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Abstract

Exclusive rights, like mineral leases and radio spectrum licences,
often hold option-like features. This occurs when licencees do not face
the obligation to to develop the lease or to undertake the investment
required to use the assigned spectrum. However, to avoid licences
being unused for lengthy periods, regulators sometimes set time limits,
after which the exclusive right of exercise may be revoked, prior to its
term, because of inaction. This paper looks at the potential impact of
"use or lose" provisions upon the private time of investment. We �nd
that these provisions may either increase or reduce the probability of
early investment, depending on the risk of losing the licence and the
expectations about on-going deployment costs.
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1 Introduction

Rights, but not obligations, to invest capital in productive assets, can be
classi�ed by whether they are shared or proprietary options (Kelster, 1984).
The former are collective opportunities for a number of competitive �rms

or of a whole industry, while the latter provide exclusive rights of exercise
resulting from early investment (e.g. real estate), patents, copyrights, trade-
marks, or from a �rm�s managerial resources, technological knowledge or
reputation which competitors cannot duplicate (Dixit and Pindyck, 1994).
Proprietary options can also be embedded in other exclusive rights of

exercise, granted by public authorities, such as concessions to supply utility
markets, mineral leases or spectrum licences.
This occurs when licensors do not impose the obligation to develop the

lease or to supply the market by using the assigned radio spectrum.
Whether or not licencees should be granted with such �exibility, remains

an open and controversial political issue.1

As for the electromagnetic spectrum, advocates of roll-out obligations
maintain that regulators should deter speculative spectrum warehousing with
no speci�c use intended. For instance, various studies have showed that
the assigned spectrum often remains idle (FCC, 2002), and band idleness is
counted by the supporters of a "spectrum commons" among the arguments
against the "proprietary rights" approach (Freyens, 2009).
On the other hand, critics of deployment requirements maintain that,

especially in industries which are experiencing rapid developments on both
the supply and demand side, the ability to wait and see, before committing a
capital outlay, allows �rms to avoid costly errors. This option value, arising
from the asymmetry between the right and the obligation, is clearest in
new investment-intensive ICT services, for which it may turn out there is
insu¢ cient demand.
Even regulators who have somehow recognized the merits of not imposing

roll-out requirements have expressed concern about allowing licencees to sit
on the spectrum for an inde�nite period, and have called for reforms allowing
to revoke licences, prior to their term, in case of inaction.

1For example, on June 2008 the US House of Representative voted on the Responsible
Federal Oil and Gas Lease Act, aimed at prohibiting the Secretary of Interior from issuing
new Federal oil and gas leases to holders of existing leases which do not develop their leases
or relinquish such leases. However, the bill failed to get the two-thirds support necessary
for the passage.
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For example, in a Discussion Paper on Radio Spectrum Policy and Plan-
ning released in 2007, New Zealand�s Ministry of Economic Development
stated that "use or lose provisions should apply to acquired spectrum [;] the
purpose of a use or lose provision is to spur investment at an early date and
avoid spectrum being unused for lengthy periods" (Ministry of Economic
Development, 2007, § 6.4).
Using the analogy with �nancial options, adding use or lose (hereafter

"UOL") clauses is equivalent to shorten the time to maturity of the real
option embedded in a contract which gives the right, but does not impose
the obligation, to buy an asset, namely the entitlement to the stream of
pro�ts stemming from using the licence, by a¤ording a sunk capital cost (the
exercise price).
However, contrary to standard �nancial contracts, a quick read through

licencing policies and regulation reveal that UOL provisions, as currently
applied, often involve an uncertain time to maturity.
This may occur either because, when setting in advance a speci�c dead-

line, licensors may then decide not to avail themselves of the revocation
clause, or because they simply retain the right to discretionary revoke the
licence or issue thinly-veiled warnings.
For example, Mexican Regulation of Satellite Communications allowed

the Secreteria de Comunicaciones y Transportes to revoke concessions to
broadcast DTH satellite services, prior to their term, if the concessionaire
failed to use it within 180 days after it was granted. In Norway, pursuant
to the Electronic Communications Act, the Ministry of Transport and Com-
munications may revoke spectrum licences in the event of low utilization be
the result of the market power of the licencee. On February 2009, in the
Philippines, the National Telecommunications Commission warned telecoms
companies that was considering plans to recall frequencies that were cur-
rently not being used.2 Similarly, on July 2009, in Malaysia, the Information,
Communication and Cultural Minister stated that the Government could re-
voke the licences of the companies that were awarded the 2.3 Ghz spectrum
and that had yet to provide the required wireless broadband services using
WiMAX technology3.
This paper tries to shed lights on the potential impact of UOL provisions

2"NTC�s �use or lose it� warning to operators". TeleGeography CommsUdate.
www.teleogeography.com [February 2, 2009].

3"WiMax licence holders warned to use or lose it". TheStar Online.
http://thestar.com.my [July 30, 2009].
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upon the private time of investment, and it is motivated by two speci�c ques-
tions. First, does the risk of losing the licence spur deployment at an early
date? Second, is the e¤ectiveness of UOL provisions a¤ected by expectations
about on-going deployment costs?
To answer these questions, we develop a model where the holder of a sim-

ple4 proprietary option ("the licencee") is assumed to face uncertainty about
the returns of the irreversible investment required to exploit his/her exclu-
sive right of exercise, and licencing conditions allow the concedent authority
("the regulator") to discrestionary revoke the licence because of inaction.
A main result of the paper is that, contrary to the conventional wisdom,

reducing the expected time to maturity does not necessarily spur investment
at an early date. For instance, in industries which are likely to experience
declining deployment costs, "stringent" UOL provisions may even involve a
perverse e¤ect, by reducing, rather than increasing, the probability of early
investment.
The rest of the paper is organised as follows. Section 2 outlines the model.

Section 3 derives the value of a licence with uncertain time to maturity, and
illustrates the relationship between the optimal private trigger value and the
probability of losing the proprietary option. Section 4 evaluates the expected
time of investment, with and without uncertain time to maturity. Section 5
concludes, and the Appendix contains the proofs omitted in the text.

2 The Model

Suppose a risk-neutral �rm5 has acquired, say by an auction, an exclusive
and discretionary opportunity to undertake a development project yielding
a per period cash�ow xt.
The required instantaneous investment (K) is sunk, and the project can

neither be changed, nor temporarily stopped, nor shut down. Operating and
maintenance costs are comparatively small and set to zero.

4Both shared and proprietary options may be further distinguished by whether they
are simple or compound. The former include "commercial one-stage projects that derive
their value from expected cash �ows", while the latter are projects which "do not derive
their value primarily from cash in�ows, but from strategic value" (Smit and Trigeorgis,
2004, p.22-23).

5Introducing risk aversion does not substantially change the results because the analysis
can be developed under a risk neutral probability measure (Cox and Ross, 1976; Harrison
and Kreps, 1979).
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As for the uncertainty about future payo¤s, we assume that xt evolve
over time according to a standard geometric Brownian motion:6

dxt = �xtdt+ �xtdBt with � > 0; � > 0 and x0 = x > 0; (1)

where dBt are identically and independently distributed according to a nor-
mal distribution with mean zero and variance dt, and both � and � are
constant.
Moreover, we assume that licensing conditions allow the regulator to dis-

cretionary revoke the licence, because of inaction, prior to its term, which,
for simplicity, we set to in�nity.
We model the uncertainty about the actual time to maturity (T ) by

assuming that T (> 0) is exponentially distributed with intensity parameter
�, and is independent of the process x:

Pr(T 2 dt) = �e��tdt (2)

which implies that the expected time to maturity, without taking into
account any licencee�s investment decision, is E(T ) = 1

�
:7

Finally, we assume that the industry under consideration may bene�t
from exogenous developments - such as R&D progress or serialization in the
manufacturing chain of particular components that reduce the cost of the

6The process xt may be interpreted as a reduced form of a more general pro�t function
(Dixit and Pindyck, 1994; Grenadier, 2002, Moretto 2008). For instance, (1) is equivalent
to consider the present value of revenues accruing from a �xed-scale project. Denoting
with Vt the expected present value, this is given by:

Vt = Et

�Z 1

t

e�r(s�t)xtdt

�
=

xt
r � �

where r > � is the constant real risk-free rate of interest. Since Vt is a constant multiple of
xt it follows a geometric Brownian motion with the same parameters � and � (Harrison,
1985, p.44).

7This speci�cation allows us to look both at situations where the regulator does not
explicitly set time limits, but reserve the right to cancel the licence because of inaction,
and at situations where the licencee has a limited amount of time to start using the licence,
but the regulator may then discretionary decide not to avail itself of the revocation clause.
In the latter case, the regulator may set � = 1

T ; so that the mean maturity corresponds
to the desired time to maturity (Carr, 1998).
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current technology - implying that the licencee needs to spend less if he/she
decide to wait longer before supplying the market.8

Since revocation would deprive the licencee of exploiting potential cost
savings, to keep things as simple as possible we model K as a decreasing
function of the expected time to maturity:9 10

K = �K +
k

E(T )
(3)

where �K > 0 is the long-run capital cost, and k
E(T )

is the expected oppor-
tunity cost incurred by prematurely investing to avoid losing the licence.

3 The value of the licence and the optimal
trigger value

Within the range of x where it is optimal for the licencee to keep the option-
to-invest alive, the project value W (x;K), with uncertain time to maturity,
is given by the solution of the following ODE (Carr, 1998; Miltersen and
Schwartz, 2007):

8At the end of Section 4 we will relax this assumption, in order to look at situationsis
una¤ected by the time to maturity.

9This speci�cation is broadly similar to the one used by Miltersen and Schwartz (2007)
who consider an R&D project aimed at developing a new product which can be abandoned
at any time before manufacturing the product. The Author assume that developing the
product requires a per unit of time research expenditure k, and that completion of the
project arrives at a random time which is described by a Poisson process with intensity
parameter �: Once the project has been completed, the �rm has the option to pay a �nal
(�xed) capital cost, say �K; to manufacturing the product. In that framework, an increase
of � (i.e. a decrease in the expected time to completation) reduces total capital costs. By
contrast, in our framework, since early maturity would prevent the licensee from exploiting
potential technological developments, capital costs are modelled as an increasing function
of the intensity parameter �.
10Equation (3) is also compatible with the case where two opposite trends a¤ect the

evolutionary pattern of capital costs. On the one hand, technological developments in-
volving potential input savings and, on the other hand, cost increases attributable to the
limited number of licences issued by the regulator (Dixit and Pindyck, 2000; Salsas and
Koboldt, 2004). For a more in-depth discussion about alternative micro-foundations of
(3), see Appendix A.
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1

2
�2x2Wxx(x;K)+�xWx(x;K)�rW (x;K) =

(4)

= �

�
W (x;K)�max

�
x

r � � �K; 0
��
; for all x < x̂

where r > � is the constant real risk-free rate of interest, and x̂ is the optimal
trigger value, i.e. the licencee will invest when xt hits x̂.
However, if in the meantime the regulator announced that he is about to

revoke the licence, its value would fall to max
�

x
r�� �K; 0

�
, and the licencee

will still immediately invest, provided x > x̂NPV , where x̂NPV � (r � �)K
stands for the standard break-even point at which the value of the discounted
cash�ow equals the capital cost.
Thus, we get the following system of ODEs:

1

2
�2x2Wxx(x;K) + �xWx(x;K)� (r + �)W (x;K) = 0, for 0 < x < x̂NPV

(5)
and

1

2
�2x2Wxx(x;K)+�xWx(x;K)�(r+�)W (x;K) = ��

�
x

r � � �K
�
, for x̂NPV � x < x̂

(6)
Equation (5) provides the value of the licence when x is below the NPV

trigger. In other words, it describes the fact that with probability � per unit
of time, the licence will be revoked, in which case its value would collapse to
zero. This reduces the project value W (x;K).
On the other hand, equation (6) provides the value of the licence when x

is above the NPV trigger. In this case, if the regulator decided to exercise
the revocation clause, since the project�s NPV is positive, the licencee would
immediately invest. This increases W (x;K):
Our �rst proposition is obtained by solving the two ODEs, imposing the

boundary condition that limx!0W (x;K) = 0.
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Proposition 1 1) The option value with uncertain time to maturity is:

W (x; x̂;K) =
m11 (x)


1 for 0 < x < x̂NPV

m21 (x)

1 +m22 (x)


2 + �x
(r��)(r+���) �

�K
(r+�)

for x̂NPV � x < x̂
(7)

where m11; m12; m22 are positive constants, and 
1 > 1; 
2 < 0 are
the positive and negative roots of the auxiliary quadratic equation �(z) =
1
2
�2z(z � 1) + �z � (r + �) = 0; i.e.:


1 =

�
1
2
�2 � �

�
+
q�

1
2
�2 � �

�2
+ 2 (r + �)�2

�2
> 1


2 =

�
1
2
�2 � �

�
�
q�

1
2
�2 � �

�2
+ 2 (r + �)�2

�2
< 0

2) The optimal trigger value is given by:


1 � 
2

1 � 1

m22 (x̂)

2 � x̂

(r + �� �) +

1


1 � 1
r

r + �
( �K + �k) = 0 (8)

where m22 =
(r+��
1�)

(
1�
2)(r+���)
�K
(r+�)

�
x̂NPV

��
2 > 0
Proof. See Appendix B
As shown by the real-option literature, when returns are uncertain, the

ability to wait and see before committing a capital outlay always increases
the value of the project11. Thus, all the constants m11; m12; m22 must be
non-negative (see Appendix B).
While m11 (x)


1 indicates the value of the option-to-invest in the interval
where it is not worth doing so (i.e. 0 < x < x̂NPV ), the second expression in
(7) deserves some further explanation.
Keeping in mind that, within the interval x̂NPV � x < x̂, if the reg-

ulator decided to avail himself of the revocation clause, the licencee would
immediately invest (with NPV given by �x

(r��)(r+���) �
�K
(r+�)

), the �rst term
m21 (x)


1 represents the option value of investing the �rst time x reaches the
optimal trigger x̂, whilst the second term, with the negative root, represents
the expected gain due to the ability to keep the option alive if x falls below
x̂NPV .
11See Dixit and Pindyck (1994, chs. 6 and 7) for an exhaustive discussion.

8



From Proposition 1, it is possible to show that at x̂NPV we get (see
Appendix B):

(m11 �m21)
�
x̂NPV

�
1 = (r + �� 
2�)
(
1 � 
2)(r + �� �)

�K

(r + �)
> 0 (9)

which indicates the increase in the option value when the licencee knows
for sure that if the regulator decided to exercise the revocation clause, the
project would be immediately carried-out.
Further, taking the derivative of (8) with respect toK (or �K); it is easy to

show that the optimal trigger is monotonically increasing in the investment
cost (see Appendix B):

dx̂

dK
> 0 (10)

Equation (7) also allows to derive the option value when the licencee
holds a perpetual growth option. Indicating with �x the optimal trigger when
� = 0, we obtain:

V (x; �x; �K) = m (x)�1 ; for all x < �x (11)

where m =
�

�x
r�� � �K

�
(�x)��1 > 0, and 1 < �1 < r=� is the positive root of

the auxiliary quadratic equation 	(z) = 1
2
�2z(z � 1) + �z � r = 012.

By (8), when � = 0, the trigger reduces to:13

�x =
�1

�1 � 1
(r � �) �K (12)

Note that, when the licencee does not face any risk of losing the licence,
the investment rule implies that V (x; �x; �K) � x

r�� � �K for all x � �x.
In other words, when � = 0, the option value is simply equal to the NPV

of the project,
�

�x
r�� � �K

�
; time the probability of investing in the future,

given the current level of x, i.e.
�
x
�x

��1 :
A numerical example will illustrate the relationship between the optimal

trigger value and the intensity parameter �. Suppose r = 0:05, � = 0:03,
� = 0:2, �K = 30, and k = 5:

12That is.:

�1 =

�
1
2�

2 � �
�
+

q�
1
2�

2 � �
�2
+ 2r�2

�2
> 1

13Note that x̂ in (8) converges to �x = �1
�1�1

(r � �) �K as �! 0.
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Figure 1 about here

Figure 1 shows the solution graphically, and con�rms the intuition that,
with respect to a situation where the date of investment is left entirely to
the licencee�s discretion, UOL provisions tend to reduce the optimal trigger.
However, there is an interesting non-monotonic pattern. In our numerical

example, the trigger value decreases for � below 0:5 (i.e. for E(T ) above 2
years), but then it increases.14

Generally speaking, it is possible to show that there exists a critical value
of � above which the risk of losing the licence would induce the licencee to
set a trigger higher than the one he/she would have chosen when holding a
perpetual proprietary option.

Proposition 2 There exists a value of the intensity parameter ~� such that:�
x̂ � �x for � � ~�
x̂ > �x for � > ~�

i.e. for � > ~� the optimal private trigger value with uncertain time to
maturity is strictly higher than the one without maturity.

Proof. See Appendix D
In words, Proposition 2 states that, if the licencee faces a "very short"

expected time to maturity, he/she will maximize the option value by moving
up the optimal exercise boundary.
The analogy with �nancial options may help us to interpret this result.
The real option considered in this paper is equivalent to a call option in

a �nancial asset that gives a constant dividend rate equal to r � �.
Therefore, if the dividend rate is positive, there is an opportunity cost of

keeping the option alive rather than exercising it.
This opportunity cost is represented by the cash �ows that the licencee

loses by warehousing the licence. However, as a higher value of the project
implies higher dividends, when this value reaches an upper threshold, the op-
portunity cost of forgone dividends becomes large enough to make worthwhile
exercising the option (Dixit and Pindyck, 1994, p.149).

14Figure 3 in Appendix C shows the relationship between the optimal trigger value and
the intensity parameter � using equation (15) in Appendix A.
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Now, if we introduce into this picture a UOL provision which induces the
licencee to decide about the project prematurely, the value of the investment
opportunity is a¤ected by the parameter � in three ways.
First, if x 2 (0; x̂NPV ), the e¤ect of early maturity is equivalent to a

reduction in the rate of capital gain on x (from � to �� �); which increases
the dividend rate from r � � to r + �� �: In other words, the risk of losing
the licence increases the opportunity cost of keeping the option alive. This
reduces W (x;K) and, then, the trigger value x̂:
Second, when x 2 [x̂NPV ; x̂); the licencee, although investing prematurely,

will receive a positive NPV and the stream of dividends r�� thereafter. As
shown by (9), this increases W (x;K), and may lead to an increase in x̂:
Finally, since early maturity would prevent the licencee from exploiting

potential cost savings, an increase of � reduces both the NPV andW (x;K),
and this involves an increase in x̂ (see (10))
As Proposition 2 states, if the licencee faces a very short expected time

to maturity (� > ~�), the overall net e¤ect may be an increase of the optimal
exercise boundary above the trigger without maturity.

4 The expected time of investment

We have shown that the risk of losing the licence may either reduce or increase
the optimal trigger, depending on the expected time to maturity.
Note that whereas a reduction of the trigger always implies a higher

probability of early investment, the reverse does not necessarily apply.
This because, before reaching the optimal trigger, the regulator might

warn the licencee that he is about to cancel the licence, and this could induce
the licencee to immediately invest, even though x has not already reached
the optimal threshold.
In this Section we then look at the expected time of investment by com-

paring the case where the licencee faces the risk of losing the licence with
a situation where the time of investment is entirely left to the licencee�s
discretion.
By denoting withE(�̂�) the expected time of investment when the licencee

faces an uncertain time to maturity, and with E(��) the expected time when
the licencee holds a perpetual option, we obtain the following proposition.

Proposition 3 The di¤erence between the expected time of investment "with"
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and "without time to maturity" may be approximated by the following expres-
sion:

E(�̂�)� E(��) ' m�1 ln(
x̂

�x
) + E(�̂)

h
E(T̂ )� E(�̂)

i
E(T )

(13)

where m � (�� 1
2
�2) > 0:

Proof. See Appendix E
In (13), E(�̂) = m�1 ln( x̂

x
) stands for the expected time for the process x

to reach for the �rst time x̂ without taking account of the time to maturity,
while E(T̂ ) stands for the expected time to maturity taking the licencee�s
optimal investment decision into account. Finally, E(T ) = 1

�
> E(T̂ ) stands

for the expected time to maturity without taking account of the licencee�s
optimal investment decision.
Note that since E(T̂ ) accounts for the probability that the regulator will

revoke the licence in the interval (0; �̂), the second term on the r.h.s. of (13)
is always negative15, while the �rst term is negative when x̂ < �x, and positive
the other way around.
Thus, when � < ~�; i.e. x̂ < �x, UOL provisions reduce the expected time

of investment, i.e. E(�̂�) < E(��):
However, when the licencee faces a relatively short expected time to ma-

turity (� > ~�), the increase in the trigger may be such that E(�̂�) > E(��): In
other words, in this case, UOL provisions may involve a potentially perverse
e¤ect, by reducing, rather than increasing, the probability of early invest-
ment.
Key to this result is the assumption that early maturity would deprive

the licencee of potential cost savings. For instance, it is possible to show
that, if the industry is unlike to bene�t from declining deployment costs, the

15By (2), the probability that the maturity occurs in the interval (0; t) is 1 � e��t:
Therefore, substituting the generic unknown time t with E(�̂); we get

E(T̂ ) '
Z E(�̂)

0

t�e��tdt =
1

�

h
1� e�E(�̂)

i
' 1

�
E(�̂)

Since E(�̂) = m�1 ln( x̂x ); substituing in the above expression we get E(T̂ ) '
1
�

h
1�

�
x
x̂

�m�1i
: Note that if x̂ ! 1; E(T̂ ) = E(T ) = 1

� ; i.e. E(T̂ ) converges to the

expected time to maturity without taking any private optimal investment decision into
account. On the contrary, if x̂ ! x; the licencee invests immediately, so that E(T̂ ) = 0;
i.e. no maturity occurs.
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higher is the risk of losing the licence, the lower will be the optimal trigger
and, consequently, the lower the expected time of investment.
Figure 2 illustrates the relationship between x̂ and �, when the exercise

price is una¤ected by the time to maturity.16

It is worth to note that, in this case, as the intensity parameter � increases,
x̂ tends to converge to the trigger without uncertainty, i.e. lim�!1x̂ !
rK17. In other words, by reducing the expected time to maturity, the reg-
ulator can mitigate the e¤ects of uncertainty about future cash�ows which
slows down the exercise of the proprietary option embedded in the licence.18

Figure 2 about here

5 Final Remarks

Radio spectrum licences, and other similar exclusive rights of exercise awarded
by public authorities, often remain idle.
As long as these rights derive their value from expected commercial re-

turns, licence warehousing may traced back to the licencees�willingeness-to-
wait more favorable market conditions, before committing a capital outlay.
However, in an attempt to strike a balance between granting �rms with

a certain degree of time �exibility and avoiding licences being unused for
lengthy periods, regulators have introduced, or are planning to introduce,

16We use the same values as in the previous numerical example, with the exception of
K which is now set constant and equal to 50: Moreover, to illustrate the e¤ects of the
volatility parameter, we also consider di¤erent values of � (0; 0:1; 0:2 and 0:3)
17Since lim�!0
1 = r=�; it is easy to show that

lim
�!0

�x =
r=�

r=�� 1(r � �)K � rK

18Note that, in this case, the e¤ect produced by UOL provisions is similar to the one
induced by increased competition, when N �rms - with private valuation of capital costs
- hold a shared option which allows to enter a new market. As shown by Lambrecht and
Perraudin (2003), as N increases, since each agent knows almost certainly that at least
one of his/her rivals will enter at a lower trigger, he/she will try to preempt the rivals
by lowering the trigger as far as possible, and the optimal trigger will converge to the
traditional break-even one.
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UOL provisions, which allowing to cancel existing licences because of inac-
tion.
In this paper we have looked at the impact of the risk of losing a simple

proprietary option upon the private time of investment.
Our �ndings suggests that while such a risk is likely to a¤ect the time of

investment, the e¤ects are not univocal, insofar they appear to depend on
the expectations about on-going deployment costs and the expected time to
maturity.
The e¤ectiveness of UOL provisions is clearest when licencees do not face

declining deployment costs. In other words, in relatively mature industries,
UOL provisions appear to be an e¤ective regulatory device to discourage
licence warehousing.
By contrast, more caution should be used by regulators in introducing

"stringent" UOL provisions in the case of industries which are experiencing
rapid technological developments.
For instance, when roll-out costs are likely to decline, shortening the

expected time to maturity does not necessarily spur investment at an early
date.
Moreover, when licencees face a very high risk of losing the licence, UOL

provisions may even involve a perverse e¤ect, by reducing, rather than in-
creasing, the probability of early investment.
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A Alternative micro-fundations of eq. (3)

The reduced-form (3) can be supported by a micro-model of innovation tech-
nology. Suppose that investment cost at time t > 0 is given by Kt = �K + It,
where It = I0(1� �)yte�t: � > 0 is the parameter that determines the speed
of the increase of the investment cost due to the limited number of licences
issued by the regulator, while yt is a Poisson process, with intensity para-
meter 
; which measures the number of technology arrivals up to time t,
and � 2 [0; 1) is a constant that captures the magnitude of the innovations
(i.e. the higher is �, the more the innovations reduce the cost). It can be
shown (Huisman 2001, proposition 3.1) that It is obtained as solution of the
following process:

dIt =

�
�Itdt� �It with probability 
dt
�Itdt with probability 1� 
dt

where I0 > 0: If we assume that the licencee may experience only one
technology innovation in the laps of time before investing, it is easy to show
that the expected capital cost is equal to:

K = �K + k(1� �)
Z 1

0

e�s
e�
sds = �K + I0(1� �)




 � � (14)

However, since an increase in the intensity of licence revocation reduces the
magnitude of the innovation the licencee can bene�t from (i.e. if � increases
towards1 than �! 0), substituting in (14) a simple expression as � = 1

1+�
;

the above equation reduces to:

K = �K +
k

1 + E(T )
(15)

where k � I0 


�� : Thus, provided that 
 > �; when �!1 the cost of capital

becomes K(1) = �K + k while when the licencee is able to exploiting all
technological innovations, �! 0; the cost tends to the long-run capital cost
K(0) = �K:
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B Proof of Proposition 1

The general solutions of the two di¤erential equations take respectively the
form:

W (x; x̂;K) =
m11 (x)


1 +m12 (x)

2 for 0 < x < x̂NPV

m21 (x)

1 +m22 (x)


2 + �x
(r��)(r+���) �

�K
(r+�)

for x̂NPV � x < x̂
(16)

where x̂NPV � (r��)K. Yet, 
1 > 1 and 
2 < 0 are the positive and negative
roots of the auxiliary quadratic equation �(z) = 1

2
�2z(z�1)+�z�(r+�) = 0:


1 =

�
1
2
�2 � �

�
+
q�

1
2
�2 � �

�2
+ 2 (r + �)�2

�2
> 1


2 =

�
1
2
�2 � �

�
�
q�

1
2
�2 � �

�2
+ 2 (r + �)�2

�2
< 0

Since the value of the investment cannot be below theNPV; limx!0W (x;K) =
0: This implies that m12 = 0 since 
2 < 0. Furthermore, since m11 (x)


1

stands for the option to develop the project, m11 > 0: To determine the
constants m11; m21; m22 and the critical level x̂, the value-matching and
smooth-pasting conditions must be satis�ed (Dixit and Pindyck, 1994). At
xt = x̂

NPV

m11

�
x̂NPV

�
1 = m21

�
x̂NPV

�
1 +m22

�
x̂NPV

�
2 + (17)

+
�x̂NPV

(r � �)(r + �� �) �
�K

(r + �)

m11
1
�
x̂NPV

�
1�1 = m21
1
�
x̂NPV

�
1�1 +m22
2
�
x̂NPV

�
2�1 + (18)

+
�

(r � �)(r + �� �)
and at xt = x̂

m21 (x̂)

1 +m22 (x̂)


2 +
�x̂

(r � �)(r + �� �) �
�K

(r + �)
=

x̂

(r � �) �K(19)

m21
1 (x̂)

1�1 +m22
2 (x̂)


2�1 +
�

(r � �)(r + �� �) =
1

(r � �) (20)

Condition (19) re�ects the fact that if an early maturity does not occur,
the licencee will �nd it optimal to invest when xt hits the trigger x̂: Condition
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(20) is the usual smooth-pasting condition at the investment threshold level.
On the other hand, conditions (17) and (18) re�ect the fact that the project
value function should be continuous and di¤erentiable at the point when the
option to invest meets the value of the project after the maturity time jumps
up. Multiplying (18) by x̂NPV , dividing for 
1, and subtracting from (17),
yield:

(m11 �m21)
�
x̂NPV

�
1 = m22

�
x̂NPV

�
2 + �x̂NPV

(r � �)(r + �� �) �
�K

(r + �)

(m11 �m21)
�
x̂NPV

�
1 = m22

2

1

�
x̂NPV

�
2 + �x̂NPV

(r � �)(r + �� �)
1

m22

2

1

�
x̂NPV

�
2+ �x̂NPV

(r � �)(r + �� �)
1
= m22

�
x̂NPV

�
2+ �x̂NPV

(r � �)(r + �� �)�
�K

(r + �)

Thus, we can solve for m22 and for (m11 �m21) :

m22 =
(r + �� 
1�)

(
1 � 
2)(r + �� �)
�K

(r + �)

�
x̂NPV

��
2 > 0 (21)

(m11 �m21) = (22)

=

�
�K

(r + �)
(


2

1 � 
2

) +
�x̂NPV

(r � �)(r + �� �)
1� 
2

1 � 
2

� �
x̂NPV

��
1
=

(r + �� 
2�)
(
1 � 
2)(r + �� �)

�K

(r + �)

�
x̂NPV

��
1 > 0
Note that the constants m22 and (m11 �m21) are always nonnegative (Dixit
and Pindyck, 1994, p.189).
From (19) and (20), we obtain the constantm21 and the trigger x̂:Multiplying

(20) by x̂,and dividing for 
1, yield:.

m21 (x̂)

1 +m22 (x̂)


2 +
�x̂

(r � �)(r + �� �) �
�K

(r + �)
=

x̂

(r � �) �K

m21 (x̂)

1 +m22


2

1
(x̂)
2 +

�x̂


1(r � �)(r + �� �)
=

x̂


1(r � �)
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Then the investment trigger is given by the following implicit function:


1 � 
2

1 � 1

m22 (x̂)

2 � x̂

(r + �� �) +

1


1 � 1
r

r + �
K = 0 (23)

Although equation (23) must be solved numerically, it can be shown that it
has a unique positive solution for x̂. Finally, we get the constant m21 as:

m21 =

�
x̂

(r + �� �)
1� 
2

1 � 
2

+

2


1 � 
2
rK

(r + �)

�
(x̂)�
1

Further, substituting m22 into (23), this can be rewritten as follows:

f(x̂; K) � 1


1 � 1
(r + �� 
1�)
(r + �� �)

�K

(r + �)

�
x̂NPV

��
2 (x̂)
2� x̂

(r + �� �)+

1


1 � 1
r

r + �
K = 0

and, by totally di¤erentiating f(x̂; K) with respect to K; we are able to
investigate the e¤ect of a change in the investment cost on the optimal trigger:

dx̂i
dK

= �fK(x̂; K)
fx̂(x̂; K)

(24)

Since fx̂(x̂; K) =

2


1�1
(r+��
1�)
(r+���)

�K
(r+�)

�
x̂NPV

��
2 (x̂)
2�1� 1
(r+���) < 0; the sign

of (24) is given by the numerator:

fK(x̂; K) =
1� 
2

1 � 1

(r + �� 
1�)
(r + �� �)

�

(r + �)

�
x̂NPV

��
2 (x̂)
2 + 
1

1 � 1

r

r + �
> 0

This concludes the proof.

C Optimal trigger value using eq. (15)

Figure 3 below shows the relationship between the optimal trigger value
and the intensity parameter � using equation (15), with r = 0:05, � = 0:03,
� = 0:2, �K = 30, and k = 20:

Figure 3 about here
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D Proof of Proposition 3

By Equation (23), let us de�ne Y1(�) � 
1�
2

1�1

m22 (x̂)

2 and Y2(�) � � 
1


1�1
r
r+�
K+

x̂
(r+���) : The optimal trigger is given by Y1(�) = Y2(�) while the trigger with-

out maturity is given by: Y2(� = 0) = � �1
�1�1

�K + �x
(r��) = 0: However, since

1
(r+���) <

1
(r��) ; by comparing Y2(�) with Y2(� = 0) to get x̂ > �x it is

su¢ cient that � 
1

1�1

r
r+�
( �K + �k) < � �1

�1�1
�K; or:�

�1
�1 � 1

� 
1

1 � 1

r

r + �

�
�K � 
1


1 � 1
r

r + �
�k < 0 (25)

From the auxiliary quadratic equation �(z) = 1
2
�2z(z�1)+�z�(r+�) = 0,

we can write: �
z

z � 1(r � �) + r +
1

2
�2z

�
= �

�
1� z

z � 1

�
Since �1 satis�es 	(z) �

�
z
z�1(r � �) + r +

1
2
�2z
�
= 0; it is evident that


1 > �1 > 1 and 
2 < �2 < 0; from which �1
�1�1

> 
1

1�1

: Therefore, by (25)
there may exist a value of � such that the second term is greater than the
�rst one. This concludes the proof.

E Proof of Proposition 4

Let start with the perpetual case. Denoting with �� = inf(t � 0 j x < �x)
the optimal investment time, since the instantaneous payo¤s are driven by
(1), the �rst passage time �� from x to �x is a stochastic variable with �rst
moment:

E(��) = m�1 ln(
�x

x
) (26)

where m � (� � 1
2
�2). So that �x = xemE(��) , and for the licencee setting

E(��) or �x is the same (Cox and Miller, 1965, p. 221-222). Now, de�ning with
E(�̂�) the expected time to develop the project with uncertain maturity, this
is given as the weighted average between the �rm�s expected time to maturity
taking account of its optimal investment decision, say E(T̂ ); and the expected
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time to develop the project if the maturity does not occur, say E(�̂) (where
�̂ = inf(t � 0 j x < x̂)): That is:

E(�̂�) =
�
1� e���̂

�
E(T̂ ) + e���̂E(�̂) (27)

where the weight
�
1� e���̂

�
indicates the probability that the time to ma-

turity occurs in the interval (0; �̂):Hence, given that e���̂ ' 1 � ��̂ + :::, it
follows that E(�̂�) ' ��̂E(T̂ ) + (1 � ��̂)E(�̂): Since �̂ is a stochastic vari-
able we approximate it by its �rst moment (one can also �nd the expected
time to develop the project with uncertain maturity E(�̂�) by Monte Carlo
simulation of the distribution of �̂). Therefore, we get:

E(�̂�) ' E(�̂) + �E(�̂)
h
E(T̂ )� E(�̂)

i
(28)

= E(��) +m�1 ln(
x̂

�x
) + E(�̂)

h
E(T̂ )� E(�̂)

i
E(T )

This concludes the proof.
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Figure 1: Optimal trigger as a function of the intensity parameter � (with
K = �K + �k):
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Figure 2: Optimal trigger as a function of � with K constant.
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Figure 3: Optimal trigger as a function of the intensity parameter � (with
K = �K + �

1+�
k):
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