
Casajus, André

Working Paper

Amalgamating players, symmetry and the Banzhaf value

Working Papers, No. 442

Provided in Cooperation with:
Center for Mathematical Economics (IMW), Bielefeld University

Suggested Citation: Casajus, André (2010) : Amalgamating players, symmetry and the Banzhaf value,
Working Papers, No. 442, Bielefeld University, Institute of Mathematical Economics (IMW), Bielefeld

This Version is available at:
https://hdl.handle.net/10419/43802

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/43802
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Institute of

Mathematical

Economics

Working Papers

442
December 2010

Amalgamating players, symmetry and the

Banzhaf value
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Abstract
We suggest new characterizations of the Banzhaf value without the

symmetry axiom, which reveal that the characterizations by Lehrer

(1988, International Journal of Game Theory 17, 89�99) and Nowak

(1997, International Journal of Game Theory 26, 127�141) as well

as most of the characterizations by Casajus (2010, Theory and De-

cision, forthcoming) are redundant. Further, we explore symmetry

implications of Lehrer�s 2-e¢ ciency axiom.
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1. Introduction

As an alternative to the Shapley (1953) value, Banzhaf (1965) introduced another

value for voting games, later extended to general TU games by Owen (1975). There

are numerous characterizations of the Banzhaf value both on the full domain of

TU games and within restricted domains. Among them, the characterizations by

Lehrer (1988) stand out by the use of some appealing amalgamation properties,

superadditivity, max-superadditivity1, and 2-e¢ ciency, where in particular the latter

very nicely pinpoints the di¤erence between the Shapley value and the Banzhaf value.

To illustrate this, let us explain superadditivity and 2-e¢ ciency. When player j is

amalgamated to player i in a TU game, he leaves the game as a genuine player, but he

�sits on the shoulders�of player i, i.e., with respect to the creation of worth, player

j is present in a coalition whenever player i is so. Superadditivity then requires the

payo¤ of player i in the amalgamated game not to be smaller than the sum of the

individual payo¤s of players i and j in the original game, i.e., amalgamating players

never hurts. 2-e¢ ciency is more demanding; it calls for amalgamation not to make

a di¤erence, i.e., for equality to hold in the superadditivity axiom. In contrast, the

Shapley value obeys N -e¢ ciency, i.e., the sum of payo¤s does not change when all

players are merged into a single one.

Later on, Nowak (1997) and Casajus (2010) employ 2-e¢ ciency to characterize the

Banzhaf value, but� in contrast to Lehrer� avoid the additivity axiom by invoking

marginality (Young, 1985) or di¤erential marginality (Casajus, 2009). Besides one

of the amalgamation properties and the dummy player axiom, all of the above

characterizations share the symmetry axiom or di¤erential marginality, where the

latter is closely related to symmetry. While Casajus (2010, Remark 5) claims the

non-redundancy of his characterization, neither Lehrer (1988) nor Nowak (1997)

check for the independence of their axioms. Embarrassingly, Casajus is wrong. In

most of the above mentioned characterizations, we can drop the symmetry axiom

or di¤erential marginality.

What our authors seem to have missed is that the amalgamation properties, in

particular 2-e¢ ciency, embody strong symmetry requirements. Indeed, as our �rst
1The use of �superadditivity� to denote these axioms is somewhat unfortunate. First, �addi-

tivity� is well-established as a name for another axiom for solutions of TU games. And second,

�superadditivity� already refers to a common property of TU games. Nevertheless, we stick to

the original names introduced by Lehrer, because it will always be clear from the context what is

meant.
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main result (Theorem 1), we show that the Banzhaf value already is characterized

by the dummy player axiom and by 2-e¢ ciency on the full domain of TU games.

While this axiomatization also works within the domains of simple games and of su-

peradditive simple games, this is not true within the domain of superadditive games.

To hold within the latter domain, one could add either marginality or di¤erential

marginality, or the transfer axiom (Dubey and Shapley, 1979, A4). This already

entails that the Nowak characterization and most of the Casajus characterizations

are redundant.

Our second main result directly builds on the �rst one. We establish that the

axioms in Lehrer�s (1988, Theorem B) characterization are not independent (Theo-

rem 6). To achieve this, we explore relations between the amalgamation properties

(Lemmas 4 and 5), which may be of some interest in themselves. First, it is quite

easy to show that additivity and superadditivity imply 2-e¢ ciency on the full do-

main of games (Lemma 4). And second, it is little more di¢ cult to establish that

additivity, the dummy player axiom, and max-superadditivity imply superadditiv-

ity (Lemma 5). Together with Theorem 1, this already entails that one can drop

symmetry from the Lehrer characterization. In order to show the latter for Lehrer

(1988, Theorem A), i.e., within the class of simple games (Theorem 7), we combine

ideas from the proof of the Lehrer theorem and from the proof of Theorem 1.

The plan of this note is as follows: Basic de�nitions and notation are given in

the second section. The third and fourth section contain our results related to 2-

e¢ ciency and (max-)superadditivity, respectively. Some remarks on the relation

between 2-e¢ ciency and isomorphism invariance and on the extendability of values

for two-player games by 2-e¢ ciency conclude the paper.

2. Basic definitions and notation

A (TU) game is a pair (N; v) consisting of a non-empty and �nite set of players
N and a coalition function v 2 V (N) :=

�
f : 2N ! Rjf (;) = 0

	
; the domain

of a coalition function frequently will be made explicit as a superscript. Subsets of

N are called coalitions, and v (K) is called the worth of coalition K. The null
game on N is denoted (N;0) ; 0 2 V (N) ; where 0 (K) = 0 for all K � N: For

T 2 2Nn f;g ; the game (N; uT ), uT (K) = 1 if T � K and uT (K) = 0 otherwise,

is called a unanimity game; the game (N; eT ), eT (K) = 1 if T = K and eT (K)

= 0 otherwise, is called a standard game. For v; w 2 V (N) ; � 2 R; the coalition
functions v + w 2 V (N) and � � v 2 V (N) are given by (v + w) (K) = v (K) +
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w (K) and (� � v) (K) = � � v (K) for all K � N: Any v 2 V (N) can be uniquely
represented by unanimity games,

v =
X

T�N :T 6=;

�T (v) � uT ; �T (v) :=
X

S�T :S 6=;

(�1)jT j�jSj � v (S) : (1)

A game (N; v) is called simple i¤ v (K) 2 f0; 1g for all K � N ; it is called su-
peradditive i¤ v (S [ T ) � v (S) + v (T ) for all S; T � N; S \ T = ;: Let Vsa (N)
and Vsi (N) denote the sets of superadditive and of simple coalition functions on N ,
respectively: For v; w 2 Vsi (N) ; we de�ne v _ w; v ^ w 2 Vsi (N) by (v _ w) (K)
= max fv (K) ; w (K)g and (v ^ w) (K) = min fv (K) ; w (K)g for all K � N: For

(N; v) and i; j 2 N; i 6= j; the amalgamated games2 (Nij; vij) and
�
Nij; v

m
ij

�
are

given by Nij = Nn fjg ; vij; vmij 2 V (Nn fjg) ;

vij (K) =

8<: v (K) ; i =2 K;
v (K [ fjg) ; i 2 K;

K � Nij (2)

and

vmij (K) =

8<: v (K) ; i =2 K;
maxT�fi;jg;T 6=; v (Kn fig [ T ) ; i 2 K;

K � Nij: (3)

Player i 2 N is called a dummy player in (N; v) i¤ v (K [ fig)� v (K) = v (fig)
for all K � Nn fig ; if in addition v (fig) = 0; then i is called a null player; players
i; j 2 N are called symmetric in (N; v) if v (K [ fig) = v (K [ fjg) for all K �
Nn fi; jg.
A value is an operator ' that assigns a payo¤ vector ' (N; v) 2 RN to any game

(N; v) : For K � N; we set 'K (N; v) =
P

i2K 'i (N; v). The Banzhaf value is
given by

Bai (N; v) = 2
�jN j+1

X
K�Nnfig

(v (K [ fig)� v (K)) ; i 2 N: (4)

Below, we list the axioms that are used later on and which are supposed to hold

for all non-empty and �nite player sets.

Additivity, A. For all v; w 2 V (N) ; ' (N; v + w) = ' (N; v) + ' (N;w) :

Transfer, T. For all v; w 2 Vsi (N) ; ' (N; v _ w) + ' (N; v ^ w) = ' (N; v) +

' (N;w) :

2The use of SA and SAm by Lehrer (1988, p. 96) indicates that he must have had these

de�nitions in mind.
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Dummy player, D. For all v 2 V (N) and all i 2 N , who are dummy players in

(N; v) ; 'i (N; v) = v (fig) :

Symmetry, S. For all v 2 V (N) and all i; j 2 N , who are symmetric in (N; v) ;

'i (N; v) = 'j (N; v) :

Superadditivity, SA. For all v 2 V (N) and i; j 2 N; i 6= j, 'i (Nij; vij) �
'i (N; v) + 'j (N; v) :

max-Superadditivity, SAm. For all v 2 V (N) and i; j 2 N; i 6= j, 'i
�
Nij; v

m
ij

�
�

'i (N; v) + 'j (N; v) :

2-E¢ ciency, 2E. For all v 2 V (N) and i; j 2 N; i 6= j, 'i (Nij; vij) = 'i (N; v) +

'j (N; v) :

E¢ ciency, E. For all v 2 V (N) ; 'N (N; v) = v (N) :

Marginality, M. For all v; w 2 V (N) and all i 2 N such that v (K [ fig)� v (K)

= w (K [ fig)� w (K) for all K � Nn fig, 'i (N; v) = 'i (N;w) :

Di¤erential marginality, DM. For all v; w 2 V (N) and i; j 2 N; v (K [ fig) �
v (K [ fjg) = w (K [ fig) � w (K [ fjg) for all K � Nn fi; jg implies 'i (N; v) �
'j (N; v) = 'i (N;w)� 'j (N;w) :

3. 2-efficiency

Besides his main results, Lehrer (1988, Remark 3) establishes that the Banzhaf

value is the unique value that satis�es 2-e¢ ciency and that coincides with the

Banzhaf value for two-player games, i.e., 2-e¢ ciency uniquely extends the Banzhaf

value from two-player games� where it coincides with the Shapley value� to the do-

main of all games. Since amalgamating players does not the lead out of the domain

of simple games or the domain of superadditive games, respectively, this result holds

within these domains and within their intersection. In the following, we suggest a

new characterization of the Banzhaf value via 2-e¢ ciency and the dummy player

axiom. This characterization also works within the domains of superadditive games

and of superadditive simple games, but not within the domain of simple games.

Nowak (1997) and Casajus (2010) also present characterizations of the Banzhaf

value that employ 2-e¢ ciency. Our �ndings shed new light on their results. Almost

all of their characterizations turn out to be redundant. In the next section, we use

the main idea of the proof of the following theorem to show that the characterizations

of Lehrer (1988, Theorems A and B) are redundant, too.
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Theorem 1. The Banzhaf value is the unique value that satis�es D and 2E.

Proof. In view of Lehrer (1988, Remark 3), it su¢ ces, w.l.o.g., to show ' (f1; 2g ; v) =
Ba (f1; 2g ; v) for all v 2 V (f1; 2g) : Let v = �1 � uf1;2gf1g + �2 � uf1;2gf2g + �12 � uf1;2gf1;2g,

�1; �2; �12 2 R and N = f1; 2; 3; 4g : Consider z 2 V (N) ;

z = (�1 � �2) � uNf4g + �2 �
X

`2Nnf4g

�
uNf`g � uNNnf4;`g

�
+ (�12 + 2 � �2) � uNNnf4g: (5)

By (2), we get w 2 V (Nn f3g) ;

w := z13 = z23 = (�1 � �2) � uNnf3gf4g + �2 �
�
u
Nnf3g
f1g + u

Nnf3g
f2g

�
+ �12 � uNnf3gf1;2g (6)

and therefore

'1 (Nn f3g ; w)
2E
= '1 (N; z) + '3 (N; z) ; (7)

'2 (Nn f3g ; w)
2E
= '2 (N; z) + '3 (N; z) : (8)

Again by (2), we obtain w12 2 V (f1; 4g) ;

w12 = (2 � �2 + �12) � uf1;4gf1g + (�1 � �2) � uf1;4gf4g ;

hence,

2 � �2 + �12
D
= '1 (f1; 4g ; w12)

2E
= '1 (Nn f3g ; w) + '2 (Nn f3g ; w) (9)

Equations (7), (8), and (9) together entail

'1 (N; z) + '2 (N; z) + 2 � '3 (N; z) = 2 � �2 + �12: (10)

Interchanging the role of players 1; 2, and 3 in the above argument yields

'1 (N; z) + 2 � '2 (N; z) + '3 (N; z) = 2 � �2 + �12; (11)

2 � '1 (N; z) + '2 (N; z) + '3 (N; z) = 2 � �2 + �12: (12)

Now, the system of linear equations (10), (11), and (12) has the unique solution

'1 (N; z) = '2 (N; z) = '3 (N; z) =
�2
2
+
�12
4
: (13)

Further, we obtain

'1 (Nn f3g ; w)
(6),2E
= '1 (N; z) + '3 (N; z)

(13)
= �2 +

�12
2
; (14)

'4 (Nn f3g ; w)
D
= �1 � �2: (15)

Since w14 = v; we thus have

'1 (f1; 2g ; v)
2E
= '1 (Nn f3g ; w) + '4 (Nn f3g ; w) = �1 +

�12
2
= Ba1 (f1; 2g ; v) :
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Finally, we have

v (f1; 2g) D= '1 (f1g ; v12)
2E
= '1 (f1; 2g ; v) + '2 (f1; 2g ; v) ; (16)

which gives '2 (f1; 2g ; v) = Ba2 (f1; 2g ; v) : �

A couple of remarks on the previous result and its proof seem to be in order.

Remark 1. To some extent, the proof above illuminates the relation between 2-

e¢ ciency and symmetry. Note the idea of the proof. First, the asymmetry between

players 1 and 2 in (f1; 2g ; v) is shifted into the dummy player 4 in (f1; 2; 4g ; w). This
way the symmetric �part�of v; i.e., v � (�1 � �2) � uf1;2gf1g ; becomes w � (�1 � �2) �
u
f1;2;4g
f4g : In order to handle the symmetric part of v in w, we add player 3 in an

appropriate way and obtain (N; z) ; where�1, 2, and 3 are pairwise symmetric. So, the

argument involving equations (6) to (13) shows how 2-e¢ ciency breeds symmetry.

Remark 2. The superadditivity of v may not entail the superadditivity of z in (6),

for example, if �1; �2 < 0 in (5). Therefore, the above proof does not work within

the domain of superadditive games. Fortunately, one can reduce the problem to the

case �2 = 0; where z inherits superadditivity from v.

Let v from the above proof be superadditive, i.e., �12 � 0: Set now N = f1; 2; 3g
and w 2 V (N) ;

w := �2 � uNf2g + �1 � uNf3g + �12 � uNf1;2g:
By (2), we obtain

v = w13 = �1 � uf1;2gf1g + �2 � uf1;2gf2g + �12 � uf1;2gf1;2g;

w12 = (�2 + �12) � uf1;3gf1g + �1 � uf1;3gf3g ;

w23 = (�1 + �2) � uf1;2gf2g + �12 � uf1;2gf1;2g;

hence,

'1 (f1; 2g ; v)
2E
= '1 (N;w) + '3 (N;w)

D
= '1 (N;w) + �1;

�2 + �12
D
= '1 (f1; 3g ; w12)

2E
= '1 (N;w) + '2 (N;w) ;

'2 (f1; 2g ; w23)
2E
= '2 (N;w) + '3 (N;w)

D
= '2 (N;w) + �1:

The last three equations imply

'1 (f1; 2g ; v) + '2 (f1; 2g ; w23) = 2 � �1 + �2 + �12:



8

This way and by (16), we can determine the payo¤s for v by considering a coalition

function of the desired type, w23: Finally, note that w; w12; and w23 are superadditive

whenever v is so.

Corollary 2. The Banzhaf value is the unique value that satis�es D and 2E within
the domain of superadditive games.

Remark 3. Our characterization does not work within the domain of simple games.

Consider the value '(1) given by

'
(1)
i (N; v) =

8<: Bai (N; v) ; v (N) = 1;

0; v (N) = 0;
i 2 N; v 2 Vsi (N) :

It is easy to see that '(1) inherits 2E and D from the Banzhaf value. Just observe

that for all i; j 2 N; i 6= j; v (N) = 0 entails vij (N) = 0, and that for any dummy

player i in (N; v) such that v (fig) = 1; we have v (N) = 1. Further,

'
(1)
1

�
f1; 2g ; ef1;2gf1g

�
= 0 6= 1

2
= Ba1

�
f1; 2g ; ef1;2gf1g

�
:

The counterexample in the previous remark involves a simple game that is not

superadditive, ef1;2gf1g : Yet, if v is superadditive and simple, then v 6= 0 implies

v (N) = 1: Hence on the domain of superadditive simple games '(1) coincides with

the Banzhaf value. Indeed, within this domain, our characterization works �ne.

Corollary 3. The Banzhaf value is the unique value that satis�es D and 2E within
the domain of simple superadditive games.

Proof. In view of Lehrer (1988, Remark 3), it su¢ ces, w.l.o.g., to show ' (f1; 2g ; v) =
Ba (f1; 2g ; v) for v 2

n
0f1;2g; u

f1;2g
f1g ; u

f1;2g
f2g ; u

f1;2g
f1;2g

o
: By D, the claim is immediate for

0f1;2g; u
f1;2g
f1g ; and uf1;2gf2g : Careful inspection of the proof of Theorem 1 for �1 = �2 = 0

and �12 = 1 reveals that the arguments do not leave the domain of superadditive

simple games. This concludes the proof. �

Remark 4. Our characterizations actually are non-redundant. The value '(2) given

by '(2)i (N; v) = 0 for all i 2 N and v 2 V (N) meets 2E; but not D. The Shapley
(1953) value obeys D, but not 2E.

Remark 5. Nowak (1997, Theorem) characterizes the Banzhaf value on the full

domain of TU games via 2E, D, S, and M, but does not check for redundancy
of his characterization. Theorem 1 reveals that we can drop two axioms, S andM.
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Remark 6. Casajus (2010, for short CA10) �rst suggests a simple proof of the Nowak

characterization which employs Lehrer (1988, Remark 3). Using this proof, he shows

that the Nowak characterization works within the domains of superadditive games

and of simple games (CA10, Remarks 2 and 3); within the intersection of these do-

mains one even can do withoutM (CA10, Theorem 3). Further, he shows that one

can replace S and M in the Nowak characterization by DM (CA10, Corollary 4).

Embarrassingly, we have to admit that, in view of Theorem 1, Casajus�assertion

that his characterization is non-redundant (CA10, Remark 4) must be wrong. By

Corollaries 2 and 3, all the Casajus characterizations on the domain of superaddi-

tive games and of superadditive simple games� both for M and for DM� also are
redundant.

Since '(1) failsM,DM, andT, the Banzhaf value is no-redundantly characterized
within the domain of simple games by 2E, D, and eitherM, DM, or T. For DM,
this drops from CA10 (Remark 7). To see this for M or T, reconsider the proof
of Theorem 1. Let �1; �2; �N 2 f0; 1g : For �0 = �1; the proof does not leave

the domain of simple games. Remains to deal with ef1;2g1 ; e
f1;2g
2 ; u

f1;2g
1 ; and uf1;2g2 :

For uf1;2g1 and uf1;2g2 ; the payo¤s are determined by D. One easily checks that 1,
v = e

f1;2g
f1g ; and v0 = e

f1;2g
f1g + e

f1;2g
f2g + e

f1;2g
f2g meet the hypothesis of M. This gives

'1 (N; v) = '1 (N; v
0) ; where '1 (N; v

0) = Ba1 (N; v
0) was shown above. Further,

(16) entails '2 (N; v) = Ba2 (N; v) : Analogously, one deals with e
f1;2g
f2g : Finally, we

have ef1;2gf1g _ uf1;2gf2g = e
f1;2g
f1g + e

f1;2g
f2g + e

f1;2g
f1;2g and e

f1;2g
f1g _ uf1;2gf2g = 0f1;2g: Hence, by T,

the '
�
N; e

f1;2g
f1g

�
is uniquely determined by the axioms. Analogously, for ef1;2gf2g :

4. Superadditivity and max-superadditivity

As one of his main results, Lehrer (1988, Theorem B) establishes that the Banzhaf

value is characterized by the dummy player axiom, additivity, symmetry, and either

superadditivity or max-superadditivity on the domain of all TU games. In the fol-

lowing, we directly employ Theorem 1 in order to show that this characterization is

redundant. As in the previous section, we can drop the symmetry axiom. To pre-

pare the announced result on the Lehrer characterization, we �rst explore relations

between the amalgamation properties.

Lemma 4. A and SA imply 2E.

Proof. We have

0
A
= 'i (N;0) = 'i (N; v + (�v))

A
= 'i (N; v) + 'i (N;�v) (17)
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for all v 2 V (N) and i 2 N: For all i; j 2 N; i 6= j, one derives

�
�
'i (N;�v) + 'j (N;�v)

� SA
� �'i

�
Nn fjg ; (�v)ij

�
(2)
= �'i (Nn fjg ;� (vij))
(17)
= 'i (Nn fjg ; vij)
SA
� 'i (N; v) + 'j (N; v) : (18)

Finally, (17) and (18) entail 'i (Nn fjg ; vij) = 'i (N; v) + 'j (N; v) : �

Remark 7. The proof of Lemma 4 crucially rests on the fact that (�v)ij = � (vij)
for all v 2 V (N) and N: In contrast, (�vm)ij = �

�
vmij
�
does not hold in general.

Hence, the proof does not work with SAm instead of SA. Indeed, the value '(3)

given by

'
(3)
i (N; v) =

�
1

2

��jN j+1
� v (fig) ; i 2 N; v 2 V (N) : (19)

meets A and SAm; but fails SA. Obviously, ' meets A. To see SAm; consider

jN j � 2 and v 2 V (N) : Let i; j 2 N; i 6= j: By (3), vmij (f1g) � v (f1g) and
vmij (f1g) � v (f2g) : Hence,

'
(3)
i

�
Nn fjg ; vmij

� (19)
=

�
1

2

��jNnfjgj+1
vmij (fig)

(3)
�

�
1

2

��jN j+1
(v (fig) + v (fjg))

(19)
= '

(3)
i (N; v) + '

(3)
j (N; v) :

Let N = f1; 2g and v = �uNf1g: This gives

'
(3)
1 (Nn f2g ; v12) = �1 < �

1

2
+ 0 = '

(3)
1 (N; v) + '

(3)
2 (N; v) :

Thus, ' fails SA. Yet, while '(3) meets A and SAm; it is immediate that it does

not obey D. It turns out that the latter axiom is all we need to infer SA from A
and SAm.

Lemma 5. A, D, and SAm imply SA.

Proof. Let ' obey A, SAm; and D. W.l.o.g., let 1; 2 2 N and v 2 V (N) : For
K � Nn f1; 2g set
��
K
1 = v (K [ f2g)�v (K [ f1; 2g) and ��

K
2 = v (K [ f1g)�v (K [ f1; 2g) : (20)
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Let �1 � ��
K
1 , �2 � ��

K
2 ; and w = v + �1 � uNf1g + �2 � uNf2g: This gives

w (K [ f1; 2g) � v (K [ f1; 2g) + �1 + ��
K
2

(20)
= v (K [ f1; 2g) + �1 + v (K [ f1g)� v (K [ f1; 2g)

= w (K [ f1g) :

Analogously, one shows w (K [ f1; 2g) � w (K [ f2g) : This implies wm12 (K) =
w12 (K) : Letting �1 := maxK�Nnf1;2g ��

K
1 and �2 := maxK�Nnf1;2g ��

K
2 ; we have (*)

wm12 = w12: One obtains

'1 (Nn f2g ; v12) + �1 + �2
D,A
= '1

�
Nn f2g ; v12 + (�1 + �2) � uNnf2gf1g

�
(2)
= '1

�
Nn f2g ;

�
v + �1 � uNf1g + �2 � uNf2g

�
12

�
(*)
= '1

�
Nn f2g ;

�
v + �1 � uNf1g + �2 � uNf2g

�m
12

�
SAm

� '1
�
N; v + �1 � uNf1g + �2 � uNf2g

�
+'2

�
N; v + �1 � uNf1g + �2 � uNf2g

�
A,D
= '1 (N; v) + �1 + '2 (N; v) + �2;

which entails the claim. �

Since we know that the Banzhaf value meets all the axioms, the next theorem is

an immediate consequence of Theorem 1 and Lemmas 4 and 5. Note that within the

proof of Lehrer (1988, Theorem B) additivity is crucial even in proving uniqueness

for unanimity games. In the proof of Theorem 6, additivity plays a di¤erent role.

What we actually need is homogeneity for the scalar �1, i.e., ' (N;�v) = �' (N; v)
for all v 2 V (N) (Lemma 4) and additivity with respect to the addition of modular
games (Lemma 5).

Theorem 6. The Banzhaf value is the unique value that satis�es A, D, and either
SA or SAm.

Remark 8. Our characterizations actually are non-redundant. The value '(1) from

(19) meets A, SA, and SAm; but not D. The Shapley (1953) value obeys A and

D, but not SA or SAm: The value from Nowak (1997, Counterexample) satis�es D,
SA, and SAm, but not A.



12

Remark 9. Restriction of Theorem 6 to the domain of superadditive games does not

work. Consider the value '(4) 6= Ba given by

'
(4)
i (N; v) = v (fig) = �fig (v) ; i 2 N , v 2 V (N) :

Obviously, this value obeys D and A. For v 2 Vsa (N) and i; j 2 N; i 6= j; we have

vmij (fig)
(3)
� vij (fig)

(2)
= v (fi; jg) � v (fig) + v (fjg) :

Hence, '(4) meets SA and SAm on V+ (N) : Since '(4) also meets S, M, and DM,
it does not help to add S or to replace A by M or DM.

Now, we turn to the domain of simple games. Lehrer (1988) also suggests a char-

acterization of the Banzhaf value that works within this domain (Theorem A) via

the transfer axiom, the dummy player axiom, symmetry, and either superadditivity

or max-superadditivity: In view of Theorem 6, one might be curious whether the

symmetry axiom could be dropped. As it turns out, this actually is the case. Un-

fortunately, however, we do not have results analogous to Lemmas 4 and 5 within

the domain of simple games. Instead, we modify Lehrer�s original proof.

Theorem 7. The Banzhaf value is the unique value that satis�es T, D, and either
SA or SAm on the domain of simple games.

Within the Lehrer (1988, Theorem A) proof, symmetry is employed only to show

that a value that satis�es all the axioms in the theorem coincides with the Banzhaf

value for unanimity games. Hence, the following lemma �lls the gap resulting from

dropping symmetry.

Lemma 8. If ' satis�es T, D, and either SA or SAm within the domain of simple

games, then '
�
N; uNT

�
= Ba

�
N; uNT

�
for all N and T � N; T 6= ;:

Proof. Let ' satisfy T, D, and either SA or SAm: By D, the claim is immediate

for i 2 NnT: As in the original proof, we proceed by two inductions, �rst on jN j
and second on jT j.
Outer induction basis: By D, the claim is immediate for jN j = 1:
Outer induction hypothesis: Let the claim hold for all jN j � n and T � N; T 6= ;:
Outer induction step: Let jN j = n+ 1 and T � N; T 6= ;:
Inner induction basis: By D, the claim is immediate for jT j = 1: Since we cannot

employ S, we have to deal with the case jT j = 2 separately (see (37) below).
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W.l.o.g., let T = f1; 2g � N and 3 =2 N: We have uNf1g ^ uNf2g = uNT and therefore

'i
�
N; uNf1g _ uNf2g

�
+ 'i

�
N; uNT

� T
= 'i

�
N; uNf1g

�
+ 'i

�
N; uNf2g

� D
= 1 (21)

for i 2 f1; 2g : Amalgamating 2 to 1 gives

'1
�
N; uNT

�
+ '2

�
N; uNT

� SA or SAm

� '1

�
Nn f2g ; uNnf2gf1g

�
D
= 1 (22)

and

'1
�
N; uNf1g _ uNf2g

�
+ '2

�
N; uNf1g _ uNf2g

� SA or SAm

� '1

�
Nn f2g ; uNnf2gf1g

�
D
= 1: (23)

Equations (21), (22), and (23) already entail

'1
�
N; uNT

�
+ '2

�
N; uNT

�
= 1: (24)

We have uN[f3gf2;3g ^ uN[f3gf1g = u
N[f3g
f1;2;3g and therefore

'1

�
N [ f3g ; uN[f3gf2;3g _ uN[f3gf1g

�
+ '1

�
N [ f3g ; uN[f3gf1;2;3g

�
T
= '1

�
N [ f3g ; uN[f3gf2;3g

�
+ '1

�
N [ f3g ; uN[f3gf1g

�
D
= 1 (25)

and

'2

�
N [ f3g ; uN[f3gf2;3g _ uN[f3gf1g

�
+ '2

�
N [ f3g ; uN[f3gf1;2;3g

�
T
= '2

�
N [ f3g ; uN[f3gf2;3g

�
+ '2

�
N [ f3g ; uN[f3gf1g

�
D
= '2

�
N [ f3g ; uN[f3gf2;3g

�
: (26)

Further,
�
u
N[f3g
f2;3g _ uN[f3gf1g

�
12
= u

(N[f3g)nf2g
f1g : Hence, amalgamating 2 to 1 gives

'1

�
N [ f3g ; uN[f3gf2;3g _ uN[f3gf1g

�
+ '2

�
N [ f3g ; uN[f3gf2;3g _ uN[f3gf1g

�
SA or SAm

� '1

�
N [ f3g n f2g ; u(N[f3g)nf2gf1g

�
D
= 1: (27)

Equations (25), (26), and (27) entail

'1

�
N [ f3g ; uN[f3gf1;2;3g

�
+ '2

�
N [ f3g ; uN[f3gf1;2;3g

�
� '2

�
N [ f3g ; uN[f3gf2;3g

�
: (28)

Further, amalgamating 1 to 2 gives

'2

�
(N [ f3g) n f1g ; u(N[f3g)nf1gf2;3g

�
SA or SAm

� '1

�
N [ f3g ; uN[f3gf1;2;3g

�
+ '2

�
N [ f3g ; uN[f3gf1;2;3g

�
: (29)
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Equations (28) and (29) entail

'2

�
(N [ f3g) n f1g ; u(N[f3g)nf1gf2;3g

�
� '1

�
N [ f3g ; uN[f3gf1;2;3g

�
+ '2

�
N [ f3g ; uN[f3gf1;2;3g

�
� '2

�
N [ f3g ; uN[f3gf2;3g

�
: (30)

Interchanging the role of players 2 and 3 in (30) gives

'3

�
(N [ f3g) n f1g ; u(N[f3g)nf1gf2;3g

�
� '1

�
N [ f3g ; uN[f3gf1;2;3g

�
+ '3

�
N [ f3g ; uN[f3gf1;2;3g

�
� '3

�
N [ f3g ; uN[f3gf2;3g

�
: (31)

Adding (30) and (31) and applying the appropriate version of (24) gives

2 � '1
�
N [ f3g ; uN[f3gf1;2;3g

�
+'2

�
N [ f3g ; uN[f3gf1;2;3g

�
+ '3

�
N [ f3g ; uN[f3gf1;2;3g

�
= 1: (32)

Interchanging the role of players 1; 2; and 3 in (32) gives

2 � '2
�
N [ f3g ; uN[f3gf1;2;3g

�
+'1

�
N [ f3g ; uN[f3gf1;2;3g

�
+ '3

�
N [ f3g ; uN[f3gf1;2;3g

�
= 1; (33)

and

2 � '3
�
N [ f3g ; uN[f3gf1;2;3g

�
+'1

�
N [ f3g ; uN[f3gf1;2;3g

�
+ '2

�
N [ f3g ; uN[f3gf1;2;3g

�
= 1: (34)

It is easy to check that the system of linear equations (32), (33), and (34) has the

unique solution

'i

�
N [ f3g ; uN[f3gf1;2;3g

�
=
1

4
; i 2 f1; 2; 3g : (35)

Further,

1

2
= '1

�
N [ f3g ; uN[f3gf1;2;3g

�
+ '2

�
N [ f3g ; uN[f3gf1;2;3g

� SA or SAm

� 'i
�
N; uNf1;2g

�
(36)

for i 2 f1; 2g : Equations (36) and (24) imply

'i
�
N; uNf1;2g

�
=
1

2
= Bai

�
N; uNf1;2g

�
; i 2 f1; 2g :
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Inner induction hypothesis: Let 'i
�
N; uNT

�
=
�
1
2

�jT j�1
= Bai

�
N; uNT

�
; i 2 T for

jT j � t; t � 2:
Inner induction step: Let jT j = t + 1: For notational parsimony, we just provide

the necessary modi�cations of the original proof and jump into its induction step.

Since we cannot make use of S, Lehrer (1988, Equations (4a) and (4b)) become (in
our notation)

'j
�
N; uNT

�
= aj; j 2 T;

'j
�
N; uNTnfig _ uNfig

�
=

8<: bij; j 2 Tn fig ;
ci; j = i;

i 2 T:

Running the argument from the proof, we obtain ai+aj =
�
1
2

�t
instead of 2a =

�
1
2

�t
:

Since jT j � 3; we have a system of linear equations

ai + aj = ai + ak = aj + ak =

�
1

2

�t�1
(37)

for i; j; k 2 T; i 6= j 6= k 6= i: Its unique solution is ai = aj = ak =
�
1
2

�t
: Thus,

'i
�
N; uNT

�
=

�
1

2

�jT j�1
= Bai

�
N; uNT

�
; i 2 T:

Done. �

Remark 10. Compare this proof with the proof of Theorem 1. Equations (32), (33),

and (34) correspond to (10), (11), and (12), but one has to work harder to infer the

former ones. In particular, besides SA or SAm; we have to make heavy use of D
and T.

Remark 11. Our characterizations are non-redundant. The value '(1) from (19)

meets T, 2E, SA, and SAm; but not D; the Shapley (1953) value obeys T and D,
but neither SA nor SAm; the value from Nowak (1997, Counterexample) satis�es

D, SA, and SAm, but not T.

Remark 12. One easily checks that the proof of Lemma 8 does not leave the domain

of superadditive games. Further, the arguments of Dubey and Shapley (1979, p. 105)

employed by Lehrer (1988, p. 98) also stay within this domain. Hence, Theorem 7

works within the domain of superadditive simple games.
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5. Concluding remarks

In a sense, one main point of this paper is that amalgamation properties have

strong symmetry implications. Indeed, 2-e¢ ciency entails even isomorphism invari-

ance (below), which implies symmetry. Hence, the redundancy of the characteriza-

tion of Lehrer (1988, Theorem B) also drops from Lemmas 4 and 5, and Theorem 9

below.

Isomorphism invariance, II. For any bijection � : N ! N 0 and v 2 V (N), we
have '�(i) (N

0; v � ��1) = 'i (N; v) for all i 2 N , where v � ��1 2 V (N 0) is given by�
v � ��1

�
(K 0) = v

�
��1 (K 0)

�
; K 0 � N 0: (38)

Theorem 9. 2E implies II.

Proof. Let ' obey 2E and v 2 V (N) : For i 2 N and k =2 N; let vki 2 V ((Nn fig) [ fkg)
be given by

vki (K) =

8<: v (K) ; k =2 K;
(Kn fkg) [ fig ; k 2 K;

K � (Nn fig) [ fkg (39)

and let v(k) 2 V (N [ fkg) be given by

v(k) (K) = v (Kn fkg) ; K � N [ fkg : (40)

Equations (2), (39), and (40) imply v(k)ik = v and v(k)ki = vki for i 2 N: Hence,

'i (N; v)
2E
= 'i

�
N [ fkg ; v(k)

�
+ 'k

�
N [ fkg ; v(k)

� 2E
= 'k

�
(Nn fig) [ fkg ; vki

�
:

(41)

By (2) and (39), we have vji = vkijk for j 2 Nn fig. Therefore,

'i (N; v) + 'j (N; v)
2E
= 'j (Nn fig ; vji) = 'j

�
Nn fig ; vkijk

�
2E
= 'j

�
(Nn fig) [ fkg ; vki

�
+ 'k

�
(Nn fig) [ fkg ; vki

�
:

In view of (41), this entails

'j (N; v) = 'j
�
(Nn fig) [ fkg ; vki

�
: (42)

Let now � : N ! N 0 be bijective. Since � factors through some player set N 00

such that N \ N 00 = N 0 \ N 00 = ;; w.l.o.g., we assume that N \ N 0 = ; and
N = f1; : : : ; ng ; n 2 N: By (39) and (38), we have

v � ��1 =
��
v�(1)1

��(2)2 � � ���(n)n :
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Successive application of (41) and (42) �nally gives

'i (N; v) = '�(i)
�
N 0; v � ��1

�
; i 2 N: �

By the proof of Lehrer (1988, Remark 3), we know that any value  for two-

player games has at most one 2E-extension, i.e., some value ' that obeys 2E and
that coincides with  for two-player games. Quite naturally now the question comes

to mind which values for two-player games actually allow for a 2E-extension. While
Theorem 9 already entails that such values must obey II, the following example
reveals that II alone does not su¢ ce. As it turns out, we do not need too much
more.

Let ' be given by 'i (N; v) = �N (v) ; i 2 N; v 2 V (N) for jN j = 2. It is

quite immediate that ' satis�es II. While ' can be (uniquely) extended by 2E to
three-player games, this extension is impossible downwards to one-player games or

upwards up to games with four or more players. To see the former, one easily checks

that ' given by

'i (N; v) = �Nnfig (v) +
�N (v)

2
; i 2 N; jN j = 3; v 2 V (N) ; (43)

does the job.

Consider N = f1; 2g ; N 0 = f1; 3g ; v = u
f1;2g
f1g ; and v0 = u

f1;3g
f1;3g; and observe v12 =

v013 = u
f1g
f1g: If ' were extendable by 2E to one-player games, we had

0 = 'N (N; v)
2E
= '1 (f1g ; v12) = '1

�
f1g ; uf1gf1g

�
= '1 (f1g ; v013)

2E
= 'N 0 (N 0; v0) = 2:

Contradiction.

Let now N = f1; 2; 3; 4g and v = uNf1;2;3g + uNf2;4g: Suppose ' were extendable by

2E upwards up to four-player games. We then had

'i (N; v) + 'j (N; v)
2E
= 'i (N; vij) ; (i; j) 2 N �N; i 6= j: (44)

Solving the system of equations (44), for (i; j) = (1; 2) ; (1; 3) ; (2; 3) for '1 (N; v)

and applying (2) and (43) gives

'1 (N; v) =
'1 (N; v12) + '1 (N; v13)� '2 (N; v23)

2
=
1

2
;

and for (i; j) = (1; 2) ; (1; 4) ; (2; 4) ; we obtain

'1 (N; v) =
'1 (N; v12) + '1 (N; v14)� '2 (N; v24)

2
= 0:

Contradiction.
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Note what goes wrong with our example. It fails the following property which

is easy to be checked to be necessary and su¢ cient for extendability to one-player

games. Moreover, this is all we need in addition to II in order to make a value for
two-player games to be 2E-extendable.

1-Extendability, 1X. For jN j = jN 0j = 2; v 2 V (N) ; v0 2 V (N 0) ; and v (N) =

w (N 0) ; we have 'N (N; v) = 'N 0 (N 0; v0) :

Theorem 10. If  satis�es 1X and II for two-player games, then there is a unique
value ' that satis�es 2E and that coincides with  for two-player games.

Proof. Let  obey 1X and II and let  = ' for two-player games. Remains to show

the existence of such ': For v 2 V (fig), set 'i (fig ; v) =  N (N;w) ; where jN j = 2;
and w 2 V (N) such that w (N) = v (fig) : By 1X, ' is well-de�ned for one-player
games; and by construction, ' meets 2E for two-player games.

We proceed by induction on jN j :
Induction basis: As shown above and by assumption, ' meets 2E and II for two-
player games.

Induction hypothesis: Let now ' be de�ned for games with at most n � 2 players
and let ' satisfy 2E and II.

Induction step: We show that ' can be extended to n + 1-player games such that

2E and II are met. Let jN j = n+1: Fix i 2 N and pick some j; k 2 Nn fig ; j 6= k:

We de�ne 'i (N; v) to be the unique solution of the system of equations

'� (N; v) + '� (N; v) = '� (N; v��) ; (�; �) 2 N �N; � 6= � (45)

for (�; �) = (i; j) ; (i; k) ; (j; k) ; which turns out to be

'i (N; v) =
'i (Nn fjg ; vij) + 'i (Nn fkg ; vik)� 'j (Nn fkg ; vjk)

2
: (46)

In order to show that 'i (N; v) is well-de�ned, we have to show (i) that '� (N; v��) =

'� (N; v��) in (45) and that (ii) 'i (N; v) does not depend on the choice of j and

k for jN j > 3. The former, i.e., (45), drops from (2) and the induction hypothesis,

in particular II. With respect to (ii), it su¢ ces to establish that 'i (N; v) remains
unchanged when we replace k by ` 2 Nn fi; j; kg in (46). So, it remains to show

A := 'i (Nn fkg ; vik) + 'j (Nn f`g ; vj`)

= 'i (Nn f`g ; vi`) + 'j (Nn fkg ; vjk) =: B: (47)
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By the induction hypothesis, in particular 2E, the analogon of (46) holds for
games with n players. Hence, we have

'i (Nn fkg ; vik) =

'i

�
Nn fj; kg ; (vik)ij

�
+ 'i (Nn fk; `g ; (vik)i`)� 'j

�
Nn fk; `g ; (vik)j`

�
2

; (48)

'j (Nn f`g ; vj`) =

'i

�
Nn fj; `g ; (vj`)ij

�
� 'i

�
Nn fk; `g ; (vj`)ik

�
+ 'j

�
Nn fk; `g ; (vj`)jk

�
2

; (49)

'i (Nn f`g ; vi`) =

'i

�
Nn fj; `g ; (vi`)ij

�
+ 'i (Nn fk; `g ; (vi`)ik)� 'j

�
Nn fk; `g ; (vi`)jk

�
2

; (50)

'j (Nn fkg ; vjk) =

'i

�
Nn fj; kg ; (vjk)ij

�
� 'i

�
Nn fk; `g ; (vjk)i`

�
+ 'j

�
Nn fk; `g ; (vjk)j`

�
2

: (51)

By (2), we have (vik)ij = (vjk)ij ; (vj`)ij = (vi`)ij ; (vik)i` = (vi`)ik ; (vj`)jk = (vjk)j` ;

(vik)j` = (vj`)ik ; and (vi`)jk = (vjk)i` : Hence by (47)�(51),

A�B =
'i

�
Nn fk; `g ; (vi`)jk

�
+ 'j

�
Nn fk; `g ; (vi`)jk

�
2

�
'i

�
Nn fk; `g ; (vik)j`

�
+ 'j

�
Nn fk; `g ; (vik)j`

�
2

:

The induction hypothesis, in particular 2E, now entails

A�B =

'i

�
Nn fj; k; `g ;

�
(vi`)jk

�
ij

�
� 'i

�
Nn fj; k; `g ;

�
(vik)j`

�
ij

�
2

:

By (2), we have
�
(vi`)jk

�
ij
=
�
(vik)j`

�
ij
; hence, A = B: Note that it is this step

where we need 2E-extendability to one-player games in order to show upwards 2E-
extendability to four-player games. By construction, ' meets 2E for n + 1-player
games.
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Remains to show that ' obeys II for n+ 1-player games. Consider jN j = jN 0j =
n+ 1 and some bijection � : N ! N 0: For i; j 2 N; i 6= j, we have

'�(i)
�
N 0; v � ��1

�
+ '�(j)

�
N 0; v � ��1

�
2E
= '�(i)

�
N 0n f� (j)g ;

�
v � ��1

�
�(i)�(j)

�
(2)
= '�jNnfjg(i)

�
�jNnfjg (Nn fjg) ; vij � ��1j�(Nnfjg)

�
II
= 'i (Nn fjg ; vij)
2E
= 'i (N; v) + 'j (N; v) : (52)

Since jN j > 2; the system of linear equations (52), i; j 2 N; i 6= j has the unique

solution, '�(i) (� (N) ; v � ��1) = 'i (N; v) ; i 2 N: Thus, ' obeys II. �

Remark 13. From the proof of Theorem 10 it is clear that II su¢ ces to guarantee
2E-extendability to three-player games.
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