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Irreversible Investment in Oligopoly

Jan-Henrik Steg
Institute of Mathematical Economics, IMW

Bielefeld University

jhsteg@wiwi.uni-bielefeld.de

Abstract

We offer a new perspective on games of irreversible investment
under uncertainty in continuous time. The basis is a particular ap-
proach to solve the involved stochastic optimal control problems which
allows to establish existence and uniqueness of an oligopolistic open
loop equilibrium in a very general framework without reliance on any
Markovian property. It simultaneously induces quite natural eco-
nomic interpretation and predictions by its characterization of optimal
strategies through first order conditions. The construction of equil-
brium policies is then enabled by a stochastic representation theorem.
A stepwise specification of the general model leads to further economic
conclusions. We obtain explicit solutions for Lévy processes.

JEL subject classification: C73, D43, D92
Keywords: Irreversible Investment, Stochastic Game, Oligopoly, Real Op-
tions, Equilibrium

1 Introduction

The purpose of this work is to provide a new perspective on irreversible
investment equilibria, which admits to derive very general results and in-
teresting economic interpretations at the same time. Games of irreversible
investment belong to the intersection of real options theory and game theory,
which is becoming more and more important. It is widely acknowledged that
a competitive environment may have a considerable impact on the valuation
of real options, since when exercise strategies of opponents influence the value
of the underlying asset, optimal policies cannot be determined in isolation, as
in classical models of real options, see [8]. In an irreversible investment con-
text, preemptive concerns reduce the classical option value of waiting, which
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requires that investment is undertaken only when the net present value ex-
ceeds some strictly positive threshold. If one introduces perfect competition,
this option value is completely eliminated as intuition suggests. This case
has been analysed in a very general framework by Baldursson and Karatzas
[2]. We will be mainly interested in the intermediate setting of a finite num-
ber of players who may irreversibly invest in the same industry, as often and
in amounts as small as they like. In typical instances, the determination of
optimal investment policies will involve singular control problems. One is the
model by Grenadier [9], who assumes that an inverse demand function de-
termining spot revenue is influenced by a diffusion and investment costs are
purely proportional. Optimization is then performed with the help of hypo-
thetical myopic investors, which are also used by Baldursson and Karatzas.
In the oligopolistic case, Back and Paulsen [1] thoroughly conduct this ap-
proach in the presence of a diffusion. Furthermore, they discuss the nature of
equilibrium, it is based on open loop strategies. This means that investment
happens conditional on the revelation of uncertainty but does not react to
deviations by opponents. Our different approach does not rely on artificial
myopic investors, neither do we need any Markovian assumption. In fact, it
allows us to construct the unique oligopolistic open loop equilibrium at the
same level of generality as the perfectly competitive equilibrium by Baldurs-
son and Karatzas. A particular benefit is that optimal strategies are charac-
terized by first order conditions, which give important economic insights and
predictions by themselves. They have already been used by Bertola [7] in
the context of a single price-taking firm. Since investment is irreversible, the
stream of marginal revenue from any moment onwards must optimally never
be worth more than current investment cost. Moreover, whenever invest-
ment happens, the agent optimally has to be indifferent towards a further
infinitesimal unit. After deriving first order conditions along these lines for
equilibrium, we give a constructive existence proof using a stochastic rep-
resentation theorem dedicatively discussed by Bank and El Karoui [3]. In
fact, we turn the inequality which the first order conditions form most of
the time into an equality. This representation problem has a solution by
the theorem alluded to. The stochastic process identified thereby allows to
construct our equilbrium strategies. This approach has been introduced by
Bank and Riedel [5] in the context of optimal intertemporal consumption,
but has a much broader realm. To present it and illustrate its usefulness
with respect to economic interpretation, we apply it to the case of perfect
competition in Section 2. The results of Baldursson and Karatzas are repro-
duced with its help in a much more direct way. Specifically, the conditions
for aggregate investment to support a perfectly competitive equilbrium are
equivalent to first order conditions of the above type for a social planner’s in-
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vestment problem. We construct the social planner’s optimal policy through
direct application of the stochastic representation theorem and it delivers
immediately the equilibrium exercise times. In Section 3 we consider the
case of oligopoly, to derive an existence and uniqueness result of equilibrium
in open loop strategies in a conceivably general framework. The only restric-
tions with respect to the underlying stochastics are to ensure measurability
and integrability. Regarding the control variables, we will assume concav-
ity of the profit flows in own capital and that opponent capital is not a too
strong strategic complement if it tends to be. Given homogeneous firms, the
equilibrium is symmetric. In Section 4, the general model will be stepwise
specified to obtain more economic predictions. Cournot-type spot competi-
tion will be shown to induce that in equilibrium with heterogeneous initial
capital levels, the smallest firm(s) necessarily will catch up before any other
invests, which pushes symmetry. Also we will illustrate the diminishment of
the option value of waiting under increasing competition. In the limit, when
the number of competitors tends to infinity, a perfectly competitive equilib-
rium as in Section 2 is attained, with investment at the zero net present value
threshold. Finally, we will derive explicit solutions when inverse demand is
of constant elasticity and is multiplied by an exponential Lévy-process, so in
a more general case than the original Grenadier model [9].

2 Perfect competition

Consider first a perfectly competitive setting, where an individual firm’s ac-
tion does not influence the revenue opportunities of any other firm in the
industry. There is a non-atomic continuum [0,∞) of homogeneous investors,
all owning a perpetual option to enter the market. Exercising such an op-
tion starts a noncallable stochastic profit stream. To model the underlying
uncertainty, let (Ω,F∞ , (F t )t≥0,P) be a filtered probability space satisfy-
ing the usual conditions of right-continuity and completeness. An entering
strategy is then a stopping time τ with respect to the given filtration, that is
the decision whether to exercise the option at any point in time t has to be
based on the information reflected by the σ-algebra F t . Although a single
investor is negligibly small so that his entry does not increase the level of
capital in the industry, the entering firms collectively generate an aggregate
investment process. We identify the current capital stock, denoted Qt, by
the measure of firms having entered so far. Since exit is not allowed and
depreciation abstracted from for expositional simplicity, the process (Qt)t≥0

will be nondecreasing, and an individual firm will take it as given. Formally,
any such process belongs to A , the class of feasible aggregate investment
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processes.

A , {Q adapted, nondecreasing, left-continuous, with Q0 = 0 P-a.s.}

The paths are considered to be left-continuous, so that new capital will be-
come working after the information triggering investment has been learned.
The capital stock clearly is assumed to influence any active firm’s instanta-
neous profit, which is thus modeled as a random field π(ω, t, q) : Ω× [0,∞)×
[0,∞) → R, where dependence on time t incorporates possible discounting,
and q is some capital stock. Here, we chose an infinite horizon, but note that
one might as well consider a finite horizon together with some scrap value
function as terminal payoff, conditional on having entered the market before.
Finally, we introduce the cost, at which any of the options can be exercised.
It may be random as well and is thus formulated as a stochastic process k.

In order to give our model some more structure and to guarantee that a
solution exists, let the profit function satisfy the following assumption.

Assumption 1.

i. For any (ω, t) ∈ Ω× [0,∞), the mapping q 7→ π(ω, t, q) is continuously
decreasing from π(ω, t, 0) = +∞ to π(ω, t,+∞) ≤ 0.

ii. For q ∈ R+ fixed, (ω, t) 7→ π(ω, t, q) is progressively measurable and
P⊗ dt-integrable.

Furthermore, we assign the following properties to the investment cost
process k.

Assumption 2. The nonnegative process k is a right-continuous super-
martingale with k0 <∞ and k∞ = 0.

Remark 2.1. Assumption 2 is satisfied in the common case where the invest-
ment cost is constant but discounted at a nonnegative optional or determinis-
tic rate. The supermartingale requirement however can be dropped, but then
we would have to let instantaneous profit really become negative for large
capital stocks. k may then be any optional process with k∞ = 0 and a finite
supremum over all stopping times of Ekτ , and which is lower-semicontinuous
in expectation.

2.1 Characterization of equilibrium

Since equilibrium as usual will require optimal individual behavior, we are
now formalizing the optimal stopping problem of an individual firm. It faces
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a particular aggregate investment process Q ∈ A , which results from the
entering decisions of all other firms.

The firm then has to choose a rule of when to enter the market if at all,
foresight not being possible, thus in form of a stopping time τ taking values
in [0,∞]. Let T denote the set of all such stopping times, being the strategy
space of each individual firm. All firms evaluate a strategy τ ∈ T by the
implied expected payoff

j(τ |Q) , E

[∫ ∞
τ

π(t, Qt) dt− kτ
]

(Q ∈ A ). (2.1)

We call the supremum of expected payoff taken over all stopping times op-
tion value, depending of course on the given Q. Before further inquiring these
generic individual optimization problems, remember that we are eventually
looking for an equilibrium. So let us first argue that the requirement of op-
timal behavior on behalf of all firms, incumbents and persistent potential
entrants, limits the observational variety of equilibrium outcomes. In fact,
because staying outside the market gives zero profit and in our model there is
always a positive measure of option holders not having exercised yet, further
exercise at any stopping time cannot yield positive expected payoff in equi-
librium. On the other hand, a positive measure of firms enter at any time
of increase of aggregate investment. Further exercise at these times cannot
yield negative expected payoff in equilibrium, because then due to the conti-
nuity assured in Assumption 1, some of the entering firms would better stay
out. These considerations shall suffice to characterize a perfectly competi-
tive equilibrium in exercise strategies by the resulting aggregate investment
process.

Definition 2.2. Q∗ ∈ A is a perfectly competitive equilibrium invest-
ment process if supτ∈T j(τ |Q∗) — the option value given Q∗ — is zero,
and exercising is optimal whenever Q∗ increases, i.e. at all stopping times
τ ∗(x) , inf{t ≥ 0|Q∗t > x}, x ∈ R+.

Note that at the times when equilibrium investment increases all option
holders are indifferent whether to exercise immediately or to keep waiting,
possibly forever. Thus we conclude that there is an equilibrium in individ-
ual strategies where just enough firms enter at any such time to support
the aggregate equilibrium investment. The reasoning up to this point will
be formalized stronger when we determine the — as we will see unique —
equilibrium investment process in the following.

For this purpose, let us now introduce a fictitious social planner, like it is
common practice in finding perfectly competitive equilibria. Consider that
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this authority can control how many firms enter at each moment, but still
without foresight. Its objective is to pursue an efficient irreversible invest-
ment process in the sense of maximizing the aggregate expected profit, net of
investment cost. If the firm level profit flow π is inverse demand minus vari-
able production cost, the planner is benevolent in the classical meaning that
consumer surplus shall be maximal while taking account of all incurred costs.
Formally, this leads to the irreversible investment problem of maximizing

J(Q) , E

[∫ ∞
0

Π(t, Qt) dt−
∫ ∞

0

kt dQt

]
(2.2)

over all Q ∈ A , where the random field Π : Ω× [0,∞)× [0,∞)→ R relates
to π by

Π(ω, t, q) =

∫ q

0

π(ω, t, y) dy. (2.3)

Consequently, it inherits the measurability assertion of Assumption 1 and
is concave in capital with continuous partial derivative Πq , ∂Π/∂q. Fur-
thermore, by the integrability assumption, the negative part of Π is also
P⊗ dt-integrable for fixed q ∈ R+.

By (2.3), we know a lower bound on achievable revenue, but to have a
meaningful stochastic control problem, we impose the additional

Assumption 3. The process (ω, t) 7→ supq∈R+
Π(ω, t, q)+ is P⊗dt-integrable.

In combination with Assumption 2, the value of the problem is finite
and it suffices to consider admissible controls with bounded expected cost.
Since the problem is of the monotone follower type with concave objective
functional J , we solve it by the approach developped by Bank and Riedel [5]
in the context of intertemporal utility maximization. Thus, the solution is
characterized by a first order condition, and then an optimal control policy
will be constructed with the help of a stochastic representation theorem. This
methodology has proven to be useful for a variety of (so far single agent)
control problems, see [4]. For our purpose, it is very illustrative, because
the relation between the social planner’s control problem and equilibrium
determination becomes immediate in the first order condition for an optimal
control policy. The latter is based on the following gradient, which has also
been used by Bertola [7] for a more specific single-agent problem. Let ∇J(Q)
denote for any Q ∈ A the unique optional process such that

∇J(Q)τ = E

[∫ ∞
τ

Πq(t, Qt) dt

∣∣∣∣F τ

]
− kτ for all stopping times τ ∈ T .

(2.4)
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Heuristically, it describes the marginal profit from irreversible investment
at any stopping time, see the discussion below. The first order condition
in terms of this gradient in fact coincides with our argued definition of an
equilibrium investment process as formalized in the following proposition.

Proposition 2.3. If Assumptions 1,2, and 3 are satisfied, a control policy
Q∗ ∈ A maximizes the social planner’s objective (2.2) if it is a perfectly
competitive equilibrium investment process according to Definition 2.2, be-
cause then

∇J(Q∗) ≤ 0 and

∫ ∞
0

∇J(Q∗)s dQ
∗
s = 0 P-a.s. (2.5)

Proof. We first show the claimed optimality, so let Q∗ ∈ A satisfy (2.5). The
equality therein implies that J(Q∗) ≥ 0 and consequently that the expected
investment cost of Q∗ is finite, so the control is admissible. To see this, use
the process Q0 ≡ 0 in the estimation below. But generally, consider some
arbitrary Q ∈ A with J(Q) > −∞. Since Π is concave in q by its definition
(2.3) and Assumption 1, we can estimate

J(Q)− J(Q∗) = E

[∫ ∞
0

Π(t, Qt)− Π(t, Q∗t ) dt−
∫ ∞

0

kt d(Qt −Q∗t )
]

≤ E

[∫ ∞
0

Πq(t, Q
∗
t )
(
Qt −Q∗t

)
dt−

∫ ∞
0

kt d(Qt −Q∗t )
]

= E

[∫ ∞
0

Πq(t, Q
∗
t )
(∫ t

0

d(Qs −Q∗s)
)
dt−

∫ ∞
0

kt d(Qt −Q∗t )
]

= E

[∫ ∞
0

∫ ∞
s

Πq(t, Q
∗
t ) dt d(Qs −Q∗s)−

∫ ∞
0

ks d(Qs −Q∗s)
]

= E

[∫ ∞
0

∇J(Q∗)s d(Qs −Q∗s)
]
.

In the second last line, we use Fubini’s theorem to change the order of in-
tegration. By the first order condition (2.5), the last expression above is
nonpositive. So we conclude J(Q) ≤ J(Q∗).

Now we show that if Q∗ ∈ A is a perfectly competitive equilibrium
investment process according to Definition 2.2, it satisfies (2.5). Remember
Πq = π and an individual firm’s objective (2.1). So, the Definition 2.2
of an equilibrium investment process translates into (i) E[∇J(Q∗)τ ] ≤ 0
for all stopping times τ ∈ T , which implies the inequality in (2.5), and
(ii) E[∇J(Q∗)τ∗(x)] = 0 for all x ∈ R+ and τ ∗(x) as in Definition 2.2. To
deduce the required equality, note that τ ∗ is the right-continuous inverse of
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the monotone Q∗ (see also (2.8) below). This permits to use the change-of-
variable formula∫ ∞

0

∇J(Q∗)s dQ
∗
s =

∫ ∞
0

∇J(Q∗)τ∗(x) dx P-a.s.,

cf. [2]. The integrand on the right-hand side is zero P-a.s. by the equilibrium
property, which completes the proof.

The intuition conveyed by the first order condition reveals the connection
between the optimal control problem and equilibrium determination. Our
social planner may consider to increase his investment at any stopping time.
This incremental investment may be arbitrarily small, so let us think of it
as infinitesimal. Then, since investment is irreversible, the reward is a flow
of marginal profit from that moment onwards. Given some investment plan
already worked out, the profitability calculation for such an additional bit
is thus the same as that of an individual firm owning the option to enter
a market with the same assumed capital expansion. Optimality of invest-
ment of course requires that expected payoff cannot be increased by even an
infinitesimal additional investment, which corresponds to no individual firm
strictly preferring to enter in equilibrium. On the other hand, there must
not be regret of having invested even infinitesimally too much, like a firm’s
of having entered.

Note that if there exists an optimal control policy, it will be unique due
to strict concavity of the planner’s objective functional J(Q). So, solving
his investment problem is really equivalent to finding a perfectly competitive
equilibrium of our initial game. However, the above characterization of an
optimal control is not more constructive yet, since it takes the form of an
inequality most of the time. To overcome this difficulty, we now make use of
the mentioned stochastic representation theorem.

2.2 Construction of equilibrium investment

The heart of our chosen approach to optimal stochastic control is the formu-
lation of a stochastic representation problem, turning the first order condition
into an equality. Its solution provides a quite direct way to construct the op-
timal control policy. Our assumptions made so far will suffice to guarantee
its existence. The representation problem is to find the (unique) optional
process l satisfying

E

[∫ ∞
τ

π(t, sup
τ≤u<t

lu) dt

∣∣∣∣F τ

]
− kτ = 0 for all stopping times τ ∈ T . (2.6)
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In comparison to the first order condition (2.5), we replaced Q∗ by the run-
ning supremum (reset at τ) of the process l to be determined, while enforcing
equality to hold P-a.s. Bank and El Karoui [3] discuss this representation
problem in detail and we can use their central result [3, Theorem 3] to as-
sure the existence of a solution l to (2.6) under our Assumptions 1,2, and 3.
For practical purposes, the representation problem will typically be solved
numerically by backward induction, backed by the theoretical foundation
of existence and uniqueness. But under some quite common specifications
of π and k, one can derive closed-form solutions. We will discuss these in
the oligopoly case below, the limit of which turning out to be the present
perfectly competitive equilibrium.

Once we derived the seemingly abstract process l, we obtain the social
planner’s optimal control policy — resp. the perfectly competitive equilib-
rium investment process — as follows.

Theorem 2.4. Under Assumptions 1,2, and 3, the unique maximizer for the
social planner’s objective functional (2.2) is given by

Q∗t ,
(

sup
0≤u<t

lu
)+

(t ≥ 0), (2.7)

where l is the optional process solving the representation problem (2.6).

Proof. The process Q∗ defined by (2.7) clearly belongs to A . Thus we only
need to show that it satisfies the first order condition (2.5). Indeed, for
any stopping time τ ∈ T we have by this definition of Q∗ and since π is
decreasing in q

∇J(Q∗)τ = E

[∫ ∞
τ

π(t, Q∗t ) dt

∣∣∣∣F τ

]
− kτ

≤ E

[∫ ∞
τ

π(t, sup
τ≤u<t

lu) dt

∣∣∣∣F τ

]
− kτ ,

where the last expression is zero exactly by representation (2.6). So, by
arbitrariness of τ , ∇J(Q∗) is nonpositive. To check the equality in (2.5)
holds true P-a.s., note that if dQ∗s > 0, we may ignore for any t > s the
earlier history of l, then Q∗t = sup0≤u<t lu = sups≤u<t lu > 0 for all t > s,
implying ∇J(Q∗)s = 0.

Combining our results up to this point, we completely described the equi-
librium investment process we were looking for. If an individual firm expects
aggregate investment to follow the social planner’s preferred control, it is op-
timal for the firm to exercise its entry option at any time of increase of this
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control. Importantly, optimal entry timing merely yields zero expected net
profit, implying that we may expect consistency of individual with aggregate
behavior. By this requirement, we have somewhat circumvented solving the
individual firms’ optimal stopping problems. Nevertheless, they remain the
basic components of equilibrium, so they shall be presented properly, too.

2.3 Optimal entry times

A further motivation to formally analyze the individual stopping time prob-
lems is to illustrate the familiar connection between (singular) optimal stoch-
astic control and optimal stopping. In this context, the value of our pursued
approach will become quite clear, namely that it provides a more direct way
of solving for the equilibrium than the earlier proposed way via artificial
myopic agents.

First, consider the optimal stopping problem of a firm rationally expect-
ing the investment process identified by Theorem 2.4 to prevail. Recall the
objective defined in (2.1). It is maximized by the stopping times used in
Definition 2.2 of an equilibrium investment process.

Corollary 2.5. Given the conditions of Theorem 2.4 and the process Q∗

identified therein, j(τ |Q∗) is maximized by any stopping time τ ∗(x) = inf{t ≥
0|Q∗t > x}, x ∈ R+. Then, the option value is j(τ ∗(x)|Q∗) = 0.

Proof. Use the definition of Q∗ and the representation (2.6) of kτ to obtain
for any τ ∈ T

j(τ |Q∗) = E

[∫ ∞
τ

π(t, Q∗t ) dt− kτ
]

= E

[∫ ∞
τ

π(t, sup
0≤u<t

lu) dt−
∫ ∞
τ

π(t, sup
τ≤u<t

lu) dt

]
As π is decreasing in q, the last expectation is nonpositive. Now, fix an
x ∈ R+ and the corresponding τ ∗(x) ∈ T . Then, for any t > τ ∗(x) by the
definition of Q∗, sup0≤u<t lu = supτ∗(x)≤u<t lu and the two integrands cancel.
Thus, τ ∗(x) is optimal.

This further perspective formally completes our perfectly competitive
equilibrium. From the process l solving representation problem (2.6), we
have obtained aggregate investment Q∗, and the record-setting times of l
also yield the optimal entry times. Let us now compare this procedure to
the approach involving myopic agents, which are basically just a construct
to aid interpretation when the singular control problem is solved via Snell
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envelopes. These hypothetical agents solve similar stopping problems as ra-
tional ones, they only assume that aggregate capital remains fixed forever at
some level, say x ≥ 0. In all other respects, they have the same knowledge
as the rational agents. Formally, the myopic agents evaluate any stopping
time τ ∈ T they may choose by

jm(τ |x) , E

[∫ ∞
τ

π(t, x) dt− kτ
]
.

By the argument used in Corollary 2.5 it is easy to see that τ ∗(x) is optimal
for a myopic firm facing the specific capital level x. Thus, it of course also
turns out here that the set of optimal stopping times for all myopic agents is
the same as that of the rational ones derived before.

The relation between the equilibrium investment process and the myopic
optimal stopping times can also be expressed in the reverse way,

Q∗t = sup{x ∈ [0,∞) : τ ∗(x) < t} t ∈ [0,∞). (2.8)

This is actually how Baldursson and Karatzas [2] determine the equilibrium
investment process. To do so, first the myopic stopping time for every possi-
ble capital level has to be known, with amounts to calculating a continuum
of Snell envelopes. In contrast, our approach directly solves for the invest-
ment process and delivers the stopping times as an immediate consequence,
without the necessity to consider myopic agents.

3 Oligopoly

Now that we have demonstrated the concepts we will keep working with, we
move on to study an oligopolistic industry, i.e. in which individual firms can
influence the state of the industry by their investment decisions. In fact,
we will derive an oligopolistic equilibrium at the same level of generality as
for the perfectly competitive case before. Note that in particular we have
made extremely little assumptions regarding the underlying uncertainty, for
instance we have never relied on any Markov property. The most specific
restriction of our model has been the monotone dependence of instantaneous
profit on aggregate capital. Familiar Cournot-type instances, which actually
belong to this class, will be discussed in the subsequent section. But first,
in this section, we show that our approach to optimal control can handle a
very general model of oligopolistic irreversible investment.

So, consider now that instead of a continuum there are n homogeneous
firms with the option to repeatedly invest in the same underlying industry, at
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any time and in amounts as small as they like. As before, anticipation as well
as capital retrieval is impossible, so formally the strategy spaces coincide with
that of the social planner above, A . Let Qi ∈ A denote the strategy chosen
by firm i, i = 1 . . . n. Again, we assume that the instantaneous profit of each
firm depends not only on its own activity but also on aggregate capital in
the industry, on Q ,

∑
j=1...nQ

j ∈ A . Reflecting the point of view of firm i,
this dependency will be equivalently modeled by accounting for its opponent
capital Q−i , Q − Qi. Given a combination of strategies from A

n, firm i
then receives the payoff

J i(Qi|Q−i) , E

[∫ ∞
0

Π(t, Qi
t, Q

−i
t ) dt−

∫ ∞
0

kt dQ
i
t

]
, (3.1)

where we redefine the random field Π : Ω× [0,∞)× [0,∞)× [0,∞)→ R to
include opponent capital. Consequently, we have to make new assumptions
to clarify the properties we require.

Assumption 4.

i. For any (ω, t) ∈ Ω × [0,∞), the mapping (qi, q−i) 7→ Π(ω, t, qi, q−i) is
continuously differentiable. For q−i ∈ R+ fixed, the partial derivative
Πqi , ∂Π/∂qi decreases in qi.

ii. For (qi, q−i) ∈ R2
+ fixed, (ω, t) 7→ Π(ω, t, qi, q−i) is progressively mea-

surable and P⊗ dt-integrable.

iii. For any Q ∈ A , Π(ω, t, 0, Qt) = 0 P-a.s.

iv. The process (ω, t) 7→ sup(qi,q−i)∈R2
+

Π(ω, t, qi, q−i)+ is P⊗ dt-integrable.

This is a quite natural extension of Assumptions 1 and 3 to account for
opponent capital as a further parameter. Note that revenue is still concave
in own capital. Hence, the integrability assumption on Π also applies to
marginal revenue Πqi . We assume again that there is no revenue as long
as no capital has been invested. Finally, we already added a condition to
encounter finite optimization problems. These restrictions are sufficient to
characterize best replies, but to construct the equilibrium, we will need a
further condition.

Assumption 5. Πqi decreases in qi along the ray q−i = (n− 1)qi from +∞
to a nonpositive value.
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Remark 3.1. Assumption 5 concerns the relative influences of own and op-
ponent capital on marginal revenue and also appears in the literature on
Cournot competition [10, Sec. 4.2]. Formulated in terms of second deriva-
tives, it is in subscript notation

Πqiqi + (n− 1) · Πqiq−i ≤ 0. (3.2)

It is among the weakest known requirements to guarantee uniqueness of equi-
librium in the static Cournot game with payoff Π, where we would neglect
investment cost. A sufficient condition for this property is that for qi ∈ R+

fixed, Πqi does not increase in q−i, which would also imply existence of the
static game’s equilibrium.

Regarding the investment cost process k, Assumption 2 shall remain valid.
Thus, since revenue opportunities are again limited by assumption, we only
consider admissible strategies with finite expected cost.

That each firm views aggregate opponent investment as a given adapted
process has a clear implication for the type of equilibrium we will derive, since
it restricts interaction. This is not because we do not include all individual
capital levels in each profit stream, which would mainly complicate things
just by notation. It is because firms cannot condition their investment during
the run of the game on deviating capital levels. The firms choose investment
plans contingent only on the revelation of information by nature, once at the
beginning of the game. After having committed to these plans, there is no
more strategic interaction. Thus we have to classify the available strategies as
open loop strategies, and to add this connotation to our equilibrium concept.

Definition 3.2. (Q∗1 , . . . , Q∗n) ∈ A n is an open loop investment equilibrium
if Q∗i maximizes J i(Q∗i |Q∗−i) over A for all i = 1 . . . n, where Q∗−i =∑

j=1...n,j 6=iQ
∗j .

In this setting, the optimal irreversible investment problem of each firm i,
which faces a given process Q−i ∈ A of opponent investment, is structurally
the same as that of the social planner above, since then Π(ω, t, qi, Q−it (ω))
with Assumptions 4 and 5 satisfies Assumptions 1 and 3 (where of course
Πqi = π). Thus, we can solve firm i’s problem using the results already de-
rived. Let us state without further proof the first order condition which
characterizes optimal investment for each firm for the sake of complete-
ness and easier reference. It is now formulated in terms of the gradient
∇J i(Qi|Q−i), which is for any (Qi, Q−i) ∈ A 2 the unique optional process
satisfying ∇J i(Qi|Q−i)τ = E[

∫∞
τ

Πqi(t, Q
i
t, Q

−i
t ) dt|F τ ] − kτ for all stopping

times τ ∈ T .
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Proposition 3.3. If Assumptions 2 and 4 are satisfied, a control policy
Q∗i ∈ A maximizes firm i’s objective (3.1) for a given process Q−i ∈ A if

∇J i(Q∗i |Q−i) ≤ 0 and

∫ ∞
0

∇J i(Q∗i |Q−i)s dQ∗is = 0 P-a.s. (3.3)

As before, if Q∗i satisfies the equality in (3.3), it yields nonnegative payoff
and is an admissible strategy. Instead of deriving the best response of each
firm to every possible opponent investment process and then searching for a
fixed point in function space, we will directly identify the unique symmet-
ric equilibrium using the ideas presented in the previous section. Indeed,
considering the first order condition (3.3) for optimal individual behavior
in combination with hypothesized symmetry leads us to formulate a similar
stochastic representation problem as above, the solution to which will again
let us quite directly identify equilibrium investment. For this aim, suppose
that we want to find an optimal investment process for firm i, by the illus-
trated approach of first turning its first order condition into an equality with
the help of an auxiliary process L. Furthermore suppose that the invest-
ment of all opponents happens to coincide with that of firm i. Then, the
representation problem becomes to find an optional process L that satisfies

E

[∫ ∞
τ

Πqi(t, sup
τ≤u<t

Lu, (n− 1) · sup
τ≤u<t

Lu) dt

∣∣∣∣F τ

]
− kτ = 0 for all τ ∈ T .

(3.4)
Our Assumptions 4 and 5, together with Assumption 2 concerning k, warrant
that we can still apply the result by Bank and El Karoui [3, Theorem 3] to
infer existence of a unique solution L. It allows us to directly construct the
symmetric oligopolistic equilibrium as follows.

Theorem 3.4. Under Assumptions 2, 4 and 5, the unique symmetric open
loop investment equilibrium is given by

Q∗it ,
(

sup
0≤u<t

Lu
)+

(t ≥ 0) (3.5)

for all i = 1 . . . n, where L is the optional process solving the representation
problem (3.4).

Proof. The process Q∗i defined as above clearly belongs to A . We only need
to show that it satisfies the first order condition (3.3) if all opponents behave
identically to firm i. Indeed, for any stopping time τ ∈ T we have due to
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the monotonicity by Assumption 5 and the definition of Q∗i

∇J i(Q∗i|Q∗−i)τ = E

[∫ ∞
τ

Πqi(t, Q
∗i
t , Q

∗−i
t ) dt

∣∣∣∣F τ

]
− kτ

≤ E

[∫ ∞
τ

Πqi(t, sup
τ≤u<t

Lu, (n− 1) · sup
τ≤u<t

Lu) dt

∣∣∣∣F τ

]
− kτ ,

where the last expression is zero exactly by representation (3.4). To check
that the equality in (3.3) holds true P-a.s., consider dQ∗is > 0. Then, Q∗it =
sup0≤u<t Lu = sups≤u<t Lu > 0 for all t > s, implying the required equality.

Thus, to find the symmetric open loop equilibrium for an oligopoly, we
only have to solve the backward equation (3.4), given any specification of our
model primitives. While this constructive existence and uniqueness result is
appealing for its generality, we are of course also interested in some concise
economic predictions. These however have to await some stepwise special-
ization of the competitive setting, which we will conduct in the next section.
For certain familiar cases, we will even obtain closed form solutions. Yet,
we will answer an important question from the economic point of view while
we are still in the general framework, because it arises from an even further
generalization.

3.1 Asymmetric capital levels

Namely, we now allow for some heterogeneity by considering that the firms
may have individual levels of capital already installed at the beginning of the
above game. This situation is not only important at the start, but it also
mimics possible intermediate stages of the game and thus has some predictive
power. Before we adapt all concerned notions and results, let us analyze the
situation, to see how much we have to revise.

For what we want to show, it is necessary to state a little more precisely
the relative influences of own and opponent capital on marginal revenue. In
fact, assume that for a fixed level of aggregate capital, marginal revenue is the
smaller, the greater own installed capital is. This assumption is for instance
very naturally satisfied for Cournot-type competition, since it follows from
inverse demand, resp. price, being decreasing in aggregate supply.

Assumption 6. For any (ω, t, q) ∈ Ω × [0,∞) × [0,∞), Πqi(ω, t, q
i, q − qi)

decreases in qi, 0 ≤ qi ≤ q.

Then, as long as the levels of installed capital are not all the same, only the
smallest firm(s) will invest. Since this result will easily generalize, consider
for the sake of the argument the case of two firms.

15



Proposition 3.5. Set n = 2. Assume that firm i, i = 1, 2, has capital
Qi installed before the investment game starts, with Q1 > Q2. Then, if
Assumptions 2, 4, 5 and 6 are satisfied, in an open loop equilibrium, dQ∗1s = 0
as long as Q1 > Q2 +

∫ t
0
dQ∗2s .

Proof. Interpret the equilibrium investment processes as including the re-
spective initial capital, i.e. Q∗i0 = Qi, P-a.s. Suppose firm 1 invests at time
τ1, before firm 2 invests for the first time at τ2. Then the first order conditions
(3.3) at τ1 become

E

[∫ τ2

τ1

Πqi(t, Q
∗1
t , Q

∗2
0 ) dt

∣∣∣∣F τ1

]
+ E

[∫ ∞
τ2

Πqi(t, Q
∗1
t , Q

∗2
t ) dt

∣∣∣∣F τ1

]
− kτ1 = 0

(3.6)
for firm 1 and

E

[∫ τ2

τ1

Πqi(t, Q
∗2
0 , Q

∗1
t ) dt

∣∣∣∣F τ1

]
+ E

[∫ ∞
τ2

Πqi(t, Q
∗2
t , Q

∗1
t ) dt

∣∣∣∣F τ1

]
− kτ1 ≤ 0

(3.7)
for firm 2.

Since over the interval τ1 ≤ t < τ2 firm 1 is larger, Q∗1t > Q∗2t = Q∗20 by hy-
pothesis, Assumption 6 implies that the conditional expectation of marginal
revenue over this interval is greater for firm 2. Furthermore since firm 2
optimally invests at τ2, its second conditional expectation equals E[kτ2|F τ1 ].
Also due to the first order condition, the second conditional expectation of
firm 1 cannot exceed E[kτ2|F τ1 ]. Summing up, the left hand side of (3.7)
is greater than that of (3.6), clearly a contradiction to optimality. We con-
clude that firm 1 will not invest in equilibrium as long as it has more capital
installed than firm 2.

The result allows us to extend the game in the following way. Let there be
a vector (Q1, . . . ,Qn) ∈ Rn

+. Then the strategy space for firm i, i = 1, . . . , n
is

A
i , {Qi adapted, nondecreasing, left-continuous, with Qi

0 = Qi P-a.s.}.

Proposition 3.5 now tells us that it is not difficult to adjust Theorem 3.4 for
the construction of an open loop equilibrium, since we know that the smallest
firms will catch up before any other invests. Once all firms are equally sized,
they act identically as suggested by the theorem.

4 Cournot competition

For a further analysis from an economic perspective, we will now specify
instantaneous revenue some more. The first step is to consider spot Cournot
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competition. This will be modelled by an inverse demand function with
aggregate supply set equal to installed capital. Uncertainty is reflected in
the spot price, say it depends on some stochastic process. Formally, let
revenue in the following be given by

Π(ω, t, qi, q−i) = e−rtP (Xt(ω), qi + q−i)qi,

where the stochastic process X : Ω × [0,∞) → R captures randomness and
P : R × [0,∞) → [0,∞) shall be continuous and have the usual property
that for given x ∈ R, the mapping q 7→ P (x, q) is decreasing in q. For ease of
notation, assume that the positive discount factor r is fixed, and in the same
spirit set the spot price of capital equal to one, so kt = e−rt, which satisfies
Assumption 2. However, Assumptions 4 and 5 impose some restrictions
on the choice of P and X. Since we will focus on the dependence on q,
assume regarding the randomness simply that X is sufficiently well behaved.
Concerning capital, P is required to be continuously differentiable in q, so
denote the partial derivative by Pq, which is negative by our specification.
Then, the monotonicity assumption implies that P must not be too convex,
if at all. For a symmetric n-firm equilibrium, we need in terms of the second
partial derivative

(n+ 1)Pq + qPqq < 0 (q ∈ R+), (4.1)

which is equivalent to (3.2) in combination with symmetry.
This specification already enables us to draw some conclusions, the first

of which has already been mentioned. Namely, revenue defined as above
satisfies Assumption 6. Observe that, for given aggregate capital q ∈ R+,

Πqi(ω, t, q
i, q − qi) = P (Xt(ω), q) + qiPq(Xt(ω), q)

is indeed decreasing in qi, since we specified Pq to be negative. Thus,
Cournot-type competition implies by Proposition 3.5 the catching-up prop-
erty in any open loop equilibrium with heterogeneous starting levels. This
result, that firms will eventually be of equal size, given sufficient incentive
to invest, is actually reflected in the related game with perfectly reversible
investment. Here, the optimal capital level equates marginal revenue and the
user cost of capital, r in our current setting. So the optimal reversible capital
level is a function of the realisation of the process X, say R∗i(x). Formally,
in equilibrium, P (x,R∗(x)) +R∗i(x)Pq(x,R

∗(x)) = r for all firms i = 1 . . . n,
where again R∗(x) =

∑
i=1...nR

∗i(x). Consequently, all firms must choose
the same reversible equilibrium output, R∗i(x) = 1

n
R∗(x).

The current level of specification also lends itself to illustrate the value
of waiting to invest and that it diminishes with increasing competition. Let
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us take a look at the first order condition (3.3) in a symmetric equilibrium
of the current setting. For any τ ∈ T it takes the form

E

[∫ ∞
τ

e−rt
(
P (Xt, Q

∗
t ) +

Q∗t
n
Pq(Xt, Q

∗
t )
)
dt

∣∣∣∣F τ

]
− e−rτ ≤ 0, (4.2)

where we neglect to indicate that equilibrium investment Q∗ varies with n.
If we increase competition, i.e. the number of firms, the partial derivative Pq
looses weight until we arrive in the limit at the first order condition for a
perfectly competitive equilibrium,

E

[∫ ∞
τ

e−rtP (Xt, Q
∗
t ) dt

∣∣∣∣F τ

]
− e−rτ ≤ 0. (4.3)

Here, because equality holds at any time of investment, the expected revenue
generated by the last infinitesimal unit of capital minus its cost is zero, so it
has zero net present value. If we consider now a time of investment in the
oligopoly equilibrium, when (4.2) is binding, we conclude that the capital
level there must be lower than in the perfectly competitive equilbrium at
the same time, since Pq is negative and otherwise (4.3) would be violated.
Thus, investment in oligopoly is slower than under perfect competition, and
only happens when it has a strictly positive net present value. But with an
increasing number of firms this value of the option to wait diminishes until
the zero net present value investment rule is finally reached.

4.1 Explicit solutions

Now we take a further step in specifying the model, to demonstrate the
derivation of explicit solutions. In the above, let uncertainty influence inverse
demand as a factor. To ensure that it does not become negative, let X be
an exponential process. Formally, we set

P (x, q) = x · p(q) and Xt = eYt ,

with a decreasing function p : [0,∞) → [0,∞) and a Lévy-process (Yt)t≥0

without negative jumps. Precisely, let inverse demand be of constant elastic-
ity, which means

p(q) = q−
1
α ,

where α is positive to ensure that price decreases in quantity. This is basi-
cally the model considered by Grenadier [9], but we allow for more general
stochastic processes than geometric brownian motion. Now, the single struc-
tural restriction (4.1) we have to make is equivalent to α > 1

n
, required in
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[9], too. The integrability requirements of Assumption 4 depend of course on
a concrete process Y , assume they are satisfied. Given these conditions, let
us solve the representation problem (3.4) to construct the unique open loop
equilibrium. Observe first that in the current setting marginal instantaneous
revenue is given by

Πqi(t, q
i, q−i) = e−rtXt(q

i + q−i)−
1
α

(
1− 1

α

qi

qi + q−i

)
,

where in a hypothesized symmetric situation qi + q−i = n · qi. We now guess
that for a given n, the solution L to representation problem (3.4) takes the
form

Lt =
1

n
καXα

t (t ≥ 0), (4.4)

with some constant parameter κ. Consequently, investment in equilibrium
given by Q∗it = sup0≤u<t Lu, i = 1 . . . n, will occur whenever the factor X
sets a new record. Such a policy is what one would intuitively expect for
Markovian processes positively influencing revenue. It seems that aggregate
investment is independent of the number of firms, but κ will actually depend
on n. Plugging the hypothesized process L into (3.4) with marginal revenue
as above yields for any τ ∈ T

E

[∫ ∞
τ

e−rtXt

(
n sup
τ≤u<t

1

n
καXα

u

)− 1
α
(

1− 1

αn

)
dt

∣∣∣∣F τ

]
− e−rτ = 0,

which we can simplify, since α is positive, to

E

[∫ ∞
τ

e−rtκ−1 Xt

supτ≤u<tXu

(
1− 1

αn

)
dt

∣∣∣∣F τ

]
− e−rτ = 0.

This is in terms of the Lévy process Y equivalent to

E

[∫ ∞
τ

e−rteinfτ≤u<t Yt−Yu dt

∣∣∣∣F τ

]
= e−rτκ

( αn

αn− 1

)
.

Now we can make use of the fact that the increments Yt − Yτ and Yu − Yτ
given F τ have the same distribution as Yt−τ and Yu−τ under F 0 to make a
shift in the time variable and find

E

[∫ ∞
0

e−rteinf0≤u<t Yt−Yu dt

]
= κ

( αn

αn− 1

)
,

which is independent of the stopping time τ . So this last equation completely
determines the parameter κ for which (3.4) in our current specification is
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satisfied at any τ ∈ T . Further, note that inf0≤u<t Yt − Yu has the same
distribution as inf0≤u<t Yu = − sup0≤u<t−Yu so that

κ
( αn

αn− 1

)
= E

[∫ ∞
0

e−rte− sup0≤u<t−Yu dt

]
=

1

r
E
[
e− sup0≤u<τ(r)−Yu

]
,

where τ(r) is an independent exponentially distributed time with parameter
r. Now see [6, ch. VII] that the running supremum of a Lévy process
without positive jumps, −Y , stopped at an independent exponential time is
itself exponentially distributed with rate Φ−Y (r) and thus

κ
( αn

αn− 1

)
=

Φ−Y (r)

r
(
1 + Φ−Y (r)

) , (4.5)

where Φ−Y (r) is the Laplace exponent of −Y at r. Since the right hand
side is constant, κ is increasing in n, and so is aggregate investment Q∗t =
sup0≤u<t n ·Lu with L as in (4.4). In fact, if we denote the right hand side of
(4.5) by κ∞, to which κ converges as the number of firms grows to infinity,
then Lc , κα∞X

α drives investment in a perfectly competitive equilibrium,
with zero net present value as discussed above.

To check that we obtain the same results as Grenadier [9] and Back and
Paulsen [1], note that if Yt = µt+ σBt for standard Brownian motion B and
constants µ and σ, the Laplace exponent becomes

Φ−Y (r) =
µ+

√
µ2 + 2rσ2

σ2
.
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