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Governmental Debt, Interest Poliy, and TaxStabilization in a Stohasti OLG Eonomy�Marten HillebrandKarlsruhe Institute of Tehnology (KIT)Department of Eonomis and Business EngineeringKollegium IV am Shlo�D-76128 Karlsruhe, Germanymarten.hillebrand�kit.eduPhone: +49 (0) 721-608 45667Fax: +49 (0) 721-608 43082January 28, 2011
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IntrodutionMost industrialized ountries have large governmental debt. In the U.S., total outstand-ing debt amounted to a little less than 60% of GDP in 2002 and rose moderately to about66% in 2007. Largely due to the giganti �sal stimuli in response to the reent eonomirisis, the past three years have seen a dramati inrease of this ratio to more than 90%as of 2010. Similar �gures apply for other ountries suggesting that the sustainabilityof governmental debt is - or should be - a highly relevant issue for poliy making.From a theoretial perspetive, it is well-known that an inrease in governmental debtmay stimulate aggregate demand in the short run but rowds out apital investment inthe long run, f. Elmendorf & Mankiw (1999). The latter e�et is partiularly importantin overlapping generations (OLG) eonomies where the �rst welfare theorem need nothold and ompetitive equilibria may be ineÆient due to an overaumulation of ap-ital. In suh a situation, as �rst shown by Diamond (1965), introduing governmentaldebt leads to a welfare improvement by implementing a dynamially eÆient alloation.Subsequent studies to investigate governmental debt in deterministi OLG eonomiesmay be found, e.g., in de la Croix & Mihel (2002, Ch.4), Farmer (1986), and in Bullard& Russell (1999) for onsumers with multiperiod lives.There is a lose relationship between the sustainability of governmental debt and theemergene of a bubble. The latter orresponds to an intrinsially worthless asset thatis traded at a positive prie suh as �at money or a private asset that does not paydividends. The di�erenes between debt and a bubble are thoroughly exhibited in dela Croix & Mihel (2002, p.212). Starting with the work by Tirole (1985), a large bodyof the literature disusses the emergene of bubbles in deterministi OLG models. Forexamples see, e.g., in Bertohi & Wang (1994), Kunieda (2008), or Mihel & Wigniolle(2003). Due to the strutural similarities between debt and a bubble, the results byTirole (1985) also haraterize sustainable levels of governmental debt in deterministiOLG models. In the absene of taxation, there exists a unique sustainable debt-to GDPratio for whih the eonomy onverges to the golden-rule steady state with positive debt.Debt smaller than the ritial level leads to an asymptotially debtless (and ineÆient)situation while larger values imply an unsustainable situation in whih debt grows with-out bound.Starting with the work of Wang (1993), the literature has inreasingly foused on OLGeonomies with aggregate risk due to random prodution shoks. It seems not yet known,however, how the previous deterministi �ndings arry over to a stohasti setting, i.e.,under what onditions equilibria with positive debt exist and whih debt levels are sus-tainable. A �rst approah in this diretion is put forward in Bertohi (1994), whoanalyzes possible equilibrium senarios in an OLG model with riskless debt. If thereis aggregate risk, another funtion of governmental debt is to provide a possibility ofrisk-sharing between generations. While, e.g., Bohn (1998) and Kr�uger & K�ubler (2006)analyze the issue of intergenerational risk-sharing in the ontext of Soial Seurity, asimilar study for governmental debt seems not to have been onduted in the literature.If payments on outstanding debt are �naned by issuing new debt to the next genera-tion, the implied risk sharing is essentially determined by the extent to whih interestpayments on debt are indexed to risk. This motivates the question how di�erent interestpoliies a�et intergenerational risk-sharing and onsumer welfare.Following the previous motivation, the present paper studies the role of governmentaldebt in a stohasti OLG framework. Two issues are at the enter of interest: 1.Whih1



levels of debt are sustainable and whih level is optimal? 2.Whih interest poliy is fa-vorable and indues optimal risk sharing between generations? The main ontributionsof the paper are as follows. Firstly, we unveil the forward-reursive struture of equi-libria and derive neessary and suÆient onditions for their existene together with anexpliit haraterization of sustainable levels of debt under arbitrary interest poliies.Seondly, we provide a omplete haraterization of the long-run dynami behavior ofthe model with and without tax stabilization of debt. Furthermore, we develop a long-run welfare riterion on the basis of whih an optimal interest poliy and an optimalstabilization objetive an be seleted. Based on this riterion we analyze the welfaree�ets of alternative debt poliies and use numerial simulations to haraterize optimalpoliies. The results o�er a simple explanation why empirial debt levels are so high andtypially yield a riskless return despite both fails to be optimal in the long run. Finally,our results shed light on the emergene of asset bubbles in stohasti OLG eonomies.The paper is organized as follows. Setion 1 introdues the model. Setion 2 analyzesequilibria when the return on debt oinides with the apital return. This struture isgeneralized in Setion 3 whih allows for general interest poliies. Setion 4 demonstrateshow the level of debt an be stabilized by a labor inome tax. The welfare properties ofstabilized equilibria under di�erent debt poliies are investigated in Setion 5. Setion6 onludes, all proofs are plaed in the Mathematial Appendix.1 The ModelThe framework to be introdued in this setion generalizes the stohasti overlappinggenerations model in Wang (1993) to inlude governmental debt and a tax system.Population. The onsumption setor onsists of overlapping generations of homogeneousonsumers who live for two periods. The index j 2 fy; og identi�es the young and oldgeneration in eah period. Abstrating from population growth, eah generation onsistsof N > 0 onsumers. A young onsumer is endowed with one unit of labor time suppliedinelastially to the labor market. Sine old onsumers are retired and do not supplylabor, Lt � N denotes aggregate labor fore at time t � 0. The old generation in periodt owns the existing stok of apital Kt whih they supply to the prodution proess.Prodution. A single representative �rm employs labor and apital as inputs to produea homogeneous onsumption good. In addition, the prodution proess in period t issubjeted to an exogenous random prodution shok "t 2 E . The linear homogeneoustehnology is represented by the intensive form prodution funtion f : R+ � E �! R+whih determines gross output Yt (inluding depreiated apital) produed at time t asYt = Ltf(Kt=Lt; "t): (1)The funtion f is assumed to be ontinuous and twie di�erentiable with respet to its�rst argument with ontinuous derivatives satisfying fkk(k; ") < 0 < fk(k; ") for all k > 0and " 2 E as well as the Inada onditions limk!0 fk(k; ") =1 and limk!1 fk(k; ") < 1.The noise proess f"tgt�0 onsists of independent, identially distributed random vari-ables de�ned on a ommon probability spae (
;F ;P). Eah "t is distributed aordingto the probability measure � supported on E � ["min; "max℄ � R++ . The proess isadapted to a suitable �ltration fFtgt�0 of inreasing sub �-algebras of F suh that eah"t : 
 �! E is Borel-measurable with respet to Ft. Let E t [�℄ := E [�jFt ℄ denote the2



expetations operator onditional on the information represented by Ft. Throughout,the notion of an adapted stohasti proess f�tgt�0 taking values in some set � � RMrefers to the probability spae and the �ltration de�ned. It implies that eah randomvariable �t : 
 �! � is Borel-measurable with respet to Ft and hene determined inperiod t. All equalities or inequalities involving random variables are assumed to holdP-almost surely without further notie.1Let wgt > 0 be the gross wage and rt > 0 the apital return at time t � 0. Given apitalkt := KtN > 0 and "t 2 E , pro�t maximizing behavior of the �rm implies that marketlearing fator pries are determined by the respetive marginal produts, i.e.,wgt = W(kt; "t) := f(kt; "t)� ktfk(kt; "t) (2)rt = R(kt; "t) := fk(kt; "t): (3)Government. The in�nitely-lived government taxes onsumers and issues debt to �naneits de�it. For the purpose of this paper, debt may be thought of as a one-period livedbond whih pays a (possibly random) return r?t+1 > 0 in t+ 1 per unit invested at timet � 0. In light of the empirial evidene reported in the introdution, negative debt willnot be onsidered. Let bt � 0 be the number of bonds per young onsumer issued attime t and � yt and � ot be the lump sum taxes levied on the inomes of young and oldonsumers, respetively. Negative taxes are interpreted as subsidies on the inome ofthe respetive group. Abstrating from governmental onsumption, debt evolves asbt = r?t bt�1 � � yt � � ot ; t � 0: (4)Consumers. At time t � 0 a young onsumer earns net labor inome wt := wgt � � yt > 0to be onsumed and invested. Let st and bt be the investments in apital and bonds attime t � 0. These hoies de�ne urrent onsumptionyt = wt � bt � st (5)while next period's onsumption is given by the random variableot+1 = bt r?t+1 + st rt+1 � � ot+1: (6)Here the randomness enters through the unertain returns on both investments andunertain tax payments whih are all treated as given random variables in the deision.Young onsumers evaluate the expeted utility of di�erent onsumption plans (yt ; ot+1)de�ned by (5) and (6) aording to the von-Neumann Morgenstern utility funtionU(y; o) = u(y) + v(o): (7)Both funtions u and v are C2 with derivatives z00() < 0 < z0() for  > 0 and satisfylim!0 z0() =1 for z 2 fu; vg: (8)Eah young onsumer hooses investment to maximize her expeted lifetime utility. Thedeision problem reads:maxb;s nu(wt � b� s) + E t�v�r?t+1 b+ rt+1 s� � ot+1���� s � 0; b+ s � wto: (9)1 The underlying probability spae may be onstruted by de�ning 
 := EN0 whih is endowed with theprodut topology and the Borel-�-algebra F := B(
) on whih the produt measure P := 
t�0� isde�ned. The sub-�-algebra Ft is generated by the lass of measurable retangular sets A =Q1n=0Anwhere eah An is a Borel-measurable subset of E and An = E for n > t.3



Note that no short-selling onstraints on b are imposed at the individual level. Theinvestment in apital st determines next period's apital stok (per labor fore)kt+1 = st: (10)Old onsumers in period t � 0 onsume the proeeds of their investments in bonds andapital made during the previous period - net of taxes - as de�ned by (6).Equilibrium. Combining the assumptions of market learing, individual optimality, andrational expetations yields the following de�nition of equilibrium.De�nition 1.1 Given initial values b0 � 0, k0 > 0, and "0 2 E, an equilibrium is anadapted proess �wgt ; rt; r?t ; � yt ; � ot ; bt; st; yt ; ot ; kt+1	t�0 whih satis�es for eah t � 0:(i) Debt returns satisfy r?t > 0 while wgt > 0 and rt > 0 are determined by (2), (3).(ii) Taxes satisfy � yt < wgt and � ot < btr?t + ktrt while debt bt � 0 evolves as in (4).(iii) The pair (bt; st) solves the deision problem (9) at the given wage, returns, andtaxes while yt , ot , and kt+1 are determined by (5), (6), and (10).Indeterminay of �sal poliy. The following result shows that without further restri-tions on taxes f� yt ; � ot gt�0, any debt proess is onsistent with equilibrium. This is astraightforward generalization of the deterministi result in de la Croix & Mihel (2002).Lemma 1.1 Let an interior alloation fst; yt ; ot ; kt+1	t�0 and pries fwgt ; rt; r?t gt�0 sat-isfy (2), (3), and (10), the feasibility ondition yt + ot + kt+1 = f(kt; "t) for all "t 2 Eand the intertemporal eÆieny ondition u0(yt ) = E t [rt+1v0(ot+1)℄ = E t [r?t+1v0(ot+1)℄ forall t � 0. Then, for any non-negative debt proess fbtgt�0 there is a feasible tax proessf� yt ; � ot gt�0 suh that �wgt ; rt; r?t ; � yt ; � ot ; bt; st; yt ; ot ; kt+1	t�0 is an equilibrium.Lemma 1.1 shows that the sustainability of debt beomes irrelevant if unbounded taxa-tion is possible. The reason for this result is simple: The government an diretly set-o�its payment obligations on outstanding debt by a orresponding tax on the inomes ofold onsumers who reeive these payments. Thus, any level of debt an be sustained.Clearly, the previous result fails to hold if restritions on � ot are imposed. For this rea-son, and also to avoid time-onsisteny problems, the remainder on�nes attention tothe ase where � ot � 0, i.e., there is no taxation of apital inomes.2 Equilibria with Capital-Equivalent DebtCapital-equivalent debt. The following two setions study existene and properties ofequilibria in the absene of taxation (� yt � 0) under di�erent assumptions on the returnon debt, i.e., on the proess fr?t gt�0. As a �rst senario, suppose the government ommitsitself to paying the apital return on debt suh that r?t � rt for eah t � 0. This asewill be alled apital-equivalent (CE) debt and the remainder of this setion studies theexistene and properties of equilibria under this assumption.Equilibrium struture. As a �rst step, we seek to unveil the reursive struture ofequilibria by onsidering the temporary situation in an arbitrary period t. Let urrent4



apital kt > 0 and the shok "t 2 E be given whih determine the net wage wt = wgt > 0and the return on apital and debt rt > 0 aording to (2) and (3). Current debtbt � 0 orresponding to the supply of bonds then follows from its previous value bt�1and (4). The number of bonds traded is therefore predetermined by the supply side.Sine investments in debt and apital are perfet substitutes, the equilibrium problem forperiod t redues to determining next period's apital stok 0 < kt+1 < wt�bt. The lattermust be hosen onsistent with an optimal savings deision derived from (9) and rational,self-on�rming expetations. Clearly, this requires wt > bt. Let E � [�℄ denote the expetedvalue with respet to the distribution � of next period's prodution shok. Combining(3) and (10) with the �rst order ondition from (9), de�ne H(�;w; b) : ℄ 0; w � b [�! R,H(k;w; b) := u0(w � b� k)� E � �R(k; �)v0�R(k; �)(b+ k)��: (11)Then, given wt > bt � 0, the expetations-onsistent solution kt+1 is determined by theondition H(kt+1;wt; bt) = 0. Before establishing existene and uniqueness of suh azero in Lemma 2.1, we introdue a set of additional restritions on f in (1) and v in(7) whih will be used frequently. Here and in the sequel, we denote the elastiity of adi�erentiable funtion h : D �! Rnf0g as Eh(x) := xh0(x)=h(x), x 2 D � R.(P1) Ev0() � �1 8 > 0 (P2) lim!1  v0() =1 (P3) Efk(k; ") � �1 8k > 0; " 2 E :While (P1) and (P3) are standard, (f. de la Croix & Mihel (2002) and Wang (1993)),(P2) is more restritive as it exludes several popular parameterizations suh as logutility. Examples satisfying (P1) and (P2) are power utility v() = ��1�, 0 < � < 1, orCES utility v() = [1� � + ��℄1=�, 0 < � < 1, � > 0.Lemma 2.1 Let v satisfy (P1). Then, eah w > 0 de�nes an upper bound 0 <bmax(w) � w suh that H(�;w; b) has a zero in ℄0; w� b[ if and only if b < bmax(w). Thiszero is unique and w 7�! bmax(w) ontinuous. If, in addition, (P2) holds, bmax(w) = w.In the sequel we assume that (P1) holds. Then, Lemma 2.1 permits to de�ne the setV := f(w; b) 2 R2+ jw > 0; b < bmax(w)g and a mappingK : V �! R++ whih determineskt+1 as the unique zero of H(�;wt; bt). The next result establishes properties of this map.Lemma 2.2 Let v satisfy (P1). Then, K is C1 on V (f. Remark A.1) and the deriva-tives satisfy 0 < �wK(w; b) < ��bK(w; b) � 1.Equilibrium dynamis. Combining the previous results with equations (2){(4) and (10)de�nes a map � = (�w;�b) : V � E �! R2+ whih determines the evolution of wagesand debt under the exogenous noise proess aswt+1 = �w(wt; bt; "t+1) :=W(K(wt; bt); "t+1) (12a)bt+1 = �b(wt; bt; "t+1) := R(K(wt; bt); "t+1)bt: (12b)Given initial values (w0; b0) 2 V, the equilibrium proess fwt; btgt�0 is therefore gen-erated by randomly mixing the family of mappings f�(�; ")g"2E , i.e., the realization ofnext period's shok 'selets' a map that determines the next state from the urrent one.Struturally, this orresponds to a two-dimensional version of the one-dimensional dy-namis in Wang (1993). The endogenous state variables fwt; btgt�0 together with the5



exogenous noise proess f"tgt�0 ompletely determine the other equilibrium variables ofthe model. Therefore, existene of a dynami equilibrium is equivalent to determining(w0; b0) 2 V suh that the proess generated by (12a,b) satis�es (wt; bt) 2 V for all t � 0under P-almost all paths of the noise proess. Sine b0 = 0 implies bt = 0 for all t > 0,it is lear that a trivial equilibrium with zero debt exists for all w0 > 0. In this ase, thedynamis redue to the evolution of wages de�ned by the map �0 : R++ � E �! R++wt+1 = �0(wt; "t+1) :=W(K(wt; 0); "t+1): (13)Similar to Tirole (1985), the steady state properties of (13) will play a ruial for theexistene of non-trivial equilibria. The next assumption rules out multipliity of steadystates of �0.Assumption 2.1 For eah " 2 E, the map �0(�; ") possesses a unique �xed point �w0" > 0whih is stable.Dynami properties. From above's struture, it stands to reason that the existene andproperties of equilibrium depend ruially on the dynami properties of the mappings(�(�; "))"2E and whether these exhibit ontrative or expansive behavior. We thereforebegin by �xing a value " 2 E to study the dynami properties of the single map �(�; ").In the sequel, de�ne V+ := V \ R2++ and let �t(�; ") := �(�; ") Æ : : : Æ �(�; ") denotethe t-fold omposition of �(�; ") for t � 0 where �0(�; ") := idV. By Assumption 2.1,�(�; ") possesses a unique trivial steady state ( �w0" ; 0). The next result shows that theassoiated ex-post return R(K( �w0" ; 0); ") determines whether �(�; ") displays stable -along a ertain diretion - or expansive behavior. In antiipation of this result, letEs := f" 2 E jR(K( �w0" ; 0); ") < 1g and Ex := f" 2 E jR(K( �w0" ; 0); ") > 1g. Sine thease R(K( �w0" ; 0); ") = 1 is non-generi, E0 := En(Es [ Ex) is assumed to have measurezero, i.e., �(E0) = 0.2Lemma 2.3 Let (P1) and Assumption 2.1 be satis�ed. Then, the following holds true:(i) For " 2 Es the map �(�; ") possesses a unique non-trivial �xed point ( �w";�b") 2 V+ .This �xed point is saddle-path stable, i.e., the Eigenvalues of the Jaobian matrixD�( �w";�b"; ") are real and satisfy 0 < j�1j < 1 < j�2j.(ii) For " 2 Ex the map �(�; ") is expansive, i.e., for eah (w; b) 2 V+ there exists at0 2 N suh that (wt0 ; bt0) := �t0(w; b; ") =2 V, that is, wt0 � bt0 .If " 2 Es, (i) implies that the dynamis generated by �(�; ") onverge to the non-trivialsteady state only for ertain initial values. These are de�ned by the stable manifoldM" := n(w; b) 2 V j�n(w; b; ") 2 V 8n � 1 ^ limn!1�n(w; b; ") = ( �w";�b")o; " 2 Es: (14)The sets M" will play a key-role in the sequel. Note that M" is self-supporting under�(�; "), i.e., �(M"; ") � M". Theorem A.1 in the appendix establishes existene ofa C1-map  " : R++ �! R++ whih is stritly inreasing suh that M" = graph( ")," 2 Es. Based on this representation, the next result shows that M" separates initialstates whih diverge from those whih onverge to the trivial steady state.2 If E is in�nite, ontinuity of " 7! R(K( �w0" ; 0); ") ensures (Borel-) measurability of Es, Ex, and E0.6



Lemma 2.4 Under (P1) and Assumption 2.1, let w > 0 be arbitrary. Then, for eah" 2 Es the following holds:(i) b <  "(w) ) �t(w; b; ") 2 V 8t > 0 ^ limt!1 �t(w; b; ") = ( �w0" ; 0):(ii) b >  "(w) ) 9t0 > 0 suh that �t0(w; b; ") =2 V:Geometrially, Lemma 2.4 implies that if (w; b) is below the urve M", the sequene�t(w; b; ") stays below M" for all t � 0 and onverges to the trivial steady state withzero debt. Conversely, any state above M" stays above and leaves V in �nite time.Existene of equilibrium. Based on the dynami properties of the involved mappingsstated in Lemmata 2.3 and 2.4, we are now in a position to derive onditions for theexistene of non-trivial equilibria. For simpliity, the following arguments assume thatE is a �nite set. A generalization, e.g., to distributions � possessing a ontinuous densityd : ["min; "max℄ �! R++ seems straightforward. Let w0 :=W(k0; "0) > 0 be given. Firstobserve from Lemma 2.3(ii) that if �(Ex) > 0, any initial value in V+ will leave this setin �nite time with positive probability. Hene, �(Ex) = 0 is a neessary ondition fornon-trivial equilibria to exist. Note that this restrition typially implies that the trivialequilibrium is dynamially ineÆient. For w > 0, let brit(w) := min"2Esf "(w)g. ByLemma 2.4, b0 � brit(w0) is also neessary for the existene of equilibrium. SuÆienyrequires the following additional assumption.Assumption 2.2 b � brit(w) implies �b(w; b; ") � brit(�w(w; b; ")) 8w > 0, " 2 Es.Under Assumption 2.2, the urve w 7! brit(w), w > 0 de�nes the maximum sustainablelevel of debt. Intuitively, in a stohasti setting sustainable levels must be hosen on-servatively small to ensure that debt remains bounded under all possible shoks.Combining Lemma 2.3 and 2.4 leads to the following theorem whih inludes the resultsof Tirole (1985) as a speial ase in whih � is degenerate and Es = E = f"g.Theorem 2.1 Under (P1) and Assumptions 2.1 and 2.2, let E be �nite and �(Ex) = 0.Then, any b0 2℄0; brit(w0)℄ de�nes an equilibrium with debt bt > 0 for all t > 0.Non-persistene of debt. While equilibria exist under the hypotheses of Theorem 2.1,the long-run level of debt generially onverges to zero with probability one. Unlike thease in Tirole (1985), this holds even if b0 = brit0 := brit(w0). Struturally, the reason isthat positive stable sets, i.e., ompat subsets A � V+ whih are self-supporting for thefamily (�(�; "))"2E suh that �(A ; ") � A for all " 2 E typially fail to exist. To see this,note from Lemma 2.4 that A � V+ losed and self-supporting under �(�; ") requiresA � M". Hene, positive stable sets are subsets of \"2EM" whih is typially empty.Figure 1 illustrates these and the �ndings from Theorem 2.1 for the ase with two shokswhere E = f"; "0g. The dotted arrow represents the ase exluded by Assumption 2.2.A �nal example shows, however, that stable sets may exist in non-generi situations.Let U(y; o) = ln y + o,  > 0 and f(k; ") = "k�, 0 < � < 1. Then, bmax(w) = 1+wsuh that V = f(w; b) 2 R2+ jb < 1+wg. Furthermore, �w(w; b; ") = "(1��)( 1+w�b)�,�b(w; b; ") = "�( 1+w � b)��1b, and Es 6= ; if and only if �� := 1+ � �1�� > 0.Lemma 2.5 For the previous parametrization, suppose �� > 0. Then Es = E and thesets in (14) are independent of " and of the form M" �M := �(w; b) 2 R2++ �� b = ��w	.7
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Figure 1: Equilibrium dynamis generated by mixing two saddle-path stable mappings.The set M = \"2EM" is thus self-supporting for the family (�(�; "))"2E . Moreover, forany (w0; b0) 2 M the dynamis onverge to a ompat subset of M de�ned by thenon-trivial �xed points (( �w";�b"))"2E of the mappings (�(�; "))"2E whih is a stable set.3 Equilibria with General DebtInterest poliies. Maintaining the assumption of no taxation (� yt � 0), the present setionextends the study of equilibria to arbitrary interest poliies on debt. For simpliity, theremainder of the paper assumes that shoks in (1) are multipliative, i.e., f(k; ") = "g(k)where g : R+ �! R+ inherits the properties of f(�; "). While under the previous senariothe return on debt o�ered at time t would be r?t+1 = "t+1g0(kt+1), the present setiongeneralizes this struture by supposing thatr?t+1 = R?#(zt; "t+1) := #("t+1) zt; t � 0: (15)The value zt > 0 is determined in period t and # : E �! R++ is a time-invariant interestpoliy that determines the risk to whih debt investments are subjeted. Spei�ally, if# � �#, debt is riskless while # = idE reovers the previous ase with CE debt.3Equilibrium struture. In the sequel we �x some interest poliy # and assume that ineah period the return on debt is of the form (15). To derive the reursive equilibrium3 For eah #, the indued equilibrium is equivalent to an equilibrium with (sequentially) omplete mar-kets where the government issues ontingent laims to �nane its debt bt in period t. To see this,suppose E = f"1; : : : ; "Ng and let pnt be the prie of an Arrow seurity traded at time t that pays oneunit in t+1 i� "t+1 = "n, n = 1; : : : ; N . The government issues a portfolio at = (ant )n=1;:::;N 2 RN+ ofthese seurities suh thatPNn=1 ant pnt = bt. Spei�ally, suppose the government hooses the supplyof seurity n as ant = btzt#("n) for n = 1; : : : ; N and some zt > 0. For young onsumers to be willingto buy these laims, pries must satisfy pnt = �(f"ng)v0(ant + "ng0(kt+1)kt+1)=u0(wt � bt � kt+1).Combining these onditions with the �rst order onditions for an expetations-onsistent apitalinvestment derived from (9) yields preisely the onditions (16a, b) derived below to determine ztand kt+1. Hene, this modi�ed setup implies the same equilibrium alloation. Under the previousinterpretation, the interest poliy # therefore determines the { time-invariant { mix of Arrow seu-rities that the government issues. The arguments also extend to an in�nite set E . An interestinggeneralization would be to onsider dynami interest poliies with state-dependent mixing poliy #.8



struture of the eonomy, we proeed as in the previous setion and onsider an arbitraryperiod t � 0. Let urrent apital kt > 0 and the shok "t 2 E be given whih determinethe net wage wt = wgt > 0 aording to (2). Furthermore, given previous values bt�1 � 0and zt�1 > 0, the urrent shok determines the realized debt return r?t = zt�1#("t) andurrent debt orresponding to the supply of bonds bt � 0 follows from (4). Assumingthat wt > bt, the equilibrium problem for period t is to determine an expetations-onsistent apital stok kt+1 and a value zt > 0. The latter determines the ex-ante debtreturn r?t+1 o�ered at time t aording to (15) and must be hosen suh that youngonsumers are willing to absorb the predetermined supply of bonds. To ahieve this,note that any solution s > 0 and b � 0 to (9) satis�es the orresponding �rst orderonditions sine there are no short-selling restritions on debt. Using this and equations(3), (10), and (15), let H#i (�; �;w; b) : R++�℄0; w � b[�! R, i 2 f1; 2g,H#1 (z; k;w; b) := u0(w � b� k)� E � �R(k; �)v0�bR?#(z; �) + kR(k; �)�� (16a)H#2 (z; k;w; b) := u0(w � b� k)� E � �R?#(z; �)v0�bR?#(z; �) + kR(k; �)��: (16b)Then, given wt > bt � 0 the previous problem redues to solving H#1 (zt; kt+1;wt; bt) =H#2 (zt; kt+1;wt; bt) = 0. Existene and uniqueness of suh a solution is established next.Lemma 3.1 Let (P1){(P3) hold and # be ontinuous. Then, for eah w > b � 0 thereexist unique z > 0 and 0 < k < w � b whih solve H#1 (z; k;w; b) = H#2 (z; k;w; b) = 0.In the sequel let V = f(w; b) 2 R2+ jw > bg denote the endogenous state spae of feasiblewage-debt ombinations. By Lemma 3.1, there exist mappings K# : V �! R++ andZ# : V �! R++ whih determine the values kt+1 and zt as zeros of (16a,b) for eah(wt; bt) 2 V. Before stating properties of these mappings in Lemma 3.2, we introduethe following additional restritions on the elastiities of the utility funtion (7) and theprodution tehnology (1) whih will be used subsequently.(P4) jEv0()j = � 8 > 0 (P5) jEu0()j � 1 8 > 0 (P6) Eg(k) + jEg0(k)j � 1 8k > 0:Under (P4), seond period utility v exhibits onstant relative risk aversion. Property(P5) is automatially satis�ed if (P1) holds and v() = �u(), � > 0. Finally, (P6) isneessary and suÆient for the elastiity Eg(k) to be a non-dereasing funtion of k,whih holds, e.g., if g is Cobb-Douglas or CES with elastiity of substitution � � 1.Lemma 3.2 Let (P1){(P3) hold and # be ontinuous. Then, K# and Z# are C1 on V(f. Remark A.1). Moreover, the following holds for all (w; b) 2 V:(i) The derivatives of K# satisfy 0 < �wK#(w; b) < ��bK#(w; b).(ii) If, in addition, (P4) holds, then 0 < ��wZ#(w; b) < �bZ#(w; b).4Equilibrium dynamis. Unless stated otherwise, the remainder of the paper assumes that(P1){(P4) hold. Then, by the previous results and (2), (4), and (15), the evolution ofwages and debt under the exogenous shoks are given by �# = (�#w;�#b ) : V�E �! R2+wt+1 = �#w(wt; bt; "t+1) :=W(K#(wt; bt); "t+1) (17a)bt+1 = �#b (wt; bt; "t+1) := #("t+1)Z#(wt; bt)bt: (17b)4 Numerial experiments with utility funtions v not satisfying (P4) have throughout displayed thesame properties of Z# as in Lemma 3.2(ii) suggesting that this restrition ould probably be relaxed.9



Thus, equilibria are generated by randomly mixing the mappings (�#(�; "))"2E and existif and only if (wt; bt) 2 V P-a.s. for all t � 0. Note that for b = 0, the dynamis (17a,b)are independent of # and governed by the map �0 in (13). In the sequel, the followingslightly stronger version of Assumption 2.1 will be employed. The additional restritionis suÆient but far from neessary to obtain the uniqueness assertion in Lemma 3.3(i).Assumption 3.1 For eah " 2 E, the map �0(�; ") from (13) possesses a unique �xedpoint �w0" > 0 whih is stable. Moreover, the orresponding steady state apital stok�k0" := K( �w0" ; 0) satis�es Eg(�k0") � 12 .Dynami properties. Proeeding as above, we �x a value " 2 E to study the dynamiproperties of a single map �#(�; "). Under Assumption 2.1, �#(�; ") possesses a uniquetrivial steady state ( �w0" ; 0) whih is stable and independent of #. Similar to the previoussetion, the dynami behavior of �#(�; ") is determined by the ex-post debt return atthe assoiated trivial steady state. By (16a,b), this return is given by #(")�z0" where�z0" := Z#( �w0" ; 0) = E � [R(�k0" ; �)v0(�k0"R(�k0" ; �))℄E � [#(�)v0(�k0"R(�k0" ; �))℄ : (18)Using (18), let E#s := f" 2 E j �z0"#(") < 1g and E#x := f" 2 E j �z0"#(") > 1g assumingagain that E#0 = En(E#s [ E#x ) satis�es �(E#0 ) = 0. The next result extends Lemma 2.3 tothe ase with general interest poliies. The proof draws on ideas from Galor (1992).Lemma 3.3 Under Assumption 3.1 and (P1){(P6), the following holds for any #:(i) For " 2 E#s the map �#(�; ") has a unique non-trivial steady state ( �w#" ;�b#" ) 2 V+ .This steady state is saddle-path stable.(ii) For " 2 E#x the mapping �#(�; ") is expansive.Lemma 3.3(i) permits to de�ne for eah " 2 E#s the assoiated stable manifoldM#" := n(w; b) 2 V j(�#)n(w; b; ") 2 V 8n � 1 ^ limn!1(�#)n(w; b; ") = ( �w#" ;�b#" )o: (19)By Theorem A.1, there exists a C1-map  #" : R++ �! R++ suh thatM#" = graph( #" ).Moreover, Lemma 2.4 is shown in the appendix to extend to the present setup as well.Properties of equilibria. Assuming that the hypotheses of Lemma 3.3 hold, it followsthat all �ndings from the previous setion inluding the existene result from Theorem2.1 and the non-persistene of debt arry over to the present ase with general interestpoliies. Spei�ally, under the restrition imposed in Assumption 2.2 (whih is shownin Lemma 3.4 to automatially hold under riskless debt), equilibria exist i� �(E#x ) = 0and b0 � brit0 := min"2E#s f #" (w0)g but are generially asymptotially debtless withprobability one. Again, the reason is that positive stable sets A � V+ fail to exist.Lemma 3.3 also provides important insights onerning the disussion in Bertohi(1994) about stable sets under safe debt. Referring to the ases disussed there, itshows that steady states whih are asymptotially stable and would give rise to stablesets with positive debt do not exist. In fat, using the arguments of the previous setion,the following lemma implies that positive stable sets an never exist under riskless debt.Lemma 3.4 Under the hypotheses of Lemma 3.3, suppose # � �# > 0. Then, for all"; "0 2 E �#s it holds that " 6= "0 implies M#" \M#"0 = ;. Moreover, Assumption 2.2 holds.10



4 Tax-Stabilization of DebtStabilization objetive. In the deterministi ase where E = f"g and E#x = ;, the resultsby Tirole (1985) uniquely determine the long-run optimal level of debt by the ondition(w0; b0) 2 M#" for whih the dynamis onverge to the golden rule steady state ( �w";�b") 2M#" . To analyze the long-run welfare e�ets of debt with non-degenerate shoks, itseems natural to extend the golden rule onept by measuring onsumer welfare atsome stationary solution of the state dynamis. The latter orresponds to an invariantprobability distribution on V whih extends the deterministi onept of a steady state.As argued above, however, even if E#x = ;, stable subsets of V+ { whih an be assoiatedwith invariant distributions, f. Wang (1993) { generially fail to exist and equilibria areasymptotially debtless and hene independent of #. Therefore, neither the optimumquantity of debt nor the risk-sharing e�ets of di�erent interest poliies an be analyzed.The present setion investigates whether this may be overome by a tax on labor inomewhih stabilizes debt against unfavorable shoks. Using the senario from Setion 3, theidea is to hoose a subset A � V and design a tax poliy whih keeps the state in A forall times and under all shoks. The set A will be referred to as a stabilization objetive.Note that we permit E#x 6= ;, i.e., some { or all{ mappings �#(�; ") may be expansive.Assumption 4.1 The stabilization objetive A � V satis�es the following:(i) There is a map �A : R++ �! R+ with ontinuous derivative 0 � �0A < 1 and anopen interval W A =℄wA ;1[� R++ suh that A = f(w; �A (w)) jw 2 W A g.(ii) The family (�#(�; "))"2E maps A into the set VA := f(w; b) 2 V jw � b > dA g � Vwhere dA := inffw � �A (w) jw 2 W A g � 0. That is, �#(A ; ") � VA for all " 2 E .Assumption 4.1(i) restrits the stabilization objetive to smooth, one-dimensional sets.This will allow us to obtain a unique stabilization poliy. The value dA in (ii) representsthe minimal distane between A and the boundary of V whih inreases with wA , f.Figure 2. Assumption 4.1(ii) therefore embodies a sustainability onstraint on A byrequiring suessors of states in A to retain the safeguard distane dA to the boundaryunder all shoks. Note that a minimal hoie suh as wA = �b in Case 1 and wA = 0 inCases 2 and 3 studied below { eah implying dA = 0 and VA = V { will typially violatethis ondition if, as in Case 3, �A is too lose to the boundary of V for w lose to wA .The general struture from Assumption 4.1(i) overs the following three speial ases:Case 1: �A (w) � �b. This objetive stabilizes debt at a onstant level �b � 0. It isthe ase is studied, e.g., in Diamond (1965). Note that A � V requires wA � �b.Case 2: �A (w) = �w. This poliy hooses a value � 2 [0; 1[ to keep the debt-tonet wage ratio onstant. The objetive is studied, e.g., in Bohn (1998, p.11) andis similar to a onstant debt-to output ratio as in de la Croix & Mihel (2002).Case 3: �A (w) =  #" (w). Assuming E#s 6= ;, this poliy hooses a referene shok"ref 2 E#s to stabilize the state along the stable manifold M#"ref from (19). SineM#"ref is self-supporting under �#(�; "ref), i.e., �#(M#"ref ; "ref) �M#"ref , stabilizationtaxes are zero whenever the referene shok ours and, by a ontinuity argument,small for shoks lose to this value. Thus, the objetive seems partiularly promis-ing to keep stabilization taxes small. In partiular, taxes are uniformly zero ifE#x = ; and the sets M#" are independent of ", as in the example of Setion 2.11



By Theorem A.1(iii) and Lemma 3.2, for " 2 E#s the map  #" de�ning M#" is stritlyinreasing with derivative  #" 0(w) � ��wK#(w; b)=�bK#(w; b) < 1, w > 0, b =  #" (w).Hene, the restritions on �0A from Assumption 4.1 are indeed satis�ed in all three ases.Tax poliy. In the sequel, let a debt poliy � = (#; A ) onsisting of some interestpoliy # and a stabilization objetive A � V satisfying Assumption 4.1 be given. Asa �rst step, we seek to establish existene of a tax poliy suh that (wt; bt) 2 A for allt with probability one. Consider an arbitrary period t � 0. Let wgt > 0 be the grosswage de�ned by (2) and denote by bgt := r?t bt�1 � 0 the given outstanding paymentson previous debt. Assume that (wgt ; bgt ) 2 VA . By Assumption 4.1(ii), this holds if(wt�1; bt�1) 2 A . Let �t := � yt be the tax on labor inome to be determined. Eah hoie�t � bgt de�nes net labor inome wt = wgt ��t and urrent debt bt = bgt ��t orrespondingto the number of bonds issued in period t. If �t > 0, the tax revenues are used to paydown part of the outstanding debt. If �t < 0, young onsumers reeive a subsidy ontheir wage inome �naned by issuing additional debt. The following result permits touniquely determine the value �t suh that (wt; bt) = (wgt � �t; bgt � �t) 2 A .Lemma 4.1 In addition to Assumption 4.1, suppose limw!1 �0A (w) 6= 1. Then, for all(w; b) 2 VA there is a unique � suh that (w � �; b� �) 2 A .Stabilized dynamis. Under the hypotheses of Lemma 4.1 there is a map TA : VA �! Rwhih determines � = TA (w; b) for eah (w; b) 2 VA suh that (w � �; b � �) 2 A .Spei�ally, TA (w; b) = b � �b in Case 1 and TA (w; b) = 11�� (b � �w) in Case 2. Inpartiular, any initial state in VA an be tax-adjusted to lie in A . Thus, for (w0; b0) 2 A ,the stabilized dynamis derived from (17a,b) are given by 	� = (	�w;	�b ) : A �E �! Awt+1 = 	�w(wt; bt; "t+1) := �#w(wt; bt; "t+1)� TA (�#(wt; bt; "t+1)) (20a)bt+1 = 	�b (wt; bt; "t+1) := �#b (wt; bt; "t+1)� TA (�#(wt; bt; "t+1)): (20b)Figure 2 illustrates Assumption 4.1 and the stabilized dynamis. Sine bt = �A (wt) for
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Figure 2: Stabilized dynamis on the set A .all t, the system (20a,b) is equivalent to the one-dimensional system �� : W A �E �! W Awt+1 = ��(wt; "t+1) := �#w(wt; �A (wt); "t+1)� TA (�#(wt; �A (wt); "t+1)): (21)To haraterize the stabilized dynamis, Lemma 4.2 establishes properties of the map ��using the following additional restritions. In (P8) we let �# : E �! R++ , �#(") := #(")" .(P7) �0A (w) � �w�#w(w; b; ")� �w�#b (w; b; ")�b�#b (w; b; ")� �b�#w(w; b; ") 8(w; b; ") 2 A�E (P8) �# is non-inreasing:12



Lemma 4.2 Under (P1){(P4) and the hypotheses of Lemma 4.1, the following holds:(i) ��(�; ") : W A �! W A is weakly inreasing for all " 2 E if (#; A ) satis�es (P7).(ii) ��(w; �) : E �! W A is stritly inreasing for all w 2 W A if # satis�es (P8).Sine 0 < �w�#w(w; b; ") < ��b�#w(w; b; ") and 0 < ��w�#b (w; b; ") < �b�#b (w; b; ") byLemma 3.2, (P7) strengthens the restrition �0A < 1. It ensures that debt does notinrease too fast along A in the sense that w 7! �#w(w; �A (w); ") � �#b (w; �A (w); ") isinreasing for all w 2 W A and " 2 E . It is lear that (P7) always holds in Case 1 and inCase 2 if � is not too large. A suÆient ondition for Case 3 is stated next.Lemma 4.3 Let �A =  #"ref for "ref 2 E#s . If �0A (w) � "#("ref )#(") "ref for all (w; ") 2 W A � E,then (P7) holds.The lass #�(") = �"+(1��)�", " 2 E , � 2 [0; 1℄, �" := E � ["t℄ studied in Setion 5 satis�esthe ondition in Lemma 4.3 diretly for � = 1 (CE) and for all � 2 [0; 1℄ if �0A (w) � "min"maxfor all w 2 W A , i.e., if ["min; "max℄ is not too large. Clearly, (P8) holds for all � � 1.The following �nal result of this setion establishes onditions under whih a uniqueinvariant distribution of the dynamis (21) exists. This provides the basis for studyingthe long-run welfare e�ets of debt as motivated above. For a formal de�nition of theemployed onepts, the reader is referred to Brok & Mirman (1972) and Wang (1993).Theorem 4.1 Let �� satisfy the monotoniity properties stated in Lemma 4.2. Suppose(a) there exists "0 2 E suh that ��(�; "0) possesses a unique �xed point whih is stable(b) limw!1 ��(w; "max)=w < 1 < limw!wA ��(w; "min)=w. Then, the following holds:(i) There exists a unique stable set W � � W A for the family �� = (��(�; "))"2E.(ii) There exists a unique invariant distribution �� of the dynamial system (21) whihis supported on W � and whih is stable in the weak onvergene sense.Condition (a) holds diretly in Case 3 (for "0 = "ref). If �A � 0, (a) holds underAssumption 3.1 (as �� = �0) whih also ensures that (a) holds in Cases 1 and 2 for �b and� suÆiently small by the impliit funtion theorem. As (a) implies limw!1 ��(w; "0)=w< 1 < limw!wA ��(w; "0)=w, (b) generally holds if the range of shoks is not too large.5 Optimal Debt PoliiesThe present setion studies the welfare e�ets of alternative debt poliies and uses theresult from Theorem 4.1 to develop a long-run welfare riterion. For simpliity, onsiderthe lass of interest poliies #�(") := �"+(1��)�", " 2 E permitting to gradually inreasethe risk on debt investments by inreasing �. For � = 0, debt is riskless while � = 1implies apital-equivalent debt. By abuse of notation, write K(w; b; �) := K#�(w; b), et.Interim welfare. Consider �rst the lifetime utility of a generation onditional on their netinome w > 0, urrent debt b � 0 and the interest poliy #�, � 2 [0; 1℄. Let y(w; b; �) :=w � b � K(w; b; �) and o(w; b; �; "0) := b #�("0)Z(w; b; �) + K(w; b; �)R(K(w; b; �); "0)denote �rst and planned seond period onsumption. These de�ne interim utilityV (w; b; �) := u(y(w; b; �)) + E � [v(o(w; b; �; �))℄: (22)13



Theorem 5.1 Under (P1){(P4), the following holds for eah w > 0:(i) The map b 7! V (w; b; �) is stritly inreasing on [0; w[ for all � 2 [0; 1℄.(ii) The map � 7! V (w; b; �) is stritly dereasing on [0; 1℄ for all b > 0.Theorem 5.1 shows two key properties. Firstly, at the interim stage, young onsumersbene�t from any additional inrease in urrent debt not exeeding their net inome. Theintuition is that higher debt investment ould one-for one replae apital investmentleaving urrent onsumption invariant while inreasing seond-period onsumption dueto inreased returns on both investments. Seondly, onsumers dislike debt indexed torisk sine any inrease in � dereases the possibility to diversify risk. Thus, a poliyinvolving low and risky debt would never be supported by urrent generations.Long-run welfare. The interim perspetive learly fails to take into aount the apitalaumulation proess and the debt burden that future generations will have to bear.To develop a riterion whih inorporates these e�ets, let � 2 [0; 1℄ and a stabilizationobjetive A � V be given. Assuming that the hypotheses of Theorem 4.1 are satis�ed,the hoie of poliy � = (#�; A ) yields a random variable (w�; b�) whose distribution onV is de�ned by ��. The assoiated long-run expeted utility then takes the formU(�; A ) := ZW � V (w; �A (w); �)��(dw): (23)The value U(�) an be interpreted as the interim utility that generations attain onaverage under poliy �. Note that the interest poliy a�ets utility diretly at the interimstage and, in ombination with A , through its impat on the long-run distribution. Thelatter inorporates the trade-o� between higher urrent debt and lower future inomes.Note that for �A � 0, (23) yields the long-run utility at the trivial equilibrium whih isindependent of � and provides a natural referene point for any welfare analysis of debt.Simulation results. Unlike the interim welfare e�ets in Theorem 5.1, a theoretialharaterization of the invariant distribution �� depending on poliy � seems not possi-ble. For this reason, the remainder presents results from a numerial simulation studywhih quanti�es the long-run welfare e�ets and further properties of alternative poli-ies. Consider the senario from Setion 3 with CRRA utilities u() = �, v() = u(),CES tehnology g(k) = [1� A + Ak�℄ 1� , and three shoks E = f"min; "med; "maxg drawnwith probabilities pmin, pmed, and pmax. For the values listed in Table 1, E#�s � E im-plying that the trivial equilibrium is dynamially ineÆient. All of the following resultswere found to be robust against parameter hanges for whih this ontinues to hold.5Parameter Value Parameter Value Parameter Value"min .9 "max 1.1 A, �, � .5"med 1 pmin, pmed 1/3  1Table 1: Parameter set used in the simulations.5 All simulations iterate the system for T = 35 periods. For this length, onvergene of expetedutilities and other variables omputed as averages of N = 5000 di�erent noise paths is established.To verify the numerial results, the reader is invited to download the simulation data and the C++simulation �les from my website http://www.marten-hillebrand.de/researh/TC/TC.htm.14



The study ompares the three stabilization objetives from Setion 4 under di�erent val-ues for �. For eah senario, Theorem 4.1 is veri�ed to hold and an optimal stabilizationpoliy is omputed. This amounts to determining an optimal debt level �b?(�) � 0 inCase 1, an optimal debt-to wage ratio �?(�) 2 [0; 1[ in Case 2, and an optimal refereneshok "?ref(�) 2 E#�s in Case 3. These values turn out to be uniquely determined andimply a similar debt-to net inome ratio of � 16:5% on average in eah ase. Table 2reports the assoiated inreases in utility (23) relative to the trivial equilibrium.� = 0 (safe debt) 0.25 0.5 0.75 1 (CE debt)Case 1: .820% .823% .826% .827% .828%Case 2: .805% .809% .812% .815% .815%Case 3: .816% .820% .823% .825% .826%Table 2: Long-run welfare inrease under di�erent debt poliies.Eah poliy yields a positive welfare gain whih is throughout highest in Case 1, loselyfollowed by Case 3 and least under Case 2. Interestingly, welfare inreases monotoniallywith � in eah ase whih shows that the negative e�et of risk indexation at the interimstage is overompensated by the orresponding impat on the long-run distribution.Intuitively, a riskless debt return shifts risk from old to young (f. Bohn (1998)) whileCE debt is essentially risk-neutral whih seems favorable aording to the previous result.Observe, however, that the assoiated welfare gain is rather small (� :01% in eah ase)ompared to the overall inrease. Thus, determining the optimal stabilization objetiveseems more important than the interest poliy. With referene to the introdution, thisindiates that the rowding-out e�et of debt dominates the risk-sharing e�et. Kr�uger& K�ubler (2006) note a similar observation in the ontext of Soial Seurity.The interest poliy, however, ruially a�ets the size of stabilization taxes. This isshown in Table 3 whih displays absolute taxes j�tj relative to gross inome wgt .� = 0 (safe debt) 0.25 0.5 0.75 1 (CE debt)Case 1: .534% .58% .72% 1.00% 1.27%Case 2: 1.65% 1.31% 1.12% .97% .82%Case 3: .532% .22% .08% .38% .68%Table 3: Average absolute stabilization taxes as perentages of gross inome.In Case 1, taxes are least for � = 0 and inrease monotonially with � while the onverseholds in Case 2. This seems intuitive beause under safe debt, the level bgt beomes inde-pendent of prodution risk "t while under CE debt this is true of the gross-debt to wageratio bgt =wgt . Moreover, taxes are least in Case 3 on�rming our earlier suspiion thattaxes are small if the inherent stabilizing fores of the dynamial system are exploited.Under this stabilization objetive, a unique �? 2℄0; 1[ an be determined for whih taxesbeome minimal (� :08% if �? = :5 and even :04% if �? = :4).To provide some intuition for this last result, Figure 3 portrays the loation of the stablemanifolds (19) in the state spae along whih stabilization takes plae in Case 3. Thebold setions represent the support of the invariant distribution whih is bordered bythe (smallest and largest) �xed points of 	�(�; ") respetively ��(�; ") whih are also15
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b MmedMmaxMmin() � = 1 (CE)Figure 3: Stable manifoldsMmin :=M#�"min, Mmed :=M#�"med, Mmax :=M#�"max.depited. Intuitively, if the shok "t = " ours at time t, taxes �t are large (in abso-lute value) if the previous state (wt�1; bt�1) is far away from the set M#" and small for(wt�1; bt�1) lose to M#" . As a onsequene, taxes are least in Figure 3(b) where thestable manifolds are lose together. Ideally, they would oinide as in the example ofSetion 2 and there would be no need for stabilization. Albeit this an not be ahievedin the present ase, the interest poliy an be hosen as in Figure 3(b) suh that taxesbeome negligible and debt is 'nearly' persistent resembling the bubble in Tirole (1985).6 ConlusionsThe results of this paper suggest that any sustainable debt poliy must be aompa-nied by a tax poliy whih stabilizes debt against unfavorable random shoks. Basedon this insight, a welfare riterion was suggested whih measures long-run onsumerwelfare at the stabilized equilibrium permitting to simultaneously determine an optimalstabilization objetive and an optimal interest poliy. For a situation where the debtlessequilibrium is ineÆient, numerial �ndings indiate that the long-run optimal poliyinvolves moderate levels of debt with returns fully indexed to prodution risk. Theanalysis also revealed that suh a poliy is never in the interest of urrent generationswho prefer large and riskless debt. This onit might explain why many ountries havelarge debt and o�er a riskless return despite both fails to be optimal in the long run.Sine unstabilized equilibria were shown to be asymptotially debtless, the �ndings ofthis paper also suggest that persistent asset bubbles as studied in Tirole (1985) angenerially not our in stohasti OLG models even if the trivial equilibrium is ineÆ-ient. In this regard, several deterministi studies (e.g., Kunieda (2008)) have introduedredit market fritions to explain the emergene of bubbles in OLG models where thebubbleless equilibrium is dynamially eÆient. Suh imperfetions ould also explainexistene of equilibria with debt in situations where the trivial equilibrium is eÆient.A Mathematial AppendixA.1 Proof of Lemma 1.1For t � 0, de�ne taxes � yt := wgt � yt � kt+1 � bt and � ot := bt�1r?t + ktrt � ot whihare feasible in the sense of De�nition 1.1(ii). Using the orresponding expressions for yt16



and ot together with (2) and (3) in the aggregate feasibility ondition shows that debtevolves aording to equation (4). Sine De�nition 1.1(i) is satis�ed by assumption,it remains to show that (bt; st) solves (9). Sine st > 0 and there are no short-saleonstraints, it suÆes to show that the �rst-order onditions are satis�ed. This followsfrom the intertemporal eÆieny ondition and (10) by diret substitution. �A.2 Proof of Lemma 2.1Given w > b � 0, let o(k; b; ") := R(k; ")(b+ k). By (P1), the derivative6 satis�es�kH(k;w; b) = �u00(w � b� k)� E � �R(k; ")2v00�o(k; b; �)���E �hfkk(k; �)�v0�o(k; b; �)�+ o(k; b; �)v00�o(k; b; �)��i > 0: (A.1)Thus, H(�;w; b) is stritly inreasing and an have at most one zero in ℄0; w � b[. Thearguments of Wang (1993) imply existene of a zero for b = 0 whih is unique by (A.1).Sine �kH(k;w; 0) > 0, a zero exists also for b > 0 suÆiently small by the impliitfuntion theorem (IFT). Letbmax(w) := supnb 2℄0; w[ jH(k;w; b) = 0 for some k 2℄0; w � b[o: (A.2)Note that bmax(w) being the supremum of a non-empty set bounded by w is well-de�nedfor all w > 0 and the map w 7! bmax(w) is ontinuous sine H is ontinuous. We laimthat H has a zero for eah b 2℄0; bmax(w)[. By ontradition, suppose this fails to holdfor some 0 < b0 < bmax(w). As limk!w�b0H(k;w; b0) =1 by (8), H(k;w; b0) > 0 for all0 < k < w � b0. The derivative with respet to b satis�es�bH(k;w; b) = �u00(w � b� k)� E � �R(k; �)2v00�o(k; b; �)�� > 0: (A.3)Let b00 > b0. By (A.3), H(k;w; b00) > H(k;w; b0) > 0 for all 0 < k < w � b00 < w � b0.Hene, H(�;w; b00) has no zero for any b00 > b0. But then bmax(w) � b0, a ontradition.Finally, note that limk!0 o(k; b; ") � limk!0 bR(k; ") =1 for eah " 2 E whih implieslimk!0H(k;w; b) = u0(w � b)� limk!0� 1b+ kE � �o(k; b; �)v0�o(k; b; �)��� = �1 (A.4)if (P3) holds. In this ase, a zero exists for all b < w, i.e., bmax(w) = w. �A.3 Proof of Lemma 2.2Using (A.1) and (A.3), the partial derivatives of H de�ned in (11) satisfy0 < ��wH(k;w; b) = �u00(w � b� k) < �bH(k;w; b) � �kH(k;w; b)where the last inequality holds due to (P1). Thus, by the impliit funtion theorem,0 < �wK(w; b) = ��wH(k;w; b)�kH(k;w; b) < ��bK(w; b) = �bH(k;w; b)�kH(k;w; b) � 1: �6 Reall that interhanging di�erentiation with the expetations operator E� ��� is legitimate wheneverthe integrand is ontinuously di�erentiable and integration is over a ompat set.17



A.4 Proof of Lemma 2.3Let " 2 E be �xed. For brevity, we omit the subsript " suh that �w0 > 0 denotes thetrivial steady state. In addition, de�ne �k0 := K( �w0; 0) and w :=W(0; ") � 0.(i) Let " 2 Es. We determine unique values �k > 0 and ( �w;�b) 2 V+ solving k = K(w; b),w = W(k; "), and R(k; ") = 1. Sine limk!0R(k; ") = 1 and R(�k0; ") < 1, the lastondition has a solution �k 2℄0; �k0[ whih is unique by strit onavity of f(�; ") anddetermines �w := W(�k; ") < �w0. Finally, we determine the value �b as a solution to�w =W(K( �w; b); "). By Lemma 2.2, there an be at most one suh solution. Using (13),uniqueness and stability of �w0 imply �0(w; ") > w for all w 2℄w; �w0[. Hene, �w < �w0implies limb!0W(K( �w; b); ") = W(K( �w; 0); ") > �w. Sine limb!bmax( �w)K( �w; b) = 0,limb!bmax( �w)W(K( �w; b); ") = w < �w proving that a unique non-trivial steady stateexists. The Jaobian at the steady state omputes�J := D�( �w;�b; ") = � ��kfkk(�k; ")�wK( �w;�b) ��kfkk(�k; ")�bK( �w;�b)bfkk(�k; ")�wK( �w;�b) 1 + bfkk(�k; ")�bK( �w;�b) � :By Lemma 2.2, the determinant and trae satisfy det �J = ��kfkk(�k; ")�wK( �w;�b) > 0and tr �J = 1 + det �J + bfkk(�k; ")�bK( �w;�b) > 1 + det �J . The latter inequality implies0 � (1 � tr �J=2)2 = 1 � tr �J + (tr �J)2=4 < � det �J + (tr �J)2=4 ensuring real and distintEigenvalues of �J . By Galor (2007, p.88), these properties imply saddle-path stability.(ii) Let " 2 Ex. By ontradition, suppose there exists ( ~w;~b) 2 V+ suh that ( ~wt;~bt) :=�t( ~w;~b; ") 2 V for all t � 0. Use (13) to de�ne ŵt := �t0( ~w; "), t � 0. Lemma 2.2implies ŵt > ~wt � bmax( ~wt) > ~bt > 0 for all t. Sine limt!1 ŵt = �w0 by Assumption 2.1,ontinuity of R(�; ") and K imply existene of T > 0 suh that R(K(ŵt; 0); ") > 1 forall t � T implying ~bt+1=~bt = R(K( ~wt;~bt); ") > R(K(ŵt; 0); ") > 1. Hene, limt!1 ~bt =:B exists where ~bT < B � 1. Suppose B < 1. Then, limt!1R(K( ~wt;~bt); ") =1, ontraditing limt!1R(K( ~wt;~bt); ") � limt!1R(K(ŵt;~bt); ") = R(K( �w0; B); ") >R(K( �w0; 0); ") > 1. Thus, B =1 whih ontradits ~bt < ŵt for all t. �A.5 Properties of the Stable ManifoldThis setion establishes properties of the stable manifold M#" in (19). Espeially the�rst part draws heavily on results by Tirole (1985). A somewhat related analysis may befound in Galor (1992) from whih several ideas are used. For a de�nition of manifolds,et. the reader is referred to Villanai et al. (2002). While the formal arguments adoptthe setup and notation of Setion 3, neither the multipliative struture of f nor theadditional assumptions (P2){(P6) are used. Therefore, Theorem A.1 also applies for thesenario of Setion 2 under the hypotheses of Lemma 2.3 where the stable manifoldM" isde�ned as in (14) and the state spae is the open set V+ = f(w; b) 2 R2++ jb < bmax(w)g.Theorem A.1 Given #, let the hypotheses of Lemma 3.3 be satis�ed. In addition,suppose (P9) lim!1 u0() = 0. Then, for eah " 2 E#s the following holds:(i) The set M#" de�ned in (19) is the graph of a map  #" : R++ �! R++ .(ii) The map  #" is C1, stritly inreasing, and satis�es limw!0  #" (w) = 0.(iii) The derivative satis�es  #" 0(w) � q(w) := ��wK#(w; #" (w))�bK#(w; #" (w)) < 1 for all w > 0.18



Proof: Fix # and " 2 E#s and suppress these parameters writing � = �#(�; "),M =M#" ,et. Thus, ( �w0; 0) and ( �w;�b) denote the unique trivial and non-trivial steady state of �,respetively. The following arguments employ Lemmata 3 to 11 in Tirole (1985).7 Notethat our setup orresponds to his no-rent ase where R = 0 and a0 = b0.(i) For w0 > 0, let B := fb j�n(w0; b) 2 V 8n � 1 g, B 0 := fb 2 B j limn!1�n(w0; b) =( �w0; 0)g, B+ := fb 2 B j limn!1�n(w0; b) = ( �w;�b)g. By Tirole (1985), B is a onvexset (Lemma 6) and right-losed (Lemma 10). Combined with his Lemma 4 implies thatB =℄0; b̂0℄ for some b̂0 > 0. Moreover, B 0 is right open (Lemma 9), B+ is at most single-valued (Lemma 5) and B = B 0 [ B+ (Lemma 3). Hene, B+ = fb̂0g. Sine w0 wasarbitrary, this implies existene of a map  : R++ �! R++ suh that M = graph( ).(ii) Tirole's Lemma 11 implies that  is stritly inreasing. To establish smoothness of , let w :=W(0; ") � 0, �w1 := limk!1W(k; ") � 1 and G :=℄w; �w1[�R++ .The remainder draws on the following auxiliary result.Lemma A.1 Under (P9), the map � de�ned in (17a,b) is a C1-di�eomorphism betweenthe sets V+ and G .Proof of Lemma A.1.Given some (w0; b0) 2 G we determine a unique (w; b) 2 V+ suh that �(w; b) =(w0; b0). The ondition w0 = �w(w; b) determines a unique k0 = K(w; b) suh thatw0 = W(k0; "). The value z0 = Z(w; b) then follows from the �rst order onditionsE � [z0#(�)v0(b0#(�)=#(")+ k0R(k0; �))℄ = E � [R(k0; �)v0(b0#(�)=#(") + k0R(k0; �))℄ from whihb = b0=(z0#(")) an be inferred. Using (P9), w is the unique solution to u0(w� b� k0) =E � [z0#(�)v0(b0#(�)=#(") + k0R(k0; �))℄. Hene, ��1 is a well-de�ned funtion. � is learlyC1 by the IFT. To see that ��1 is C1, it is straightforward to show from (17a,b) thatthe Jaobian D�(w; b) satis�es detD�(w; b) > 0 for eah (w; b) 2 V+ . By the inversefuntion theorem, D��1(w0; b0) = [D�(w; b)℄�1 whih is a ontinuous funtion. �We �rst show thatM is a one-dimensional C1-manifold. By the Stable Manifold Theo-rem (f. Niteki (1971)), the loally stable setMlo := f(w; b) 2 V+ j�n(w; b) 2 U 8n �1 ^ limn!1�n(w; b) = ( �w;�b)g is a one-dimensional manifold as smooth as �. HereU � V+ \ G is an open neighborhood of ( �w;�b). By Niteki (1971, p.89) or Galor (1992,De�nition 4, p.1371), the globally stable manifold obtains asM = [n�0��n(Mlo). Ex-ploiting Lemma A.1,M inherits the smoothness ofMlo and is thus a one-dimensionalC1-manifold. The same arguments are used in Galor (1992, Corollary 3, p.1371).We show that  is ontinuous. Sine M is C1, there exists an open neighborhoodN � M of �x := ( �w;�b), an open subset U � R and a C1-di�eomorphism ' : N �! U .W.l.o.g., suppose U is an interval and N � Mlo (otherwise, hoose an open interval~U � U ontaining '(�x) small enough suh that '�1( ~U) �Mlo and swith to ~' := 'j ~Nwhere ~N := '�1( ~U)). By Theorem I.4 in Dugundji (1970, p.108), N = '�1(U) being theimage of an open and onneted set under a homeomorphism is an open and onnetedsubset ofM ontaining �x. Let x = (w; b) 2 M be arbitrary. By (19), limn!1�n(x) = �ximplying �n(x) 2 N for n large enough, i.e., x 2 ��n(N ). Thus, sine x was arbitraryand N � Mlo we obtain M = [n�0��n(N ). Continuity of ��n and Theorem I.4 inDugundji (1970) imply that eah ��n(N ) is a onneted set ontaining �x. By TheoremI.5 in Dugundji (1970, p.108), M is a onneted set implying ontinuity of  .We show that  is C1. Let w0 > 0 be arbitrary. SineM is C1, there exist an open neigh-borhood V0 � M of x0 := (w0;  (w0)), an open set U0 � R and a C1-di�eomorphism7 Previous versions of this paper ontained alternative proofs whih are available upon request.19



� = (�1;�2) : U0 �! V0. De�ne F := (idR++;  ) : R++ �! M, w 7! (w;  (w)) whihis a homeomorphism with inverse F�1 equal to the projetion onto the �rst omponentwhih is C1. Thus, �1 = F�1 Æ � : U0 �! W0 := F�1(V0) is a C1-homeomorphism(sine both F�1 and � are, f. Proposition 12 in Villanai et al.(2002)). The strategyis to show that �1 is even a C1-di�eomorphism, i.e., ��11 is C1. Suppose �01(~u) = 0 forsome ~u 2 U0. Let ~w := �1(~u). Sine �2 =  Æ �1 and  (w)� ( ~w)w� ~w takes values in the unitinterval for all w > 08, �02(~u) = �01(~u) limw! ~w( (w) �  ( ~w))=(w � ~w) = 0. FollowingVillanai et al.(2002, p.39), let 	 be a C1-extension of ��1 to an open set in R2 on-taining V0, i.e., 	jV0 = ��1. Then, (	 Æ�)0(~u) = �1	(�(~u))�01(~u)+ �2	(�(~u))�02(~u) = 0.On the other hand, 	 Æ � = idU0 implying (	 Æ �)0(~u) = 1 whih is a ontradition.Conlude that �01(u) 6= 0 for all u 2 U0. Then, by the inverse funtion theorem(��11 )0(w) = 1=�01(��11 (w)) for all w 2 W0. Sine �1 is C1 and ��11 ontinuous, (��11 )0 isa ontinuous funtion. Thus, �1 is a C1-di�eomorphism whih implies that F = � Æ��11restrited toW0 is a C1 di�eomorphism. Thus,  is C1 onW0 and, in partiular, at w0.Observing thatM� V+ implies 0 <  (w) < w for all w > 0 ompletes the proof of (ii).(iii) Suppose  0( ~w) > q( ~w) for ~w > 0. Then,  0( ~w) > ��wZ( ~w;  ( ~w))=�bZ( ~w;  ( ~w)) by(A.15). By ontinuity, ~�w(w) := W(K(w;  (w)); ") is loally stritly dereasing whilew 7! Z(w;  (w)) and, using (ii) ~�b(w) :=  (w)Z(w;  (w))#(") are stritly inreasing,respetively around ~w. Let ŵ > ~w be lose to ~w. Set b̂ :=  (ŵ) > ~b :=  ( ~w). Then,(ŵ; b̂); ( ~w;~b) 2 M and ŵ1 := ~�w(ŵ) = �w(ŵ; b̂) < �w( ~w;~b) = ~�w( ~w) =: ~w1 whileb̂1 := ~�b(ŵ) = �b(ŵ; b̂) > �b( ~w;~b) = ~�b( ~w) =: ~b1. But M being self-supporting under� implies ( ~w1;~b1) 2 M and (ŵ1; b̂1) 2 M. Therefore, ~b1 =  ( ~w1) and b̂1 =  (ŵ1) whihontradits that  is stritly inreasing, proving the laim. �A.6 Proof of Lemma 2.4Again we show the laim for the more general senario of Setion 3 under the hypothesesof Lemma 3.3. The laim of Lemma 2.4 follows from the prefae in Setion A.5.Let # be given and " 2 E#s be �xed. Dependene on these parameters will be suppressed.(i) Given w0 > 0, let b̂0 :=  (w0) and de�ne the sets B , B 0 and B+ as in the proof ofTheorem A.1(i). As shown there, B 0 =℄0; b̂0[ whih proves (i).(ii) Given w0 > 0, let ~b0 >  (w0) =: b̂0 and suppose by way of ontradition that( ~wt;~bt) := �t(w0;~b0) 2 V for all t � 0. Note that (ŵt; b̂t) := �t(w0; b̂0) 2 M forall t � 0 and limt!1( ~wt;~bt) = ( �w;�b). By Lemma 3.2 and an indution argument,ŵt > ~wt > ~bt > b̂t > 0 for all t > 0. De�ne �t := ~bt=b̂t to observe that �0 > 1and �t+1 = �tZ( ~wt;~bt)=Z(ŵt; b̂t) > �t for all t � 0. Hene, limt!1 �t = �� > 1 andlimt!1 ~bt = ���b =: ~b1 > �b exist. Sine ~wt remains bounded, ( ~wt;~bt) 2 V for all t only if~b1 <1 whih requires limt!1Z( ~wt;~bt) = 1=#("). But, by the previous properties andLemma 3.2, limt!1Z( ~wt;~bt) � limt!1Z(ŵt;~bt) = Z( �w;~b1) > Z( �w;�b) = 1=#("). �A.7 Proof of Lemma 2.5For t � 0, let �t := bt=wt. Using �w, �b gives �t+1 = �(�t) := �1�� [ 1+ � �t℄�1�t, t � 0.The map � has �� as its unique non-trivial �xed point whih is unstable. Moreover,8 This follows from monotoniity of  and a slight modi�ation of the ontradition argument in theproof of (iii) where  0( ~w) needs to be replaed by the di�erene quotient �b�w :=  (w)� ( ~w)w� ~w .20



�0 < �� implies limt!1 �t = 0 and �0 > �� implies that �t0(�0) > 1+ for �nite t0. Hene,b0 = ��w0 is neessary for (w0; b0) 2 M". SuÆieny follows from Theorem A.1(i). �A.8 Proof of Lemma 3.1Given (w; b) 2 V, let �k := w � b > 0. The argument o(z; k; b; ") := b z #(") + kR(k; ")will be suppressed when onvenient. Suppose b = 0. Then, H#1 is independent of z and# and H#1 (z; k;w; 0) = H(k;w; 0) for all k 2℄0; �k[ with H de�ned as in (11). Hene,existene of k0 2℄0; �k[ to satisfy H#1 (z; k0;w; 0) = 0 is due to Lemma 2.1. Using k0ondition H#2 (z; k0;w; 0) = 0 an be solved expliitly for z > 0 proving the ase b = 0.Suppose b > 0. The strategy is to use (16b) to eliminate z reduing (16a) to a one-dimensional problem. Let k̂ 2℄0; �k[ be arbitrary. We prove existene of a unique ẑ > 0to satisfy H#2 (ẑ; k̂;w; b) = 0. Sine limz!1 o(z; k; b; ") =1 for eah " 2 E , (P2) implieslimz!1 z #(") v0(�) = b�1 limz!1 o(z; k̂; b; ")v0(�)� b�1k̂R(k̂; ") limz!1v0(�) =1:This being true for all " 2 E implies H#2 (z; k̂;w; b) < 0 for z suÆiently large. SineH#2 (0; k̂;w; b) = u0(w � b � k̂) > 0 this proves existene of ẑ. To show uniqueness, weprove that z 7! H#2 (z; k;w; b) is stritly dereasing for all k 2℄0; �k[. By (P1),�zH#2 (z; k;w; b) = �E � �#(�) v0�o(z; k; b; �)�+ b z #(�)2 v00�o(z; k; b; �)�� (A.5)< �E � �#(�)�v0�o(z; k; b; �)�+ o(z; k; b; �)v00�o(z; k; b; �)��� � 0:These results ensure the existene of a map Ẑ(�;w; b) :℄0; �k[�! R++ whih determinesẑ for eah k̂ 2℄0; �k[ suh that H#2 (ẑ; k̂;w; b) = 0. By equation (3) and (P3),�kH#2 (z; k;w; b) = �u00(w � b� k)� �1 + Eg0(k)�E � �R(k; �) z #(�)v00(�)� > 0: (A.6)Thus, by the impliit funtion theorem, Ẑ(�;w; b) is C1 and stritly inreasing sine foreah k 2℄0; �k[, �kẐ(k;w; b) = ��kH#2 (ẑ; k;w; b)=�zH#2 (ẑ; k;w; b) > 0, ẑ = Ẑ(k;w; b).As a seond step, let Ĥ1(�;w; b) :℄0; �k[�! R, Ĥ1(k;w; b) := H#1 (Ẑ(k;w; b); k;w; b). Wedetermine a unique k0 2℄0; �k[ that solves Ĥ1(k0;w; b) = 0. Sine v0 is stritly dereasing,R(k; ")v0�b Ẑ(k;w; b)#(")+kR(k; ")� < R(k; ")v0�kR(k; ")� for all " 2 E and, therefore,Ĥ1(k;w; b) > u0(w � b� k)� E � �R(k; �)v0�kR(k; �)�� for all k 2℄0; �k[. Thus, by (8)limk!�k Ĥ1(k;w; b) � limk!�k�u0(w � b� k)� E � �R(k; �)v0�kR(k; �)��� =1:Let (kn)n�1 be a sequene in ℄0; w � b[ with limn!1 kn = 0. Sine k 7! Ẑ(k;w; b) and,by (P3), k 7! kR(k; ") are inreasing, n(") := b Ẑ(kn;w; b)#(")+knR(kn; ") is boundedfrom above for all " 2 E whih implies limn!1R(kn; ") v0�n(")� =1. This being truefor all " 2 E gives limn!1 E � [R(kn; �)v0(n(�))℄ = 1 and limn!1 Ĥ1(kn;w; b) = �1.Sine (kn)n�1 was arbitrary, limk!0 Ĥ1(k;w; b) = �1. Combining both limits yieldsexistene of a zero of Ĥ1(�;w; b). Finally, using (P2) the partial derivatives satisfy�kH#1 (z; k;w; b) = �u00(�)� E � �fkk(k; �) v0(�) + (1 + Eg0(k))R(k; �)2 v00(�)� > 0(A.7)�zH#1 (z; k;w; b) = �E � �R(k; �) b #(�) v00(�)� > 0: (A.8)Combining (A.7) and (A.8) with the monotoniity of Ẑ(�;w; b) yields �kĤ1(k;w; b) =�zH#1 (z; k;w; b)�kẐ(k;w; b)+ �kH#1 (z; k;w; b) > 0 where z = Ẑ(k;w; b). Hene, k0 is theunique zero of Ĥ1(�;w; b) on ℄0; �k[. Setting z = Ẑ(k0;w; b) ompletes the proof. �21



A.9 Proof of Lemma 3.2As in the previous proof, the argument o(z; k; b; ") de�ned as before is omitted whenonvenient. We prefae the proof by the following tehnial result.Lemma A.2 For the senario of Setion 3, let (P1){(P4) hold and # be ontinuous.Then, for all (w; b) 2 V, z := Z#(w; b) and k := K#(w; b) the following holds:(a) kE � [(R(k; �)� z#(�))R(k; �)jv00(�)j℄ = �bE � [(R(k; �)� z#(�))z#(�)jv00(�)j℄.(b) E � [(R(k; �)� z#(�))R(k; �)jv00(�)j℄ � 0 � E � [(R(k; �)� z#(�))z#(�)jv00(�)j℄.Proof of Lemma A.2.(a) By (16a,b), 0 = H#1 (z; k;w; b) � H#2 (z; k;w; b) = E � [(R(k; �)� z#(�))v0(�)℄. Usingthat v0() = ��1jv00()j for all  = bz#(") + kR(k; ") > 0 by (P4) yields (a).(b) We have E � [(R(k; �)� z#(�))2jv00(�)j℄ � 0 whih an equivalently be written asE � [R(k; �)(R(k; �)� z#(�))jv00(�)j℄ � E � [z#(�)(R(k; �)� z#(�))jv00(�)j℄. Sine, by (a),the two sides are either both zero or have opposite signs, the laim follows. 2Let (w; b) 2 V be arbitrary and set z := Z#(w; b) and k := K#(w; b) noting that z > 0and 0 < k < w � b. Write H# = (H#1 ; H#2 ) and � = (z; k). The signs of the derivativesin (A.5), (A.6), (A.7), and (A.8) imply that the Jaobian matrixD�H#(z; k;w; b) = � �zH#1 (z; k;w; b) �kH#1 (z; k;w; b)�zH#2 (z; k;w; b) �kH#2 (z; k;w; b) � :has determinant detD�H#(z; k;w; b) > 0 and is hene invertible. The inverse omputes[D�H#(z; k;w; b)℄�1 = 1detD�H#(z; k;w; b) � �kH#2 (z; k;w; b) ��kH#1 (z; k;w; b)��zH#2 (z; k;w; b) �zH#1 (z; k;w; b) � :(A.9)The partial derivatives with respet to w and b take the form�wH#1 (z; k;w; b) = �wH#2 (z; k;w; b) = u00(w � b� k) < 0 (A.10)�bH#1 (z; k;w; b) = �u00(w � b� k)� E � �R(k; �) z #(�)v00���� > 0 (A.11)�bH#2 (z; k;w; b) = �u00(w � b� k)� E � �(z #(�))2v00���� > 0: (A.12)By the impliit funtion theorem, omitting the arguments for notational onveniene�wZ#(w; b) = ��wH#1 [�kH#2 � �kH#1 ℄detD�H# ; �bZ#(w; b) = �kH#1 �bH#2 � �kH#2 �bH#1detD�H#�wK#(w; b) = ��wH#1 [�zH#1 � �zH#2 ℄detD�H# ; �bK#(w; b) = �zH#2 �bH#1 � �zH#1 �bH#2detD�H# :(i) As detD�H# = �zH#1 �kH#2 ��kH#1 �zH#2 > 0, �zH#2 < 0 � �zH#1 by (A.5) and (A.8),and 0 < ��wH#1 < �bH#i , i = 1; 2, it follows that0 < �wK#(w; b) = ��wH#1 [�zH#1 � �zH#2 ℄detD�H# < �zH#1 �bH#2 � �zH#2 �bH#1detD�H# = ��bK#(w; b):22



(ii) If, in addition, (P4) holds, straightforward alulations and Lemma A.2 imply�kH#1 � �kH#2 = E � [(R(k; �)� z#(�))R(k; �)jv00(�)j℄ (1 + Eg0(k))� E � [fkk(k; �)v0(�)℄ > 0 (A.13)�bH#1 � �bH#2 = E � [(R(k; �)� z#(�))z#(�)jv00(�)j℄ � 0: (A.14)By (A.10) and (A.13), �wZ#(w; b) < 0. By (A.13) and (A.14), �bZ#(w; b) > 0. Finally,�wK#(w; b)�bZ#(w; b)� �bK#(w; b)�wZ#(w; b) = ��wH#1detD�H# (�bH#2 � �bH#1 ) � 0 (A.15)whih follows from diret alulations and shows that ��wZ#(w;b)�bZ#(w;b) � �wK#(w;b)��bK#(w;b) < 1. �Remark A.1 Sine Z# and K# are well-de�ned and the matrix D�H#(z; k;w; b) is non-singular also at any boundary point (w; 0) 2 V, the impliit funtion theorem impliesthat the mappings Z# and K# an loally be extended to an open neighborhood around(w; 0). Hene, their derivatives are well-de�ned and ontinuous also on the boundary ofV where b = 0 and Lemma 3.2 and also Lemma 2.2 indeed hold on the entire set V.A.10 Proof of Lemma 3.3(i) Let # be given. For notational onveniene, the shok " 2 E will subsequently besuppressed. With this onvention, denote the trivial steady state as �w0 > 0 and letwk :=W(0; ") � 0. By the monotoniity of K# (f. Lemma 3.2) andW(�; "), any steadystate ( �w;�b) 2 V+ satis�es wk < �w < �w0. Further results are olleted in the next lemma.Lemma A.3 Assumption 3.1 and the hypotheses of Lemma 3.3 imply the following:(a) w >W(K#(w; 0); ") for all w 2℄wk; �w0[.(b) W(k; ") � kR(k; ") for all 0 < k � �k0 := K#( �w0; 0).() For any sequene (wn; bn)n�0 in V, limn!1(wn�bn) = 0 implies limn!1Z#(wn; bn) =1.Proof of Lemma A.3(a) By uniqueness of �w0, w 6=W(K#(w; 0); ") 8w 2℄wk; �w0[. Stability implies the laim.(b) By (2) and (3), the laim is equivalent to Eg(k) � 12 for all k 2℄0; �k0℄. By Assumption3.1, Eg(�k0) � 12 . The derivative omputes E 0g(k) = g0(k)=g(k)[1�Eg(k)�jEg0(k)j℄ and isnon-negative by (P6) implying that Eg is non-dereasing from whih the laim follows.() Given (w; b) 2 V, let z := Z#(w; b), k := K#(w; b), and o(z; k; b; ") as in the previousproofs. By (16a,b), E � [R(k; �)v0(o(z; k; b; �))℄ = E � [z#(�) v0(o(z; k; b; �))℄. This requiresz#(~") � R(k; ~") = ~"g0(k) for some ~" 2 E . Setting � := min"f"=#(") j " 2 Eg > 0 (whihis well-de�ned by ontinuity of # and ompatness of E) gives Z#(w; b) � �g0(K#(w; b))for all (w; b) 2 V. Sine limn!1K(wn; bn) = 0 for any sequene (wn; bn)n�0 in V withlimn!1(wn � bn) = 0, this implies limn!1Z#(wn; bn) � �g0(K#(wn; bn)) =1. 2(i) Existene. De�ne Hw : V �! R, Hw(w; b) := w �W(K#(w; b); ") and the so-alledw-isoline H w := f(w; b) 2 V jHw(w; b) = 0; w 2℄wk; �w0[g. Any interior steady statesatis�es ( �w;�b) 2 H w . Given any ŵ 2℄wk; �w0[ we laim there exists a unique b̂ 2℄0; ŵ[23



suh that Hw(ŵ; b̂) = 0. By Lemma A.3(a), limb!0Hw(ŵ; b) = ŵ �W(K#(ŵ; 0); ") < 0and limb!ŵK#(ŵ; b) = 0 gives limb!ŵHw(ŵ; b) = ŵ � wk > 0 implying existene of b̂.Uniqueness follows from Lemma 3.2(i) due to whih Hw(w; �) is stritly inreasing.This result permits to de�ne a map hw :℄wk; �w0[�! R++ suh that H w = graph(hw).By the impliit funtion theorem, hw is C1 with derivativeh0w(w) = ��wHw(w; b)�bHw(w; b) = �1 + "kg00(k)�wK#(w; b)"kg00(k)�bK#(w; b) ; b = hw(w); k = K#(w; b): (A.16)Finally, sine Hw( �w0; 0) = 0 and limw&wk Hw(w;wk) = 0, ontinuity of Hw implies theboundary behavior limw! �w0 hw(w) = 0 and limw&wk hw(w) = wk � 0.Analogously, let Hb : V �! R, Hb(w; b) := Z#(w; b)� 1=#("). For b = 0, " 2 E#s implieslimw! �w0Hb(w; 0) = Z#( �w0; 0)� 1=#(") < 0. By Lemma A.3(), limw!0Hb(w; 0) = 1.As w 7! Z#(w; 0) is stritly dereasing by Lemma 3.2(ii), a unique wz 2℄0; �w0[ satisfyingHb(wz; 0) = 0 exists. De�ne the b-isoline H b := f(w; b) 2 V jHb(w; b) = 0; w 2℄wz; �w0[g.Any interior steady state satis�es ( �w;�b) 2 H b . Given ŵ 2℄wz; �w0[ we again laim thereexists a unique b̂ 2℄0; ŵ[ suh that Hb(ŵ; b̂) = 0. By Lemma 3.2(ii), limb!0Hb(ŵ; b) =Z#(ŵ; 0)�1=#(") < Z#(wz; 0)�1=#(") = 0. Lemma A.3() yields limb!ŵHb(ŵ; b) =1implying existene of b̂. Uniqueness follows from monotoniity of Hb(w; �) due to Lemma3.2(ii). Analogously, this result permits to de�ne a map hb :℄wz; �w0[�! R++ suh thatH b = graph(hb). By the impliit funtion theorem, hb is C1 with derivativeh0b(w) = ��wHb(w; b)�bHb(w; b) = ��wZ(w; b)�bZ(w; b) > 0; b = hb(w): (A.17)Reall that Hb( �w0; 0) < 0. By Lemma A.3(), there exists a unique value �b0 2℄0; �w0[satisfying Hb( �w0;�b0) = 0. Hene, Hb(wz; 0) = Hb( �w0;�b0) = 0. By ontinuity of Hb, thisimplies the boundary behavior limw! �w0 hb(w) = �b0 > 0 and limw!wz hb(w) = 0.Set w := maxfwk; wzg > 0 and de�ne � :℄w; �w0[�! R, �(w) := hw(w)� hb(w). Sine( �w;�b) 2 V is an interior steady state i� ( �w;�b) 2 H w \ H b , steady state values �w arezeros of � while �b = hw( �w). By the boundary behavior derived above, limw! �w0 �(w) =��b0 < 0. Let wk > wz. Then, limw!w�(w) = wk � hb(wk) > 0 sine hb(w) < wfor w > wz. If wk = wz, then limw!w�(w) = wk > 0. Finally, let wz > wk. Thenlimw!w�(w) = hw(wz) > 0. In either ase, limw!w�(w) > 0 and a zero exists.Uniqueness. Let ( �w;�b) � 0 be an interior steady state. We show that �0( �w) < 0implying uniqueness by ontinuity of �0. Let �k := K#( �w;�b) < �k0 and �z := Z#( �w;�b) > 0.By (A.16) and (A.17),�0( �w) = ��bZ#( �w;�b) + "�kg00(�k) ��wK#( �w;�b)�bZ#( �w;�b)� �bK#( �w;�b)�wZ#( �w;�b)�"�kg00(�k)�bK#( �w;�b)�bZ#( �w;�b) :(A.18)Sine the denominator is stritly positive by Lemma 3.2, it suÆes to show that thenumerator is stritly positive as well. Using (A.15) and the de�nition of �bZ#( �w;�b)from Lemma 3.2 and realling that detD�H# > 0, this is equivalent to showing thatM := �kH1�bH2 � �kH2�bH1 � "�kg00(�k)�wH1(�bH2 � �bH1) > 0 (A.19)where the respetive arguments have been omitted for onveniene. In what follows,let M1 := E � [�z#(�) jv0(�)j℄ = E � [R(�k; �) jv0(�)j℄ > 0, M2 := E � [R(�k; �)2 jv00(�)j℄ > 0,24



M3 := E � [(�z#(�))2 jv00(�)j℄ > 0 and M4 := E � [R(�k; �) �z#(�) jv00(�)j℄ > 0. Using thefuntional forms of the derivatives from (A.5){(A.8), and (A.10){(A.12), tedious butstraightforward alulations reveal that M an be written as M = A+B + C whereA := ju00(�)jh�g00(�k)g0(�k)M1 +m(M3 �M4) + (1 + Eg0(�k))(M2 �M4)im := 1 + "�kg00(�k); B := �g00(�k)g0(�k)M1M3; C := (1 + Eg0(�k))hM2M3 � �M4�2i:By Lemma A.2(b), M2 � M4 and M3 � M4 whih implies C � 0 by (P3). Obviously,B > 0. Supposem � 0. Then, A > 0 by (P3) whih impliesM > 0. Conversely, supposem < 0. Then �mM4 > 0. By (P5), M1 = u0( �w � �b � �k) � ( �w � �b � �k)ju00( �w � �b � �k)jwhih implies B � �g00(�k)g0(�k) ( �w � �b � �k)ju00(�)jM3. By (P3), (1 + Eg0(�k))(M2 �M4) � 0.Finally M1 = ��1(�kM2 + �bM3) by (P4) implying M1 > �bM3 by (P1). Combining thefour inequalities derived gives �nally the resultA+B > ju00(�)jM3h(1 + Eg0(�k))� g00(�k)g0(�k) ( �w � "�kg0(�k))i:Both terms in brakets are non-negative due to (P3) and Lemma A.3(b), respetively.Hene, M > 0 also in this ase, proving uniqueness of the steady state.Stability. The argument is similar to the one in Lemma 2.3. Computing the determinantand trae of the Jaobian �J at the steady state gives, using Lemma 3.2 and (A.15)det �J = �"�kg00(�k)h�wK#( �w;�b)+ �b�z��wK#( �w;�b)�bZ#( �w;�b)��bK#( �w;�b)�wZ#( �w;�b)�i > 0tr �J = 1+det �J+�b�z h�bZ#( �w;�b)+"�kg00(�k) ��wK#( �w;�b)�bZ#( �w;�b)� �bK#( �w;�b)�wZ#( �w;�b)�i:As shown before, the numerator in (A.18) is positive whih implies tr �J > 1+det �J . Thesame reasoning as in the proof of Lemma 2.3 gives the laim.(ii) Replaing R(K(w; b); ") by #(")Z#(w; b) and using Lemma 3.2 the proof is identialto the one of Lemma 2.3(ii). �A.11 Proof of Lemma 3.4Let #(") � �# > 0. We laim that for all w > 0 and ", "0 2 E �#s : " < "0 )  �#" (w) <  �#"0(w).By ontradition, suppose " < "0 but b0 :=  �#" (w) �  �#"0(w) =: b00 for some w > 0.By Lemma 3.2 and (17a,b), it is straightforward to show that the sequenes fwt; btgt�0and fw0t; b0tgt�0 de�ned as (wt; bt) := ��#(wt�1; bt�1; ") and (w0t; b0t) := ��#(w0t�1; b0t�1; "0)(where w0 = w00 = w) satisfy wt < w0t and bt � b0t for all t > 0. Thus, the steady states( �w �#" ;�b�#" ) = limt!1(wt; bt) and ( �w �#"0;�b�#"0) = limt!1(w0t; b0t) satisfy �w �#" � �w �#"0 and �b�#" � �b�#"0.By Lemma 3.2(ii), however, the steady state property Z �#( �w �#" ;�b�#" ) = Z �#( �w �#"0;�b�#"0) = 1�# anonly be satis�ed if ( �w �#" ;�b�#" ) = ( �w �#"0;�b�#"0) implying K �#( �w �#" ;�b�#" ) = K �#( �w �#"0;�b�#"0) =: �k. But thisontradits �w �#" = W(�k; ") < W(�k; "0) = �w �#"0, proving the laim. Thus, M�#" TM�#"0 = ;.To see that the restrition from Assumption 2.2 is satis�ed, suppose w.l.o.g. that E �#s = E .Then, by the previous result b�# rit(w) = min"2Ef �#" (w)g =  �#"min(w) for all w > 0. Usingthis, # � �#, and the properties of �# and  �#"min respetivelyM�#"min, b � b�# rit(w) implies��#b (w; b; ") = ��#b (w; b; "min) � ��#b (w; b�# rit(w); "min) =  �#"min(��#w(w; b�# rit(w); "min)) � �#"min(��#w(w; b; "min)) �  �#"min(��#w(w; b; ")) = b�# rit(��#w(w; b; ")) for all " 2 E . �25



A.12 Proof of Lemma 4.1Given (w; b) 2 VA we determine a unique � < w � wA suh that H(� ;w; b) = 0 whereH(� ;w; b) := b� � � �A (w � �): (A.20)Let � 0 := w�wA � w. As (w; b) 2 VA and dA = limw!wA (w� �A (w)) from Assumption4.1, lim�!� 0 H(� ;w; b) = b � w + dA < 0. Furthermore, lim�!�1H(� ;w; b) = b +lim�!1 � [1 � �A (w + �)=� ℄. If lim�!1 �A (w + �) < 1, then lim�!�1H(� ;w; b) = 1.If lim�!1 �A (w + �) =1, then lim�!1[1� �A (w + �)=� ℄ = 1� lim�!1 �0A (w + �) > 0by hypothesis and l'Hopital's rule. Again, lim�!�1H(� ;w; b) = 1, whih impliesexistene. Uniqueness follows from ��H(� ;w; b) = �1+�0A (w� �) < 0 for all � < w. �A.13 Proof of Lemma 4.2Using (A.20), the impliit funtion theorem implies that for all (w; b) 2 VA�wTA (w; b) = � �0A (w � �)1� �0A (w � �) = 1� �bTA (w; b) < 0; � = TA (w; b): (A.21)(i) Let w 2 W A and " 2 E be arbitrary. Using (A.21) the derivative of (21) omputes�w��(w; ") = (1� �wTA (w; b))h�w�#w + �0A (w)�b�#w � �w�#b � �0A (w)�b�#b i: (A.22)Using Lemma 3.2, the braketed term is non-negative under (P7) proving (i) by (A.21).(ii) Let w 2 W A be given and " > "0. We show that ��(w; ") > ��(w; "0). Set (w0; b0) :=�#(w; �A (w); "0) 2 VA and let ~�(; Æ) := w0�TA (w0; Æb0) whih is well-de�ned for all(; Æ) 2 R2++ suh that (w0; Æb0) 2 VA . Using (A.21), the partial derivatives satisfy� ~�(; Æ) = [1� �wTA (�)℄(w0 � Æb0) > 0 � �[1� �wTA (�)℄b0 = �Æ ~�(; Æ) (A.23)for all  > 0 and Æ � 1. Set 0 := ""0 > 1 and Æ0 := �#(")=�#("0). By (P8) Æ0 � 1. Then,(A.23) implies ��(w; "0) = ~�(1; 1) � ~�(1; Æ0) < ~�(0; Æ0) = ��(w; ") proving the laim. �A.14 Proof of Lemma 4.3Sine shoks in (17a,b) are multipliative and M#"ref is self-supporting under �#(�; "ref),�#b (w; �A (w); ") = #(")#("ref)�A �"ref" �#w(w; �A (w); ")� (A.24)whih holds for all w 2 W A and " 2 E . Di�erentiating (A.24) with respet to w gives�w�#b + �0A (w)�b�#b = h�w�#w + �0A (w)�b�#wi #(")#("ref) "ref" �0A ��#w(w; �A (w); "ref)�: (A.25)Sine �w�#w + �0A (w)�b�#w � 0 by Theorem A.1(iii), (A.25) implies (P7). �26



A.15 Proof of Theorem 4.1First note that both limits in (b) are well-de�ned sine �� is ontinuous and monotoni.By (a), ��(�; "0) has a unique �xed point �w�0 2 W A . By stability, ��(w; "0) T w i� w S�w�0 . Sine " 7! ��(w; ") is stritly inreasing, this implies ��(w; "min) < w for all w > �w�0and ��(w; "max) > w for all w < �w�0 . Hene, non-trivial �xed points of ��(�; "min) anonly exist in ℄wA ; �w�0 ℄ and do exist if limw!wA ��(w; "min)=w > 1 while non-trivial �xedpoints of ��(�; "max) an only exist in [ �w�0 ;1[ and do exist if limw!1 ��(w; "max)=w < 1.In the terminology of Brok & Mirman (1972, p.500), �� possesses a stable �xed-pointon�guration. De�ning w� := maxfw 2 W A j��(w; "min) = wg � �w�0 � �w� := minfw 2W A j��(w; "max) = wg, the set �W � := [w�; �w�℄ is the unique stable set of �� (de�ned asin Wang (1993, p.428)). The laim (ii) then follows from the results in Wang (1993). �A.16 Proof of Theorem 5.1(i) Fix � 2 [0; 1℄. Using Lemma 3.2 and (16a,b), the partial derivative of (22) satis�es�bV (w; b; �) = u0(w � b� k)h�bZ(w; b; �)b=z + Eg0(k)�bK(w; b; �)i > 0:(ii) Fix (w; b) 2 V+ and write k� := K(w; b; �) and z� := Z(w; b; �). Given � 2 [0; 1[,let M1 := E � [R(k�; �)v0(�)℄, M2 := E � [R(k�; �)2jv00(�)j℄, M3 := E � [(z�#�(�))2jv00(�)j℄,and M4 := E � [R(k�; �)z�#�(�)jv00(�)j℄. Write the map H#�i (z; k;w; b) from (16a,b) asHi(z; k; �), i = 1; 2. The derivatives with respet to � exist and satisfy(1��)��H1 = b[z=g0(k)M2�M4℄ and (1��)��H2 = �(z=g0(k)[M1� bM4℄ +M1� bM3:(A.26)By Lemma 3.1 and the IFT, � 7�! (Z(�);K(�)) := (Z#�(w; b);K#�(w; b)) is a C1-map.Using (A.9) and the notation from the proof of Lemma 3.2, the derivatives ompute� ��Z(�)��K(�) � = �[D�H℄�1� ��H1��H2 � = 1detD�H � �kH1��H2 � �kH2��H1�zH2��H1 � �zH1��H2 � :(A.27)Using that #� = �#1+(1��)#0 implies d�#� = #1�#0, the derivative of (22) omputes��V (w; b; �) = E � [(A�#1(�)� B�#0(�))v0(�)℄ (A.28)where A� := bz� + g0(k�)[��Zb=z� + Eg0(k�)��K℄ and B� := bz� > 0. Let � 2 [0; 1[ bearbitrary. We show that ��V < 0. If A� � 0, this follows immediately from (A.28), sosuppose A� > 0. By (16a,b), E � [(R(k�; �)� z�#�(�))v0(�)℄ = 0 whih an be written asE � [(#1(�)C� � #0(�))v0(�)℄ = 0 where C� := g0(k�)=z���1�� > 0. Exploiting (A.28), we showthat M := C�B� � A� > 0. Solving this ondition by using (A.26) and (A.5){ (A.8) in(A.27), tedious but straightforward alulations show that M > 0 if and only ifbju00j�M2�M4+M3�M4�+b�M2M3�M24 �� g00(k�)g0(k�)M1�b(M3�M4)�k(M2�M4)� > 0:Using Lemma A.2(b) and the fat that by (P4) and (16a,b) b(M3�M4)�k(M2�M4) =bM3 + kM4 � (bM4 + kM2) = 0, all braketed terms are positive, proving the laim. �27
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