Veiga, Carlos; Wystup, Uwe

Working Paper
Ratings of structured products and issuers' commitments

CPQF Working Paper Series, No. 26

Provided in Cooperation with:
Frankfurt School of Finance and Management

Suggested Citation: Veiga, Carlos; Wystup, Uwe (2010): Ratings of structured products and issuers' commitments, CPQF Working Paper Series, No. 26, Frankfurt School of Finance & Management, Frankfurt/M.

This Version is available at:
http://hdl.handle.net/10419/43670

Standard-Nutzungsbedingungen:
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.
Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
CPQF Working Paper Series

No. 26

Ratings of Structured Products and Issuers’ Commitments

Carlos Veiga, Uwe Wystup

October 2010

Authors:
Carlos Veiga
PhD Student CPQF
Frankfurt School of Finance & Management
Frankfurt/Main
veiga.carlos@gmail.com

Uwe Wystup
Professor of Quantitative Finance
Frankfurt School of Finance & Management
Frankfurt/Main
u.wystup@frankfurt-school.de

Publisher:
Frankfurt School of Finance & Management
Phone: +49 (0) 69 154 008-0
Fax: +49 (0) 69 154 008-728
Sonnemannstr. 9-11
D-60314 Frankfurt/M.
Germany
Ratings of Structured Products and Issuers’ Commitments

Carlos Veiga ∗†
veiga.carlos@gmail.com
Tel.: +49 (0)69 154008-771
Fax.: +49 (0)69 154008-4771
Frankfurt School of Finance & Management
Centre for Practical Quantitative Finance
Sonnemannstraße 9-11, 60314 Frankfurt am Main, Germany

Uwe Wystup
uwe.wystup@mathfinance.com
Tel.: +49 (0)69 154008-719
Fax.: +49 (0)69 154008-4719
Frankfurt School of Finance & Management
Centre for Practical Quantitative Finance
Sonnemannstraße 9-11, 60314 Frankfurt am Main, Germany

Abstract

This paper analyzes the evolution of the structured products market focusing on the tools available for private investors, on which they rely for the selection process. The selection process is extremely difficult because there is a myriad of products, because of the dynamic nature of the market and market participants’ actions, and because of the complexity of many of the products. We consider the existing types of tools, in particular the rating schemes that have been proposed by industry participants to provide guidance to the investor. We propose a set of properties that a rating scheme should show and check whether the existing schemes carry these properties. Our findings suggest that the existing rating schemes do not carry the desired properties. Furthermore, for the purpose of solving a highly indefinite selection process, an effective rating scheme may not exist. In light of this, we propose the introduction of a new quantity, the floor, that has a legal and financial meaning, on which issuers can also compete in addition to price and spread. Its acceptance and use would also yield standardization towards investors’ interests by excluding some pricing

∗Corresponding author.
†The author wishes to thank Millennium bcp, S.A. for the financial support being provided during his PhD. studies.
practices and severely limiting others. Even though very little research has been produced in this area, we believe this to be a topic of high importance in establishing guidelines for healthy industry development and regulation that upholds investors’ interests.

Key words: structured products, rating schemes, certificates, warrants, floor, market making.
1 Motivation

Around the world there is a growing number of securities and contracts issued and written by financial institutions. Their purpose is to offer a customized risk/return profile that suits investors’ preferences. These so called structured products\(^1\) are linked to diverse underlying assets and are used by private and institutional investors alike. They cover short, medium and long term products from low risk to high risk and leverage.

In Germany and elsewhere this market shows significant activity with the number of issuers surpassing ten in the most liquid underlyings. For example, in June 2008, the most active German exchange for structured products, Börse Stuttgart’s Euwax, reported 33 active issuers and more than 300,000 structured products listed. Other countries, specially in Europe and Australia, have also developed structured product markets with several issuers, thousands of products, and whose liquidity is close to 5% of the country’s stock market. In the year 2008 the structured products’ exchange traded volume, on the European exchanges members of FESE\(^2\), amounted to €213 billion while equities volume amounted to €3,885 billion. In addition to the exchange traded volume, one should also consider the over the counter transactions of listed and unlisted structured products. These are surely a significant percentage of the total structured products trading, but for which, unfortunately, there are no aggregated statistics.

The key difference between structured products and the standardized derivative contracts, i.e. exchange traded options and futures, is the fact that they are issued as securities. This means that a structured product issue has a definite number of “shares” and is bound to the dynamics of securities trading. These dynamics differ strongly from those of standardized derivative contracts specially when selling is concerned. Simply stated, a security can only be sold if it is held (either by previous purchase or borrow), while taking up a selling position in standardized derivative contracts is not hindered by that constraint.

The importance of this difference is clear in light of arbitrage theory. It states that for a claim price (security or contract) to be coherent with the price(s) of its underlying asset(s) (that again may be securities or contracts), it is necessary that an agent be able to sell the claim short, if it is overpriced with respect to its underlying, and to buy it, if it is underpriced. However, in the case of structured products, borrowing is impossible\(^3\) and, consequently,\[^{1}\]We shall use the terms \textit{products} and \textit{structured products} interchangeably.\(^{2}\)Federation of European Securities Exchanges\(^{3}\)Borrowing is impossible for several reasons, the most important of which are the unwillingness of the issuers to lend the securities, the dispersion of holders of such products, and the nonexistence of a securities lending market for these securities. Exchange traded funds (ETFs), though being securities, are different from structured products for they have built in, in the fund’s by-laws, the borrowing possibility for their market makers.
so is short selling. Thus, there is no market force driving the price of an overpriced security towards its arbitrage theory fair price. That is, the price it would have if short selling were possible.

Hence, the consequence of the impossibility of short selling is that the claim may be overpriced but may never be underpriced. However, arbitrage theory only states the overpricing can occur, not that it does occur. Though, it should come as no surprise that banks require a reward for going through the costs of issuing and maintaining these products and that profit is their true raison d’être.

There is some research corroborating this fact by Stoimenov and Wilkens [4] (2005) and [5] (2007), and Wilkens et al. [6] (2003) that detail the dynamics of the overpricing over the life cycle of a product. Figure 1 shows schematically the various identified behaviors. These authors identify an overpricing margin decay over the life of the product. The first example depicted in the figure would imply that the cost to the investor due to the overpricing decay would be proportional to the length of the investment period. The second example of a pronounced decay after issuance penalizes more the investors who buy products as they are issued than those who do so later on. The last two graphs show an overpricing margin decay driven by the amount of the issue sold to investors at each moment. The figure shows an example in which the issuer cuts sharply the overpricing margin when most of the issue has been sold, thus locking in the margin drop on the outstanding amount. Although new investors would benefit from the lower overpricing afterwards, there will certainly be a small number of them, either because there are not many more securities of the issue to sell or because the issuer may shift its marketing efforts to other products. If, later still, investors end up selling the securities back, the issuer may then increase the margin and revamp the product’s marketing. Although this would benefit the residual investors that still hold the securities, it is a cost that the issuer can assess and, therefore, weigh against the benefit of recycling the product for further sale with a higher overpricing margin.

One may rightfully ask also why does an investor even consider buying securities that are possibly overpriced. There are certainly several reasons for doing so but here we just state one: many investors do not have the size or will to invest in non-biased securities in a way that would replicate the structured product’s payoff. Thus, the trade-offs are ones of price versus size or price versus convenience, which are also present in any other market, financial or not. What is not similar to other markets is the inability of an investor, due to lack of information, to choose the best trade-off available. This is the core subject of this section.

So far, the efforts to produce the lacking information have been devoted to the development of rating schemes that classify and order products according to a scale. We devote Section 2 to assess whether such ratings do produce relevant information, to enable the choice of the best trade-off, and
conclude that they do not. In Section 3 we develop a formal analysis of the lack of information problem, propose a solution, and show that it produces relevant information. In Section 4 we, give our view of the development of the structured products market in connection with the lack of information problem.

2 Rating Schemes

Before analyzing existing rating schemes, we shall first state what we believe are the properties a rating should have in order to be effective in providing relevant information for the selection problem. Hence a rating should be:

- focused - the rating should measure only one well defined target feature;
- easily perceived - should allow for immediate perception of level and order between products;
- informative - produce additional information to set already available;
- impartial - consider only attributes specific to the product itself;
- current - the rating should be updated to reflect changes of the input data;
- robust - the rating should not be hindered by unusual or complex payoff profiles. It should be applicable to whatever product or contract.

Figure 1: Reported patterns in overpricing margin decays.
These principles are probably easier to agree upon than to fulfill. Even the well-known and established ratings that classify the credit worthiness of issuers like the Moody’s, Standard & Poor’s or Fitch’s credit ratings do not fulfill all the principles above. Common critics are that (i) ratings react slowly to changes in the environment, (ii) rating agencies choose the timing of rating reviews to be cautious about the political impact on the subject country or company, (iii) the fact that rated subjects pay for the rating service and that sole fact may bias the judgment (similar to an auditor’s problem), (iv) rating agencies make significant subjective evaluations, and (v) that rating procedures are not robust enough to be standard across all industries and are not easily applicable to complex structures. This last issue has even been severely highlighted in the course of the current financial crisis. These critiques put into question all principles above except the first three; credit ratings are focused solely on measuring the ability to meet future payments, are easily perceived, and seem to add new information. Nevertheless, they are regarded by industry participants and regulators extremely useful classifications.

Given the success of credit rating schemes, several institutions started to apply the same concept to distill the large quantity of information present in the structured products market. Examples of these schemes are the ones from Institut für ZertifikateAnalyse4 (IZA), Scope Group5 and European Derivatives Group6 (EDG), as are issuers’ classification schemes. We shall analyze these rating schemes in general as our analysis is focused on the foundations and concepts that underlie these schemes. By keeping the analysis general, we believe that it remains valid not only for existing schemes but also for future ones that address the same problem. For illustration purposes we do take the mentioned schemes as examples to highlight the problems and implications that arise in connection with principles above.

We shall proceed by taking each principle above individually and examine what sort of procedures it rules out.

Focused excludes:

- a target feature created and defined within the rating process itself.

Examples of such target features are the quality of a product or its appropriateness to a given investor profile. These concepts are defined within the rating process, they do not mean anything outside of it. Examples of proper target features are the ability to meet future payments or the overall cost of a structured product. These concepts exist *a priori*. When costs, credit rating, investor risk preferences, etc. are aggregated or composed into a single measure, the result is an arbitrary and meaningless concept that cannot be

4www.iza.de
5www.scope.de
6www.derivatives-group.com
attached to anything outside the scope of the rating process. Furthermore, if such a concept were to be taken as reference, it would, at best, reflect the preferences of a theoretical investor that, for being so individually specific, no other investor could relate to. Any investor, other than the theoretical, with different preferences with respect to any of the attributes, would not rate the products in the same order or scale as the rating would.

Easily Perceived excludes:

- multidimensional rating assessments;
- use of the same symbols to order distinct groups of products.

A multidimensional rating assessment fails to fulfill its very purpose since it does not map the set of products to an ordered scale. For example, a two dimensional rating, e.g. a measure of cost and another of expected return, can be sorted in an infinite number of ways by linearly combining the two measures. Thus, the ordering is left unresolved and hence the investor still lacks a clear basis for a decision. The ease of perceptiveness also excludes the use of the same symbols on several subsets of products that are not comparable with each other. Although the definition of subsets would simplify the rating process, the reuse of the same symbols would yield an implicit comparison that is not intended by the rating itself.

Informative excludes:

- redundant measurements of target features.

A rating that orders by issue date or maturity date also does not add any information to the existing set. A uniform classification of all products also would not carry any information, as it would not order the products.

Impartial excludes:

- the inclusion of investor preferences;
- the use of valuation models;
- estimated parameters;
- arbitrary or subjective assessments.

The key to understand the impartiality concept can be found in measurement theory. The problem is that the inclusion of measurements of attributes that are not specific to the rated products will change the ordering and evaluation of the products. This inclusion shall never be consensual as it biases the rating towards some of the products. On the other hand, the inclusion of attributes that are specific to the product cannot be argued against for it is the product itself that is being rated. Investor preferences are evidently product non-specific. A valuation model implicitly biases the
evaluations towards some products, just consider a barrier and a vanilla option in light of a model that assumes the existence of jumps and one that does not. One can very easily construct an example with two products where the two models yield different orders. The same is true for the inclusion of estimates. Estimates are sample and estimation method dependent and, furthermore, for the calibration of models to market prices, there may be several parameter sets that would calibrate the model. The same is true for arbitrary and subjective assessments that, if changed, would also change the ordering of the products. These assessments include the choice inherent to any aggregation or composition of measurements of different target features.

Current excludes:

- rating revision not linked to input data variability.

An immediate and dramatic consequence of this principle is that the rating should be reassessed every time the input data is refreshed. Thus, if the rating depends on live information, e.g. product price, stock prices or option prices, the rating must also be updated live. Given the nature of the structured products market, where prices are typically overpriced, the price of the structured product is a necessary input to assess the costs embedded in it. The other necessary inputs are the prices of the underlying asset and of related derivatives needed to calculate the theoretical price. Thus, including costs in the rating assessment implies that the rating should be updated as frequently as the product price updates and as often the underlying asset prices updates. For most exchange traded structured products this makes it infeasible to include the cost estimates as an input for the rating process. The same may be said with respect to estimated data, i.e., the rating should be updated as often as the sample that underlies the estimation develops.

Robust excludes:

- rating processes valid only for a specific product type or class;
- any specific model.

The robustness requires that the rating process is a general approach valid for any product that exists or may exist. Different rating processes for different product types raise the problem of comparison across types. Furthermore, the inclusion of future products in the requirement comes from the fact that if they are not included by construction, new products may be created specifically targeted to take advantage of the limitations of the rating process. By the same token, no model may be able to properly evaluate and describe the risk of all types of products. It is, in fact, quite well known that typical models of a given asset class do not perform well when applied to other asset classes.

Still on the robustness principle, one may argue that it is too demanding and should not be considered. Even the well accepted and established credit
ratings do not fulfill this principle, so why should the structured products ratings do. We believe it should be upheld for the sole reason that the structured products market has seen a remarkable dynamic in its short history in terms of creation of new types of products. There is also no evidence that this trend is abating.

To complete our analysis of rating schemes for structured products, we check what is left after the exclusions implied by the principles. Although no existing rating scheme belongs to the class of ratings schemes satisfying the principles above, that class may be non-empty. We are unable to produce a formal proof of the existence or the non-existence of rating schemes that fulfill the principles. We can report though that we have not been able to find one. Given the market characteristics, we believe that a rating scheme should consider the overall costs of the products, but that implies the existence of a model to calculate the theoretical price, and that, in turn, is not allowed by the principles. It would also use live data that would imply a live rating. We also fail to see how two products with the same overall costs, but with different payoff profiles, can be ordered in a non-subjective way.

With respect to the rating schemes mentioned above, no single one satisfies the principles above. All three, IZA, Scope and EDG produce scores which do not measure any objective feature of the product. They all rely extensively on aggregation of measurements of both objective and subjective features, e.g., cost, risk, concept of the product, and information produced to describe the product. They consider cost and risk, which in turn require the choice of a model with parameters that need to be estimated and calibrated, and whose assessments are highly ephemeral and not consensual among market participants. Risk is measured by the value at risk only, even though risk may be assessed in multiple ways, yielding each of these its own order. Moreover, computing the value at risk requires a model assumption and possibly parameter assumptions on the distribution of the underlying, which is highly subjective. Though they all exhibit rating reassessment periods that are longer than two weeks. EDG and IZA even consider investor preferences as part of the rating process, as if an investor would know how to describe his or her risk profile in these terms, or check if it would match any of the predefined ones.

Another perspective of the problem is to ask what is the harm in choosing a rating scheme that does not fulfill the principles. Such a choice would foster standardization and all products would still be rated on an equal basis. Even though all principles stand relevant in such a case, the impartiality principle assumes increased importance. If a rating that does not fulfill it is taken as a standard, or even enforced by regulation, that would yield only a standardization towards the (subjective and arbitrary) rating definition and not towards investors’ interests. Furthermore, even though investors still need to solve the selection problem on their own, as existing ratings are not
effective in ordering products in a meaningful way, they bear their costs. Either payed directly to an agency or embedded in the price of the product (in which the issuer reflects all its costs including the rating related ones), investors end up paying for rating schemes.

Therefore, we believe that a rating scheme is not the answer to bring standardization and informed investor choice to the structured products market. We believe instead that it can be achieved by introducing more tangible information, of the sort of bid-ask spreads and prices.

3 Floor

The proposal we describe in this section builds on the work of Stoimenov and Wilkens [4] and [5], and Wilkens et al. [6] that describe the dynamics of the price of a structured product over its life cycle. This dynamics exhibit overpricing at issuance, overpricing decaying over the life of the product, significant overpricing drops after issuance, and order flow driven price behavior. The authors rely on the concept of theoretical value and super-hedging boundaries to establish a price reference. This price is then compared with market prices to determine the overpricing and its dynamics.

To formalize these observations, without loss of generality, we assume that the issuer determines its bid and ask prices according to the functions

\[\text{Ask}(t) = f^A(t) + \text{Markup}^A(t), \]
\[\text{Bid}(t) = f^B(t) + \text{Markup}^B(t), \]

where \(f^{A,B}(t) \) is the issuer’s estimate of the product’s theoretical values, using the relevant spread sides for each variable, and \(\text{Markup}^{A,B}(t) \) are arbitrary functions. The markup functions may depend on any factor, including the total quantity sold of the product up to time \(t \).

The price policies described above generate profit for the issuers that can be decomposed in two parcels: interest and capital gains, denoted by \(P_i \) and \(P_{cg} \) respectively.

The interest is earned on the sale price markup \(\text{Markup}^A(t_0) \) only, for we assume \(f^A(t_0) \) was spent to purchase the issuer’s hedge. If we assume a bank account yielding an overnight rate \(r(i) \), the profit accumulated up to time \(t \) is just

\[P_i(t) = \left(\prod_{i=[t_0]}^{[t]-1} (1 + r(i)) - 1 \right) \times \text{Markup}^A(t_0), \]

where \(t_0 \) is the trade time and \(i \) running from the day of \(t_0 \), \([t_0]\) to the day before \(t \), \([t]\) - 1.

It is important to note that this parcel of the profit cannot be controlled by the issuer after the initial transaction. On the investor’s perspective, the
loss, corresponding to the issuer’s profit P_i, is included in his or her overall carry cost of holding the product. That cost is, to a large extent, predictable and/or bounded.

For the capital gains we need to write first the capital gains or losses on the whole structured product transaction, that is

$$\text{Ask}(t_0) - \text{Bid}(t) = f^A(t_0) - f^B(t) + \text{Markup}^A(t_0) - \text{Markup}^B(t). \quad (4)$$

We now assume that $f^A(t_0) - f^B(t)$ is covered by the issuer’s hedge. Therefore, the issuer’s capital gain attributable to the pricing policy is just

$$P_{cg}(t) = \text{Markup}^A(t_0) - \text{Markup}^B(t). \quad (5)$$

Unlike P_i, P_{cg} does depend on the issuer’s pricing policy. The issuer is free to change $\text{Markup}^B(t)$ at any point; even set it at negative values\(^7\). On the investor’s perspective, an decrease of $\text{Markup}^B(t)$ constitutes a loss. Such a loss is unpredictable in its size and moment.

We now claim that investors are better off if the $\text{Markup}^B(t)$ is known in advance, that is, before the investor purchases the product. Better off for the sole reason that investors would have enough information to weigh the total costs of the product against the benefits it brings them. Without the knowledge of $\text{Markup}^B(t)$ there is a loose end in the costs side until the product’s maturity is reached, time when, by definition, $\text{Markup}^B(t)$ is zero.

Accordingly, we proceed with our analysis assuming, from this point on, that the issuer has committed to use the function $\text{Markup}^B(t)$ and that it stated on the product’s term sheet.

However, there is still one open problem. This analysis has assumed that the issuer’s estimates of the product’s theoretical value, $f^{A,B}(t)$, are not subject to arbitrary revisions. If they are, the commitment is hollow because $f^{A,B}(t)$ may include not only the issuer’s estimate of theoretical value but also hide part of the $\text{Markup}^{A,B}(t)$. If that is allowed to happen, we are back to the initial situation, where there is not enough information to determine in advance the issuer’s total profit. However, it is not reasonable to ask the issuer to disclose $f^{A,B}(t)$ for it may include trade secrets, be extremely complex and unusable by other parties.

Therefore, we need to replace $f^{A,B}(t)$, chosen by the issuer, by new function $h^{A,B}(t)$, independent of the issuer’s views, such that Expression (5) remains valid. In turn, this means $h^A(t_0) - h^B(t)$ is covered by the issuer’s hedge.

This is easily accomplished if there is a static hedge for the structured product. Then $h^{A,B}(t)$ are just the prices of that static hedge portfolio, and $h^A(t_0) - h^B(t)$ is just the result from setting up and unwinding the hedge portfolio.

\(^7\)This is equivalent to setting a bid price at a discount to the reference price. Stoimenov and Wilkens [4] provide evidence of this practice.
If there is a static super hedge, and $h^{A,B}(t)$ is the price of the super hedge portfolio, Expression (5) is still valid for all t before maturity. At maturity time T, $P_{cg}(T) \geq \text{Markup}^{A}(t_{0}) - \text{Markup}^{B}(T)$ because the payoff of the super hedge portfolio may be greater than the payoff of the product. However, if the investor sells the structured product before maturity, the additional loss is not incurred.

Thus, if there is a static hedge or a super hedge for the structured product, there are functions $h^{A,B}(t)$ to replace $f^{A,B}(t)$ that are independent from the issuer’s assessments. Functions $h^{A,B}(t)$ may even track a dynamic hedge (or super hedge) self-financing portfolio that the issuer is able to trade.

For products that cannot be statically super-hedged there may or may not be functions $h^{A,B}(t)$ to replace $f^{A,B}(t)$. However, if a product that can be decomposed as a portfolio, with its elements only taking positive values, the bid price may track only those elements that can be statically hedged (or super hedged). In such a case, the bid and ask Functions (1) and (2) would be revised as

$$\begin{align*}
\text{Ask}(t) &= h^{A}(t) + g^{A}(t) + \text{Markup}^{A}(t), \\
\text{Bid}(t) &= h^{B}(t) + \text{Markup}^{B}(t),
\end{align*}$$

with $h^{A,B}(t)$ the prices of the static hedge portfolio and $g^{A}(t) \geq 0$ the issuer’s estimate of the price of the elements that are not statically hedgeable.

Hence, be $h^{B}(t)$ an hedge, super-hedge or sub-hedge, its determination is independent from the issuer’s will. Furthermore, as $\text{Markup}^{B}(t)$ is defined before issuance, $\text{Bid}(t)$ does not depend on the issuer’s will at any point in time during the life of the product.

For example, consider a capital guaranteed product composed by a zero coupon bond and an exotic option. Furthermore, assume the issuer considers the Reuters’ or Bloomberg’s zero coupon bond price estimate as a reference price for $h^{A,B}(t)$. Thus, the product would trade at least at the zero coupon bond price, which is still better than no lower boundary at all. We say at least at zero coupon bond price because, in some situations, the bid will significantly underprice the structured product. The issuer will then, most likely, bid the structured product above the bid commitment to prevent the bid-ask spread from getting too large and to show a more competitive price.

This example shows that issuers may have reasons to bid their structured products above their commitments. It is even likely that issuers do this on a consistent basis on all products, at least by a small amount. The reason being to avoid unintended breaches of the bid price commitments and diminish potential conflicts. This observation is what motivated us to name the issuer’s commitment as floor and not bid price commitment. From now on we will refer to it only as floor.

The cases we considered so far are cases where it is simple to find a floor and where the floor does not charge the issuer with extra risks. However,
the issuer is free to choose the floor, even floors that carry extra risks with them. For the cases we considered above, the term sheet of a structured product should include at least these additional clauses:

- Floor in the Secondary Market: applicable.
- Floor Guarantor: legal name of entity.
- Floor Type: sub-hedge, exact, super-hedge.
- Floor Reference Price: instrument identification and price location.
- Initial Floor Markup: \(X \) currency units.
- Floor Markup Daily Decay: \(Y \) currency units.

We remark that these rules, on the one hand, exclude some pricing policies reported in Stoimenov and Wilkens [4] and, on the other hand, make some others predictable. Arbitrary pricing policies are excluded as they cannot be described by any function. This is a major difference as the issuer is no longer free to charge investors that hold their structured products in a non-disclosed-in-advance way. Pricing policies that depend on transaction volume or total outstanding quantity would have to be described in advance in a function. Furthermore, its relevant quantities would have to be made public and refreshed at a rate set by the markup definition. This is probably enough to deter issuers from including such rules in the markup definition. Markup functions may still have a non-linear decay, as the reported large decays after issuance. However, as this information is known in advance, investors may postpone the purchase of the product until that period has passed. The floor still leaves room for regular and predictable pricing strategies that are essential for the issuer to be able to profit from its products.

We also make note that, the floor is a new value that should be disseminated through the information network. Just like it is done with the usual set of prices that include the bid and ask prices, the last traded price, the daily maximum and minimum, and the previous sessions’ close price.

To conclude this section we cover the most common types of structured products and provide examples of static or dynamic (super) hedges.

We start with a simple example of a very common structured product. The product is called index-tracker and pays off the value of an equity price index on the maturity date. The choice of the index itself as the floor reference is problematic because an equity price index is not a valid static portfolio, for it suffers from cash withdrawals by the amount of the dividends its shares pay. Therefore, if the issuer would choose this index as the Floor Reference Price, the following three clauses should be reviewed to

- Floor Type: super-hedge.
• Initial Floor Markup: implicit in Floor Reference Price.

• Floor Markup Daily Decay: implicit in Floor Reference Price.

Figure 2 shows payoffs for vanilla warrants, discount certificates, bonus certificates and turbo warrants. The dashed lines represent the several possible values the product may pay off, depending on a barrier monitoring.

![Payoff profiles of common structured products.](image-url)

The proposals of hedge portfolios that follow, assume the existence of exchange traded options and futures on the same underlying asset and with the same maturity as the product. They also assume the availability of risk-free cash deposits for those maturities. A vanilla warrant has as static hedge an exchange traded option on the same underlying with the same strike and maturity. For call warrants, an exchange traded option with a lower strike constitutes a super hedge. The static hedge of a discount certificate is composed by: a short position on an exchange traded call, a long position on a future and a deposit of the total unused cash. A super hedge is obtained with a higher strike call. The price of bonus a certificate is always higher than the value of a portfolio with a future plus a deposit that pays out the contracted future price. A turbo warrant is a barrier option with the barrier located on the in-the-money side of the strike. There is no static hedge for it using the instruments we assumed. This is a typical case where an issuer may choose to assume a floor that introduces additional risks. Consider a turbo warrant call on a stock that does not pay dividends or on a total return index. Assume also a zero interest rate. A possible floor would be the intrinsic value of the turbo warrant, that is, just the difference
of underlying price and strike. It is as if the turbo warrant were of American style, exercisable at any moment. To hedge this new liability, the issuer has to buy one unit of the underlying. If its price never touches the barrier the hedge works. If the price does touch the barrier, the issuer needs to sell the unit of underlying at the barrier level to maximize his result. At least, the issuer needs to sell the hedge above the strike to prevent a loss. However, this may not be possible because stock prices and indexes sometimes evolve in a discontinuous fashion. This is thus the extra risk this floor involves: the risk of not being able to unwind the hedge above the strike price. This is an example where stating a floor would generate a more valuable product and also justify charging a higher price for it.

4 Summary

The goal of this analysis is to enable investors to be able to identify the best trade-off available in the structured products market. The trade-off is one of price versus benefit brought to the investor.

To do so we analyze existing tools that claim to contribute to this identification. In particular, we survey the effectiveness of rating schemes to this purpose. We conclude ratings are not effective for they are in essence arbitrary in their definition and, therefore, are only able to produce arbitrary orderings. In order to fairly analyze the schemes, we first present a list of principles we believe every effective rating scheme should have. The rating schemes are then analyzed in light of these principles. We conclude that none of the considered schemes satisfy them. We also report to have failed to develop a rating scheme that would fulfill those principles.

We proceed with a simplification of the problem by removing the benefit to the investor from the analysis. We do so because the investor’s benefit is an individual assessment that does not lend itself to modeling. We are then left with the price and realize that, even in price, there is currently no way to have a precise assessment.

Fortunately price is a more tangible concept that allows for modeling and formal description. We offer a framework to study the concept and then develop a proposal that enables a clear assessment of the price side of the trade-off. The proposal is a floor guarantee until the product’s maturity. The floor is a quantity that can be freely defined by the issuer but is legally binding. It is the lowest price the issuer can bid at each moment for the structured product. In a way, it constitutes the time continuous counterpart of the discrete time commitments stated in the term sheet. The floor excludes some of the pricing policies referenced in the literature and seriously limits others. However, it still leaves room for regular and predictable pricing strategies that are essential for the issuer to be able to profit from its products. We complete the proposal with examples of application to the
most common types of structured products.

Having a guaranteed floor, or the lack of it, quoted by an issuer for a complex product is probably the best rating the investor can get, as the inability or unwillingness to define a floor is itself an indication of the complex balance of risks and rewards underlying the product.

As to the question of whether the floor would make products more expensive, the answer is: not necessarily. On the one hand, any floor is always better than none at all (even if it is theoretically redundant) and thus should imply an extra cost. On the other hand, as explained above, it is impossible to know how expensive existing structured products really are due to their lack of floors. Therefore, the floor introduces a qualitative change that makes the products that bear it incomparable to the ones that do not. Only with a floor is a proper assessment of the cost of a product possible.

Actual rating schemes, as we showed, are not primarily scientific constructions but instead, the result of accumulation of credibility over many years, even centuries, the most elegant scientific formulation would ever replace.

As to the acceptance of these proposals, we do not expect market leader issuers to take them up promptly, as standardization may harm their margins and market share. As in any market, it is more likely that smaller players, that want to grow their market share, use these proposals as a mean to develop products that are objectively superior to the products of their competitors.

References

<table>
<thead>
<tr>
<th>No.</th>
<th>Author/Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>151.</td>
<td>Kostka, Genia / Hobbs, William</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>Energy Efficiency in China: The Local Bundling of Interests and Policies</td>
<td></td>
</tr>
<tr>
<td>150.</td>
<td>Umber, Marc P. / Grote, Michael H. / Frey, Rainer</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>Europe Integrates Less Than You Think. Evidence from the Market for Corporate Control in Europe and the US</td>
<td></td>
</tr>
<tr>
<td>149.</td>
<td>Vogel, Ursula / Winkler, Adalbert</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>Foreign banks and financial stability in emerging markets: evidence from the global financial crisis</td>
<td></td>
</tr>
<tr>
<td>148.</td>
<td>Libman, Alexander</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>Words or Deeds – What Matters? Experience of Decentralization in Russian Security Agencies</td>
<td></td>
</tr>
<tr>
<td>147.</td>
<td>Kostka, Genia / Zhou, Jianghua</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>Chinese firms entering China's low-income market: Gaining competitive advantage by partnering governments</td>
<td></td>
</tr>
<tr>
<td>146.</td>
<td>Herrmann-Pillath, Carsten</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>Rethinking Evolution, Entropy and Economics: A triadic conceptual framework for the Maximum Entropy Principle as applied to the growth of knowledge</td>
<td></td>
</tr>
<tr>
<td>145.</td>
<td>Heidorn, Thomas / Kahlert, Dennis</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>Implied Correlations of iTraxx Tranches during the Financial Crisis</td>
<td></td>
</tr>
<tr>
<td>144.</td>
<td>Fritz-Morgenthal, Sebastian G. / Hach, Sebastian T. / Schalast, Christoph</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>M&A im Bereich Erneuerbarer Energien</td>
<td></td>
</tr>
<tr>
<td>143.</td>
<td>Birkmeyer, Jörg / Heidorn, Thomas / Rogalski, André</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>Determinanten von Banken-Spreads während der Finanzmarktkrise</td>
<td></td>
</tr>
<tr>
<td>142.</td>
<td>Bannier, Christina E. / Metz, Sabrina</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>Are SMEs large firms en miniature? Evidence from a growth analysis</td>
<td></td>
</tr>
<tr>
<td>141.</td>
<td>Heidorn, Thomas / Kaiser, Dieter G. / Voinea, André</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>The Value-Added of Investable Hedge Fund Indices</td>
<td></td>
</tr>
<tr>
<td>140.</td>
<td>Herrmann-Pillath, Carsten</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>The Evolutionary Approach to Entropy: Reconciling Georgescu-Roegen’s Natural Philosophy with the Maximum Entropy Framework</td>
<td></td>
</tr>
<tr>
<td>139.</td>
<td>Heidorn, Thomas / Low, Christian / Winker, Michael</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>Funktionsweise und Replikationstitel europäischer Exchange Traded Funds auf Aktienindices</td>
<td></td>
</tr>
<tr>
<td>138.</td>
<td>Libman, Alexander</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>Constitutions, Regulations, and Taxes: Contradictions of Different Aspects of Decentralization</td>
<td></td>
</tr>
<tr>
<td>137.</td>
<td>Herrmann-Pillath, Carsten / Libman, Alexander / Yu, Xiaofan</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>State and market integration in China: A spatial econometrics approach to ‘local protectionism’</td>
<td></td>
</tr>
<tr>
<td>136.</td>
<td>Lang, Michael / Cremers, Heinz / Hentze, Rainald</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>Ratingmodell zur Quantifizierung des Ausfallrisikos von LBO-Finanzierungen</td>
<td></td>
</tr>
<tr>
<td>135.</td>
<td>Bannier, Christina / Feess, Eberhard</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>When high-powered incentive contracts reduce performance: Choking under pressure as a screening device</td>
<td></td>
</tr>
<tr>
<td>134.</td>
<td>Herrmann-Pillath, Carsten</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>Entropy, Function and Evolution: Naturalizing Peircian Semiosis</td>
<td></td>
</tr>
<tr>
<td>133.</td>
<td>Bannier, Christina E. / Behr, Patrick / Güttler, Andre</td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td>Rating opaque borrowers: why are unsolicited ratings lower?</td>
<td></td>
</tr>
<tr>
<td>132.</td>
<td>Herrmann-Pillath, Carsten</td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td>Social Capital, Chinese Style: Individualism, Relational Collectivism and the Cultural Embeddedness of the Institutions-Performance Link</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Market Liquidity: An Introduction for Practitioners</td>
<td></td>
</tr>
<tr>
<td>130.</td>
<td>Herrmann-Pillath, Carsten</td>
<td>2009</td>
</tr>
<tr>
<td>129.</td>
<td>Hankir, Yassin / Rauch, Christian / Umber, Marc</td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td>It’s the Market Power, Stupid! – Stock Return Patterns in International Bank M&A</td>
<td></td>
</tr>
<tr>
<td>128.</td>
<td>Herrmann-Pillath, Carsten</td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td>Outline of a Darwinian Theory of Money</td>
<td></td>
</tr>
<tr>
<td>127.</td>
<td>Cremers, Heinz / Walzner, Jens</td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td>Modellierung des Kreditrisikos im Portfoliofall</td>
<td></td>
</tr>
<tr>
<td>126.</td>
<td>Cremers, Heinz / Walzner, Jens</td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td>Modellierung des Kreditrisikos im Einwertpapierfall</td>
<td></td>
</tr>
</tbody>
</table>
125. Heidorn, Thomas / Schmalz, Christian
Interne Transferpreise für Liquidität 2009

124. Bannier, Christina E. / Hirsch, Christian
The economic function of credit rating agencies - What does the watchlist tell us? 2009

123. Herrmann-Pillath, Carsten
A Neurolinguistic Approach to Performativity in Economics 2009

122. Winkler, Adalbert / Vogel, Ursula
Finanzierungsstrukturen und makroökonomische Stabilität in den Ländern Südosteuropas, der Türkei und in den GUS-Staaten 2009

121. Heidorn, Thomas / Rupprecht, Stephan
Einführung in das Kapitalstrukturmanagement bei Banken 2009

120. Rossbach, Peter
Die Rolle des Internets als Informationsbeschaffungsmedium in Banken 2009

119. Herrmann-Pillath, Carsten
Diversity Management und diversi-täbsbasiertes Controlling: Von der „Diversity Scorecard“ zur „Open Balanced Scorecard“ 2009

118. Hölischer, Luise / Clasen, Sven
Erfolgsfaktoren von Private Equity Fonds 2009

117. Bannier, Christina E.
Is there a hold-up benefit in heterogeneous multiple bank financing? 2009

116. Roßbach, Peter / Gießamer, Dirk
Ein eLearning-System zur Unterstützung der Wissensvermittlung von Web-Entwicklern in Sicherheitsthemen 2009

115. Herrmann-Pillath, Carsten
Kulturelle Hybridisierung und Wirtschaftstransformation in China 2009

114. Schalast, Christoph:

113. Schalast, Christoph / Alram, Johannes
Konstruktion einer Anleihe mit hypothekarischer Besicherung 2009

112. Schalast, Christoph / Bolder, Markus / Radlitz, Claus / Siepmann, Stephanie / Weber, Thorsten
Transaktionen und Servicing in der Finanzkrise: Berichte und Referate des Frankfurt School NPL Forums 2008 2009

111. Werner, Karl / Moormann, Jürgen
Efficiency and Profitability of European Banks – How Important Is Operational Efficiency? 2009

110. Herrmann-Pillath, Carsten
Moralische Gefühle als Grundlage einer wohlstandschauffenden Wettbewerbsordnung: Ein neuer Ansatz zur erforschung von Sozialkapital und seine Anwendung auf China 2009

109. Heidorn, Thomas / Kaiser, Dieter G. / Roden, Christoph
Empirische Analyse der Drawdowns von Dach-Hedgefonds 2009

108. Herrmann-Pillath, Carsten
Neuroeconomics, Naturalism and Language 2008

107. Schalast, Christoph / Benita, Barten
Private Equity und Familienunternehmen – eine Untersuchung unter besonderer Berücksichtigung deutscher Maschinen- und Anlagenbauunternehmen 2008

106. Bannier, Christina E. / Grote, Michael H.

105. Herrmann-Pillath, Carsten
The Naturalistic Turn in Economics: Implications for the Theory of Finance 2008

104. Schalast, Christoph (Hrsg.) / Schanz, Kay-Michael / Scholl, Wolfgang
Aktionärschutz in der AG falsch verstanden? Die Leica-Entscheidung des LG Frankfurt am Main 2008

103. Bannier, Christina E. / Müsch, Stefan
Die Auswirkungen der Subprime-Krise auf den deutschen LBO-Markt für Small- und MidCaps 2008

102. Cremers, Heinz / Vetter, Michael
Das IRB-Modell des Kreditrisikos im Vergleich zum Modell einer logarithmisch normalverteilten Verlustfunktion 2008

101. Heidorn, Thomas / Pleißner, Mathias
Determinanten Europäischer CMBS Spreads. Ein empirisches Modell zur Bestimmung der Risikoaufsichtshäufe von Commercial Mortgage-Backed Securities (CMBS) 2008

100. Schalast, Christoph (Hrsg.) / Schanz, Kay-Michael
Schaeffler KG/Continental AG im Lichte der CSX Corp.-Entscheidung des US District Court for the Southern District of New York 2008

99. Hölischer, Luise / Haug, Michael / Schweinberger, Andreas
Analyse von Steuernunestiedaten 2008
98. Heimer, Thomas / Arend, Sebastian
The Genesis of the Black-Scholes Option Pricing Formula 2008
97. Heimer, Thomas / Hölscher, Luise / Werner, Matthias Ralf
Access to Finance and Venture Capital for Industrial SMEs 2008
96. Böttger, Marc / Guthoff, Anja / Heidorn, Thomas
Loss Given Default Modelle zur Schätzung von Recovery Rates 2008
95. Almer, Thomas / Heidorn, Thomas / Schmaltz, Christian
The Dynamics of Short- and Long-Term CDS-spreads of Banks 2008
94. Barthel, Erich / Wollersheim, Jutta
Kulturunterschiede bei Mergers & Acquisitions: Entwicklung eines Konzeptes zur Durchführung einer Cultural Due Diligence 2008
93. Heidorn, Thomas / Kunze, Wolfgang / Schmaltz, Christian
Liquiditätsmodellierung von Kreditzusagen (Term Facilities and Revolver) 2008
92. Burger, Andreas
Produktivität und Effizienz in Banken – Terminologie, Methoden und Status quo 2008
91. Lochel, Horst / Pecher, Florian
The Strategic Value of Investments in Chinese Banks by Foreign Financial Institutions 2008
90. Schalast, Christoph / Morgenschweis, Bernd / Sprenger, Hans Otto / Ockens, Klaas / Stachuletz, Rainer / Safran, Robert
89. Schalast, Christoph / Stralkowski, Ingo
10 Jahre deutsche Buyouts 2008
88. Bannier, Christina E./ Hirsch, Christian
The Economics of Rating Watchlists: Evidence from Rating Changes 2007
87. Demidova-Menzel, Nadeshda / Heidorn, Thomas
Gold in the Investment Portfolio 2007
86. Hölscher, Luise / Rosenthal, Johannes
Leistungsmessung der Internen Revision 2007
85. Bannier, Christina / Hänsel, Dennis
Determinants of banks' engagement in loan securitization 2007
84. Bannier, Christina E.
“Smoothing” versus “Timeliness” - Wann sind stabile Ratings optimal und welche Anforderungen sind an optimale Berichtsregeln zu stellen? 2007
83. Bannier, Christina E.
Heterogeneous Multiple Bank Financing: Does it Reduce Inefficient Credit-Renegotiation Incidences? 2007
82. Cremers, Heinz / Lohr, Andreas
Deskription und Bewertung strukturierter Produkte unter besonderer Berücksichtigung verschiedener Marktszenarien 2007
81. Demidova-Menzel, Nadeshda / Heidorn, Thomas
Commodities in Asset Management 2007
80. Cremers, Heinz / Walzner, Jens
Risikosteuerung mit Kreditderivaten unter besonderer Berücksichtigung von Credit Default Swaps 2007
79. Cremers, Heinz / Traughber, Patrick
Handlungsalternativen einer Genossenschaftsbank im Investmentprozess unter Berücksichtigung der Risikotragfähigkei 2007
78. Gerdesmeier, Dieter / Roffia, Barbara
Monetary Analysis: A VAR Perspective 2007
77. Heidorn, Thomas / Kaiser, Dieter G. / Muschiol, Andrea
Portfoliooptimierung mit Hedgefonds unter Berücksichtigung höherer Momente der Verteilung 2007
76. Jobe, Clemens J. / Ockens, Klaas / Safran, Robert / Schalast, Christoph
Work-Out und Servicing von notleidenden Krediten – Berichte und Referate des HfB-NPL Servicing Forums 2006 2006
75. Abrar, Kamyar / Schalast, Christoph
Fusionskontrolle in dynamischen Netzsektoren am Beispiel des Breitbandkabelsektors 2006
74. Dickler, Robert A. / Schalast, Christoph
Wertpapierprospekte: Markteinführungspublicität nach EU-Prospektverordnung und Wertpapierprospektgesetz 2006
72. Belke, Ansgar / Polleit, Thorsten
How the ECB and the US Fed set interest rates 2006
71. Heidorn, Thomas / Hoppe, Christian / Kaiser, Dieter G.
Heterogenität von Hedgefondsindizes 2006
<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>Hess, Dieter</td>
<td>Determinants of the relative price impact of unanticipated Information in U.S. macroeconomic releases</td>
<td>2003</td>
</tr>
<tr>
<td>52</td>
<td>Heidorn, Thomas / Siragusano, Tindaro</td>
<td>Die Anwendbarkeit der Behavioral Finance im Devisenmarkt</td>
<td>2004</td>
</tr>
<tr>
<td>53</td>
<td>Polleit, Thorsten</td>
<td>The Slowdown in German Bank Lending – Revisited</td>
<td>2004</td>
</tr>
<tr>
<td>56</td>
<td>Cremers, Heinz / Klüß, Norbert / König, Markus</td>
<td>Incentive Fees. Erfolgsabhängige Vergütungsmodelle deutscher Publikumsfonds</td>
<td>2003</td>
</tr>
<tr>
<td>58</td>
<td>Hei, Michael / Schlunk, Torsten</td>
<td>The Relevance of real-time data in estimating reaction functions for the euro area</td>
<td>2004</td>
</tr>
<tr>
<td>59</td>
<td>Loeh, Horst / Polleit, Thorsten</td>
<td>A case for money in the ECB monetary policy strategy</td>
<td>2005</td>
</tr>
<tr>
<td>60</td>
<td>Meyer, Bernd / Pietrowski, Alexander</td>
<td>Performanceeffekte nach Directors Dealings in Deutschland, Italien und den Niederlanden</td>
<td>2004</td>
</tr>
<tr>
<td>61</td>
<td>Belke, Ansgar / Polleit, Thorsten</td>
<td>(How) Do Stock Market Returns React to Monetary Policy? An ARDL Cointegration Analysis for Germany</td>
<td>2005</td>
</tr>
<tr>
<td>62</td>
<td>Baumann, Stefan / Löchel, Horst</td>
<td>The Endogeneity Approach of the Theory of Optimum Currency Areas - What does it mean for ASEAN + 3?</td>
<td>2006</td>
</tr>
<tr>
<td>63</td>
<td>Heidorn, Thomas / Hoppe, Christian / Kaiser, Dieter G.</td>
<td>Möglichkeiten der Strukturierung von Hedgefondsportfolios</td>
<td>2005</td>
</tr>
<tr>
<td>64</td>
<td>Daynes, Christian / Schalast, Christoph</td>
<td>Aktuelle Rechtsfragen des Bank- und Kapitalmarktrechts II: Distressed Debt - Investing in Deutschland</td>
<td>2005</td>
</tr>
<tr>
<td>65</td>
<td>Becker, Gernot M. / Harding, Perham / Holscher, Luise</td>
<td>Financing the Embedded Value of Life Insurance Portfolios</td>
<td>2005</td>
</tr>
<tr>
<td>66</td>
<td>Schalast, Christoph</td>
<td>Modernisierung der Wasserwirtschaft im Spannungsfeld von Umweltschutz und Wettbewerb – Braucht Deutschland eine Rechtsgrundlage für die Vergabe von Wasserversorgungskonzessionen? –</td>
<td>2005</td>
</tr>
<tr>
<td>67</td>
<td>Heun, Michael / Schlink, Torsten</td>
<td>Early Warning Systems of Financial Crises - Implementation of a currency crisis model for Uganda</td>
<td>2004</td>
</tr>
<tr>
<td>68</td>
<td>Heidorn, Thomas / Hoppe, Christian / Kaiser, Dieter G.</td>
<td>Möglichkeiten der Strukturierung von Hedgefondsportfolios</td>
<td>2005</td>
</tr>
<tr>
<td>69</td>
<td>Belke, Ansgar / Polleit, Thorsten</td>
<td>(How) Do Stock Market Returns React to Monetary Policy? An ARDL Cointegration Analysis for Germany</td>
<td>2005</td>
</tr>
<tr>
<td>70</td>
<td>Daynes, Christian / Schalast, Christoph</td>
<td>Aktuelle Rechtsfragen des Bank- und Kapitalmarktrechts II: Distressed Debt - Investing in Deutschland</td>
<td>2005</td>
</tr>
<tr>
<td>71</td>
<td>Becker, Gernot M. / Harding, Perham / Holscher, Luise</td>
<td>Financing the Embedded Value of Life Insurance Portfolios</td>
<td>2005</td>
</tr>
</tbody>
</table>
42. Beiträge von Studierenden des Studiengangs BBA 012 unter Begleitung von Prof. Dr. Norbert Seeger

41. Overbeck, Ludger / Schmidt, Wolfgang
Modeling Default Dependence with Threshold Models 2003

40. Balthasar, Daniel / Cremers, Heinz / Schmidt, Michael
Portfoliooptimierung mit Hedge Fonds unter besonderer Berücksichtigung der Risikokomponente 2002

39. Heidorn, Thomas / Kantwill, Jens
Eine empirische Analyse der Spreadunterschiede von Festzinsanleihen zu Floatern im Euroraum und deren Zusammenhang zum Preis eines Credit Default Swaps 2002

38. Bottcher, Henner / Seeger, Norbert

37. Moormann, Jürgen
Terminologie und Glossar der Bankinformatik 2002

36. Heidorn, Thomas
Bewertung von Kreditprodukten und Credit Default Swaps 2001

35. Heidorn, Thomas / Weier, Sven
Einführung in die fundamentale Aktienanalyse 2001

34. Seeger, Norbert
International Accounting Standards (IAS) 2001

33. Moormann, Jürgen / Stehling, Frank
Strategic Positioning of E-Commerce Business Models in the Portfolio of Corporate Banking 2001

32. Sokolovsky, Zbynek / Strohhecker, Jürgen
Fit für den Euro, Simulationsbasierte Euro-Maßnahmenplanung für Dresdner-Bank-Geschäftsstellen 2001

31. Rolfbach, Peter
Behavioral Finance - Eine Alternative zur vorherrschenden Kapitalmarkttheorie? 2001

30. Heidorn, Thomas / Jaster, Oliver / Willeitner, Ulrich
Event Risk Covenants 2001

29. Biswas, Rita / Löchel, Horst
Recent Trends in U.S. and German Banking: Convergence or Divergence? 2001

28. Eberle, Günter Georg / Löchel, Horst
Die Auswirkungen des Übergangs zum Kapitaldeckungsverfahren in der Rentenversicherung auf die Kapitalmärkte 2001

27. Heidorn, Thomas / Klein, Hans-Dieter / Siebrecht, Frank
Economic Value Added zur Prognose der Performance europäischer Aktien 2000

26. Cremers, Heinz
Konvergenz der binomialen Optionspreismodelle gegen das Modell von Black/Scholes/Merton 2000

25. Löchel, Horst
Die ökonomischen Dimensionen der ‚New Economy‘ 2000

24. Frank, Axel / Moormann, Jürgen
Grenzen des Outsourcing: Eine Exploration am Beispiel von Direktbanken 2000

23. Heidorn, Thomas / Schmidt, Peter / Seiler, Stefan
Neue Möglichkeiten durch die Namensaktie 2000

22. Boger, Andreas / Heidorn, Thomas / Graf Waldstein, Philipp
Hybrides Kernkapital für Kreditinstitute 2000

21. Heidorn, Thomas
Entscheidungsorientierte Mindestmargenkalkulation 2000

20. Wolf, Birgit
Die Eigenmittelkonzeption des § 10 KWG 2000

19. Cremers, Heinz / Robé, Sophie / Thiele, Dirk
Beta als Risikomaß - Eine Untersuchung am europäischen Aktienmarkt 2000

18. Cremers, Heinz
Optionspreisbestimmung 1999

17. Cremers, Heinz
Value at Risk-Konzepte für Marktrisiken 1999

Gründung einer deutschen Strombörse für Elektrizitätsderivate 1999

15. Deister, Daniel / Ehrlicher, Sven / Heidorn, Thomas
CatBonds 1999

14. Jochum, Eduard
Hoshin Kanri / Management by Policy (MbP) 1999

13. Deister, Daniel / Ehrlicher, Sven / Heidorn, Thomas
Gründung einer deutschen Strombörse für Elektrizitätsderivate 1999

12. Cremers, Heinz
Value at Risk-Konzepte für Marktrisiken 1999

11. Chevalier, Pierre / Heidorn, Thomas / Rütze, Merle
Gründung einer deutschen Strombörse für Elektrizitätsderivate 1999

10. Deister, Daniel / Ehrlicher, Sven / Heidorn, Thomas
CatBonds 1999

9. Jochum, Eduard
Hoshin Kanri / Management by Policy (MbP) 1999

8. Cremers, Heinz
Value at Risk-Konzepte für Marktrisiken 1999

7. Chevalier, Pierre / Heidorn, Thomas / Rütze, Merle
Gründung einer deutschen Strombörse für Elektrizitätsderivate 1999

6. Deister, Daniel / Ehrlicher, Sven / Heidorn, Thomas
CatBonds 1999

5. Jochum, Eduard
Hoshin Kanri / Management by Policy (MbP) 1999

4. Cremers, Heinz
Value at Risk-Konzepte für Marktrisiken 1999

3. Chevalier, Pierre / Heidorn, Thomas / Rütze, Merle
Gründung einer deutschen Strombörse für Elektrizitätsderivate 1999

2. Deister, Daniel / Ehrlicher, Sven / Heidorn, Thomas
CatBonds 1999

1. Jochum, Eduard
Hoshin Kanri / Management by Policy (MbP) 1999
<table>
<thead>
<tr>
<th>No.</th>
<th>Author/Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Beyna, Ingo / Wystup, Uwe</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>On the Calibration of the Cheyette. Interest Rate Model</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Scholz, Peter / Walther, Ursula</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>Investment Certificates under German Taxation. Benefit or Burden for Structured Products’ Performance</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Esquível, Manuel L. / Veiga, Carlos / Wystup, Uwe</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>Unifying Exotic Option Closed Formulas</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Packham, Natalie / Schlögl, Lutz / Schmidt, Wolfgang M.</td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td>Credit gap risk in a first passage time model with jumps</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Packham, Natalie / Schlögl, Lutz / Schmidt, Wolfgang M.</td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td>Credit dynamics in a first passage time model with jumps</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Reiswich, Dimitri / Wystup, Uwe</td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td>FX Volatility Smile Construction</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Reiswich, Dimitri / Tompkins, Robert</td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td>Potential PCA Interpretation Problems for Volatility Smile Dynamics</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Keller-Ressel, Martin / Kilin, Fiodar</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>Forward-Start Options in the Barndorf-Nielsen-Shephard Model</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Griebsch, Susanne / Wystup, Uwe</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>On the Valuation of Fader and Discrete Barrier Options in Heston’s Stochastic Volatility Model</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Veiga, Carlos / Wystup, Uwe</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>Closed Formula for Options with Discrete Dividends and its Derivatives</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Packham, Natalie / Schmidt, Wolfgang</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>Latin hypercube sampling with dependence and applications in finance</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Hakala, Jurgen / Wystup, Uwe</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>FX Basket Options</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Weber, Andreas / Wystup, Uwe</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>Vergleich von Anlagestrategien bei Riesterrenten ohne Berücksichtigung von Gebühren. Eine Simulationsstudie zur Verteilung der Renditen</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Author/Title</td>
<td>Year</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>12.</td>
<td>Weber, Andreas / Wystup, Uwe</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>Riesterrente im Vergleich. Eine Simulationsstudie zur Verteilung der Renditen</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Wystup, Uwe</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>Vanna-Volga Pricing</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Wystup, Uwe</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>Foreign Exchange Quanto Options</td>
<td></td>
</tr>
<tr>
<td>09.</td>
<td>Wystup, Uwe</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>Foreign Exchange Symmetries</td>
<td></td>
</tr>
<tr>
<td>08.</td>
<td>Becker, Christoph / Wystup, Uwe</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>Was kostet eine Garantie? Ein statistischer Vergleich der Rendite von langfristigen Anlagen</td>
<td></td>
</tr>
<tr>
<td>07.</td>
<td>Schmidt, Wolfgang</td>
<td>2007</td>
</tr>
<tr>
<td></td>
<td>Default Swaps and Hedging Credit Baskets</td>
<td></td>
</tr>
<tr>
<td>06.</td>
<td>Kilin, Fiodor</td>
<td>2007</td>
</tr>
<tr>
<td></td>
<td>Accelerating the Calibration of Stochastic Volatility Models</td>
<td></td>
</tr>
<tr>
<td>05.</td>
<td>Griebsch, Susanne/ Kühn, Christoph / Wystup, Uwe</td>
<td>2007</td>
</tr>
<tr>
<td></td>
<td>Instalment Options: A Closed-Form Solution and the Limiting Case</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interest Rate Convexity and the Volatility Smile</td>
<td></td>
</tr>
<tr>
<td>03.</td>
<td>Becker, Christoph/ Wystup, Uwe</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td>On the Cost of Delayed Currency Fixing</td>
<td></td>
</tr>
<tr>
<td>02.</td>
<td>Boenkost, Wolfram / Schmidt, Wolfgang M.</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td>Cross currency swap valuation</td>
<td></td>
</tr>
<tr>
<td>01.</td>
<td>Wallner, Christian / Wystup, Uwe</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td>Efficient Computation of Option Price Sensitivities for Options of American Style</td>
<td></td>
</tr>
</tbody>
</table>

HfB – SONDERARBEITSBERICHTE DER HfB - BUSINESS SCHOOL OF FINANCE & MANAGEMENT

<table>
<thead>
<tr>
<th>No.</th>
<th>Author/Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.</td>
<td>Nicole Kahmer / Jürgen Moormann</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td>Studie zur Ausrichtung von Banken an Kundenprozessen am Beispiel des Internet (Preis: € 120,--)</td>
<td></td>
</tr>
</tbody>
</table>
Printed edition: € 25.00 + € 2.50 shipping

Download:
Working Paper: http://www.frankfurt-school.de/content/de/research/Publications/list_of_publication0.html
CPQF: http://www.frankfurt-school.de/content/de/research/quantitative_Finance/research_publications.html

Order address / contact
Frankfurt School of Finance & Management
Sonnemannstr. 9 – 11 • D–60314 Frankfurt/M. • Germany
Phone: +49 (0) 69 154 008 – 734 • Fax: +49 (0) 69 154 008 – 728
eMail: m.biemer@fs.de
Further information about Frankfurt School of Finance & Management may be obtained at: http://www.fs.de