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Abstract: Which types of networks favor the diffusion of innovations
in the sense that an innovation whose intrinsic benefits are greater than
those of an established choice will be able to replace the latter when it
is initially used only by a small fraction of a large population? For de-
terministic and regular networks there are characterizations, based on a
coordination game model of the diffusion of innovations. Here we study
this question for a class of irregular random networks, Small world net-
works, which are of interest as more realistic models of social networks.
We consider a random graph model based on a community structure,
in which the choice of a parameter allows us to obtain as special cases
several well known models, in particular Watts’ Small world. We show
that there are different types of Small World graphs some which fa-
vor diffusion others that do not. Our study suggests that the kinds of
ties that exist between different communities of an individual play an
important role. We interpret Watts’ Small World as one with high cor-
relation between social spheres of individuals and favorable to diffusion.
In other Small Worlds where the communities of individuals are uncor-
related diffusion succeeds only for very large payoff benefits in favor of
the innovation.

Keywords and phrases: diffusion of innovations, Small World net-
works, contagion threshold, community structure, social networks.

1. Motivations

A number of classical studies, such as the one by Coleman et al [10] of
physicians’ willingness to prescribe new drugs, or by Ryan and Gross [39] of
the introduction of agricultural innovations in rural communities have shown
that new technologies, norms or other innovations are often spread through
social networks and are gradually adopted under the influence of friends of
acquaintances who have already converted to them. This means that not
only the inherent benefits of a choice but also the social network through
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which the agents can influence each other becomes relevant for determining
whether a new norm will spread or a new technology will take hold. A natural
question to ask and which has been the object of studies by Morris [34] or
Young [49] among others is to determine which types of networks allow
new technologies or behaviors with greater inherent benefits to establish
themselves in a population where some other pre-existing technology, norm
etc is prevalent. Whether we are interested in the spread of new norms, the
introduction of new products or innovations, from a formal point of view,
the problem boils down to the study of a diffusion process on some social
network. Moreover, given the nature of the question: whether spread can
occur from a small clique of initial adopters to a larger groups or population,
it is natural to restrict our attention to networks of large size.

In reality, it is plausible that influence between network structure and
decisions to adopt some form of behavior goes in two directions. Network
neighbors may influence each other to make similar choices, but conversely,
agents might decide to reinforce or reduce their interactions depending on
their affinitiy, that is the similarity of their decisions, leading to a com-
plex interplay between network evolution and adoption. This approach has
been taken for example by Steyer and Zimmermann [40]. However, the more
basic question of how a fixed network structure influences this type of co-
ordination process is already interesting. This has been the most common
approach in the literature and the one we will follow here. To address the
question of whether choices with intrinsic benefits could spread in a popu-
lation, Blume([3],or Ellison ,[16])considered a coordination game in which
players were assumed to play a myopic best response or trembling hand best
response to their neighbors previous choices. These early studies showed
contrasting outcomes on different types of networks: regular grids of low
dimension allow the payoff dominant action to spread easily while regular
trees of high degree make it difficult for spread to occur unless the benefits
of the innovation are unrealistically high. Taking a somewhat different ap-
proach, Morris [34] asks whether there are criteria that can be applied to any
graph and which measure how easy it is for diffusion or ”contagion” to oc-
cur on it. For this purpose, he introduces a notion ”of contagion threshold”
which measures how easily an innovation spreads in a graph. The contagion
threshold is related to the lowest payoff benefit that allows the innovation
to spread. Indeed, if the innovation is by far superior to the established
norm, it should be able to spread in any network. If the innovation is only
marginally better than the previous norm, then its spread relies more heav-
ily on social factors. This is thus reflected in the contagion threshold. Morris
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shows that the contagion threshold can be determined based on the rate of
neighborhood growth under some assumptions about the homogeneity of the
network. Similarly, Young establishes criteria for contagion but in the case
where agents use trembling hand best response and not pure best response in
the coordination game. Both studies are concerned with the analysis of large
sized networks. Morris uses a setting with an infinity of agents interacting
in a regular graph, Young obtains results for N goes to infinity.

However, the criteria developed in [34] or Young rely on the regularity of
the network. Moreover, they apply only to deterministic graphs. Therefore
they cannot be used to characterize the contagion thresholds of a number
of recent random graph models which have been developed to capture more
accurately certain properties of real social networks.

A number of empirical studies and experiments (see for example Gra-
novetter [22] or Freeman and Thompson [19]) have allowed to determine
that many networks, in particular social networks share a number of statis-
tical properties which are commonly referred to as Small World properties :
high clustering and short distance between agents. This makes it interesting
to explore the behavior of social dynamics such as the diffusion of innova-
tions, on these types of networks whose properties are closer to those of real
networks than for example regular grids or the Erdos-Renyi random graph.

The term Small World network was coined by Duncan Watts who pro-
posed the first model that captured these properties [46] . This model was
studied by Watts [46], and later by Barbour and Reinert [1], [2] . Subse-
quently, alternative models for capturing these properties have appeared in
the literature (a survey can be found in Bonato [5]). However, many of these
are aimed at applications in computer science and not suitable for describing
social networks. Moreover, none has had as much impact on the literature
as that of Watts. In fact, it is fair to say that to some extent a small world
graph has almost come to be identified with this particular model.

As a consequence, most studies of games or other types of interactions
on Small World graphs are, in reality, studies on a particular model, that
of Watts. However, going back to Watts original definition, it should be re-
membered that small world graphs are in fact a class of graphs sharing a
certain number of asymptotic scaling properties. For a mathematical defi-
nition of these properties, see Cont and Tanimura [11]. One may therefore
ask to what extent results based on Watts’ model are generic to this class
of graphs.

As far as the diffusion of innovations is concerned, the results in this paper
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show that quite to the contrary the behavior of this type of diffusion, even
described in a simplified manner, cannot be characterized based on the Small
World properties alone. We identify different types of small world networks
which lead to different outcomes for the diffusion of innovations. However,
these comparisons allow us to identify different types of small world networks
in which diffusion is more or less facilitated and relate these differences to a
quantity that can be given a meaningful interpretation from a social science
point of view.

The class of Small world models on which we will study the diffusion of in-
novations, will be random graph models which are all based on an underlying
community structures or social group structure. Community structures are
present in many real network, rather obviously in social ones. The random
graph modeling we propose does not supply a strategic foundation for the
models but it is possible that the resulting networks could be obtained as
equilibria of some network formation game. This is an interesting problem
but we will not consider it here. In this paper, our objective is to study the
impact of these structures on the diffusion of innovations and not the origin
of the structures themselves.

The random graph model we propose and study here is specifically aimed
at social networks. Structures and parameters are easy to interpret from
the point of view of social science. Another appealing aspect of the model
is that it englobes as particular cases several well known models that have
been studied previously. Like Watts’ Small World, the model we present
here is regulated by the variation of a parameter that can be interpreted as
follows: it expresses the correlation between the different social circles of the
individual which can be either overlapping or disjoint, depending on the type
of sociability. For example, sociologists (see Degenne and Forsé [13]) note
that in rural environments, the different social spheres of an individual tend
to overlap, whereas urbanites often participate in several disjoint spheres of
sociability.

As a function of the parameter that regulates correlation, we can obtain,
for example, a grid like structure, a Small World model with properties
close to that of Watts’ one or to the ”island model” that appeared as the
equilibrium of a strategic network formation game in Jackson and Rogers
[24] or a model with independent communities previously studied in Cont
and Tanimura [11]. In particular, we can now interpret Watts’ Small World
as a network in which the correlation between social spheres of individuals
is high but not perfect.
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In the community based network we propose, we study a notion of asymp-
totic contagion threshold, similar to that of Morris but for random graphs.
We note that in inhomogenous networks, such as the ones we consider, it is
possible that spread would not occur from a typical, i.e. randomly chosen
connected set of initial adopters but that some set of initial users from which
spread would occur exists and could be found if one has perfect knowledge of
the network. Whether such a group of agents exists could be of interest for
example in problems related to marketing. For this reason, we also consider
this possibility when bounding the contagion thresholds. We obtain asymp-
totic analytical results for the extreme values of the correlation parameter.
Numerical illustrations for finite N are given in simulations. We also con-
sider the case of trembling hand best response, following Young. Within this
class of community based models, our results suggest that the ability of the
innovation to spread at a reasonable level of payoff benefits is closely linked
to the level of correlation between the different communities of an individ-
ual. This suggests that in order to predict the success of an innovation, it
is relevant to measure this quantity rather than the clustering which is a
necessary but not sufficient condition for spread in this type of process.

2. Organization of the material

We begin, in section 3, by presenting the general community based model
and motivations for it. We also presents the special cases of interest. In sec-
tion 4, we recall the coordination game presented by Morris, the version
of this model with trembling hand best response, following Young [49] and
some of the main existing results. In section 5.1, we discuss how to define
the contagion threshold of a random graph in an analogous way to that of
Morris in the deterministic setting with infinite node space. We establish
results about asymptotic contagion thresholds in the uncorrelated commu-
nity model and in Watts’ Small world. In section 5.2, we provide numerical
examples based on simulations in a pre-asymptotic setting. The purpose of
this is to confront the asymptotic with behavior in large finite sized sys-
tems. In 5.3, we analyze the diffusion of innovation with trembling hand
best response by adapting the criteria of Young. Section 6 concludes.

3. The networks: community based small worlds random graphs

As the name suggests, the community based model we will now present
is based on the idea that individuals in a social network belong to one or
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several communities. These communities could be of a professional nature,
families, students in the same course or individuals who practice some activ-
ity together. This corresponds to a vision of networks in which the building
blocks are communities rather than individuals which we think is reason-
able for the general social network of an individual, that is the totality of
his friends and acquaintances. For example, Wellman et al. [48], in a study
of social networks in East York, found that many links are not autonomous
but are embedded in larger clustered groups such as the group of co-workers
or families. They estimated 81 % of links to be of this type. The importance
of social circles as building blocks in networks have been emphasized by a
number of sociologists, see for example the review in Degenne et Forsé [13],
chapter 2. We also find a vast literature that deals with algorithms that
identify community structures in network data (minimum-cut, hierarchical
clustering, see Johnson et al [27], or more recent methods such as that of
Girvan et al. [20] ) or Copic et al [12]. However, many of these assume
that each individual belongs to a single community which is to be identi-
fied. In our model, the assumption that an individual may belong to several
communities is important. Moreover, it seems to us that the literature that
identifies communities in empirical data has not found a counterpart in the
modeling literature. At least random graph models have not attached much
attention to community structures but have rather focused on clustering. It
should be pointed out that while networks with communities are necessarily
clustered, the presence of clustering does not necessarily mean that there is
a clear community structure. For example, regular grids are clustered but it
is hard to define the community of an individual in an unequivocal manner.

In the following section we present our model. Let us point out that the
construction as such does not make claims to any realism. It is the resulting
graph that should be a reasonable representation of a social network.

3.1. Defining the community model

Consider M complete graphs G1, ...,GM with disjoint node sets, which we
will call clusters. These clusters can be seen as ’communities of origin’ of the
nodes. We shall take them to be of equal size δ for simplicity, though this
assumption can be relaxed. Starting from the (disconnected) graph

⋃M
m=1 Gm

with N = Mδ nodes, we add random links to it in the following way.
We associate to every node i = 1..N a cluster Xi drawn among G1, ...,GM .

Xi can be viewed as the ’secondary community’ of the node i. In the final
construction, all nodes who share a primary or secondary community will
be linked. We want to determine the laws of the (Xi)i=Ni=1 so as to allow
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for correlation between the first and secondary cluster of an agent in such a
way that agents who are in the same community of origin may have a higher
probability of sharing their secondary community as well. We do this in the
following way: For every m = 1, ...,M , we order the nodes in Gm in some
arbitrary order, j1, ..., jδ. For 1 ≤ k ≤ δ, we define nmk =

∑l=k−1
l=1 1Xjl=Gm .

Now, we draw Xjl so that P (Xjl = Gm) = e
αnm
k∑i=M

i=1
e
αni
k

. This means that the

secondary community of Xj1 is drawn uniformly at random and for all other
nodes in Gm, the secondary community of is drawn preferentially among
those to whom other nodes in Gm are linked. When α = 0, we have the
independent case. When α goes to infinity, the nodes in the same initial
cluster will almost surely be in the same secondary cluster. As a function of
the parameter α, we obtain as particular cases:

• Independent case (α = 0) This is the model with independence
between the two communities of an individual. This is the model that
was studied in Cont and Tanimura [11] . The (Xi)i=Ni=1 are drawn inde-
pendently and uniformly at random. The resulting graph is obtained
as follows: Define for m = 1..M

Am = [Gm]
⋃
{i = 1..N,Xi = Gm} (1)

Then

ΓN =
M⋃
m=1

Am ×Am. (2)

• Islands model
The islands model is obtained as a minor variation of the previous
model. As before, the (Xi)i=Ni=1 are drawn independently and uniformly
at random. However, this time we will link a node to only one (or more
generally less than δ nodes) node in his secondary community: For
every m = 1, ..M we consider the nodes {i|Xi = Gm} that will have a
link to some node in Gm. We distribute the links among nodes in Gm
by drawing for each node in {i|Xi = Gm}, a node Yi chosen uniformly
among those chosen the fewest times previously, and create the link
(i, Yi). Thus we have

ΓN =
M⋃
m=1

Gm × Gm
i=N⋃
i=1

(i, Yi) (3)

This generates a graph based on communities or ”islands” connected
by single links which resembles the equilibrium graph obtained in a
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strategic network formation game proposed by Jackson and Rogers
[24]
• The perfectly correlated case (α → ∞) In section 3.2, we show

that there is a community based model with perfect correlation be-
tween secondary communities of nodes within the same initial com-
munity which has a structure similar to a one-dimensional circular
grid.
• high correlation (Large fixed α) and relation to Watts’ model

In section 3.2, we will show that the community model with strong but
not perfect correlation between communities has properties similar,
in a sense that we will define, to Watts’ Small World. Recall that
Watts’ model is defined by superposing on a set of N nodes, a one
dimensional circular grid L and an Erdös–Renyi random graph E.
In the ring lattice, each node is connected to the 2k neighbors within
distance k in the lattice. In the Erdös–Renyi graph each link exists with
probability p

N . The resulting graph ΓN has links defined by (i, j) ∈ ΓN
if and only if (i, j) ∈ L or (i, j) ∈ E.

3.2. Comparison of Watts’ model and the strong correlation case

We will consider the general model described above but with a minor mod-
ification where secondary communities are drawn uniformly at random in
(Gm)m=M

m=1 but without replacement. In this case we obtain a graph that is
almost identical to Watts’ Small World as we see from proposition (1). If
secondary communities are drawn uniformly at random with replacement,
we obtain a connected component with a ”locally grid-like structure”. This
case is treated in the appendix. First, let us consider the case α = 0. In
this case, all agents in the same initial community or cluster are also in the
same secondary cluster. Suppose that we draw (Xi)m=M

m=1 , uniformly among
(Gm)m=M

m=1 but without replacement, so that each cluster is the secondary
cluster of exactly one other cluster. It is then easy to see that we have a ring
structure. Since all nodes in Gm are linked to all the nodes in cluster Xm, it
is easy to see that we have the following proposition:

Proposition 1. Let the size of the initial clusters be δ. Then the graph ΓN
defined by the procedure above has a link set {(i, j)|(i, j) ∈ ΓN} that includes
the link set of a one dimensional circular grid where agents are linked to
all neighbors at distance at most δ and is included in the link set of a one
dimensional circular grid where agents are linked to all neighbors at distance
at most 2δ.
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Consequently, fixing a large α , the probability that some agent has a
secondary cluster different from the other agents in his initial community is
small but remains positive. This secondary cluster being drawn uniformly
at random, corresponds to the uniformly random links or ”shortcuts” in
Watts’ model. In this sense, it is natural to interpret a one dimensional
grid as a community model with perfect correlation between the secondary
communities of agents who share some community, and Watts’ model as a
network in which correlation is high but not complete.

4. Diffusion of innovations modeled as a coordination game in a
population

Consider a coordination game with the payoff matrix below (we could con-
sider somewhat more general payoffs as [34],[49] but this changes nothing in
the analysis) :

u(1,1),u(1,1) 0,0
0,0 u(0,0),u(0,0)

where u(1, 1) > u(0, 0) > 0. If an agent plays this coordination game with all
of his network neighbors and averages his payoffs, then the utility he derives
from his choice ai depends on the intrinsic value of this choice and on his
neighbors’ actions:

U i(ai, .) =
1

Card(V (i))

∑
j∈V (i)

u(ai, aj) (4)

Following Morris [34], we assume that agents perform myopic utility op-
timization, choosing at time t the best response to their neighbors’ choices
at t− 1. There is a critical smallest value q such that if at least the fraction
q of an agents neighbors chose 1 in the previous period, 1 will be the agents
best response.

U it (1) ≥ U it (0)⇔ 1
Card(V (i))

∑
j∈V (i)

ajt−1 ≥
u(0, 0)

u(0, 0) + u(1, 1)
= q (5)

.
In a graph G, where the initial set of nodes in state 1 is I0, the set of

agents who will choose 1 at time k is defined recursively: (Iq)k(G) = {j ∈
X|Card(V (j)

⋂
(
⋃
l<k

Il))

card(V (j)) ≥ q}. These sets depend on the graph G through the
neighborhoods V (j).
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Whenever u(1, 1) > u(0, 0), it would be optimal if the population coor-
dinated on 1, but this is not a guaranteed outcome if few agents chose 1
initially. Morris considers the case where the node space X is infinite. The
contagion threshold of a graph, which is a measure of how easy it is for an
action with better payoffs to spread in the graph, is defined as

η(G) = maxq{q|
⋃
k≥0

(Iq)k(G)is cofinite, for some finiteI0} (6)

(a set is cofinite if its complement is a finite set). Thus the contagion thresh-
old of a graph is the largest value of q in the coordination for which the
payoff dominant action is able to spread from a finite set to the whole (in-
finite) system. The contagion threshold is always inferior to 1

2 . The closer
it is to this upper bound, the easier it is for the payoff dominant action to
spread in the graph. We note that if η is low, the action 1 can only spread if
u(1, 1) >> u(0, 0). If η = 1

2 , action 1 will spread whenever u(1, 1) > u(0, 0).
(We note that in a coordination game, it is reasonable that the payoff dif-
ference between the actions should not be too great so that q is fairly high.
Thus, although the description is formally the same as an infection dynamic,
in the latter, it is sufficient to know one person infected by a disease to catch
it, which corresponds to a low q. The spread of norms on the other hand re-
quires that an individual has a sizeable fraction of his neighbors who adopted
the norm in order for him to adopt it, unless one of the choices has payoffs
greatly superior to those of the other one. If a graph has a low contagion
threshold, the payoff dominant action would not be able to spread for most
reasonable payoffs. For example, a contagion threshold of 1/10 would require
the payoff dominant action to have a payoff 9 times greater than the other
action.)

4.1. Coordination game with trembling hand best response

As before, agents use a myopic best response to their neighbors previous
choices but the response is smoothed so that the best response is chosen
with high probability but the other action has a small probability of being
chosen. In terms of choice probability,

P (1|h) =
eβ(hu(1,1)−(1−h)u(0,0))

1 + eβ(hu(1,1)−(1−h)u(0,0))
(7)

This dynamic is an ergodic, homogeneous markov chain with a potential
function. This guarantees that the state where all agents choose the payoff
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dominant action will be reached since this state uniquely maximizes the po-
tential function. However, the time before reaching the invariant distribution
may depend on the size of the graph N . This dynamic has been studied on
different types of graphs (Blume, Ellison). Young has established a criteria,
close knittedness that guarantees that spread is rapid in the sense that the
time it takes is bounded independently of the size of the graph, which is
important for large graphs. In the stochastic diffusion, closeknittedness of
a graph is comparable to to the contagion threshold in the deterministic
version, in the sense that in an s close knit graph, every diffusion in which

u(0,0)
u(0,0)+u(1,1) ≤ s will with high probability reach a state where most agents
play 1 rapidly (ie in a time independent of N).

Definition 1. A graph is rs-close knit if every node belongs to a set S of
size at most r such that for each S′ ⊂ S, Card((i,j)∈Γ|i∈S,j∈S′)

Card((i,k)∈Γ|i∈S′) ≥ s.

It is proved in [49] that

Theorem 1. (adapted from Young) If the payoff parameters in the diffusion
are such that u(0,0)

u(0,0)+u(1,1) < s, then for every ε > 0, there is a β0 such that
for every β > β0, there is a waiting time T (r, k, β) that does not depend on
N such that we have for every rs close knitted graph

P(
i=N∑
i=1

ati ≥ N(1− ε)) > 1− ε. (8)

whenever t > T .

5. Different notions of contagion thresholds in random graphs

we recall that on a deterministic graph, if we specify a set of nodes that are
initially in state 1, I0, then we define, for the threshold q, the nodes that
enter state 1 at time t recursively as:

(Iq)t = {i|Card(V (i)
⋂

(
⋃
s<t(I

q)s))
Card(V (i))

≥ q} −
⋃
s<t

(Iq)s (9)

We note that (Iq)t = (Iq)t(GN ) through the dependance on GN through
V (i) but to simplify notation, we will often simply write (Iq)t, when the
context is clear.

The definition of contagion threshold (6) applies to deterministic graphs
when the node set is infinite. We want to give an analogous definition that
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applies to sequences of random graphs indexed by increasing size. This def-
inition should capture the idea that a small set of initially infected nodes
can spread to the whole graph asymptotically when N is large. We propose
two possible increasingly strong definitions

Definition 2. Let I0 be any set fixed prior to the realization of ΓN such
that Card(I0) = o(1). We say that the asymptotic contagion threshold, with
respect to a typical I0 is inferior to η if for all q > η and for every fixed
ε > 0

limsupN→∞P(
Card(

⋃
t≥0(Iq)t(ΓN ))
N

≥ ε) = 0 (10)

We can also require spread to be bounded by a constant, a stronger re-
quirement.

Definition 3. Let I0 be any set fixed prior to the realization of ΓN such
that Card(I0) = o(1). We say that the asymptotic contagion threshold, with
respect to a typical I0 is inferior to η in the strong sense, if there is a constant
k, which may depend on card(I0) but not on N , such that for all q > η

limsupN→∞P(Card(
⋃
t≥0

(Iq)t(ΓN )) > k) = 0 (11)

Moreover, we can ask that spread does not occur, no matter how we
choose the initial set of adopters. The definition below can also be given
with respect to spread that is limited in the strong sense ((11))

Definition 4. We say that the asymptotic contagion threshold, with respect
to any I0 is inferior to η if for all q > η, for every s = o(1), and for every
fixed ε > 0,

limsupN→∞P(
⋃

{I0|Card(I0)≤s}

Card(
⋃
t≥0 I

t(ΓN ))
N

≥ ε) = 0 (12)

The stronger definition, (12) guarantees that diffusion dies out over the
contagionthreshold for any choice of the set of initial users in the graph,
even one chosen intentionally to maximize total spread.

6. asymptotic bounds of contagion thresholds in different small
world models

In this section, we provide upper bounds of the contagion threshold for
the three types of small world random graphs presented in the previous
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Tanimura/Diffusion 13

section: the perturbed lattice (Watts), the independent community model
and an island model. The main results of this section are essentially that the
asymptotic contagion thresholds are very low in all the small world models
we consider, at least when the connectivity is not too low, when we apply
the weak definition (10). The same is not true for the strong definition. In
Watts model we have:

Theorem 2. In Watts’ Small World, the contagion threshold with respect to
a typical I0, with respect to the weak limitation of spread (10) is no greater
than 1/2k.

However, if we require that spread is limited in a stronger sense, we see
that the asymptotic contagion threshold is much higher:

Theorem 3. In Watts’ Small World, the contagion threshold with respect
to a typical I0,with respect to the strong limitation of spread (11) equals 1/2.

In the independent community model and island model, we will show that
contagion fails except at low thresholds in the strong sense (11) and for any
choice of the set of initial adopters:

Theorem 4. For any q > 1/2δ contagion fails in the independent com-
munity model with cluster size δ and island model with island size 2δ, in
the sense of definition (12). Moreover, for any k = O(1),there is a bounded
function f(k) such that

P(limsupN→∞[
⋃

{I0|Card(I0)≤k}
Card(

⋃
t≥0

(Iq)t(ΓN )) > f(k)]) = 0 (13)

Proof theorem 2 and 3
In the proof of theoreme 3 and 4, we will use the notation O(1) for a

quantity that is bounded by a constant independently of N . This facilitates
notation, since the exact values of these quantities do not intervene in the
proof. Consider an arbitrary set I0 such that Card(I0) = o(1). We have
I0 =

⋃
l<L Il where each Il is an interval in the lattice. Let f(N) be any

function verifying limN→∞ f(N) = ∞. In what follows, we may suppose
that limN→∞f(N)/lnN = 0 because whenever contagion fails for such an
f(N), necessarily it fails for any f(N) orders of magnitude greater.

Let I0 be an arbitrary fixed interval in the lattice. Fix q > 1/2k. If 2k is the
degree of a node in the lattice, define K =: min[d| k

2k+d < q]. In the lattice
small world, spread occurs locally from the ends of the interval. Call lmin
and lmax the endpoints of the interval Il. We want to give an upper bound
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of the probability that all the nodes in [lmin − f(N), lmax + f(N)] become
infected through local spread. We then address spread through shortcuts.
A sufficient condition for the local spread to stop is that the endpoint of
the interval meets an interval of k consecutive nodes that all have a high
fraction of non local neighbors, ie whose degree in the Erdos-Renyi graph
is at least d. Whenever at most O(f(N)) nodes are in state 1, for any node
i ∈ [lmin − f(N), lmax + f(N)], the probability of having at least K links in
the erdos renyi graph to nodes that are not in state 1 is given by

P(degER(l) ≥ K) ≥
(
N − o(f(N)))

K

)
(
p

N
)K(1− p

N
)N−o(f(N))−K =: q > 0(14)

Consider the nodes in [lmax, lmax + f(N)]− I0. Card([lmax, lmax + f(N)]−
I0) = O(f(N)) and we can divide these nodes into O(f(N) disjoint intervals
each containing k nodes. For each such interval, the probability that every
node in it has degree at least K is at least qk and the probability that none
of the intervals in [lmax, lmax + f(N)] − I0 has this property is inferior to
(1−qk)O(f(N)). We can apply the same argument to [lmin, lmin−f(N)]. Thus
the probability that the local spread continues at one or both ends of the
interval is inferior to (1 − qk)O(f(N)). This argument applies to each of the
intervals Il. There are a finite number L of intervals and thus the probability
that one of them is able to spread is also at most (1− qk)O(f(N))

We also need to consider non local spread. In what follows, we use the
notation S(f(N)) =

⋃
l[lmin − f(N), lmax + f(N)] For i = 1, ..N ,define

Ci = Card((i, j) ∈ E|j ∈ S(f(N))). We note that if local spread is contained
to S(f(N)), a sufficient (although not necessary) condition for spread to be
contained to S(f(N)) is that (a):For every i /∈ S(f(N)) Cti ≤ 2 and (b) for
every i ∈ S(f(N)), Cti = 0.

For the event (a) we have

P(
⋂

i/∈S(f(N))

Cti < 2) =
∏

i/∈S(f(N))

P(Ci ≤ 2)

∏
i/∈S(f(N))

1−
∑
k≥2

(
O(f(N))

k

)
(
p

N
)k(1− p

N
)o(f(N))

≥
∏

i/∈S(f(N))

1− o(f(N)) ∗maxk≥2(
o(f(N))

N
)k

≥ (1− o(f(N)3

N2
))N = 1−O(

f(N)3

N
) (15)
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As for (b)

P(
⋂

i 6=j∈(S(f(N)))2

(i, j) /∈ E) ≥

∏
i 6=j∈(S(f(N)))2

P((i, j) /∈ E) ≥ (1− 1
N

)O(f(N)2) = O(
f(N)2

N
) (16)

Together with the previous, we conclude that

limsupN→∞P(
card(

⋃
t I
t)

N
≤ card(S(f(N)))

N
) = 1 (17)

The result in theorem 3 is obvious. For any constant k, the probability
that each node in an interval of k nodes has degree 0 in the Erdos-Renyi
graph is (1− p

N )Nk and limN→∞(1− p
N )Nk > 0.

Proof independent community model
In what follows, we discuss the steps involved in proving theorem ?? and

present a number of lemmas which intervene. We have chosen to defer the
proofs of these lemmas to the end of the section. At time 0, the contagion
process starts from a set of initially infected nodes I0. We will consider only
initially infected sets that consist of a number of completely infected clusters
since any set that is not of this type is included in such a set. Thus, we may
assume that initially infected sets are of the form S(k) for some k, where

S(k) = {(G1, ..GM )k|Gm1 6= Gm2 .. 6= Gmk}. (18)

We want to show that for every k, there is a constant K(k) that does not
depend on N such that

P(limsupN→∞[
⋃

{I0|I0∈S(k)

Card(
⋃
t≥0

It(ΓN )) > K(k)]) = 0. (19)

We have

P(
⋃

I0∈S(k)

Card(
⋃
t≥0

It(ΓN )) > K(k)) ≤
∑

I0∈S(k)

P(Card(
⋃
t≥0

It(ΓN )) > K(k)) =

Card(S(k))P(Card(
⋃
t≥0

It(ΓN )) > K(k)) .
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The last equality is due to the fact that the law of the graph ΓN is invariant
to permutation of the clusters. The probability of spread ex-ante is the same
from any set in S(k). Thus, we fix an arbitrary I0 ∈ S(k) independently of

ΓN . Since Card(S(k)) <

(
M
k

)
, it is sufficient to show that we can find a

K(k) such that

P(Card(
⋃
t≥0

It) > K(k)) ≤ 1
N1+α

(
M
k

)
(20)

We index the contagion process by t = 0, .... To go from step t − 1 to
step t in the contagion process, i.e. to determine the nodes that become
infected at t, we need to have knowledge of all the links that involve nodes
in It−1. Thus, between times t− 1 and t in the contagion process, we draw
variables that determine links involving the nodes in It−1. We denote the
variables drawn in the graph process by (Ys)s≥0. We will describe later what
these variables are. We denote by Fs the sigma algebra generated by the
variables (Yl)l≤s. Variables in the graph process are always drawn between
two steps in the contagion process. We denote by Yst−1 the first variable
drawn between t− 1 and t and Yst the last one.

The independent community model is uniquely defined by the realization
of the variables (Xi)i=Ni=1 which follow a uniform and independent law on
G1, ...,GM . In order to study the contagion process, we will not draw the
variablesXi directly. Instead, we use the following alternative way of drawing
the variables (Xi)i=Ni=1

Remark 1. We recall that in the independent community model for each
node i ∈ 1, 2..N we draw a variable Xi following a uniform law on G1, ..GM .
It is possible to draw a graph ΓN with the same law in the following way:
For every i = 1, ..N , let R0

i = ∅ be the set of ”rejected” nodes at time 0
in the graph process. At s > 0, consider any set Js of clusters such that
Js
⋂
Rs−1
i = ∅ and denote Card(Js) = ns. We will now determine whether

Xi ∈ Js, according to the probability:

P(Xi /∈ Js) =
M − ns − Card(Rs−1

i )
M − Card(Rs−1

i )
. (21)

If Xi /∈ Js, we put Rsi = Rs−1
i

⋃
Js and say that Js is rejected by i. Otherwise,

we draw Xi uniformly among the clusters in Js. The law of Xi determined
this way is clearly uniform on G1, ..GM .
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We will use this alternative way of drawing the successors (Xi)i=Ni=1 in
order to monitor the contagion dynamic. Between two steps t − 1 and t in
the contagion dynamics, we determine for every node i = 1, ..., N whether it
”rejects” the set of clusters containing previously infected nodes. If it does,
in the following steps, we know that its law then follows a uniform law on
the complement of the sets that have been previously rejected. If it does
not, we determine its successor.

In the independent community model, each node belongs to a unique
initial cluster Gm and nodes are linked only if they are in the same Am for
some m. We will see that this makes it convenient to monitor infected nodes
by monitoring initial clusters. An initial cluster Gm will be assigned to a set
depending on how many infected nodes the associated set Am contains. Let
us begin by defining these sets and how the clusters move between them.

At time t = 0, s = 0,

I0
0 = {i ∈ G ∈ S(k)},D0

0 = D0
0 = S(k) (22)

C0
0 = C0

0 = ∅,B0
0 = B0

0 = G1, ..GM − S(k). (23)

The upper index is for the contagion process and the lower one for the
graph process. All these sets except Its are sets of clusters. However, we may
by abuse of notation, write for example i ∈ Dt meaning i ∈ G ∈ Dt. It
may be useful to bear in mind in what follows that we want to define these
sets in such a way that at time t we will have Gm ∈ Bt if Am contains no
infected node, Gm ∈ Ct if Am contains one infected node and Gm ∈ Dt if
Am contains at least two infected nodes. These properties have, of course,
to be verified which is done in the lemma 6.2after we define the process that
describes how clusters move between these sets.

Graph process
For i = 1, ..N , we denote by Rsi i’s set of rejected clusters at time s in

the graph process, with R0
i = ∅. To go from step t− 1 to t in the contagion

process, we realize the following variables (Ys)s=sts=st−1
.

• We determine (if they are previously unknown)the successors of the
most recently infected nodes; for j ∈ It−1

s−1, we draw Xj uniformly in
the set G1, ..GM −Rs−1

j .
• For every node i whose successor is not determined at s, we draw
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whether Xi ∈ Dt−1
s−1 or not:

P(Xi /∈ Dt−1
s−1) =

M − Card(Dt−1
s−1)− Card(Rs−1

i )
M − Card(Rs−1

i )
. (24)

If Xi /∈ Dt−1
s−1, we put Rsi = Rs−1

i

⋃
Dt−1
s−1. Otherwise we draw Xi uni-

formly in Dt−1
s−1.

• When all the aforementioned variables have been drawn, we we create
a temporary set

T ts = [G ∈ Bt−1
s |∃!j ∈ G, Xj ∈ Dt−1

s ]
⊔

[G ∈ Bt−1
s |∃!i ∈ It−1, Xi = G].(25)

This set contains clusters that will end up either in Ct or Dt but we
need more information to determine which one of them.
• Thus, for every node i ∈ Ct−1

s

⋃
T ts , whose successor is not determined

yet, we draw whether Xi ∈ (Ct−1
s

⋃
T ts)

P(Xi /∈ (Ct−1
s

⋃
T ts)) =

M − Card(Ct−1
s

⋃
T ts)− Card(Rsi )

M − Card(Rsi )
. (26)

If Xi /∈ (Ct−1
s

⋃
T ts), we put Rs+1

i = Rsi
⋃

(Ct−1
s

⋃
T ts). Otherwise, we

draw Xi uniformly in Ct−1
s

⋃
T ts .

Updating of the sets
The sets we have defined will essentially be updated with the contagion

process and not the graph process. The only exception is that at after any
draw of a variable in the graph process, if there are very high degree nodes
and clusters, we ”remove” these from the process. Indeed, we have the fol-
lowing lemma which shows that such nodes cannot be infected before T .

Lemma 6.1. Suppose that q > 1/2δ, and that Card(I0) ≤ kδ. Then there
is a constant c(k) that depends only on k such that for every t ≤ T and for
any realization of the random variables drawn prior to t, i.e. for any Fst.
We have

Card(It) ≤ c(k), and max{degi|i ∈ It ≤ c(k). (27)

The proof can be found at the end of the section. We note that the
statement in lemma 6.1 would not be verified for all types of graphs and
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diffusions. For example, it would not hold for dynamics on scale free graphs
where it is sufficient to have one infected neighbor to become infected.

The degrees of the nodes will not be known until all the variables (Xi)i=Ni=1

have been drawn, but over time some of these successors are determined and
if there is an s̄ ≥ 0 such that

P(Card(Am) ≥ c(k)|Fs̄) = 1 (28)
then for all s ≥ s̄, Gm ∈ Bs (29)

Moreover, if

P(degi ≥ c(k)|Fs̄) = 1 (30)
then for all s ≥ s̄, i /∈ Is (31)

This updating according to the graph process ”re-assigns” nodes and clus-
ters when their degree exceeds c(k) since they cannot according to the lemma
6.1 be infected before T . With this exception, the sets of clusters that we
have defined evolve with the contagion process and not with the graph pro-
cess.

Updating with the contagion process At t, the sets Bt, Ct ,Dt and
It are thus defined recursively. As we have seen previously, these sets depend
on the index in the graph process only through the fact that high degree
nodes may have been re-assigned. In order to simplify notations, in what
follows, we will omit it.

• For Gm ∈ Bt−1: If Dt−1 ∈ Rsti for every i ∈ Gm, and Xj 6= Gm for
every j ∈ It−1, then Gm ∈ Bt. If Gm ∈ T t, and if Ct−1⋃T t ∈ Rsti for
every i ∈ Gm and if there is no j ∈ Ct−1⋃T t such that Xj = Gm, then
Gm ∈ Ct. In all other cases, Gm ∈ Dt.
• For Gm ∈ Ct−1: if Ct−1⋃T t⋃Dt−1 ∈ Rsti for every i ∈ Gm and if there

is no j ∈ Ct−1⋃T t⋃Dt−1 such that Xj = Gm, then Gm ∈ Ct. In all
other cases, Gm ∈ Dt.
• For Gm ∈ Dt−1, we have Gm ∈ Dt

It is also useful to define the clusters which enter a give set for the first
time at t:

Bt = Bt −Bt−1, Ct = Ct − Ct−1,Dt = Dt −Dt−1 (32)

As for the recursive definition of the nodes infected at time t, we will mod-
ify the actual dynamics slightly in such a way that the number of infected
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nodes may be strictly greater but never fewer than in the actual diffusion:
We define

It = {i ∈ Dt−1}
⋃
{i|Card(V (i)

⋂
It−1) ≥ 2}

⋃
{i|Xi ∈ Dt−1)} (33)

Thus any node with links to at least two neighbors infected at t− 1 will
be infected at t. We note that in the actual dynamics, an agent is infected
at t if a proportion greater than 1/2δ of his neighbors were infected at
t− 1. Each cluster contains δ nodes and each node belongs to two clusters.
Thus, in the original dynamic, having two infected neighbors is necessary
but not sufficient to become infected. Moreover, we also immediately infect
some nodes that will actually be infected at a later time with probability
one. These modification have for purpose to simplify the monitoring of the
states. The following lemma gives some properties of the sets Bt, Ct and
Dt.

Lemma 6.2. • Property 1: If Gm ∈ Bt, then Am
⋂
It = ∅.

• Property 2: For t ≥ 1, If Gm ∈ Ct, then Card(Am
⋂
It) ≤ 1. More

precisely, we may have either Card([Gm]
⋂
It) = 1 or Card((Am −

[Gm])
⋂
It) = 1 but not both. In the first case, Gm contains exactly one

infected node at t, in the second case it contains none.
• Property 3: It ⊂ [i|i ∈ Gm ∈ Ct

⋂
Dt]

Proof deferred to the end of the chapter.

By the above lemma, all infected nodes at t belong to initial clusters
in Ct and Dt. Thus, if Ct and Dt are both empty for some t, we also have
It−It−1 6= ∅, so that no new nodes are infected at (or after) t. The following
lemma shows that at a given t < T the number of clusters in Ct and Dt are
bounded independently of N for any realization of the graph process will
be useful. The lemma is similar to lemma 6.3 but applies to the modified
dynamics.

Lemma 6.3. Suppose that that Card(I0) ≤ k and consider the modified
contagion dynamics defined by (33). We have a constant c that does not
depend on N such that for any realization of the variables drawn before
s < st and t ≤ T , we have

card(It) ≤ card(i|i ∈ Ct
⋃
Dt) < c (34)
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We also have

Card(Rsi ) ≤ Card(Ct
⋃
Dt) ≤ c. (35)

Now we would like to give a lower bound on the probability that there is
a t ≤ T such that Ct = Dt = ∅. The dynamics are such that new nodes are
infected if they have links to previously infected nodes, ie if their successors
are in Ct−1 or Dt−1. The lemma 6.3 gave a bound of the number of clusters
that are in these sets. Since the successors of the nodes follow a uniform law,
the probability of having successors in a given set depends only on its size.
A bound on this probability is given in the following lemma which will be
used repeatedly.

Lemma 6.4. Let H and J be two sets of clusters verifying Card(H) < c
and Card(J) < c where c is the constant in the lemma 6.3. Let s ≤ st.
If there was no node in H with a successor in J at time s − 1, we have

P(J ⊂
⋂
l∈H R

s
l ) ≥

∏
l∈H

M−Card(J)−Card(Rs−1
l

)

M−Card(Rs−1
l

)
≥ 1−O( 1

M )

The proof is quite immediate. Now, to be able to conclude, finally, we use
the two lemmas stated below whose proofs can be found at the end of the
section.

Lemma 6.5. For every t < T , and for every history Fst, P(It − It−1 6=
∅|Dt−1 = ∅,Fst) ≤ O(1/M)

Lemma 6.6. For every t < T , and for every history Fst, P(Dt 6= ∅|Fst) <
O(1/M).

We will now use the lemmas 6.5 and 6.6 to show that

P(
⋂
j≤T

Ij − Ij−1 6= ∅) ≤ O(1/MT ) (36)

First, we show that with probability greater than 1−O(1/MT/2), there is a
sequence of times (tk)

k=T/2
k=1 , such that t1 < t2 < .. < tT/2 ≤ T and such that

Dtk = ∅. Indeed, if no such sequence existed, there would be an increasing
sequence of times (tl)

l=T/2
l=1 such that Dtl 6= ∅. For any such sequence, we

have by Lemma 6.6 that

P(
l=T/2⋂
l=1

Dtl 6= ∅) =
l=T/2∏
l=1

P(Dtl 6= ∅|
⋂
k<l

Dtk 6= ∅) ≤ (O(1/M))T/2 (37)
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The number of possible sequences is also bounded independently of M . Thus

P(∃(tl)
T/2
l=1 such that

l=T/2⋂
l=1

Dtl 6= ∅) ≤ (O(1/M))T/2. (38)

By lemma 6.5, we have

P(
k=T/2⋂
k=1

Itk+1 − Itk 6= ∅|
k=T/2⋂
k=1

Dtk = ∅) =

k=T/2∏
k=1

P(Itk+1 − Itk 6= ∅|Dtk = ∅,
⋂
l≤k

Itl − Itl−1 6= ∅)

=
k=T/2∏
k=1

P(Itk+1 − Itk 6= ∅|Dtk = ∅,Ftk) ≤ O(1/MT/2)

Together with the previous,

P(
⋂
j≤T

(Ij − Ij−1 6= ∅) ≤ P(
k=T/2⋂
k=1

Itk+1 − Itk 6= ∅|
k=T/2⋂
k=1

Dtk = ∅) +

P(∃(sl)
l=T/2
l=1 such that

l=T/2⋂
l=1

Dsl 6= ∅) ≤ O(1/MT/2) (39)

We choose T = 2k + 4 to obtain

P(IT − IT−1 6= ∅) ≤ O(
1

Mk+2
) (40)

Finally, we have:

P(
⋃

I0∈S(k)

Card(
⋃
t≥0

It(ΓN )) > c) ≤
(
M
k

)
P(Card(

⋃
t≥0

It(ΓN )) > c)

≤
(
M
k

)
P(Card(

⋃
t≥0

It(ΓN )) > c|IT − IT−1 6= ∅)P(IT − IT−1 6= ∅) ≤

(
M
k

)
O(

1
Mk+2

) ≤ O(
1
M2

)

We note that by lemma 6.3, necessarily,

P(Card(
⋃
t≥0

It(ΓN )) > c|IT − IT−1 = ∅) = 0. (41)
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It follows almost immediately from the proof we have given that the same
property is verified for the island model with cluster size 2δ since the links
in this model are a subset of the links in the independent community model
with the same realization of (Xi)i=Ni=1 .

6.1. Simulation set up and quantities of interest

In the previous section, we established some analytical bounds of the asymp-
totic contagion thresholds of the different Small World models. In this sec-
tion, we will consider simulations of the diffusion dynamics in order to under-
stand some aspects of its behavior that are not answered by the asymptotic
analysis. One one hand, there is the question of the exact asymptotic con-
tagion threshold of which we provided only an upper bound. However, this
has little consequence from a practical point of view. The upper bounds
provided in section 2 are already so low that diffusion would fail for most
reasonable payoffs and even if the actual threshold is smaller, this would
have little effect on outcomes. A question of greater interest concerns the
behavior in large finite sized systems compared to the asymptotic. Indeed,
we know from the previous analysis that for some large size N the fraction
of infected nodes will be small, but we do not know for what values of N
we will start to see behavior that resembles the asymptotic. In practice, it
is possible that the behavior in graphs even of large size is different from
asymptotic behavior. If this is the case, it is of interest to understand at what
size the asymptotic is valid, and also to explain behavior pre-asymptotically.

In order to compare the behavior of the diffusion dynamic in a finite sys-
tem of size N with the results in the previous section,we need to define a
notion of contagion threshold for a graph of size N . The definitions (10),(12)
of the contagion threshold are asymptotic and do not apply to finite sized
graphs. In a graph of fixed size, we will define the contagion threshold as
max{q∈ 1

100
{1,..50}}[q|Card(

⋃
t(I

q)t) = N ], thus as the largest q (with a preci-
sion of 0, 01) that allows all nodes to reach state 1 in the long run.

The behavior of the simulations confirms that it is reasonable to define
the contagion threshold in this way in a finite sized system. Indeed, in all
the parameter ranges and for all the realizations in our simulations we see
sharp transitions. Either only a small fraction of the nodes are infected or
all of them are. If the transition had been very gradual, it would be difficult
to define an equivalent of the asymptotic notion.

In our simulations, we compute the average of the observed contagion
threshold over several realizations of the graph. We note that since the con-
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tagion dynamic is deterministic, we only need to average over graph realiza-
tions. For graphs of size N < 50000 we have averaged over five realizations.
For graphs larger than N = 50000 we have used only two realizations. Aver-
aging over relatively few realization is justified by the fact that we have ob-
served very minor fluctuations of the observed contagion threshold between
realizations for all parameter values and values of N we have considered.
Often no fluctuations were observed over the five realizations.

independent community model
The independent community model depends on only one parameter, the

size of the clusters. We will consider the observed threshold in a fixed size
graph as a function of cluster size and also how the threshold varies with
graph size N for fixed cluster size. The figures we discuss below can be found
on pages 21− 23

• Figure 1 represents the average observed contagion threshold as a
function of cluster size in the independent community model of size
N = 10000. We have also represented the asymptotic upper bound.
For this size, the contagion threshold is already below our asymptotic
upper bound.
• Figure 4 shows the average observed contagion threshold of the inde-

pendent community model with δ = 4 and of watts models of different
connectivity when graph size ranges between 1000 and 100000. The
contagion threshold of the independent community model is signifi-
cantly lower than that of the watts model with similar degree (2k = 14)
and in fact significantly lower than the watts model in all the connec-
tivity ranges that are shown here.

We see from the simulations, that in the independent community model,
the observed contagion threshold is small already in graphs of moderate size.
As can be expected from the asymptotic bound, the threshold decreases
with cluster size. The simulations show that the upper bound in section 2 is
indeed not exact. The actual contagion threshold is lower. This is expected.
Indeed, our proof essentially bounded the probability that new nodes were
linked to more than one of the previously infected nodes. Using the fact that
nodes in the independent community model have a minimal degree of 2δ,
this bounds the probability that diffusion succeeds for thresholds over 1

2δ .
However, 2δ is the minimal degree. The average degree is higher and for this
reason, the actual contagion threshold is likely to be below our bound. This is
confirmed by simulations. Generally, the simulations of the diffusion dynamic
on the independent community model do not reveal anything surprising.
There is fair agreement between the simulations and the behavior that can
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be expected from the asymptotic bound. Even in graphs of moderately large
size (N = 1000)the behavior is not radically different from the asymptotic.

Watts’ Small World
The watts model involves two parameters, the degree of the local links

in the lattice 2k and the average number of random (erdos renyi) links. We
will explore the effect of both by fixing the local degree 2k and varying the
fraction of random links, and inversely varying the local degree when the
fraction of random links is fixed. We will also analyze how the threshold
changes with the size of the graph in these different cases. The figures can
be found on pages 21− 23.

• Graphic 2 represents the average observed contagion threshold as a
function of the lattice degree. The size of the graph is N = 10000 and
the fraction of random links has been fixed at 10 per cent. We have
also represented the asymptotic upper bound. As we see, the local
degree 2k has a strong influence on the contagion threshold which is
significantly higher for larger values of 2k.
• Graphic 3: Here we have fixed the local degree at 2k = 14 and we let

the fraction of random links vary between 1 and 25 per cent. The size
of the graph is N = 10000.
• Graphic 4: The fraction of random links is 10 per cent. We consider the

contagion threshold in the watts model with 2k = 4, 14, 20 respectively,
for values of N ranging from 1000 to 100000. For 2k = 4, we are close
to the asymptotic bound when N = 100000. For 2k = 14 and 20 we
remain far from the asymptotic bound even for N = 100000.
• Figure 5: This graph shows the fraction of infected nodes as a function

of q. As we see the transition is sharp.
• The last three graphs (6, 7, 8) show the contagion threshold as a

function of size in the watts models with 2k = 4, 14, 20 respectively.
In each graph, we also show the mean field model threshold and the
asymptotic bound. We see that in the case 2k = 4 we are close to the
asymptotic bound for large N . In the other cases the threshold remains
closer to the mean field threshold and is far from the asymptotic bound
even for N = 100000.

The simulation of the diffusion dynamic on the Watts model shows be-
havior that is very different from the asymptotic in graphs of size up to
N = 100000, except in the case where the local lattice degree is very low.
The observed contagion threshold is much higher than the one we should
see asymptotically. In the graphs where we have simulated the diffusion,
we see higher contagion threshold for higher local connectivity (lattice de-
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gree), while the asymptotic bound predicts the opposite. We will attempt
to explain these observations heuristically.

Mean field case We begin by analyzing the mean field case, ie the case
where each node has a degree in the erdos renyi graph that is equal to the
expected degree. Suppose that p is the average degree of the nodes in the
erdos renyi link or equivalently the number of shortcuts/non local degree.
In this case a necessary and sufficient condition for the diffusion to spread is
that q = u(0,0)

u(0,0)+u(1,1) ≤
k

2k+p . Indeed, the nodes that are immediately to the
left (or right) of the interval of nodes in state 1, will have exactly proportion
k

2k+p of their neighbors in state 1. If these nodes do not switch to 1,none of
the consecutive nodes will either. Thus, if all nodes had a degree equal to
expected degree, then the maximal q for which we can expect the diffusion
to spread would be k

2k+p . The mean field case seems relevant for the behavior
in the simulations. Indeed, spread does not seem to occur for q > k

2k+p even
in relatively small graphs. Moreover, when the local degree 2k is large, the
observed threshold remains closer to the mean field case value than to the
asymptotic bound even for large N .

The role of the local (lattice) degree
We see from figure 2 and 4 that the local degree in the graph (2k the

number of lattice neighbors) has a significant impact on the threshold for
all values of N . In the simulations that are shown in figure 2 and 4, we
have, instead of fixing p, the average degree in the erdos renyi graph, fixed
the proportion of random links. Thus graphs with a higher number of local
neighbors also has a higher number of random links. This is necessary in
order to compare the graphs with respect to the impact of local degree.
Suppose that a fraction r of random links is fixed so that p

2k+p = r ⇔ p =
r2k
1−r . Thus the maximal value of q for which a node with typical degree p
will be infected verifies q = k

2k+ r2k
1−r

= 1−r
2 . Thus a node of typical degree

will be infected at the same threshold independently of k whenever the
fraction of random links is fixed. When the proportion of random links is
fixed, all graphs would have the same contagion threshold independently of
k if there were no fluctuations in degree. However, the way the threshold
reacts to deviations from the mean depends on k: put c =: 2

1−r and define
d
′

= d − p, the deviation from the mean. Then a node with degree d that
is next to the interval of nodes in state 1 will switch to 1 only if q verifies
f(k, d

′
) = k

kc+d′
≤ q. Thus for any fixed value of the deviation from the

mean d
′
, the function f(k, d

′
) is increasing in k, so that the maximal value

of q for which a high degree nodes will adopt 1 increases with 2k.
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The local degree in the graph also affects the contagion threshold through
a different mechanism. If the local degree is very low, a single node with
atypically high non local degree is sufficient to stop the local spread. If the
local degree is high, on the other hand, this is not sufficient. Indeed, suppose
that node j is the first node to the left (or right) of an interval of nodes in
state 1 and that k

2k+degj
≤ q. If the nodes to the right of j, j + 1, ..j + m

are such that k−1
2k+degj+m

≥ q, the local spread can still continue. If k is large,
local spread will stop only when there are several nodes with atypically high
degree close to each other.

It is the small variance of the degree distribution in the Erdos renyi graph
that explains why we do not observe the asymptotic contagion threshold
even in fairly large systems (N = 100000), at least for higher local degrees.
This degree distribution follows a binomial law and the probability that a
node has a degree that is significantly higher than the expected one is small.
If the size of the graph is sufficiently large, such nodes will be present, but
even a graph of size N = 100000 may still be too small for this to occur.

If the local degree is very small, behavior resembles the asymptotic one
for N ≈ 100000. If the local degree is higher, on the other hand, behavior
remains close to that in the mean field analysis of the system even for large
N , and the contagion threshold is significantly higher than it is asymptoti-
cally. Essentially, the asymptotic is based on events (high degree nodes) that
are rare but will always occur in a large enough system. In moderately large
systems, on the other hand, behavior seems to be more accurately described
by an analysis based on the typical behavior of the degrees.

Comparison of pre-asymptotic contagion thresholds in Watts’
Small World and the independent community model

While the analysis in the previous section shows that asymptotically, the
contagion thresholds in all small world models are very low, the behavior of
the diffusion dynamic in graphs of fairly large fixed size (N = 100000) differs
significantly between the models. In the independent community model, the
contagion threshold is close to its asymptotic value even when the size of
the graph is not very large (N ≈ 1000). In the Watts model, the contagion
threshold is much higher than its asymptotic value even when the size of the
graph is fairly large (N = 100000). Thus, the independent community model
has a much lower contagion threshold than the watts model with the same
connectivity in all the size ranges considered. (N ∈ [1000, 100000]). This is
true for all reasonable choices of the fraction of non local links in the watts
model (between 1 and 25 per cent). This difference pervades even as the size
of the graph grows and the difference in the observed contagion threshold
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remains significant at N = 100000. In graphs of this size, the differences
between contagion thresholds are significant. In the independent community
model, they are so low that the payoff dominant action could only spread if
it had payoffs at least ten times greater than the other action, meaning that
in all practical applications spread would not occur. In the Watts model on
the other hand, an action presenting reasonable payoff benefits would be
able to spread in a moderately large graph. Thus despite theoretical large
limit contagion thresholds that are comparable, these models exhibit very
different behavior with respect to the contagion threshold even when the
graphs are large.

6.2. Stochastic diffusion on small worlds

We have seen that a step in the proof of the main theorem in Young, shows
that if payoffs verify u(0,0)

u(0,0)+u(1,1) = q, then for every ε > 0, there is a β(r, k)
and there is a time T (r, k, β) independent of N such that for every node i
that belongs to an r,s close knitted set with s ≥ q,

P(ati = 1) ≥ 1− ε (42)

whenever t > T . This criteria is useful in random graphs where we will bound
the probability that a large fraction of the nodes belong to such sets. The
analysis in [49] does not indicate how to find a close knitted set containing i.
However, we should look for a set that is not too large, since T is increasing
with the size r. In practice, it is natural to consider the local communities of
the nodes if there are such, these would be, in the models we have considered,
lattice intervals in the watts model, clusters and islands respectively in the
cluster and islands models. In what follows, we will assume that β has been
fixed so that the invariant distribution is concentrated on 1.

It follows from Young that

Proposition 2. In the island model, for every ε > 0, for every fixed l ≥ 1,
if u(0,0)

u(0,0)+u(1,1) ≤
1
2 −

l+2
2(δ+1+l) then there is a time T (k, r, δ) independent of

N , such that

E[
i=N∑
i=1

ati] ≥ N(1− ε)(1− 1/l) (43)

whenever t > T

Proof We bound the average close knittedness of the clusters: We take
S = [G]. Card([G]) = δ. Consider S′ ⊂ S. We have Card((i, j) ∈ Γ|i ∈ S, j ∈
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S′) = Card(S′)(δ − Card(S′)) + (Card(S′) − 1)Card(S′)/2. Every node in
[Gm] has a degree bounded by δ + 1

δCard(i|Xi = Gm) + 1 since it is linked
to δ − 1 nodes in [Gm] and at most one other node, and the nodes with in
links to Gm are distributed among the nodes in Gm. Thus

minS′⊂S
Card((i, j) ∈ Γ|i ∈ S, j ∈ S′)

Card((i, k) ∈ Γ|i ∈ S′)
≥

Card(S′)(δ − Card(S′) + (Card(S′)− 1)/2)

Card(S′)(δ + 1 + Card(i|Xi=G)
δ )

(44)

This quantity is minimized for S′ = S, when it equals (δ−1)/2

δ+1+
Card(i|Xi=G)

δ

.

If we put r = Card(i|Xi=G)
δ , we can write (δ−1)/2

δ+1+
Card(i|Xi=G)

δ

= 1
2 −

1
2( 2+r
δ+1+r ).

Since
∑
mCard(i|Xi = Gm) = N , we can use this to conclude that at least

(1− 1
l )M of the commentates are at least 1

2 −
1
2( 2+l
δ+1+l ) close-knitted. This

bound is useful when δ, the number of members in the group is large enough,
so that the bound comes close to 1

2 .

Proposition 3. In the watts model, for every ε > 0, whenever u(0,0)
u(0,0)+u(1,1) ≤

1
2 , we can choose p > 0 such that if the probability of each random link is
p/N then there is a time T (k, r, ε) independent of N , such that

E[
i=N∑
i=1

ati] ≥ N(1− ε)2(1− (p+ ε)(2k + 1)) (45)

Proof
Let the probability of a link in the Erdos reyi graph be P/N . Then by

standard results, for any ε > 0, and ε > 0, we can find N0 such that for
N ≥ N0

P[Card({(i, j)|(i, j) ∈ E}) ≤ N − 1
2

(p+ ε)] ≥ 1− ε (46)

equivalently, (46)bounds the probability that more than N(p + ε) nodes

are endpoints of links in the erdos renyi graph. Consider the N intervals
([i−k, i+k])i=Ni=1 . Whenever Card({(i, j)|(i, j) ∈ E}) ≤ N−1

2 (p+ε), no more
than N(p + δ)2k + 1 of these intervals contain a node which is endpoint of
a link in the erdos renyi graph. The remaining N [1− (p+ δ)(2k+ 1)] nodes
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belong to 1/2 close knit sets of size 2k + 1. Applying the result (42) to all
nodes in close knitted sets, we can conclude that for N > N0, there is a T
such that

E[
i=N∑
i=1

ati] ≥ E[
i=N∑
i=1

ati|Card({(i, j)|(i, j) ∈ E}) ≤ N − 1
2

(p+ ε)] ∗

P[Card({(i, j)|(i, j) ∈ E}) ≤ N − 1
2

(p+ ε)] ≥ N(1− ε)2(1− (p+ ε)(2k + 1))(47)

In the independent community model, it is more complicated to bound
the close knittedness of the sets Am. We will limit ourselves to heuristics
and simulations based results. Consider a set Am and an arbitrary subset
S′ ⊂ Am. We have

Card((i, j) ∈ Γ|i ∈ S, j ∈ S′)
Card((i, k) ∈ Γ|i ∈ S′)

=

Card(S′)(card(Am)− Card(S′)) + (Card(S′)− 1)Card(S′)/2

Card(S′)(card(Am)− Card(S′)+1
2 ) +

∑
s∈S′ Card(An)1s∈An

(48)

.
Since every node i belongs to two sets in (Am)m=M

m=1 , we can consider for
i the most close knit of its two communities: we have

min{S′⊂S}max{Am|i∈Am}
Card(S′)(card(Am)− Card(S′)+1

2 )

Card(S′)(card(Am)− Card(S′)+1
2 ) +

∑
s∈S′ Card(An)1s∈An

(49)

Since we know the distribution of the sizes of (Am)m≤M , we could bound this
expression more explicitly. We note that if there had been no variation in
cluster size so that Card(Am) = 2δ for every m = 1, ..M , then the closeknit-
tedness s verifies s = (2δ−1)2δ/2

(2δ−1)2δ/2+(2δ)2
= 2δ−1

6δ−1 , which is close to 1
3 for large

δ. This should be a good approximation since the binomial distribution of
cluster sizes has low variance. Computations based on simulations estimate
the average closeknittedness to be around 0, 35 with little variation.

7. Conclusion

This analysis of the diffusion of innovations on different types of Small World
networks draws a rather complex picture of the phenomenon which indicates
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that outcomes can be very sensitive to small modifications of the dynamics
itself (best response or trembling hand best response) as well as to subtle
differences between networks that share many statistical properties. More-
over, from a technical point of view, the asymptotic behavior with respect
to the size of the graph is not always well approximated by the behavior in
even very large finite sized networks.

Morris [34] introduced a notion of contagion threshold that applies to
deterministic graphs with an infinite node set: contagion is considered to
occur if only a finite number of agents who have not adopted remain. We
aimed to define an analogous notion of contagion threshold but for random
graphs, in the asymptotic setting with respect to the network size N . With
an infinite node set, spread is either limited to a finite set or leaves only a
finite set that has not adopted. In our setting, we need to distinguish orders
of magnitude in relation to network size N . Therefore, we can consider that
spread is limited in a weak sense if the fraction of adopters goes to zero as
the size of the network grows. This does not bound the number of adopters,
just their fraction of the total population. A stronger definition requires that
the number of adopters of the innovation remains bounded by some constant
independent of network size. When applying the weak definition, we found
similar asymptotic contagion thresholds in all the models considered, in the
sense that the innovation would not spread to a significant fraction of the
population unless it was greatly superior in terms of pay-off. However, in the
independent community model and islands model, spread is difficult even
with respect to the stronger definition since we show that the number of
adopters can be bounded by a constant independent of network size almost
surely. Moreover, this result is strong in the sense that spread does not only
fail to occur if the group of initial users is chosen at random, It fails even
if the group of initial users is chosen with the intent of maximizing spread.
On the contrary, in Watts’ Small World, except when the innovation has
very small benefits, we cannot bound the number of adopters by any fixed
constant, although we can bound it by a function f(N) which will be orders
of magnitude smaller than the network size N asymptotically.

We also see considerable differences between the various types of Small
Worlds when we consider spread in large networks of fixed size. As we have
seen from the pre-asymptotic simulations, in the independent community
model, the behavior resembles the asymptotic even when the size of the
graph is relatively small, meaning that the payoff dominant action does not
spread easily unless its payoff advantage is very great. In Watts’ Small World,
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we have seen that the innovation can easily spread to all the agents even
when its advantages are modest for a network size as large as 100 000. This
suggests that the stronger definition of the asymptotic contagion threshold
which would classify the independent community models and islands models
as unfavorable to spread and Watts’ Small World as favoring also leads to
more coherence with observations of large finite sized networks.

If we consider a version of the coordination game where each agents uses
trembling hand best response, as in Young [49], we see somewhat different
outcomes. In this version, spread to the network as a whole always occurs
so the crucial question is for which payoff benefits of the innovation the
time it requires is bounded independently of network size. In some cases,
adding a little randomness to the best response, can make a big difference.
Applying Young’s close knitedness criterion to the Island model, we find that
spread can occur easily, that is rapidly, even for small payoff benefits of the
innovation. This contrast with the behavior in this model when best response
is deterministic. In Watts’ Small World the same is true, which could be
expected. Computing close knitedness in the independent community model
is more complicated due to fluctuations in degree, however, based on typical
degrees, we should expect spread to require higher payoff benefits of the
innovation than in the other models although not as high as in the case of
deterministic best response. It is in fact rather natural that spread occurs
more easily on all networks in the case where each agent has some small
probability of adopting the innovation even without having any neighbor
who as already adopted it.

How do we explain the contrasting results on the different types of Small
Worlds? Basically, what goes on is determined by the nature of the bound-
aries between different communities. We base this conclusion on analysis of
the two extreme correlation cases: complete correlation and zero correlation
between communities. In the first case, communities tend to overlap, hav-
ing several common members, something that could naturally occur when
individuals bring together friends and acquaintances from initially differ-
ent contexts. Here these contexts or communities do not remain separate
and their boundaries are permeable. In the second case, a single individual
ensures the link between otherwise disjoint communities. The link is not
necessarily a weak link in the sense of Watts, because the agent may be a
full member of both communities, linked to all other agents in these, never-
theless, this is not sufficent for the innovation to easily cross the community
barrier.
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If we acknowledge that social networks tend to be based on communities,
then we should attempt to understand, in real social networks, the nature of
the boundaries between the communities or the social contexts in which the
individual participates, whether these are sharp or overlapping and perme-
able. In particular, we see that using Watts well-known Small World model
to predict behavior of the diffusion of innovations or other threshold based
dynamics in social sciences is suitable if there is strong correlation between
the different communities of an individual but not if these are independent.

8. Appendix:proofs

Study of the case α → ∞, draw with replacement of secondary
community

To be completed
Proof lemma 6.1
We prove the lemma by induction: Card(I0) = kδ. At t = 1, any node in

It is either a successor of an i ∈ I0 or has a successor among the clusters
infected at t = 0. This first case concerns at most kδ nodes. Any node who
has one of k initially infected clusters as successor may be infected at t = 1,
if the total number of nodes linked to the same cluster does not exceed 2δ2.
Since nodes with the same successor cluster are linked to each other, their
proportion of infected neighbors would be lower than 1/2δ if more than 2δ2

uninfected nodes had the same cluster for successor. Thus at most 2kδ2

nodes may be infected this way. In total, Card(I1) ≤ card(I0) + kδ + 2kδ2.
Moreover, at time t = 1, no node with degree higher than 2kδ2 can be
infected since it would not have a proportion greater than 1

2δ of its neighbors
in I0. We define f(1, k) = card(I0) + kδ + 2kδ2. This concludes induction
step 1. For t > 1, by the induction hypothesis, the number of infected nodes
at t − 1 and the maximal degree of any infected node at t − 1 is bounded
by f(t − 1, k). Thus as before, no node can be in It if it has degree higher
than 2δf(t−1, k). Also, at t, at most f(t−1, k)∗f(t−1, k) nodes are linked
to nodes in It−1 by the induction hypothesis about the degree of infected
nodes. Thus Card(It) ≤ f(t − 1, k)2. We can define f(t, k) = max[2δ ∗
f(t−1, k), (f(t−1, k))2 +f(t−1, k)]. We define C(k) =: maxt≤T f(t, k).This
proves the lemma.

Proof of lemma 6.2:
Property 1: we show this by induction on t: At t = 0 it is true. Gm ∈

Bt ⇒ Gm ∈ Bt−1. By the induction hypothesis Am contained no infected
node at time t − 1. The dynamics is such that Gm ∈ Bt implies that for
every i ∈ Gm, Dt−1 ∈ Rsti . Moreover, for every i ∈ It−1, Xi 6= Gm. Assuming
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Fig 1. contagion threshold in independent community model as a function of cluster size
(N=10000)
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Fig 2. observed contagion threshold as a function of local degree
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Fig 3. contagion threshold in watts model as function of fraction of shortcuts
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Fig 4. Contagion threshold in graphs of different size
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Fig 5. Transition around the contagion threshold (watts model)
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Fig 6. contagion threshold, 2k=14, compared to mean field and asymptotic threshold
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Fig 7. contagion threshold, 2k=20, compared to mean field and asymptotic threshold
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property 1 and 2 true at t− 1, all infected nodes at t− 1 are in Ct and Dt.
There may be i ∈ Gm such that Xi ∈ Ct−1, but by property 2, the node i
would be linked to only one infected node. Thus no node in Gm is linked to
more than one node in It−1 and thus Am

⋂
It−1 = ∅

Property 2: first case: Gm ∈ Bt−1⋂Ct. Then Am
⋂
It−2 = ∅. At time

t− 1, either, (a), there may be a single j ∈ Gm such that Xj ∈ Dt−1, or (b),
there may be a node i ∈ It−1− It−2 such that Xi = Gm, but not both. If (b)
is not verified, Am

⋂
(It−1 − It−2) = ∅ and thus Card(Am − Gm)

⋂
It−1 =

Card(Am−Gm)
⋂
It−2 = 0. Then (a) is verified. For j ∈ Gm, we have j ∈ It

only if Xj = Dt−1. Thus Gm
⋂
It = j which shows the desired property at t.

Suppose that at t−1 (a) is not verified but (b) is. Then (Am−Gm)
⋂
It−1 =

i. Every node l ∈ Gm is linked to i ∈ It−1⋂Am. Moreover, for every l,
Ct−1⋃T t⋃Dt−1 ∈ Rstl . Thus V (l)

⋂
It−1 = i and l cannot be infected at t.

This shows that Gm
⋂
It = ∅.

Second case: Gm ∈ Ct−1. Then Card(Am − Gm)
⋂
It−1 = Card(Am −

Gm)
⋂
It−2 since Gm ∈ Rsti for every i ∈ It−1. Consider a j ∈ Gm, such

that j /∈ It−1. At t− 1, Am contained at most one infected node. moreover,
Rstj ⊃ Ct−1⋃Dt−1⋃T t). Thus j is linked to at most one node in It−1.
Thus j is not in It and thus Card(Gm

⋂
It = Card(Gm

⋂
It−1. We use the

induction hypothesis to conclude.

Proof 6.3 We show the result by induction. Assume that at time t, there
is a ct that does not depend on N such that Card(Ct

⋃
Dt) < ct. c0 = kδ.

The dynamics is such that in order to be in Ct+1 or Dt+1, a cluster must
either be a successor of It or contain a node whose successor is inDt. The first
case concerns at most δCard(It) < δCard(Ct

⋃
Dt) < δct clusters. Since

clusters are re-assigned from Ct and Dt whenever Card(Am) ≥ c(k) (where
c(k) is the constant of lemma 6.1, there are less than c(k) ∗ Card(Dt) <
c(k) ∗ ct clusters that are in Ct+1 or Dt+1 because they contain a node with
a successor in Dt−1. Consequently Card(Ct+1⋃Dt+1) < ct+ ct(c(k) + δ) =:
ct+1. By induction we have the desired result. We take c = maxt≤T ct. end
of Proof

Proof of lemma 6.5: If Dt−1 = ∅, we have It ⊂ Ct
⋃
Dt. We begin

by showing that P(Dt 6= ∅|Dt−1 = ∅) ≤ 1 − O(1/M). A cluster G ∈ Ct−1

is in Ct if
⋃
s<tC

s⋃T t⋃Dt−1 ∈ Rs−ti for every i ∈ G and if there is no
j ∈

⋃
s<tC

s⋃T t⋃Dt−1 such that Xj = G. We apply lemma 2.4 with H =
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Ct and J =
⋃
s<tC

s⋃T t⋃Dt−1. This shows that P(Ct−1 ⊂ Ct−1) ≥ 1 −
O(1/M).

We have Bt−1 ⊂ Bt⋃T t, unless there are at least two nodes in It−1 that
have the same cluster in Bt for successor. We have Card(j|j ∈ It−1) < c(s1),
and Card(Bt−1) > M − c(s1). Thus the probability that there are two
nodes in It−1 with the same successor is at most O(1/M). Thus P(Bt−1 ⊂
Bt⋃T t) ≥ 1−O(1/M). We have T t = [G ∈ Bt−1|∃!i ∈ It−1, Xi = G]. Thus
Card(T t) < card(It−1) < c(s1). For a G ∈ T t, G ∈ Dt only if there are links
between T t and Ct

⋃
T t. We apply lemma 6.4 to H = T t and J = Ct

⋃
T t,

which shows that P(T t
⋂
Dt 6= ∅) < O(1/M). Together with the previous,

this allows us to conclude that P(Dt = ∅) ≥ 1−O(1/M). It remains to show
that Ct

⋂
It = ∅. We note that Ct = [Gm|∃!i ∈ Gm, Xi ∈ Dt−1]

⊔
[Gm|∃j ∈

It−1, Xj = Gm]. When Dt−1 = ∅, the first set in the disjoint union is empty.
Ct
⋂
It = ∅ for elements in the second set.

This concludes the proof.

Proof of lemma6.6: Ct−1 ⊂ Ct if Ct−1⋃T t⋃Dt−1 ∈ Rsti for every
i ∈ Gm and if there is no j ∈ T t

⋃
Dt−1 such that Xj = Gm. We apply the

lemma with H = Ct and J = Ct−1⋃T t⋃Dt−1 (J = T t
⋃
Dt−1). It follows

that P(Ct−1 ⊂ Ct) > 1−O(1/M).
For Bt−1, first we show that P(Bt−1 ⊂ Bt⋃T t) > 1 − O(1/M): We

have seen before that the probability that two nodes in It−1 have the same
successor is at most O(1/M). (The probability that there is a cluster in Bt−1

that contains two nodes that do not reject Dt−1 is also at most O(1/M)).
Consider the set [G ∈ Bt−1|∃!i ∈ It−1, Xi = G]. The probability that there is
a node in this set that does not reject the set Dt−1 is bounded by O(1/M)
by the lemma. Together, this shows that P(Bt−1 ⊂ Bt⋃T t) ≥ 1−O(1/M).

It remains to show that P(T t ⊂ Ct) ≥ 1−O(1/M). We apply lemma 6.4
to H = J =

⋃
s<tC

s⋃T t. This shows that the probability that T t ⊂ Ct is
greater than 1−O(1/M).
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