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ABSTRACT
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analytical framework is used to analyse the mogbirtant mechanisms and a numerical
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1 Introduction

Climate policy comprises both adaptation and miiga Mitigation abates climate change by
reducing emissions or capturing carbon. Adaptativolves adjusting behaviour and
infrastructure to better fit the new climate, thyreeducing the damages from climate change
or increasing the benefits of climate change. Tamptmal policies, Integrated Assessments
Models (IAMs) have been developed to study thedallse and effect chain of climate
change. In many such models, the damages of cliohatege are monetised and can be
compared with the costs of mitigation options. Thumst-benefit approach can be applied to
study climate change and formulate optimal clintdtange policies.

The climate change damage functions used in thesels) however, generally assume
optimal adaptation and incorporate adaptation icitpliin the damage functions. This means
that adaptation cannot be studied in itself ascésd® variable, let alone in a suboptimal
setting. To be able to better understand the mudeimportance of adapting, an economic
assessment of the costs and benefits of adaptbiianaking adaptation explicit in IAMs, is
essential. In this context, de Bruin et al. (2Q0%ave introduced the concept of an
“adaptation cost curve”, that summarises the maomaemic costs and impacts of adaptation
efforts, and have subsequently adjusted the DIC&ei@ordhaus and Boyer 2000), now
called AD-DICE, to include an explicit adaptatidmoice variable. They find that when
setting adaptation at its optimal level in the ADEE model, the results with respect to
mitigation policies remain the same as in the aagDICE model. This is obvious for the
base case, as residual damage and adaptatiorap@stalibrated to the implicit optimum in
DICE. However, the same result holds in sensitigitplyses (without re-calibration). That is,
DICE’s implicit assumptions on adaptation do naishis policy advice on mitigation.

The DICE model is, however, a global model, witle &s@nevolent leader maximising the
utility of the globe. In a multiregional settingetfe are numerous players who can choose to
cooperate on climate change (in different degreeg) act solely in self interest. The first
aim of this paper is to analyse whether the resdlte Bruin et al. (2009a) are valid in a
multi-regional setting with various forms of cooggon.

Both the UNFCCC and IPCC WGIII TAR (IPCC, 2007)ess the role of financial transfers
for the sake of mitigation as well as adaptatiog.(m the form of an adaptation fund) as
policy tools that can be used to build politicgbpart for international climate action. The
topic of international adaptation financing, andaehkiregions should receive funds from it
and which should pay into it, has been discusseeaent literature (e.g. Burton et al. 2002,
Bouwer and Aerts, 2006, Paavola and Adger, 2008inRest al., 2009); Van Drunen et al.
(2009) provide a systematic overview of existind anggested financing mechanism.
Especially in a policy setting adaptation fundiras thad a lot of attention, where it was an
important topic of the recent UNFCCC meeting iniBANFCCC, 2007) and an important
point on the agenda for Copenhagen.

Also the effects of monetary transfers on the itigen to join a coalition have been studied
(e.g. Chander and Tulkens, 1997; Barrett, 2001raaet al., 2006; Nagashima et al., 2009;
Bosetti et al., 2009). Furthermore, transfers Haan introduced into IAMs such as the
EPPA model (Jacoby et al., 2004) in the form oéficial transfers and in the RICE model in
the form of technological transfers (Yang and Nauai) 2006). To our knowledge the only
instance where adaptation transfers are considiest IAM setting is in Hof et al.
(forthcoming), which looks at the feasibility ohfincing adaptation needs in developing
regions through a tax on Clean Development Mecha(@DM) projects. The second aim of
this paper is therefore to study what effects aatapt transfers will have on (i) domestic
adaptation and (ii) the optimal mitigation path.

To study our two objectives, we first present aalyical model of climate-economy
interactions that focuses on the economic aspéetdaptation. We introduce adaptation costs
and benefits in our model, and investigate the ttodg international financing of adaptation
can play. Next, the AD-RICE model is presentediuiding its calibration to RICE. The



numerical AD-RICE model is used to study the magtétof the effects and to investigate
questions that cannot be solved analytically. V¢ lat three forms of cooperation; Nash (no
cooperation), Climate cooperation (regional diffexes in climate change damages are
considered) and Full cooperation (regional diffeesnin income per capita are considered).
We show for all forms of cooperation that when dadtpn is assumed optimal, making
adaptation implicit in the net damage function wibt affect the mitigation results. We also
show that if adaptation is not optimal, mitigatieill be affected and adaptation and
mitigation can compensate for suboptimal levelsaafh other. Note that we assume that
adaptation efforts will only benefit the region wi¢hey are undertaken and there will be no
spillover benefits or costs to other regions. Ttmgsoptimal level of adaptation investments
undertaken in a region by that region will not €iffn the cooperative and non-cooperative
case. We show that adaptation transfers will fatlywd out domestic adaptation expenditures
in the equilibrium (where adaptation and mitigatare set at their optimal levels), but not
necessarily when domestic adaptation is sub-optifathermore transfers will only take
place in the cases of climate cooperation (runfrioigp low impact to high impact regions)
and full cooperation (running from rich to poor i@ts). Our numerical model shows that
emissions may increase slightly due to adaptatemsters.

This paper is structured as follows. The seconti@edescribes the simplified integrated
assessment model we use. The third section presg@npsopositions. The fourth section
describes the calibration of our numerical moddé){RICE) and studies the magnitude of the
effects found in section three. The final sectionatudes.

2 An explicit model of adaptation

In this section we describe a simple integratedssaent model, where economic growth and
climate change are linked. We first introduce ddamdel with implicit adaptation. In this

model there is one control variable, namely mitwa(; , ). We then develop a second

model which includes a damage function with expldaptation. When adaptation is explicit,
gross damages can be reduced through adaptatmtsefh this model there are two control

variables; mitigation f; , ) and adaptationR, , ).We extend this model further to be able to
include international adaptation transfers.

2.1 The basic model

For simplicity, we assume that there are 2 regipt4,D, although the main conclusions can
easily be extended to more regions. We furtherraeseime, without loss of generality, that
each region is of the same size in terms of pojpmand that populations are constant over
time. Moreover all parameters are non-zero.

Regions produce outpdt ,, which is given exogenously, causing emissionsisEions are a
linear function of output (with coefficieﬁlj ). Emissions can be reduced through mitigation

efforts (4, ). Thus net emissions depend on both output andatiin:
Ej,t:ijj,t(l_,uj,t)- )

Mitigation efforts come at a cost. The associaté@ation costs MC; ) are given as
follows:



MC,, =6, [ % 2)
Yj]t Ljt Jt

Net damages as percentage of GIOP () are caused by cumulative global emissiolif J:

t-1 J
M, = (Zz Ej’S] +M,; for simplicity we assume that this is a linedatienship described

s=1 j=1
as follows:
Dj’t
v =9, M,. (3)

In our model output equals (national) income argiomes can consume their output minus the
sum of net damages of climate change and the obsigigation as follows:

C,. =Y.~ D;, —MC,,. (4)

Finally regional utility U ;) is derived from the discounted sum of consumpitioeach

period over the planning horizoh (as we have a constant population, this implicitly
maximises consumption per capita). Consumptialsisounted over time using a discount

factor (0, ):

T
U, :ZAE@CN)- 5)
t=1
The regional utilities are weighted to create @glsocial welfare function (SWF):
J
SWF =v, Z;u,. : (6)
l:

Maximising SWF involves choosing optimal valuestfoe mitigation and adaptation levels,
denoted by,u}kyt andP;t , respectively. Using different regional utility igbts yields different
solutions; this will be explored in more detailSection 2.3.

2.2 Adaptation

We now introduce adaptation into our model. The alggnequation (3) with implicit
adaptation is replaced by the more elaborate systeguations (7)-(9) and income equation
(11) replaces equation (4); the other equationsiermchanged.

We assume gross damagéiljvt), i.e. potential climate change damages withoap#dg,
have a linear relationship to cumulative emissions:

! Dellink et al. (forthcoming) show that a lineatatéonship is a reasonable approximation for this
relationship.
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Residual damagesRD; , ) are a function of adaptatior’(,) and gross damages, where

0< P, <1represents the fraction by which gross damagesedreed:

RD,, =(1-PR,)GD,,. (8)
Equation (8) shows that regional adaptatin will only decrease gross damages in the own

region, i.e. we assume there are no spillovere(eatities) from adaptation to other regions.
Adaptation costsRC, ) are given by:

PCu- ) tp o ©
Yj’t 1,j Jit

As the damage function in the base model implicéidgumed optimal adaptatiBjF] , it

D. . ,
follows that—* = RDjyt(P“) + PCJ.'t(P“) , Where the asterix indicates the optimal level.
it

Consumption is still given as output minus all @diechange costs:
C,,=Y,,-RD,, -PC; -MC,,. (11)

2.3 Adaptation transfers

We now introduce an adaptation fund to our modestlly we define regiorD as the donor
region and regiorH as the host region. An adaptation transfer igiied from the
consumption function of the donor region. HencerégionD we augment the income
equation (11) and replace it by

CD,t :YD,t - RDD,t - PCD,t - MCD,t —-TA, (12)
whereTA is the financial transfer for adaptation from megD to regionH .

We assume that this transfer will solely be usedéaptation purposes in regiein Hence
adaptation cost equation (9) will be replaced ahibst region by

PC,,, +TA
YH t

A drawback of the simple utility function (5) isathutility increases linearly with the income
level, and thus marginal utility is constant indnoe and consumption. This affects the
analysis when comparing countries with differebime levels. To be able to capture the
differences in marginal utility across regions w@place the utility function in the base model
with one that uses a log function over consumpfidris entails that the marginal effect of
consumption increases on utility are lower whenscomption is high than when it is low.
Equation (5) is replaced by

- y1,H DPH ’tVz,H ) (13)



Uj:épt[m(c”)' (14)

This model allows us to investigate 3 cooperatmenarios:
i) Nash (no cooperation). In the uncooperative Nash cash s2gion optimises its own utility
taking the emissions of the other regions as giVée. social welfare function weights are

1
then the inverse of marginal utili%~ yielding the competitive solution (Negishi 1960).
jit

this case the shadow prices of capital in all negiare equalised and monetary transfers will
not increase social welfare: any welfare increasa thigher income in the host region will
be matched exactly by an equivalent welfare logkerdonor region.

i) Climate cooperation: differences in climate change impacts are consdldn this case,

the social welfare function weights are given by ithverse marginal utility of incomntafore

climate change damages are subtractedﬂ—(}fe. In this case shadow prices are equalised
it
when there are no damages from climate chargenetary transfers will thus only be
desirable from a social welfare perspective if dg@ssamong regions are unequal:
compensation of damages in a high impact regioa loyv impact region will boost global
welfare.
iif) Full cooperation: differences in income are considered. In the ch$all cooperation, all
regions have the same welfare weight. In this sag@med utility of all regions is maximised,
shadow prices will only be equalised across coasificonsumption levels are equal across
countries and monetary transfers will increaseadaeelfare if they flow from a high income
region to a low income region (this depends oref®imption that marginal utility decreases
in income levels).

3 Adaptation-mitigation interactions and the role of
adaptation financing

In this section we shortly discuss the key anadyticsights obtained from each of our model
settings presented in Section 2. These insightswarenarised in a series of propositions. The
formal results are given in Appendix A (base modell Appendix B (model with transfers)
and proofs are given in Appendix C.

3.1 Optimal levels of adaptation and mitigation

First, solving our base model (as discussed inudsitlg the Nash cooperation scenario, we
can gain insights in the drivers of the controlialles. The optimal level of mitigation with
implicit adaptation equals

2 This is because this weight will result in thenpetitive equilibrium in the case of no damages of
climate change.

3 Note that we assume that both regions experiposiéive gross damages from climate change, this is
the case for most regions in the world, especiallye longer term. Some regions may, however,
experience gross benefits from climate changeutmamerical AD-RICE model we include this
possibility and model adaptation in such a way thiaicreases net gross benefits of climate chamge
decreases gross damages (see appendix). Here wgediothe case of gross damages, where
adaptation can decrease gross damages to resaluabés.
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This result is intuitive: mitigation efforts increaas discounted value of future climate
change damages increas¢§ (Y, . LP,) and as the production emission coefficient insesa
(Q;). Together, these two elements determine thetefégess of mitigation through a

stream of reduced damages. Furthermore, the |éwaitigation effort decreases as the cost
parameters of mitigation increasg,(,,6, ;).

Second, when including an explicit adaptation cantariable (i.e. using the model with
explicit adaptation from section 2.2), the optinealel of adaptation is as follows:

2
. _| @M,
Pj’t = — ) (16)
Vo, D/l,j

The optimal level of adaptation thus increases wthergross damages increase m,)

and decreases when the adaptation costs coeffidignt, J; ; ) increase. As with mitigation,

higher damageselative to the marginal adaptation costs, make adaptatiome effective and
hence increase its optimal level.
The associated optimal level of mitigation with ksipadaptation is:

T * gz.il_l
> (wj ¥, [-P) Ebs) [Q;
uo=| = . 17
: 92,]1 ml,jt (17)

The intuition of these results remains unchandeslidvel of mitigation effort decreases as
the cost parameters of mitigatio,( ,,, ;,) increase and increases as discounted future

climate change damagea)(lY, ( ({1~ P;S)Ebs) and the production emission coefficient

(Q;) increase. What is new in equation (17) is thatribenefits are now a function of

adaptation levels. As future adaptation increabeshenefits of mitigation and thus the
optimal level of mitigation decreases.

3.2 Implicit versus explicit adaptation

By comparing the model with explicit adaptationtwihe base model, we can investigate
what effect making adaptation explicit will havéhig is motivated from the fact that in most
models of climate change adaptation is assumeddimWhen comparing explicit and
implicit adaptation we only look at the Nash sautii.e. we solve the optimisation problem
for one region given the emissions of other regidime results will hold for all scenarios
given the regional characteristics of adaptati@n,the lack of international externalities.

Proposition 1. Making adaption explicit in the optimumwill have no effect on the optimal
levels of mitigation.



This proposition is based on the idea that onceagsume that adaptation will be set at its
optimal level in the future, you need not consiggaptation explicitly. This is because
adaptation, when set at its optimal level, canXmassed exogenously and making it explicit
will not change the optimal level of adaptation &éimas also not the resulting mitigation level.
Furthermore, adaptation is a flow variable onlyg #mere are no externalities in adaptation.
While, obviously, this proposition hinges on thewsption that implicit adaptation levels are
optimal, it conveys an important policy messagsigation results from Integrated
Assessment Models that are based on an implieitnrent of adaptation, i.e. the vast majority
of models presented in the literature and for mstan the IPCC assessments, cannot be
deemed as biased in their mitigation recommendstithere de Bruin et al. (2009a) stress
this same result from a global perspective, Prdioosi extends this to the multi-regional
specification.

3.3 Adaptation transfers

To obtain insights in the role of adaptation transfwe applied our model that includes
transfers as introduced in Section 2.3.

Proposition 2a. Foreign adaptation funding fully crowds out domestic adaptation
expenditures in the opti mum.

When total adaptation expenditures (host and dandhe host region are set at their
domestic optimal levels, the host region will haeincentives to increase its level of
adaptation. Any inflows of financing for adaptatiaiil therefore crowd out host adaptation
expenditures, as the funds can be spend moreieffiyobn other activities. While this is a
quite general result, there are potentially relév@adback effects that are not present in our
model. For instance, a higher consumption levdlat imply higher emissions, and thus the
additional resources can be used without distottiegclimate system.

Proposition 2b. Foreign adaptation funding is only effective (i.e. increasestotal adaptation
effortsin the host region) if total adaptation expenditures (incl. received transfers) are below
or equal to the domestic (host) optimum.

Due to the absence of externalities of adaptatienadaptation benefits are only local; the
host region will not have an incentive to incretisetotal level of adaptation expenditure in
its region above the domestic optimal level. If biwst region receives foreign adaptation
funding, it will only not decrease its level of adaptation expenditureseitotal level remains
below or equal to the domestic (host) optimal leltés easy to see that due to the local
nature of adaptation this will be the case focathperation scenarios.

Proposition 3a. Adaptation transferswill not take place in the competitive Nash equilibrium.

This proposition is intuitive; as there are no intgional spillovers from adaptation back to
the donor region, it will never have the incentisdund adaptation expenditures in the host
region when it acts solely in self interest.

Proposition 3b. Adaptation transferswill be positive in the case of climate cooperation when
the climate change impacts are higher in the host country than in the donor country.

In the case of climate change cooperation, low shpegions want to compensate high
impact regions. An adaptation transfer can giveilowact regions a means of compensating
high impact regions, thereby exploiting the higieifare effect this transfer will have. Note



that this transfer crowds out adaptation in thda ligpact region (proposition 2a). The
transfer compensates the high impact region wisidieneficial as it reduces damages and
therefore also the need for emission reduction.

Proposition 3c. Adaptation transfers will take place in the case of full cooperation when the
level of consumption islower in the host country than in the donor country.

When global utility is maximised, due to decreasimayginal utility, high income regions will
want to compensate low income regions. Throughtatiap transfers they are able to do so.
Thus global welfare will increase as transfersfram low marginal utility to high marginal
utility regions. Note this transfer crowds out adaipn in the low income region (proposition
2a). The transfer is used to compensate for diffs¥s in income.

None of our cooperation scenarios fully reflect tikdikely to happen in the real world.
They do, however, reflect the three main motivatibahind the behaviour of regions when
cooperating on climate change. Firstly, regionsiradly are concerned about their own
wellbeing. This is reflected in the Nash scend®econdly, when regions cooperate
concerning climate change, they will want to congaga those most affected by climate
change, this is reflected in the climate coopenasicenario. Thirdly, regions also consider the
level of income in regions when cooperating. Regiigenerally have some, though low,
incentives to compensate low income regions. Ehieflected in the full cooperation
scenario. In a real world context, motivations \Wédlsomewhere in between these three
extremes and will also likely depend on a regidn&orical responsibility in contributing to
the climate change problem.

The effect of transfers on mitigation is too compie study analytically. To illustrate the
complexity of the issue, we shortly discuss som#hefmechanisms at work in relationship
between adaptation transfers and mitigation lev&tssider the case of climate cooperation
where funds are transferred to some high-impadgbmebl by a low-impact regiorD for the
purpose of adaptation. Due to increased adaptaticegionH , region H will have lower
residual damages and thus more funds for othemelfores. RegiorH can spend these
funds on consumption or on mitigation, thereby dasmng emissions or invest in capital,
which increases future production and thus als@sionis’ RegionD now has fewer funds
to invest in mitigation or capital but has a newch@nism by which to compensate regidn
for the effects of climate change. Thus regldncan use adaptation transfers instead of
mitigation to assist regidd , thus reducing the need f@ to compensate for damages
through a higher level of mitigation. Consequenthg social planner will trade-off the
benefits and costs of mitigating versus financidgmation. The final result of these various
mechanisms is unclearpriori, and by applying our numerical model we can dettéer
understanding of the net result, which will be donthe next section.

4 Numerical results

The previous section provides several generallinsigsing a simple model. We now apply
our numerical AD-RICE model to gain insights intb@ tmagnitude of the mechanisms
discussed in section 3 and to unravel secondarphamésms that could not be studied
analytically due to the large complexities involv®de first give a short description of the
model and then discuss the results.

“ Note that such investment in capital is not presenur stylised analytical model.



4.1 AD-RICE model

The AD-RICE model incorporates adaptation intoR#€E model, using the same method
as employed in de Bruin et al. (2009a), i.e. bybcating an adaptation cost curve that
describes the marginal costs of adaptation effartalogous to a marginal abatement cost
curve as often used for mitigation efforts. The fabdel is given in Appendix D, where the
adaptation components are described in equatiddisA.39. RICE is a regional version of
the Dynamic Integrated Climate and Economy modelomsists of 13 regions: Japan, USA,
Europé, Other High Income countries (OHIHigh Income Oil exporting regions (HI%)
Middle Income countries (M{) Russia, Low-Middle income countries (LM})Eastern
Europe (EE), Low Income countries (Ff)China, India and Africa

The AD-RICE model is calibrated such that it beglicates the results of the optimal control
scenario of the original RICE model when adaptaisicaissumed to be at its optimal level
throughout the model horizon. To this end regi@uaptation cost curves are constructed

such that the discounted squared difference betweedamagesl, ;) in the original RICE

and net damageRD, ; + PC, ;) in AD-RICEis minimised. It is also assumed that adaptation

is set at an optimal level at each point in time Ydlibrate the parameters of the adaptation
cost function and the gross damage function. Threged parameter values of AD-RICE
are given in Appendix 2. Three regions (EE, OHI Rugsia) have been excluded from the
calibration procedure for the adaptation cost caiagthey have very low, near zero, net
benefits from climate change. For these regionasseme that no adaptation will take place
as the impacts are so close to zero. Adaptatiois cosves are drawn for the remaining 10
regions in Figure 1, where the x-axis shows thellefadaptation as fraction of gross
damages reduced and the y-axis shows the assoceaatsdas a fraction of output. The line
denominated as GLOBAL has been added and repraberndd-DICE2007 (de Bruin et al.
2009b) global adaptation cost curve. As can be geeadaptation costs in the different
regions vary widely. Especially India, Africa andw Income countries have high adaptation
costs, whereas Japan, China and the USA havevedakbw adaptation costs.

®> We use the RICE99 model as available online.

® Austria, Belgium, Denmark, Finland, France, Germa@reece, Greenland, Iceland, Ireland, Italy,
Liechtenstein, Luxembourg, Netherlands, Norway tlyal, Spain, Sweden, Switzerland, and the
United Kingdom

" Includes Australia, Canada, New Zealand, Singapsrael, and rich island states

8 Includes Bahrain, Brunei, Kuwait, Libya, Oman, &aSaudi Arabia, and UAE.

® Includes Argentina, Brazil, Korea, and Malaysia.

1% ncludes Mexico, South Africa, Thailand, most batimerican states, and many Caribbean states.
" Includes Egypt, Indonesia, Iraq, Pakistan and nfssign states.

2 Includes all sub Saharan African countries, extgrnibia and South Africa

10
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Figure 1: Adaptation costs curves implicit in the RICE model.

4.2 Explicit versus implicit adaptation

Figure 2 shows the optimal emissions path for bred cooperation scenarios (Nash,
climate cooperation and full cooperation) with opdl adaptation and without
adaptation. When adaptation is not possible, matigation is undertaken and
emissions are lower. We also see that in the Nalsitien, because there is no
cooperation, sub-optimal adaptation has littlecften the optimal mitigation path. In
the cooperation solutions sub-optimal adaptatianéhgreater effect as each region
not only considers that it itself cannot adaptddsb the welfare loss from the fact that
the other regions cannot adapt. The negative eaftdes of emissions are much
larger when adaptation is not possible inducingoregyto mitigate more when
cooperating.

11
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Figure 2: Optimal emissions paths for the three cooperation scenarios (Nash, climate
cooperation and full cooperation) with optimal adaptation and without adaptation.

4.3 Adaptation transfers

In Section 3.3 we showed that financial transferfuihd adaptation in other regions will only
take place in the cooperative cases. Here we useunterical model to investigate the
adaptation transfer magnitudes and directionsemibre elaborate setting with multiple
heterogeneous regioisComparing the scenarios can give us an idea aftwigigions,
according to this model, should receive (give) fagdased on their relatively high damages
and which should receive (give) based on theitixaly low incomes.

In the case of climate cooperation, transfersflai from low impact to high impact regions
as shown in the previous section. We look at tvgesain the first case adaptation is set at its
optimal level, in the second case adaptation exgseisdimited in developing countrfsby
assuming adaptation expenditures cannot be monentidéof what would be optimal. We do
this as it does not seem likely that optimal adégiawill be attainable in the real world,
especially so for developing regions (cf. de Braual Dellink, 2009). IfFigure 3the total
amount of adaptation funding is given over timetfa climate cooperation case. In the case
of optimal adaptation, the small levels of finamcarise because of the steeply increasing
adaptation costs, when adaptation is set at itdliooptimal level, compensating for
differences in climate impacts through financingdtitional adaptation will be quite costly.
In the case of limited adaptation in developingradas, transfers will be larger, as more
cost-effective adaptation options are unused. Tineuait of funding increases sharply over
time. Figure 4presents the regional shares in the adaptatiaivédnost and donor regions
for the case of optimal and limited adaptationéwealoping regions. The total amount of
funding from donors equates the total amount ofliiog received by hosts. In the case of

13 Clearly, our specification of international coogtion is too stylised to be able to provide numaric
results that can be used for policy recommendations aim is merely to understand the magnitude
and direction of flows using our two cooperatiorrszrios. Clearly, this setting abstracts from issue
such as historical responsibility for climate chengnd cannot be viewed as a policy recommendation
4 We categorise HIO, MI, LMI, LI, China, India andria as developing regions.
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optimal adaptation only Russia and China providwling. Although the two donors of
adaptation financing may seem counter-intuitivérat sight, their profile fits the solution
concept used: income differences are irrelevargé@xior damages caused by climate change.
Thus, these two regions, that are expected to teatvely low damage levels, will
compensate regions that are hit more severelyilmaté changa/Vhen adaptation in
developing countries is limited, more funding netdbe provided, and our simulations show
that Russia, Eastern Europe, Other high incometdesrand China are the donors in the case
of climate cooperation. Again, these are the regjisith the lowest damages (or highest
benefits) from climate change. The most vulneradigons India, Low income countries,

Low middle income countries, Africa, and Middle amee countries receive the most funding.

Figure 3: Total adaptation transfersto regionsin percentage of global GDP for the
case of climate cooperation.

Host regions (optimal) Donor regions (optimal)

B USA

B EUROPE|
O OHI

O HIO

oM

@i

oLl

L INDIA

B AFRICA

2 RUSSIA

H CHINA

Host regions (limited adaptation) Donor regions (limited adaptation)

N N\
u o

oM
B
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B AFRICA

@ OHI

H CHINA

Figure 4: Regional composition of adaptation funding for the case of climate
cooperation with optimal adaptation and with adaptation expenditures limited to 50%
of optimal, where host regions receive funding and donor regions give funding™.

Figure 5 and 6 show the adaptation transfers irdise of full cooperation over time.
Introducing an adaptation fund gives regions a teayansfer money in order to equalise
marginal utilities across regions. Because ingbiting adaptation funding is not only

!5 Note that regions with a share of less than 1%daptation funding are omitted from the figure.
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compensating for climate change damages, butésualsd as a development fund, both the
magnitude of the flows (cf. Figures 5 and 3) areldivision between hosts and donors is
radically different (cf. Figures 6 and 4). In thel tooperation case we see that the richest
regions, notably USA, Japan and Other High Incanamsfer to the poorest regions, with a
large part flowing to Africa. Once again these hssconfirm our insights of Section 3.
Furthermore, limiting adaptation increases trarssfert this increase is very small relative to
the size of the transfers under optimal adaptata see thus that there are huge differences
between the climate cooperation and full coopenagmutions. As Nordhaus and Yang
(2006) mention, the full cooperation case is oftead to investigate climate change
cooperation as it easy to implement and justifythmfull cooperation scenario funds will
stream from high income to low income regions dudifferences in marginal utility. One

can think of this as interconnected reservoirs wifferent water levels. When the connectors
are opened, water will flow from high to low levefsn adaptation transfer gives regions a
way to open these connectors. Applying a full coafien scenario can therefore be
misleading from the perspective of a focused clnmadlicy impact analysis as it incorporates
development assistance as well as climate charamecation.
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Figure5: Total adaptation transfersto regionsin percentage of global GDP for the
case of full cooperation.
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Host regions (limited adaptation) Donor regions (limited adaptation)

B AFRICA

oM 0 JAPAN
3 LM = USA
mL O OHI

B CHINA
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Figure 6: Regional composition of adaptation funding for the case of full cooperation
with optimal adaptation and with adaptation expenditures limited to 50% of optimal,
where host regions receive funding and donor regions give funding

4.4 Transfers and mitigation

Our complex applied model can also be used to tigage a number of mechanisms that
could not be dealt with in the analytical model e@mportant issue is that of the effect of
transfers on mitigation.

The overall effect of transfers on mitigation candeen in Figure 7 for the two cooperative
solutions. We see that emissions increase andhiftigmtion decreases considerably in the
case of full cooperation. In the case of climatepmration emissions are almost the same,
implying overlapping lines in the figure. It is liegl that the effects are higher in the full
cooperation scenario, as the transfers too are imigtier compared to the climate
cooperation scenario. The results for the individegions (omitted here) indicate that
emissions increase in all regions when adaptatérsters are introduced except in Africa in
the case of full cooperation. As transfers growgses the amount of disposable funds. It is
most beneficial for Africa to spend these fundsratigation (even though there is increased
adaptation) as opposed to other investments, ldosdaie to the externalities of mitigation.
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Figure 7: Optimal emissions paths for the 3 solution concept (Nash, climate cooperation and
full cooperation) with and without transfers (with optimal adaptation).

5 Conclusions

This paper investigated two main issues; firsthatils the effect of making adaptation
explicit in an integrated assessment modeling fraonk in a multi regional setting. We look
at three forms of cooperation between regions: Nasttooperation), Climate cooperation
(regional differences in climate change damages@msidered) and Full cooperation
(regional differences in income per capita are wared). We find that explicitly including
adaptation as a control option, will not affect theulting mitigation policy outcomes in a
first best world where adaptation is set at itsrogt level, i.e. policies of mitigation and
adaptation are separable in a multi-regional biestt setting. Making adaptation explicit
makes it possible, however, to study other stat#seonorld. When policies are not optimal,
mitigation and adaptation can compensate for stioraplevels of each other. Here,
adaptation and mitigation are not separable aneptimal adaptation will affect the optimal
mitigation path. Our numerical model (AD-RICE) shothat the mitigation path can be
affected considerably. We conclude that the assompf optimal implicit adaptation needs
to be reconsidered to create sound mitigation paanclusions.

Secondly this paper aimed to answer questionsectoimg adaptation transfers. For
each form of cooperation, we study if transferd taike place and what effects
adaptation transfers will have on (i) domestic aaapn and (ii) the optimal
mitigation path. We find that in a first best woftiteign adaptation funding will
crowd out domestic adaptation expenditures. Whenrang that crowding out is not
possible we see that adaptation transfers willfiram low climate change impact
regions to high climate change impact regionshéndase of full cooperation
adaptation transfers run from high income to lowome regions and serve as a form
of development assistance, attempting to equatissuwmption per capita over regions.
Transfers are thus much larger in full cooperati@an in climate cooperation. We
also see that transfers increase tremendously adleptation in limited in developing
regions. The magnitude and direction of transfeesvary different in the different
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forms of cooperation. When setting policies, onedseto carefully understand the
distributional effects and assumptions underlyirapeiling results. The overall effect
that adaptation transfers may have on mitigatiadoisinated by several mechanisms.
A transfer will increase the budget of the receguwiagion which may decrease
emissions (when more is invested in mitigationjporease emissions (when more is
invested in capital). A transfer will decrease Ilielget of donating region, decreasing
mitigation investments and/or capital investmeAtsboth adaptation and mitigation
can be used by a low impact region to compenshighaimpact region, having the
new option of an adaptation transfer can theredtse decrease mitigation efforts. In
the case of climate cooperation, we see that eomssncrease slightly. In the case of
full cooperation, emissions increase by much mbhes is because of an over-
investment of adaptation in adaptation funds rengivegions creating low incentives
to mitigate.

This study is subject to several limitations. Fyréhe model used here is based on the RICE
model and therefore has the same limitations dfrtitael. It does not consider irreversibility
and uncertainties and simplifies many relationthaclimate and economy. Furthermore, the
formulation of adaptation in the model is a flowpegach, i.e. adaptation is essentially seen as
reactive. A more elaborate stock-and-flow appraaely be able to reflect the anticipatory
nature of certain types of adaptation measurest@&tinally the data used in this study to
understand the cost and benefits of adaptatiamiteld due to the general lack of estimates in
this field. More detailed estimates can give ugieb understanding of the issues studied here.

Appendix A: AD-RICE Model and parameter calibration

In this section we describe the AD-RICE model. Thimdel is based on the RICE99 model as
described in Nordhaus and Boyer (2000), with asexyidamage module, which incorporates
adaptation explicitly.

The AD-RICE model consists dfregions, where each region is indexed+i,2,.. J.
Furthermore, there is a planning period indexetHy2,.. T. Each time step is 10 years
starting at 1995. The social welfare function ifirds as;

J
SWF =2 v; W, . &)
=1

WhereW. is the welfare over the planning period for eadiae | . The region specific

weights are given ly, . Thus the social welfare is given by the sum efreighted total
utility of all regions.

Next we define the welfare for each region j, whigkhe utility summed and discounted over
all periods;

W =;U;,t R, (A.2)

R represents the discount factor which is given by;

R =[]+ o)™ »3
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Furthermore;

p(t) = p(0) expt-g). (A4)
Next utility in each region for each period is givas:
_ 1l Cix
U, =Inj —|0O,,. (A.5)
j,t
This is the population weighted natural logarithihc@ansumption per capita, i.e. total
C
consumption divided by the populatiolm{l_—”} w,,;

j.t
The population is given by;

t
L. =Lo @xp(j gj"fpj (A.6)
0
Where;
95 =97 [exp(afP). (A7)

Output is a Cobb Douglas function of capifgl, , labour (L, , ) and energy services from
carbon fuels (ESj +)-The total factor productivity per region per tiperiod (A, ) is given
by:

= —Bi- Bi
Y, =Q,, [@Aj,t K/, /7 ES) -cf, EIESJ.I} , (A.8)

Wherer’t is the change damage factor actfqi are the costs of carbon energy, these depend

on the market priced| ) plus a transport cost markup:
c;, = +markup; . (A.9)

Carbon services are linked to emissiobs ():

ES =¢; [Ej;. (A.10)

Furthermore the change @), is given by;
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t
$ie =60 @Xp(jgjz,tj : (A.11)
0

Where
97: = 970 [exp(-o7, ). (A.12)

Total factor productivity @ , ) is defined as:

t
A=A @Xp[f gﬁtj : (A.13)
0
Where
g = 970 [@xp(a7, ). (A.14)

The consumption function is given by:

Cii =Y~y (A.15)

Capital accumulation is defined as:

Kj,t+1:(1_5k,j)Kj,t+|j1- (A16)

Where d, ; is the depreciation rate ard, the investments in capital. Furthermore it is
assumed that capital is immobile between regions.

The first period capital is given:
K o =K; (A.17)

Global industrial emissions are the sum of regiamdistrial emissions:

Et — Z Eth . (A.18)

Total global emissions are the sum of industriailssians and land-use carbon emissions:
J
ET, =2 (B, +LU;)). (A.19)

=1

Where

19



LU, =LU,,[-3). (A.20)

Cumulative emissions are given as:

CumC,,, =CumC, + E,. (A.21)
The market price of carbon energy depends on theilative industrial emissions:

g = ¢, +&, [JCumC,/ CumC']* . (A.22)
Initial atmospheric concentrations are given:

Maro =M (A.23)

Atmospheric carbon concentrations depend on prewtoucentrations in the atmosphere and
upper oceans and on total emissions:

|\/lAT,'( = -I-t—l +Q1M AT1—1+¢2MUP =1 (A24)

Carbon concentrations in the upper oceans depepdeoious concentrations in the
atmosphere, upper oceans and lower oceans;

M UP,t = QZM UP,t—l+ (le AT t- l+ ¢3M LOt- = (A25)

Initial carbon concentration in the upper ocearggven:

*

I\/IUP,O = MUP -
(A.26)

Carbon concentrations in the lower oceans depenmeious concentrations in the upper
oceans and lower oceans;

M LO,t = %3M LOI—1+ ¢23'v| UPt-1 (A27)

Initial carbon concentration in the lower oceangiven:
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Mo =M io- (A.28)

Radiative forcing ) is a function of the ratio of atmospheric concaiibns to pre-
industrial atmospheric concentrations of carb@M (/M X'T]) plus exogenous radiative

forcing growth ©,).

F =/7[@Iog[MAT/MX'T]/Iog(Z)}+Ot. (A.29)
Furthermore;

O, =-0.1965+ 0.13468 t< 1

=1.15 t> 1( (A-30)
Temperature change compared to pre-industrial ievgiven as:
T =T +o QR -A0, -0, 0T -T,, | (A.31)
WhereT,, is the lower ocean temperature.
Initial temperature change is given:
T,=T. (A.32)

Lower ocean temperature depends on previous penogerature in the lower ocean and
atmosphere.

Tot =Togm* I:Tt—l ~To x—1] (A.33)

Initial temperature change is given:

Too= To (A.34)
The climate change damage factor is given as:

1
Q, =
‘71+D,,

(A.35)

D, is the damage due to climate change and is givenfanction of temperature change in

the atmosphere.

We define gross damages of climate change as amtage of output@D; , ) as a function
of the temperature change as shown in the followingation;

GD;, =4,T + ﬁz,j-rtﬂ&j (A.37)
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The residual damages of climate change are thegksvadter adaptation to climate change
has taken place. Regions can change economic| aadi@ultural structures to decrease the
damages or increase benefits of climate chandeeinregion, that is adapt. Residual

damages as a percentage of outfiRD(, ) are a function of adaptatiof’(, andPR,; , ) and
gross damage€3D; , ), where P, (0< P, > 1) represents the fraction by which gross

damages are reduced &g, (0< PR, , > 1) represents the fraction by which gross benefits
are increased, this is given in equation A.38.

RD,, =(1-P,)GD,, GD,;, >0

(A.38)
RD,, =(1-PR,)GD,, GD,, <0

Adaptation comes at a cost though; the adaptatists@s a function of outpuPC, ;) are
the costs of adaptation. The cost function is &tfon of P, , andPR,, . Where the

coefficients arg, ; andy, ; are different across regions, furthermgrg >0 andy,; >1:

PC,, =y, WP, +PR, ’t)yz,,- : (A.39)
Finally:
D, =RD;, +PCj, (A.40)

The residual damages together with the adaptatsts ¢orm the net climate change damages
defined asD; , in the original RICE model. Furthermore the resiciamages, the adaptation

costs and mitigation costs together representotakcosts of climate
change((RDj’t + PC” + MCJ. 0 D(j’t) )

In the model the regions can choose different Eeétonsumption, capital investment,
mitigation and adaptation to fulfil their objectsze

The calibrated parameter values for equations ArRVA.39 are given in table Al.
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Table Al: Parameter values from AD-RICE in the optimal scenario calibration.

Bl 52 B3 M1
JAPAN -0.0028 0.0012 2.65 0.031 3.26
USA -0.0010 0.0004 4.06 0.016 10.21
EUROPE -0.0002 0.0046 2.29 0.341 4.24
HIO - 0.0070 1.53 0.315 5.19
M - 0.00587 1.49 0.216 3.97
LMI - 0.00571 1.85 0.332 5.06
LI - 0.01091 1.55 0.502 5.18
CHINA -0.0022 0.00064 2.97 0.0225 6.29
INDIA - 0.01512 1.70 0.783 5.28
AFRICA - 0.02152 1.21 0.751 5.12

Appendix B: Optimal mitigation levels

In the following we derive the optimal levels of tigation for the different model

specifications as described in Section 3.

B.1. Application to the model with implicit adaptation

The simplest specification, with implicit adaptatican be solved using the Pontryagin
maximum principle (Pontryagin 1962) for a dynamigimisation problem with 1 control

variable, mitigation f/), and a state variable, total cumulative emiss{dvis). Although our
problem includes multiple regions, we omit regioeabscripts here as we derive the Nash
solution. In this case each region optimises otdyown consumption given the level of
emissions by the other players.

In the dynamic solution each region maximizes:

i
> PV (14, M)+ 0T F (M)

t=1

(A.41)

Subiject to the following equation of motion andistalue of the state variable.

Mt+l - Mt = f (:ut) (A.42)

23



M, =M (A.43)

Using the Pontryagin maximum principle, the coromgpng discrete time current value

Hamiltonian is:

H (4, M, A) =V )+ 0, By () (A44)

The corresponding first order conditions of the immarm principle are as follows:

oH () —
w-"———, M, =M (A.45)
0o By '
OoH (.
Py —A =~ aM( ) (A.46)
t
oH ()
=0 (A.47)
o

The value function is simply the instantaneoustytilinction, which in our simple model
diminishes to consumption as the residual of incafter climate costs (damages and

mitigation costs):
V(M) =Y~ g M, Y, -6, D™ [, (A.48)

Furthermore the equation of motion is given bylihagd-up of the stock of CO2 over time,

which depends on emissions after mitigation:

fu) = QO Wl- 1)+ Ex. (A.49)

Where Ex is are exogenous emissions (emissionsdtber players).

We also impose
1 = oF() _

= 0, A.50
ST (A50)

i.e. the impact of CO2 stocks beyond the modelzooriare not taken into account (which is

not a major problem if the model horizon is suéidily long).

The first order conditions then result in:
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M =M + Q¥ (A~ 1)+ EX (A.51)
o0, - =4y, (A52)

-6,, 8, ™Y, + p, A, {-1) LY, = 0 (A.53)

Rewriting (A.53) we find the optimal level of mitigon:

1
| 2P (A, [@ %7
H ( szt mll j , (A.54)

where the asterix refers to the optimal levels.
Condition (A.10) states thdt,, =0, and thus by solving recursively, we can expr&ss as

follows:

A=) (- 0p). (A.55)

T
=t

S

Substituting (A.55) in (A.54) yields;

61

;
> (91, p,) @
s=t+1

6,8,

*

H =

(A.56)

B.2. Application to the model with explicit adaptation

Here we present the optimal level of mitigation addptation for the case where we include

an explicit adaptation variabté.
The value function now includes adaptation effd?tsas an additional control variable and

adaptation costs as a competing claim to income;
HZt 2
V(. RM) =Y, -~ M, Y, [1-R)-6, O™ Y, -y (R I, . (A57)
The equation of motion is still given by equatio %

f(/ut) =Q Eﬂl‘ﬂt)““EX[-

'® Again we omit regional subscripts as we are catingahe Nash solution.
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The first order conditions of the maximum principle51) and (A.53) and condition (A.50)
are unchanged, A.52 changes into A.58;

oA, - A= [1-R). (A.58)

And an additional equation governs the optimatlef adaptation:

oH() _
—=0
oP (A.59)

These conditions result in:

oA, —A =Y [(1-P) (A.60)

wM, Y, -y, ), [P [Y, =0 (A.61)

We can rewrite (A.61), finding the optimal leveladaptation:

DM 7
p=| YN (A.62)
v,
The corresponding optimal level of adaptation c@G) is given as:
1 12 Vo
™ vl ™ yo-1
. w w
PCR) =y | “=| | = po—= (A.63)
AN y.
The optimal level of mitigation is still given byeation A.54:
1
'U* B ( _pt mt*ﬂ M jgz,t_l
A R e
6, B,
Using A;,, =0 and solving recursively, we can expreksas follows:
* T o
A=Y -y, @-F)p,). (A.64)

s=t

Substituting (A.64) in (A.54) yields the optimal/éd of mitigation with explicit adaptation;
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Ho=| = (A.65)

Appendix C: Cooperative solutions with transfers

When introducing transfers we no longer use thelleffadaptation as a decision variable but
use the level of adaptation costs instead. Siresethwo variables are linked directly this will
not change the solution but is needed to ensutdrtdresfers are spent on adaptation.

In its most simple form the problem can be solved Z regions D and H ) using the
Pontryagin maximum principle (Pontryagin 1962) dodynamic optimisation problem with 5

control variable, mitigation for each regionu§, 44, ), adaptation costs for each region
(PC,,PC, ) and an adaptation transfers fréinto H (TA) and a state variable, total

cumulative emissionsN ).

In the dynamic solution the regions maximizes:

.
DOV (s My PCo ,PCy  TA M)+ 0 F M,,). (A.66)

t=1

Subiject to the following equation of motion andistalue of the state variable as in
Appendix B: (A.42) and (A.43).

Mt+1_ Mt = f(IUD,t'luH ,t)
M, =M

Using the Pontryagin maximum principle the corregfing discrete time current value

Hamiltonian is:
H (s 1 PCo . PCy  TAM A LL)=V ()t o, T, () (A.67)

The corresponding first order conditions of the imam principle are as follows :

OH (. —
t+1 = ( ) ' Ml = M '
oA )
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as in (A.45).

oH (.
e D1t+1 _/]t =~ aM(t) ,
as in (A.46).
oH() _ 0 (A.68)
Ofdp
H() _ 0 (A.69)
Oy 4
M =0 (A.70)
oPC,,
oH ()
=0 )
9PC. | (A.71)
9H) (A.72)
0TA
V(U 1 PCoy , PCy  TA M, )=
1
v, dog| Yy, —ap M, Y, 1—[ PCo, ]y -6, O > Y, - PC,, - TA
D Dt t Dt yLD wD’t 1Dt Dt Dt Dt (A73)

PC, . +TA

1
ror [
Vi WHI _Hl,H,t QJHI . WHI_PCHI

+v, og| Y, —ay M, IV, 1_(

Furthermore the equation of motion is given bylihiéd-up of the stock of CO2 over time,

which depends on emissions after mitigation:

f (/UD,t’IUH ,t) = QD wD,t ﬂl— Hp )+ QH wH t E(l— Hy ) (A.74)
We also impose as in (A.50):
oF(.)
A,=——==0
T+ aMT+l

i.e. the impact of CO2 stocks beyond the modelzooriare not taken into account (which is
not a major problem if the model horizon is suéidily long).

28



The first order condition (A.45) then result in:
Mt+1:Mt+QD wD,t ml_luD,t)-l-QH wH,tql_/JH,t) (A.75)
The first order condition (A.46) then result in:

L, mtﬂ _/1t =
1

1

Yop
J _el,D,t g*’D,tHZYD'1 wD; - PCDI —-TA

PCy,
Vio Yo,

YD,t — DMt wD,t 1_[

&y, M, LY, 1—(—PCD* ]y
t Dt

yl,D |yD,t
1
+ 1
PC, +TA \2r .
YH,t_% DMth,t 1“(%} _01,H,t u’H,tH' !wHI_PCHI
yl,H Ht
1
PC,. +TA "M
i o)
Yin Oy

1
PC.. |ro
- 1 [, M, IY,,, []l—[—m J
C:D,t yl,D |yD,t

(A.76)

+

[, Y, 1=

1
1 PC,, +TA JVZ,H
CH t J/l,H |yH t

The first order condition (A.68) then result in:

1 -
C_l}ez,D,t wl,DI wmgzm ' th +:0t D;lt+1m_:|-)|]20 th =0 (A.T7)

D,t
The first order condition (A.60) then result in:

1

(=6, Wy, Oy 192“1_1 Ny, +o A, 0-D)IQ, ¥, =0 (A.78)

Rt

The first order condition (A.70) then result in:
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1
— 1
V20
wp M, EE PCo, J =1 (A.79)
Vio Wop \ Vip Mo,y

The first order condition (A.71) then result in:

1

), M, [EPCH,t +TAJVZ'H 1 =1
Vin Wan | ZITA

(A.80)

The first order condition (A.72) then result in:

1
—-1
PC., . +TA )%~
1 WHD%EMWE Ht AJ 1 v,

= (A.81)
C:H t yl,H |j/Z,H ylH |yH s CD';
The corresponding optimal level &C,,  is given by rewriting (A.80):
Vo
Vin Wap Jont
PC,; = Vin M, [E ' ’ j —TA (A.82)
aw, M,
The corresponding optimal level &4, is given by rewriting (A.82):
V2 H
2H -1
Cl W, y 2
TA = Vin Af t 2 EVLH = -PC, t (A.83)
1 w, M,
C

Appendix D. Proofs

Proof of Proposition 1. To proof that making adaptation explicit in theéiopum will have no
effect on the optimal levels of mitigation; we ndedghow that the optimal level of mitigation
can be expressed in only terms of mitigation arajerous parameters.

WhenP, , is set at its optimal level it can be expressed a

Va1

30



Since we assume thd, =M (A.43) andM,,, = M, + Q, Iy, (1- 4 )+ Ex (A1)
andEXx, is given, we can find the optimal mitigation pathaugh forward induction. ThuM,
only depends on mitigation.() as follows:

_ t
M =M +> QLY (1-4)+Ex
t=1
and therefore mitigation can be expressed in exmgeparameters and mitigation as follows
(substituting in):
1
6,1
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_ t
ijﬁM +;QDG(1-/4)+E>§)

]
= ) | Wi, Dp, 1-
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(A.85)

Proof of Proposition 2a. To proof that foreign adaptation funding will fukkrowd out
domestic adaptation funding, we will show that whest adaptation expenditures are set at
their optimal levels, the derivative of PC to TA1s

When introducing an adaptation transfer to regipth® optimal level of adaptation
expenditures in region when transfers are prede@}.() are as follows (see equation A.82):

VaH

. M. st
PC.(R.) =Vin Ny, [E;:?—D/;j -TA. (21)
0PC. (PH o) _
0TA

Thus for every additional dollar of foreign fundjrdpmestic adaptation expenditure will
decrease by one dollar.

Proof of Proposition 2b. To proof that adaptation will not be crowded oten
PG, +TA< PCF(P*)HJ we have to show that the marginal benefits of tadm will
exceed or equal the marginal costs at that poetgiven that level of adaptation transfers.

We will prove that foraacé'* < aRC[:)H to hold PG, +TA < PCF(P*)HI must hold. To

H.t H.t
prove this we assume the contrary;

PG, +TA=PC(P),,.
We find applying (A.63) that when

YVoH

. M Vo1
PCH,t+TA :PCF(PH,t):yl,H wH,tI:EL ,
Vin Won
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Furthermore whePG, , +TA >PC(P),,,

1
—
1> DM (PG, TR

}/J.,H |j/Z,H ylH |yH t
oC, _ ORD,
0PC, 0PC,
Which is a contradiction, which proves tHag, , +TA <PC.(P),,, must hold for
9C, < ORD, to hold
oPC,, 0PC,,

Proof of Proposition 3a. To proof that adaptation transfers will not takacp in the
competitive Nash equilibrium, we show that the ati transfer is zero when optimising the
SWEF function using Negishi weights.

Yo

* V /C yZ,H_l
TA :J/l,H |yH ,t[E R = D% D}\/It J _PCH,t

Vi ICuy Vin o

wherey, ,V, are the welfare weights. These are equal to terse of the marginal utility of
consumption in the competitive equilibrium (Negid8i60), giving
1 1

This results in

Von

. C,/C Vo1
TA = Vin wH,t[E S D% M, J -PC,,

c:H /CH )t J/l,H |J/Z.H

Vor

D}\A Vo1
=Vin wH t “ : - PCH 1
Vin D/Z,H

When adaptation expenditures are set at the itgwtimal levels in region PPC,, , will
be set at the level as in (A.63):
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Proof of Proposition 3b. We prove that adaptation transfers will be positivthe case of
climate cooperation when there are differencemipaicts across regions and transfers will
run from low impact to high impact regions. We shitxat using the climate cooperation
welfare weight, transfers indeed will take placeewlhhere are differences in impacts and run
from low to high impact regions.

The SWF is now maximised using the welfare weightie case that there are no damages
from climate change. The logic here is that coestshould receive the same weight as they
would have in the competitive equilibrium when dite change did not occur. The welfare
weights equal the inverse of the marginal utilifyconsumption when there are no damages

from climate changev;, =Y. This results in an optimal adaptation transfeeig by:

YVaH

TA' =, Y, 2! Cor g M, 27
o " YH /CH it }/l,H |J/2,H "

When adaptation expenditures are set at the inteptianal levels in region H?C,, , will be
set at the level as given in Proposition 2a (A.63):

YVaH

|:|M Yo -1
IDC:H,t:J/]..H |yH,t[E % ! J .
}/l,H lj/Z,H

Y, /C
Transfers will thus take place from region D to iyoin the case Wher\?'% <1,
H.t H.t

y2 2 . -YDt YH t . . .
as__ %< (. Thisis only the case{= <——. This entails that the negative effects of
1- y2 2 CD,t CH t

climate change (the damages) are lower in region R.

Proof of Proposition 3c. We prove that adaptation transfers will take plaben global
utility is maximised when there are differencesa®sn income consumption levels across
regions and that transfers will run from high in@regions to low income regions. To do
this we show that when using equal welfare weititsis the case.

When global utility is maximised the welfare weigkake the value of 1 for all regions.
Resulting in an optimal transfer of:
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When adaptation expenditures are set at the idtg@imal levels in region HPC p; will
be set at the level as given in (A.63):
YVaH

|:|M Yo -1
IDC:H,t:J/]..H |yH,t[E % ! J .
}/l,H lj/Z,H

C
Transfers will thus take place from region D toioegH only in the case where>- >1, i.e.
H.t
when consumption is higher in region D.
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