The Paradox of New Members in the EU Council of Ministers: A Non-cooperative Bargaining Analysis

By Maria Montero, University of Nottingham, School of Economics
The Paradox of New Members in the EU Council of Ministers: A Non-cooperative Bargaining Analysis
By Maria Montero, University of Nottingham, School of Economics

Summary
Power indices suggest that adding new members to a voting body may increase the power of an existing member, even if the number of votes of all existing members and the decision rule remain constant. This phenomenon is known as the paradox of new members. This paper uses the leading model of majoritarian bargaining and shows that the paradox is predicted in equilibrium for past EU enlargements. Furthermore, a majority of members would have been in favor of the 1981 enlargement even if members were bargaining over a fixed budget.

Keywords: Majoritarian Bargaining, Weighted Voting, Power Measures, EU Enlargement, Paradox of New Members

JEL Classification: C71, C72, C78

This paper has been presented at the 15th Coalition Theory Network Workshop held in Marseille, France, on June 17-18, 2010 and organised by the Groupement de Recherche en Economie Quantitative d’Aix-Marseille, (GREQAM) http://www.feem-web.it/ctn/events/10_Marseilles/ctn15i.htm.

I’m grateful to Alex Possajennikov, Martin Sefton and Daniel Seidmann for helpful comments.

Address for correspondence:
Maria Montero
University of Nottingham
School of Economics
University Park
Nottingham NG7 2RD
U.K.
E-mail: maria.montero@nottingham.ac.uk

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
The Paradox of New Members in the EU Council of Ministers: A Non-cooperative Bargaining Analysis

Maria Montero*

This version: September 2010

Abstract

Power indices suggest that adding new members to a voting body may increase the power of an existing member, even if the number of votes of all existing members and the decision rule remain constant. This phenomenon is known as the paradox of new members. This paper uses the leading model of majoritarian bargaining and shows that the paradox is predicted in equilibrium for past EU enlargements. Furthermore, a majority of members would have been in favor of the 1981 enlargement even if members were bargaining over a fixed budget.

Keywords: majoritarian bargaining, weighted voting, power measures, EU enlargement, paradox of new members.

J.E.L. Classification Numbers: C71, C72, C78.

*University of Nottingham, School of Economics, University Park, Nottingham NG7 2RD (United Kingdom); maria.montero@nottingham.ac.uk. I’m grateful to Alex Pos-sajennikov, Martin Sefton and Daniel Seidmann for helpful comments.
1 Introduction

This paper takes a noncooperative approach to modelling voting in the EU Council of Ministers using the Baron-Ferejohn (1989) model of majoritarian bargaining. In this model, the voters bargain over the division of a fixed budget by making and voting on proposals, and a voter’s power can be measured by its expected equilibrium payoff. The equilibrium of the bargaining game is analyzed for the Council of Ministers in 1958, 1973 and 1981. Comparing the countries’ expected payoffs before and after each enlargement, it is observed that at least one existing member is better-off in each of the two enlargements even under the extreme assumption that the total pie remains constant after enlargement.

The possibility that adding new members to a voting body may increase the power of an existing member even if the number of votes of all existing members and the decision rule remain constant was first raised by Brams and Affuso (1976). In later papers (Brams and Affuso, 1985a, 1985b) they showed that the paradox has theoretically occurred in the EEC (now EU) Council of Ministers. Brams and Affuso based their analysis on the application of Shapley and Banzhaf power indices to weighted voting games. Because power indices do not have clear strategic foundations, one may be tempted to dismiss the paradox as a pathological feature of power indices. The contribution of this paper is to show that the paradox is predicted for past EEC enlargements using the leading model of strategic bargaining.

Not only can the paradox occur as an equilibrium feature of a bargaining game, but it can be even more extreme than suggested by power indices. The countries that gain with the 1981 enlargement had a majority in the 1973 Council. Thus, if qualified majority voting had been used to decide on enlargement, the new member would have been admitted even if the countries were bargaining over a fixed pie.

1This concept of power is sometimes labelled P-power (Felsenthal and Machover, 1998).
2 The noncooperative bargaining procedure

There is a budget of size 1 to be divided by majority rule between \(n \) players. Player \(i \) has \(w_i \) votes and \(q \) votes are needed to achieve a majority. We will denote a weighted majority game by \([q; w_1, ..., w_n]\). A group of players \(S \) with \(\sum_{i \in S} w_i \geq q \) is called a winning coalition; a winning coalition such that \(\sum_{j \in S \setminus \{i\}} w_j < q \) for all \(i \) is called a minimal winning coalition. A player that does not belong to any minimal winning coalition is a dummy player. A player that belongs to all minimal winning coalitions is a veto player.

Bargaining proceeds as follows: At every round \(t = 1, 2, ..., \) Nature randomly selects a proposer (each player is selected with probability \(\frac{1}{n} \)). This player proposes a distribution of the budget \((x_1, ..., x_n)\) with \(x_i \geq 0 \) for all \(i \) and \(\sum_{i \in N} x_i = 1 \). The proposal is voted upon immediately (closed rule). If the sum of votes in favor of the proposal is at least \(q \), the proposal is implemented and the game ends; otherwise the game proceeds to the next period in which Nature selects a new proposer (again each player is selected with probability \(\frac{1}{n} \)). Players are risk neutral and do not discount future payoffs.

A (pure) strategy for player \(i \) is a sequence \(\sigma_i = (\sigma_i^t)_{t=1}^{\infty} \), where \(\sigma_i^t \), the \(t \)th round strategy of player \(i \), prescribes

1. A proposal \(x^i \).
2. A response function assigning "yes" or "no" to all possible proposals by the other players.

The solution concept is stationary subgame perfect equilibrium (SSPE). Stationarity requires that players follow the same (possibly mixed) strategy at every round \(t \) regardless of past offers and responses to past offers. Banks and Duggan (2000) show that an SSPE always exists in this type of bargaining model. Eraslan and McLennan (2006) show that all SSPE lead to the same expected equilibrium payoffs.

2.1 Three voting bodies

Table 1, adapted from Felsenthal and Machover (2001), shows the weighted majority voting games associated to the original European Community in
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>4</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Italy</td>
<td>4</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>France</td>
<td>4</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Netherlands</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Belgium</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>UK</td>
<td>-</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Denmark</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Ireland</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Greece</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Quota</td>
<td>12</td>
<td>41</td>
<td>45</td>
</tr>
<tr>
<td>Total votes</td>
<td>17</td>
<td>58</td>
<td>63</td>
</tr>
<tr>
<td>Quota (%)</td>
<td>70.59</td>
<td>70.69</td>
<td>71.43</td>
</tr>
</tbody>
</table>

Table 1: Weights and quota in the Council of Ministers

We now calculate the equilibrium payoffs of the bargaining game for each of these voting bodies. Since equilibrium payoffs are unique, it will suffice to find one equilibrium strategy combination (all other equilibrium combinations lead to the same payoffs). From now on we restrict ourselves to symmetric strategies: all players of the same type follow the same strategy and are treated symmetrically by other players’ strategies.

In a stationary equilibrium, a player’s expected payoff given that a proposal is rejected (the continuation value) equals his expected equilibrium payoff at the beginning of the game. It is optimal for each player to accept any offer that gives him at least his continuation value as a responder. As a proposer, player i looks for the cheapest group of players controlling at least $q - w_i$ votes, and makes a proposal allocating to these players their continuation values and keeping the remainder for himself. Following common practice, we will refer to the proposer together with the players that are offered their continuation values as the ”proposed coalition”, and, if the
proposal is passed, as the ”coalition that forms”.

Two conditions must be satisfied in equilibrium: strategies must be optimal given expected payoffs, and expected payoffs must be consistent with the strategies. To find the equilibrium expected payoffs, we will make hypotheses about them (e.g., the expected payoff of a player with 4 votes is twice the expected payoff of a player with 2 votes) and then construct strategies that are optimal given the hypotheses and that lead to payoffs satisfying the hypotheses.

2.2 Equilibrium of game [12;4,4,2,2,1]

There are four minimal winning coalitions in this game: one coalition of type [444] and three coalitions of type [4422]. The player with 1 vote does not belong to any minimal winning coalition.

Denote expected equilibrium payoffs by x (for a player with 4 votes), y (for a player with 2 votes) and w (for the player with 1 vote).

Suppose equilibrium payoffs are such that $x = 2y$. Under this hypothesis, a player with 4 votes is indifferent between paying $2x$ and forming the coalition of type [444] and paying $x + 2y$ and forming one of the two coalitions of type [4422] to which he belongs. Denote by λ the probability that a given player with 4 votes proposes [444] (conditional on being proposer). The probability of proposing each of the two coalitions of type [4422] is then $\frac{1 - \lambda}{2}$. A player with 2 votes needs to buy 10 votes, and the best way to do this is to form a coalition of type [4422] (a coalition of type [4442] would be too expensive under the hypothesis $x = 2y$). There are three such coalitions, each proposed with probability $\frac{1}{3}$. The player with 1 vote needs to buy 11 votes, and is indifferent between forming coalition [4441] and forming a coalition of type [44221]. Denote the probability of proposing [4441] by μ; then each of the three [44221] coalitions is proposed with probability $\frac{1 - \mu}{3}$.

The following table shows the probability that each player type proposes each of the coalition types, with the number of available coalitions for that player type in parentheses. Because the proposer must be included in the coalition, the number of available coalitions of each type may depend on the
proposer’s type.

\[
\begin{array}{cccc}
\text{Player type} & [4] & \lambda (1) & 1 - \lambda (2) & - \\
 & [2] & - & 1 (3) & - \\
 & [1] & - & - & \mu (1) & 1 - \mu (3)
\end{array}
\]

Expected equilibrium payoffs are determined by these strategies. Consider a player with 4 votes. With probability $\frac{1}{3}$ he is selected to be proposer and obtains a payoff of $1 - 2x$ (this is the proposer’s payoff regardless of whether he proposes [444] or [4422] because $x = 2y$). With probability $\frac{2}{9}$, one of the two other players with 4 votes is selected, and the player receives a proposal with probability $\lambda + \frac{1 - \lambda}{2}$. With probability $\frac{2}{9}$ one of the two players with 2 votes is selected and proposes each coalition of type [4422] with probability $\frac{1}{9}$. A given player with 4 votes belongs to two of these three coalitions, and thus receives a proposal with probability $\frac{2}{9}$. With probability $\frac{1}{6}$ the player with 1 vote is selected and proposes to the player with 4 votes with probability $\mu + \frac{2}{3}(1 - \mu)$. The equations for y and w can be derived analogously. Together with the postulated condition $x = 2y$, we have the following system of equations.

\[
\begin{align*}
x &= \frac{1}{6}(1 - 2x) + \frac{2}{6}\left(\lambda + \frac{1 - \lambda}{2}\right)x + \frac{2}{3}x + \frac{1}{6}\left(\mu + \frac{2}{3}(1 - \mu)\right)x \\
y &= \frac{1}{6}(1 - 2x - y) + \frac{3}{6}(1 - \lambda)y + \frac{1}{6}y + \frac{1}{6}(1 - \mu)y \\
w &= \frac{1}{6}(1 - 3x) \\
x &= 2y
\end{align*}
\]

The solution to this system of equations is $0 \leq \mu \leq 1$, $\lambda = \frac{12 - 5\mu}{15}$, $x = \frac{10}{42}$, $y = \frac{5}{42}$, $w = \frac{2}{42}$. Notice that even though Luxemburg is a dummy player its expected equilibrium payoff is positive because it is allowed to make proposals.
2.3 Equilibrium of game $[41;10,10,10,10,5,5,3,3,2]$

The 1973 enlargement changed the voting game from $[12;4,4,4,2,2,1]$ to $[41;10,10,10,5,5,3,3,2]$. Three new members were added and the weights of all pre-existing members were multiplied by 2.5, with the exception of the smallest member (Luxembourg), whose votes were multiplied by 2. The percentage of the total votes required to pass a proposal remained essentially constant (keeping it exactly constant would lead to a quota of 40.94, which has the same implications as a quota of 41). If Luxembourg’s votes had been multiplied by 2.5, any incumbent being better-off would be an instance of the paradox of new members. The fact that Luxembourg’s votes were multiplied by only 2 seems to make it more difficult for Luxembourg to be better-off after the enlargement.\footnote{In fact, $[41;10,10,10,10,5,5,3,3,2]$ and $[41;10,10,10,10,5,5,3,3,1]$ have the same winning coalitions, thus Luxembourg’s votes might as well have remained constant.}

However, we will see that Luxembourg’s expected equilibrium payoff increases after the enlargement in the Baron-Ferejohn model.

There are 25 minimal winning coalitions of six possible types: $[10\ 10\ 10\ 10\ 5],\ [10\ 10\ 10\ 10\ 3],\ [10\ 10\ 10\ 10\ 2],\ [10\ 10\ 10\ 5\ 5\ 3],\ [10\ 10\ 10\ 5\ 5\ 2]$ and $[10\ 10\ 10\ 5\ 3\ 3]$.

Expected equilibrium payoffs will be denoted by x (players with 10 votes), y (players with 5 votes), z (players with 3 votes) and w (player with 2 votes). Postulate an equilibrium with $x > y > z > w$, $x = 2y$ and $y + w = 2z$. Then the following types of minimal winning coalitions are the cheapest: $[10\ 10\ 10\ 10\ 2],\ [10\ 10\ 10\ 5\ 5\ 2],\ [10\ 10\ 10\ 5\ 3\ 3]$. All other winning coalitions would be too expensive to form. Unlike in the previous example, each player belongs to at least one of the cheapest coalitions.
Equilibrium strategies are summarized by the following table

<table>
<thead>
<tr>
<th>Coalition type</th>
<th>[10 10 10 10 2]</th>
<th>[10 10 10 5 5 2]</th>
<th>[10 10 10 5 3 3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[10] λ (1)</td>
<td>μ (3)</td>
<td>1 - λ - μ (6)</td>
<td></td>
</tr>
<tr>
<td>[5] Player type</td>
<td>-</td>
<td>θ (4)</td>
<td>1 - θ (4)</td>
</tr>
<tr>
<td>[3] -</td>
<td>-</td>
<td>1 (8)</td>
<td></td>
</tr>
<tr>
<td>[2] ρ (1)</td>
<td>1 - ρ (4)</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

The four equations for expected payoffs together with the two conditions we have postulated form the following system of equations:

\[
x = \frac{1}{9} (1 - 3x - w) + \frac{3}{9} \left(\lambda + \frac{2}{3} (1 - \lambda) \right)x + \frac{4}{9} \left(\frac{\rho + 3}{4} (1 - \rho) \right)x
\]
\[
y = \frac{1}{9} (1 - 3x - 2z) + \frac{4}{9} \left(\mu + \frac{1}{2} (1 - \mu) \right)y + \frac{1}{9} \theta y + \frac{2}{9} y + \frac{1}{9} (1 - \rho) y
\]
\[
z = \frac{1}{9} (1 - 3x - y - z) + \frac{4}{9} (1 - \lambda - \mu) z + \frac{2}{9} (1 - \theta) z + \frac{1}{9} z
\]
\[
w = \frac{1}{9} (1 - 4x) + \frac{4}{9} (\lambda + \mu) w + \frac{2}{9} \theta w
\]
\[
x = 2y
\]
\[
2z = y + w
\]

Again there are infinitely many solutions for the equilibrium strategies, but a unique solution for \(x, y, z\) and \(w\). The (unique) equilibrium expected payoffs are \(x = \frac{67 - \sqrt{73}}{308} \approx 0.159\), \(y = \frac{67 - \sqrt{73}}{756} \approx 0.079\), \(z = \frac{9\sqrt{73} + 133}{2914} \approx 0.071\), \(w = \frac{11\sqrt{73} - 1}{1412} \approx 0.063\). There are many possible values for the strategies.

Setting \(\mu = 0\) and \(\theta = 1\) we obtain \(\lambda = \frac{11 - \sqrt{73}}{8} \approx 0.31\) and \(\rho = \frac{\sqrt{73} - 8}{3} \approx 0.18\).

Because \(\lambda + \mu \leq 1\), all probabilities are between 0 and 1.

Luxemburg has stopped being a dummy player, and this increases its equilibrium payoffs. This result is natural but not obvious because Luxemburg was already earning a positive payoff as a proposer in the previous game and it is now less likely to propose.

Perhaps surprisingly, expected payoffs for countries with 2, 3 and 5 votes do not differ much. Intuition dictates that a country with 5 votes and a combination of two countries with 3 and 2 votes respectively are interchangeable.
and ought to have the same expected payoff. However, the set of minimal
winning coalitions is not rich enough for this to be feasible. Minimal winning
coalitions including a player with 5 votes already include the player with 2
votes (coalitions of type [10 10 10 5 5 2]) or both of the players with 3 votes
(coalitions of type [10 10 10 5 3 3]) or are too expensive to be relevant (in
[10 10 10 10 5] and [10 10 10 5 5 3] a player with 5 votes could be replaced
by a combination of two players, but then the player with 2 votes would be
superfluous).

2.4 Equilibrium of the game [45;10 10 10 10 5 5 5 3 3 2]

In 1981 Greece entered the European Community with 5 votes and the
quota was raised to 45. The voting weights of all other countries were left
unchanged, and the percentage of votes required to achieve a majority was
essentially unchanged since $\frac{41}{45} \times 63 \approx 44.53$.

This new game is radically different to the previous one and easier to
analyze. First, a player with 3 votes and a player with 2 votes have be-
come interchangeable. The new voting game is equivalent to the game
[18;4,4,4,4,2,2,1,1,1]. Second, the possibility of replacing a player with
5 votes by a combination of players with 3 and 2 votes (or 3 and 3 votes)
has become relevant.

As before, we denote expected payoffs by x, y and z. Since players with
3 votes and players with 2 votes have become interchangeable, they both
have the same expected payoff z. To simplify the search for equilibrium,
we limit ourselves to strategies in which the players with 3 votes and the
player with 2 votes follow the same strategy and are treated symmetrically
by other players.

If we postulate $x = 2y$ and $y = 2z$, these two equations together with
$4x + 3y + 3z = 1$ uniquely determine expected payoffs. The unique solution
is $x = 0.16$, $y = 0.08$, $z = 0.04$. All we need is to verify that there are
equilibrium strategies supporting those payoffs.
Under the hypotheses \(x = 2y \) and \(y = 2z \), all minimal winning coalitions are equally cheap. There are 46 minimal winning coalitions\(^3\) of 6 possible types (4 types if we take into account that players with 2 and 3 votes are interchangeable): \([10\ 10\ 10\ 10\ 5\ 5]\), \([10\ 10\ 10\ 10\ 3\ 3]\), \([10\ 10\ 10\ 10\ 3\ 2]\), \([10\ 10\ 10\ 5\ 5\ 5]\), \([10\ 10\ 5\ 5\ 3\ 3]\), \([10\ 10\ 10\ 5\ 5\ 3\ 2]\). The table below pools players with 2 and 3 votes.

<table>
<thead>
<tr>
<th></th>
<th>([10\ 10\ 10\ 5\ 5])</th>
<th>([10\ 10\ 10\ 10\ 3\ 3])</th>
<th>([10\ 10\ 10\ 5\ 5\ 5])</th>
<th>([10\ 10\ 10\ 5\ 5\ 3\ 2])</th>
</tr>
</thead>
<tbody>
<tr>
<td>([10])</td>
<td>(\lambda\ (3))</td>
<td>(\mu\ (3))</td>
<td>(\theta\ (3))</td>
<td>(1 - \lambda - \mu - \theta\ (27))</td>
</tr>
<tr>
<td>([5])</td>
<td>(\rho\ (1))</td>
<td>-</td>
<td>(\sigma\ (4))</td>
<td>(1 - \rho - \sigma\ (24))</td>
</tr>
<tr>
<td>([3/2])</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(1 - \tau\ (24))</td>
</tr>
</tbody>
</table>

We can simplify the search further by looking for equilibria with \(\mu = \theta = \rho = \tau = 0 \). The strategy table becomes

<table>
<thead>
<tr>
<th></th>
<th>([10\ 10\ 10\ 5\ 5])</th>
<th>([10\ 10\ 10\ 10\ 3\ 3])</th>
<th>([10\ 10\ 10\ 5\ 5\ 5])</th>
<th>([10\ 10\ 10\ 5\ 5\ 3\ 2])</th>
</tr>
</thead>
<tbody>
<tr>
<td>([10])</td>
<td>(\lambda\ (3))</td>
<td>-</td>
<td>-</td>
<td>(1 - \lambda\ (27))</td>
</tr>
<tr>
<td>([5])</td>
<td>-</td>
<td>-</td>
<td>(\sigma\ (4))</td>
<td>(1 - \sigma\ (24))</td>
</tr>
<tr>
<td>([3/2])</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(1\ (24))</td>
</tr>
</tbody>
</table>

The following equations must hold

\[
x = \frac{1}{10} (1 - 3x - y) + \frac{3}{10} \left(\lambda + \frac{2}{3} (1 - \lambda) \right) x + \frac{6}{10} \frac{3}{4} x
\]

\[
y = \frac{1}{10} (1 - 4x + 4) + \frac{4}{10} \left(\lambda + \frac{2}{3} (1 - \lambda) \right) y + \frac{2}{10} \left(\sigma + \frac{1}{2} (1 - \sigma) \right) y + \frac{3}{10} \frac{2}{3} y
\]

\[
z = \frac{1}{10} (1 - 4x - z) + \frac{4}{10} \frac{2}{3} (1 - \lambda) z + \frac{3}{10} \frac{2}{3} (1 - \sigma) z + \frac{2}{10} \frac{1}{2} z
\]

\[
x = 2y = 4z
\]

The solution to this system is \(\lambda = \frac{3}{4}, \sigma = \frac{5}{6}, x = \frac{4}{25}, y = \frac{2}{25}, z = \frac{1}{25} \).

The values of \(x \) and \(y \) all increase slightly compared with the 1973 values. This means that if enlargement were put to the vote under weighted majority it would be approved!

\(^3\)The number of minimal winning coalitions can be checked using the Powerslave software (Pajala, 2002).
Expected equilibrium payoffs are summarized in the following table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>0.238</td>
<td>0.159</td>
<td>0.160</td>
</tr>
<tr>
<td>Italy</td>
<td>0.238</td>
<td>0.159</td>
<td>0.160</td>
</tr>
<tr>
<td>France</td>
<td>0.238</td>
<td>0.159</td>
<td>0.160</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.119</td>
<td>0.079</td>
<td>0.080</td>
</tr>
<tr>
<td>Belgium</td>
<td>0.119</td>
<td>0.079</td>
<td>0.080</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>0.048</td>
<td>0.063</td>
<td>0.040</td>
</tr>
<tr>
<td>UK</td>
<td>-</td>
<td>0.159</td>
<td>0.160</td>
</tr>
<tr>
<td>Denmark</td>
<td>-</td>
<td>0.071</td>
<td>0.040</td>
</tr>
<tr>
<td>Ireland</td>
<td>-</td>
<td>0.071</td>
<td>0.040</td>
</tr>
<tr>
<td>Greece</td>
<td>-</td>
<td>-</td>
<td>0.080</td>
</tr>
</tbody>
</table>

Table 2. Expected equilibrium payoffs

For comparison, the Shapley value and the Banzhaf index\(^4\) are

<table>
<thead>
<tr>
<th>Country</th>
<th>Shapley value</th>
<th>Banzhaf index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>0.233 0.179 0.174</td>
<td>0.238 0.167 0.158</td>
</tr>
<tr>
<td>Italy</td>
<td>0.233 0.179 0.174</td>
<td>0.238 0.167 0.158</td>
</tr>
<tr>
<td>France</td>
<td>0.233 0.179 0.174</td>
<td>0.238 0.167 0.158</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.150</td>
<td>0.081 0.071</td>
</tr>
<tr>
<td>Belgium</td>
<td>0.150 0.081 0.071</td>
<td>0.143 0.091 0.082</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>0 0.001 0.030</td>
<td>0 0.016 0.041</td>
</tr>
<tr>
<td>UK</td>
<td>- 0.179 0.174</td>
<td>- 0.167 0.158</td>
</tr>
<tr>
<td>Denmark</td>
<td>- 0.057 0.030</td>
<td>- 0.066 0.041</td>
</tr>
<tr>
<td>Ireland</td>
<td>- 0.057 0.030</td>
<td>- 0.066 0.041</td>
</tr>
<tr>
<td>Greece</td>
<td>- - 0.071</td>
<td>- - 0.082</td>
</tr>
</tbody>
</table>

Power indices like the Shapley value and the Banzhaf index agree with the noncooperative model in that the 1973 enlargement favored Luxemburg, and the 1981 enlargement hurt Denmark and Ireland the most. An important difference is that Luxemburg gains in both enlargements according to

\(^4\)The table reports the normalized Banzhaf index; the effects of enlargement according to the absolute Banzhaf index are qualitatively similar.
the power indices, and loses in the second enlargement according to the non-cooperative bargaining model. Also, if countries wanted to maximize their Shapley or Banzhaf power indices and enlargement was subject to weighted majority voting, it would have been rejected.

3 Concluding remarks

The paradox of new members in the EU is not exclusive to power indices, but can occur in a noncooperative model of bargaining over a fixed pie. In fact, it is stronger in the noncooperative model since enlargement can benefit a majority of existing members.

It is difficult to know the real effects of enlargement. Power indices and the legislative bargaining model agree in that the paradox is possible, but differ on which country benefits. The Banzhaf index assumes yes/no voting over exogenous proposals with each country being equally likely to vote yes or no and countries voting independently. The Shapley value may be interpreted as a measure of expected payoffs in bargaining over a fixed pie, though it is difficult to find a compelling bargaining model that yields the Shapley value for weighted majority games.5 It is clear that neither yes/no voting with a random agenda and random preferences nor pure bargaining over a private good are accurate models of voting in the Council of Ministers. However, the fact that very different assumptions all lead to the paradox of new members seems to indicate that this is a potentially important phenomenon. The paradox has also been observed experimentally under two different bargaining procedures by Montero, Sefton and Zhang (2008) and Drouvelis, Montero and Sefton (2010).

5Existing models either assume that all proposals must be passed by unanimity or their results are restricted to a domain that does not include weighted majority games; see the discussion in Drouvelis, Montero and Sefton (2010).
References

NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI
Fondazione Eni Enrico Mattei Working Paper Series

Our Note di Lavoro are available on the Internet at the following addresses:
http://www.feem.it/getpage.aspx?id=73&sez=Publications&padre=20&tab=1
http://ideas.repec.org/s/fem/femwpa.html
http://www.econis.eu/LNG=EN/FAM?PPN=505954494
http://ageconsearch.umn.edu/handle/35978
http://www.bepress.com/feem/

NOTE DI LAVORO PUBLISHED IN 2010

GC 1.2010 Cristina Cattaneo: Migrants’ International Transfers and Educational Expenditure: Empirical Evidence from Albania
SD 2.2010 Fabio Antoniou, Panos Hatzipanayotou and Phoebe Koundouri: Tradable Permits vs Ecological Dumping
SD 3.2010 Fabio Antoniou, Panos Hatzipanayotou and Phoebe Koundouri: Second Best Environmental Policies under Uncertainty
SD 4.2010 Carlo Carraro, Enrica De Cian and Lea Nicita: Modeling Biased Technical Change. Implications for Climate Policy
IM 5.2010 Luca Di Corato: Profit Sharing under the threat of Nationalization
SD 6.2010 Masako Ikefuji, Jun-ichi Itaya and Makoto Okamura: Optimal Emission Tax with Endogenous Location Choice of Duopolistic Firms
SD 7.2010 Michela Catnacci and Carlo Giupponi: Potentials and Limits of Bayesian Networks to Deal with Uncertainty in the Assessment of Climate Change Adaptation Policies
SD 10.2010 Helen Ding and Paolo A.L.D. Nunes and Sonja Teelucksingh: European Forests and Carbon Sequestration Services: An Economic Assessment of Climate Change Impacts
SD 13.2010 Andrea Bastianin, Alice Favero and Emanuele Massetti: Investments and Financial Flows Induced by Climate Mitigation Policies
SD 14.2010 Reyer Gerlagh: Too Much Oil
IM 15.2010 Chiara Fumagalli and Massimo Motta: A Simple Theory of Predation
GC 16.2010 Rinaldo Brau, Adriana Di Liberto and Francesco Pigliaru: Tourism and Development: A Recent Phenomenon Built on Old (Institutional) Roots?
SD 17.2010 Lucia Vergano, Georg Umgiesser and Paulo A.L.D. Nunes: An Economic Assessment of the Impacts of the MOSE Barriers on Venice Port Activities
SD 18.2010 ZhongXiang Zhang: Climate Change Meets Trade in Promoting Green Growth: Potential Conflicts and Synergies
SD 19.2010 Elisa Lanzi and Ian Sue Wing: Capital Malleability and the Macroeconomic Costs of Climate Policy
IM 20.2010 Alberto Petrucci: Second-Best Optimal Taxation of Oil and Capital in a Small Open Economy
SD 21.2010 Enrica De Cian and Alice Favero: Fairness, Credibility and Effectiveness in the Copenhagen Accord: An Economic Assessment
SD 22.2010 Francesco Bosello: Adaptation, Mitigation and “Green” R&D to Combat Global Climate Change. Insights From an Empirical Integrated Assessment Exercise
IM 23.2010 Jean Tirole and Roland Bénabou: Individual and Corporate Social Responsibility
IM 24.2010 Cesare Dosi and Michele Moretto: Licences, ”Use or Lose” Provisions and the Time of Investment
GC 25.2010 Andrés Rodríguez-Pose and Vassilis Tsellios (lxxvi): Returns to Migration, Education, and Externalities in the European Union
GC 26.2010 Klaus Desmet and Esteban Rossi-Hansberg (lxxxvi): Spatial Development
SD 27.2010 Massimiliano Mazzanti, Anna Montini and Francesco Nicoli: Waste Generation and Landfill Diversion Dynamics: Decentralised Management and Spatial Effects
SD 28.2010 Lucia Ceccato, Valentina Giannini and Carlo Gipponi: A Participatory Approach to Assess the Effectiveness of Responses to Cope with Flood Risk
SD 29.2010 Valentina Bosetti and David G. Victor: Politics and Economics of Second-Best Regulation of Greenhouse Gases: The Importance of Regulatory Credibility
IM 30.2010 Francesca Cornelli, Zbigniew Kominek and Alexander Ljungqvist: Monitoring Managers: Does it Matter?
GC 31.2010 Francesco D’Amuri and Juri Marcucci: “Google it!” Forecasting the US Unemployment Rate with a Google Job Search index
SD 32.2010 Francesco Bosello, Carlo Carraro and Enrica De Cian: Climate Policy and the Optimal Balance between Mitigation, Adaptation and Unavoided Damage
SD	113.2010	Emanuele Massetti and Fabio Sferra: A Numerical Analysis of Optimal Extraction and Trade of Oil under Climate Policy
GC	115.2010	Romano Piras: Internal Migration Across Italian regions: Macroeconomic Determinants and Accommodating Potential for a Dualistic Economy
SD	116.2010	Messan Agbaglah and Lars Ehlers (lxxxiv): Overlapping Coalitions, Bargaining and Networks
SD	117.2010	Pascal Billand, Christophe Bravard, Subhadip Chakrabarti and Sudipta Sarangi (lxxxiv): Spying in Multi-market Oligopolies
SD	118.2010	Roman Chuhay (lxxxiv): Marketing via Friends: Strategic Diffusion of Information in Social Networks with Homophily
SD	119.2010	Françoise Forges and Ram Orzach (lxxxiv): Core-stable Rings in Second Price Auctions with Common Values
SD	120.2010	Markus Kinateder (lxxxiv): The Repeated Prisoner's Dilemma in a Network
SD	121.2010	Alexey Kushnir (lxxxiv): Harmful Signaling in Matching Markets
SD	122.2010	Emiliya Lazarova and Dinko Dimitrov (lxxxiv): Status-Seeking in Hedonic Games with Heterogeneous Players
SD	123.2010	Maria Montero (lxxxiv): The Paradox of New Members in the EU Council of Ministers: A Non-cooperative Bargaining Analysis

(lxxxvi) This paper was presented at the Conference on "Urban and Regional Economics" organised by the Centre for Economic Policy Research (CEPR) and FEEM, held in Milan on 12-13 October 2009.

(lxxxvii) This paper was presented at the Conference on “Economics of Culture, Institutions and Crime” organised by SUS.DIV, FEEM, University of Padua and CEPR, held in Milan on 20-22 January 2010.

(lxxxviii) This paper was presented at the International Workshop on “The Social Dimension of Adaptation to Climate Change”, jointly organized by the International Center for Climate Governance, Centro Euro-Mediterraneo per i Cambiamenti Climatici and Fondazione Eni Enrico Mattei, held in Venice, 18-19 February 2010.

(lxxxiv) This paper was presented at the 15th Coalition Theory Network Workshop organised by the Groupement de Recherche en Economie Quantitative d’Aix-Marseille, (GREQAM), held in Marseille, France, on June 17-18, 2010.