makers pause when
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looking to these estimates to guide life-and-death decisions.
For economists, the paper introduces a new approach for hedonic analysis of cross-

sectional data in search of conclusions about WTP. Under a weak set of assumptions on
preferences, we have developed a new way to obtain informative bounds on WTP under a
range of conditions on market structure. However, the bounds are wide and sensitive to
parameter choice. This is an accurate reflection of the inescapable, underlying fact that
a single observation on each individual does not give you much information to identify
features of their preferences. Of course, one can always assume enough structure to say
more but the conclusions are only as credible as the assumptions.

Although this paper develops the framework in the context of VSL, its approach will
translate directly into other areas of economics that use hedonic analysis in order to study
willingness to pay for changes in the hedonic attribute. Rather than only presenting point
estimates based on strong structural assumptions, analysts can use this approach to also
explore what the data imply under other, weaker conditions.
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6 Appendix: Proofs and supporting results

This appendix begins by defining conditions and proving lemmas, which are useful in
proving the propositions in the main text. These results build on Manski (2003) section
8.4. I adapt those to the increasing, convex case and integrate them with equilibrium
conditions.

6.1 Supporting results

Consider two functions Pn and �n defined from the domain [rL, rU ] to the range [wL, wU ].
Any of these boundaries may be infinite unless noted. We are studying any individual-n’s
status-quo indifference curve as r varies but holding all other variables fixed, �n. When we
consider the relationship between individual-n’s indifference curve and the price function
P , we express P only as a function only of r, conditioning on the status-quo values for all
other variables and suppressing them. It is denoted Pn ≡ P (r, a = an, x = xn, � = �n)

Define the following conditions ∀r, s, t ∈ [rL, rU ] with r < s < t. Condition 6 captures
the fact that the indifference curve is defined relative to the observed status-quo job.
Condition 7 expresses the fact that, because the status-quo job must be in the individual’s
choice set, it must belong to the price function or the market-opportunity curve. All these
conditions would apply even if the wage (price) function were discrete and discontinuous.

Condition 6 (One point on �n known). : ∃rn ∈ [rL, rU ] such that wn ≡ �n(rn) known.

Condition 7 (Equal at known point). : ∃rn ∈ [rL, rU ] s.t. �n(rn) = Pn(rn) known.

Lemma 9 exploits convexity to put an upper bound on the indifference curve at risk
levels higher than rn. Intuitively, if the indifference curve were to take values above this
bound, then it would have to attain a value higher than wU at rU , which would violate
the bounded risk-wage space. Lemma 10 uses similar logic to put a lower bound on the
indifference curve for risk levels below rn. These are used for proving Proposition 1.

Lemma 9 (Upper bound on convex �n at higher values). Given C1.b and C6, then ∀s, t
with rn < s < t,

�n(s) ≤ wU − wn
t− rn

(s− rn) + wn

Proof.

wU ≥ �n(t) =
�n(t)− �n(s)

t− s
(t− s) + �n(s)

=
�n(t)− �n(s)

t− s
(t− s) +

�n(s)− �n(rn)

s− rn
(s− rn) + �n(rn)

≥ �n(s)− �n(rn)

s− rn
(t− s) +

�n(s)− �n(rn)

s− rn
(s− rn) + �n(rn)

=
�n(s)− �n(rn)

s− rn
(t− rn) + �n(rn)
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The first line comes by definition of wU and by expressing �n(t) as a linear function
connected to (s, �n(s)). The second comes by similarly expressing �n(s) with reference to
(r, �n(r)). C1.b gives the third. The fourth collects terms. Rearranging to solve for �n(s)
produces the stated bound.

Lemma 10 (Backcasting). Given C1.b, for a < b < c,

�n(a) ≥ �n(b) +
�n(c)− �n(b)

c− b
(a− b)

Proof. By C1.b, �n(b)−�n(a)
b−a ≤ �n(c)−�n(b)

c−b . Rearranging yields the lower bound.

�n(b)− �n(a) ≤ �n(c)− �n(b)

c− b
(b− a)

�n(b) +
�n(c)− �n(b)

c− b
(a− b) ≤ �n(a)

Lemma 11 (Lower bound on � at values higher than rn). Given C1.b∩C3∩C6∩C7, then

∀t > rn, �n(t) ≥ �n(rn) + max
s∈(rn,t)

Pn(s)−Pn(rn)
s−rn (t− rn).

Proof. For ∀s ∈ (rn, t),
Pn(s)−Pn(rn)

s−rn ≤ �n(s)−�n(rn)
s−rn ≤ �n(t)−�n(s)

t−s . The first inequality comes
from C3 and C7, the second from C1.b.

We can express our object of interest in point-slope form for the line passing between
(s, �n(s)) and (t, �n(t)) as

�n(t) = �n(s) +
�n(t)− �n(s)

t− s
(t− s)

By substituting in a similar expression for �n(s) and using the two inequalities obtained
above and consolidating the last two terms in (9), we obtain a lower bound on �n(t),

�n(t) = �n(rn) + �n(s)−�n(rn)
s−rn (s− rn) + �n(t)−�n(s)

t−s (t− s)

≥ �n(rn) + Pn(s)−Pn(rn)
s−rn (s− rn) + Pn(s)−Pn(rn)

s−rn (t− s)

= �n(rn) + Pn(s)−Pn(rn)
s−rn (t− rn)

This defines a lower bound for each s ∈ (rn, t). We obtain the greatest lower bound on
�n(t) by considering the maximum across all such s.

Lemma 12 (Lower bound on � at values lower than rn). Given C1.b∩C3∩C6∩C7, then

∀p < rn, �n(p) ≥ �n(rn)− min
q∈(p,rn)

{
Pn(rn)−Pn(q)

rn−q

}
(rn − p).
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Proof. As in the proof of lemma 11. For ∀q ∈ (p, rn), Pn(rn)−Pn(q)
rn−q ≥ �n(rn)−�n(q)

rn−q ≥ �n(q)−�n(p)
q−p .

Express our object of interest in point-slope form for the line passing between (q, �n(q))
and (p, �n(p)) as

�n(p) = �n(q)− �n(q)− �n(p)

q − p
(q − p)

As above, we obtain a lower bound on �n(p),

�n(p) = �n(rn)− �n(rn)−�n(q)
rn−q (rn − q)− �n(q)−�n(p)

q−p (q − p)

≥ �n(rn)− �n(rn)−�n(q)
rn−q (rn − q)− �n(q)−�n(p)

q−p (q − p)

= �n(rn)− �n(rn)−�n(q)
rn−q (rn − p)

This defines a lower bound for each q ∈ (p, rn). We obtain the greatest lower bound on
�n(p) by considering the minimum across all such q.
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