Gundlach, Erich; Paldam, Martin

Working Paper
The transition of corruption: From poverty to honesty

Kiel Working Paper, No. 1411

Provided in Cooperation with:
Kiel Institute for the World Economy (IfW)

Suggested Citation: Gundlach, Erich; Paldam, Martin (2008) : The transition of corruption: From poverty to honesty, Kiel Working Paper, No. 1411, Kiel Institute for the World Economy (IfW), Kiel

This Version is available at:
http://hdl.handle.net/10419/4248

Standard-Nutzungsbedingungen:
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.
Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
The transition of corruption: From poverty to honesty
by Erich Gundlach and Martin Paldam

No. 1411 | March, 2008

Web: www.ifw-kiel.de
The transition of corruption:
From poverty to honesty

Erich Gundlach and Martin Paldam

Abstract:
Measures of corruption and income are highly correlated across countries. We use prehistoric measures of biogeography as instruments for modern income levels. We find that our instrumented incomes explain the cross-country pattern of corruption just as well as do actual incomes. This result demonstrates that the long-run causality is entirely from income to corruption. Hence, there is a Corruption Transition: As countries get rich, corruption vanishes.

Keywords: Long-run development, corruption, biogeography

JEL classification: B25, O1

Erich Gundlach
Kiel Institute for the World Economy
24100 Kiel, Germany
Telephone: +49 431 8814 284
E-mail: erich.gundlach@ifw-kiel.de

Martin Paldam
School of Economics and Management
University of Aarhus
DK-8000 Aarhus C
Telephone: +45 8626 3140
E-mail: mpaldam@econ.au.dk

The responsibility for the contents of the working papers rests with the author, not the Institute. Since working papers are of a preliminary nature, it may be useful to contact the author of a particular working paper about results or caveats before referring to, or quoting, a paper. Any comments on working papers should be sent directly to the author.

Coverphoto: uni_com on photocase.com
1. Introduction

Measures of corruption and income are highly correlated across countries, as shown by Table 1, but no agreement has been reached in the literature about the main direction of causality between the two variables. Some (as Lambsdorff 2007) claim that corruption is a vice causing low growth, so that causality is mainly from corruption to long-run income. Others (Treisman 2000; Paldam 2001, 2002) claim that corruption is a poverty driven disease that vanishes when countries develop, so that causality is mainly from income to corruption.

The empirical problem is that the available series of corruption perceptions are still rather short and they contain much autocorrelation. Hence it will take some time before they permit formal time series tests of causality. We have summarized the empirical findings till now in Paldam and Gundlach (2008), which also provides an informal causality analysis. This informal test suggests that the relation between income and corruption is just another transition that occurs when countries develop from poor to rich. The purpose of the present paper is to provide a new formal test of the long-run direction of causality between income and corruption. Our test is based on the present cross-country pattern (c-cp) of corruption and income, and uses instrumental variables to identify the long-run direction of causality.

Given that all countries experienced fairly similar average income levels 200-500 years ago, modern income levels reveal cross-country differences in the long-run growth rate. So regressing measures of corruption on levels of income will identify the long-run income effect if the possible reverse causality from corruption to income can be controlled for. In order to obtain a measure of corruption-free incomes, we explain the present c-cp of income by a set of extreme instruments that refer to prehistoric measures of biogeography. We then show that these incomes explain the c-cp of corruption just as well as the actual c-cp of incomes. It follows that all long-run causality is from income to corruption: hence there is a Corruption Transition.

The paper proceeds as follows. Section 2 explains the logic of our test and presents the main result. Section 3 discusses some robustness test, and Section 4 concludes. We are brief since a parallel paper analyzing the relation between democracy and income (Gundlach and Paldam 2008) provides a more detailed discussion of our empirical model and of the literature that motivates our empirical strategy. All variables used are defined in the appendix.

1. We use the term Grand Transition for the set of transitions (the demographic, the urban, the democratic, etc.), which together constitute development, see Paldam and Gundlach (2008).
Table 1. Correlations between corruption and income for all available years

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N of TI-index b)</td>
<td>41</td>
<td>53</td>
<td>52</td>
<td>85</td>
<td>99</td>
<td>90</td>
<td>102</td>
<td>133</td>
<td>146</td>
<td>159</td>
<td>163</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>N in correlation c)</td>
<td>40</td>
<td>52</td>
<td>51</td>
<td>84</td>
<td>98</td>
<td>89</td>
<td>101</td>
<td>131</td>
<td>141</td>
<td>149</td>
<td>153</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>Correlation</td>
<td>0.76</td>
<td>0.81</td>
<td>0.79</td>
<td>0.77</td>
<td>0.77</td>
<td>0.78</td>
<td>0.83</td>
<td>0.81</td>
<td>0.80</td>
<td>0.79</td>
<td>0.79</td>
<td>0.78</td>
<td></td>
</tr>
</tbody>
</table>

Note: (a) Year of underlying corruption poll, income is for previous year. (b) Number of countries with corruption data. (c) Number of these countries for which an income observation is also available. The average correlation is 0.79, with a standard deviation of 0.02. The correlation is trendless.

2. The logic of the test, the instruments, and the key result

The core of this paper is a test comparing two regressions. One is an OLS-regression that explains the c-cp of corruption by the c-cp of income. The other is the corresponding IV-regression between the same two variables where the income variable is instrumented by measures of biogeography that are necessarily exogenous to the current pattern of income. The link between our instruments and present incomes is justified by two theories:

(i) Diamond (1997) argues that the diversity of prehistoric biological and geographic conditions has been crucial for the diversity of early economic development in different regions of the world, which may explain the different sizes of regional populations at average income levels not far above the subsistence level throughout human history until about 500 years ago. The biogeographic variables listed in the appendix are compiled by Hibbs and Olsson (2004, 2005), to quantify the argument of Diamond. They are exogenous to the present levels of income in the perspective of at least the last millennium.

(ii) Galor (2005) develops a unified growth theory that captures in one model the Malthusian era of constant per capita income and the era of modern growth with persistently rising per capita income. His theory is supported, mainly for England, by historical facts about slow but steady changes in the composition of the population during the Malthusian era that ultimately allowed the take off to modern growth (Clark 2007).

This combined empirical-theoretical argument suggests that the diversity of present levels of development may at least partly originate from prehistoric biological and geographic conditions as described by the data of Hibbs and Olsson (2004, 2005). Their work shows that measures of biogeography do explain modern levels of economic development surprisingly well. Our conclusion from this literature is that measures of prehistoric biogeography appear to be strong instruments for modern levels of income. Hence our basic estimation equation is given by
\[\kappa_i = \alpha + \beta y_i + X'_i \gamma + \varepsilon_i, \]

where \(\kappa_i \) is the degree of corruption in country \(i \), \(y_i \) is the natural logarithm of GDP per capita in constant international dollars, \(X'_i \) is a matrix of other covariates that may be included, \(\alpha \) is a regression constant, \(\varepsilon \) is an error term, and \(\beta \) is the coefficient of interest that measures the long-run effect of income on corruption once income is appropriately instrumented.

Table 2. The estimated effect of income on corruption: IV and OLS regressions

<table>
<thead>
<tr>
<th></th>
<th>Dependent variable: (\kappa) (average TI index for 1995-2006), inverted scale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>No. of obs. (countries)</td>
<td>98</td>
</tr>
<tr>
<td>(y) (IV) for 2003</td>
<td>1.49 (0.16)</td>
</tr>
<tr>
<td>Instruments</td>
<td>animals, plants</td>
</tr>
<tr>
<td>First stage partial (R^2)</td>
<td>0.43</td>
</tr>
<tr>
<td>CD F-statistic</td>
<td>35.86</td>
</tr>
<tr>
<td>CD critical value</td>
<td>19.93</td>
</tr>
<tr>
<td>Sargan test (p-value)</td>
<td>1.45 (0.23)</td>
</tr>
<tr>
<td>(y) (OLS) for 2003</td>
<td>1.36 (0.11)</td>
</tr>
<tr>
<td>Adjusted (R^2)</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Notes: The selected combination of variables and years maximizes the number of available observations. The results are unchanged (available upon request) if both the income variable and TI index refer to 2003, or if the average \(\kappa \)-index is explained with the 1995 income levels. Standard errors in parentheses. All specifications include a constant term (not reported). A Cragg-Donald (CD) F-statistic below the critical value (10 percent maximal test size) indicates weak instruments. The Sargan test for overidentification tests the joint null hypothesis that the instruments are valid and correctly excluded from the estimated equation.

Our results for specifications with alternative sets of instrumental variables are reported in Table 2. The selected measures of biogeography pass the Cragg-Donald test for weak instruments and in all but one case the Sargan test for overidentification. Also, all ten estimates of the income coefficient are statistically significant. The average estimate of the long-run income effect on corruption is about 1.4. Hence the difference between the 10\(^{th}\) percentile (6.61) and the 90\(^{th}\) percentile (9.93) of the (log) income measure predicts a 3.3 \times 1.4 \approx 4.65\) corruption-point difference in our sample of countries. The actual difference between two sample countries that are close to the 10\(^{th}\) percentile and the 90\(^{th}\) percentile, Haiti
and Finland, is 7.85 corruption points, so our estimate explains about 60 percent of the observed difference in the corruption index of the two countries.

The key result from Table 2 is that the IV-results do not differ significantly from the corresponding OLS-results in any of the five specifications, so there is obviously no upward bias due to reverse causality. All five pairs of estimates suggest that the long run causality is entirely from income to corruption. Our further results are based on the specification in column (4), which uses our preferred instruments.

3. Robustness of the main result

One major objection to our main result in Table 2 is that our estimates are biased due to omitted variables. We check the robustness of our estimate of the income effect by adding ten control variables one by one to avoid multicollinearity. Our control variables are either socio-political (Table 3) or ethno-cultural (Table 4). We speculate that these variables have an effect on corruption which may either be independent of the income effect or may even dominate the presumed income effect.²

<table>
<thead>
<tr>
<th>No. of obs. (countries)</th>
<th>Dependent variable: κ (average TI index for 1995-2006), inverted scale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>y (IV) in 2003</td>
<td>1.66 (0.15)</td>
</tr>
<tr>
<td>mining</td>
<td>2.25 (1.83)</td>
</tr>
<tr>
<td>gini</td>
<td></td>
</tr>
<tr>
<td>homicavg</td>
<td></td>
</tr>
<tr>
<td>suicide</td>
<td></td>
</tr>
<tr>
<td>First stage partial R^2</td>
<td>0.47</td>
</tr>
<tr>
<td>CD F-statistic</td>
<td>38.74</td>
</tr>
<tr>
<td>CD critical value (max. size)</td>
<td>19.93 (0.10)</td>
</tr>
<tr>
<td>Sargan test (p-value)</td>
<td>0.03 (0.86)</td>
</tr>
<tr>
<td>y (OLS)</td>
<td>1.46 (0.10)</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Notes: See Table 2. In the IV regressions, biofpc and geofpc are used as instruments, as in column (4) of Table 2. OLS results are conditional on the inclusion of the control variable.

² For our purpose, it is less important whether the additional control variables are actually exogenous. We are mainly interested in the robustness of our estimated income coefficient.
Table 3 considers four variables characterized as socio-political controls, namely proxies for rent seeking (mining), distributional conflict (gini), violence (homicide), or psychic depression (suicide). Here the Cragg-Donald test for weak instruments indicates a larger maximal size of 15 percent in columns (2) and (3) and of 20 percent in column (4), so the IV results may not be fully reliable. However, the first stage partial R² remains high in all specifications and the estimated income effects are not statistically significantly different from the estimates in Table 1. Only the suicide rate appears to be statistically significantly correlated with the degree of corruption once the level of income is controlled for, but this does not change the estimated income effect in a statistically significant way.

Table 4 considers six ethno-cultural variables. In line with previous studies, we find that the share of the population with protestant religious belief (prot) decreases and the share with catholic religious belief (romcat) increases the degree of corruption for a given level of income (Paldam 2001). Similarly, an English origin of commercial and company laws (loeng) is associated with a lower and a French origin (lofre) is associated with a higher degree of corruption for a given level of income. For the other included control variables, we do not find statistically significant correlations with corruption. Only in column (1), our preferred instruments are rejected for a 10 percent maximal size of the Cragg-Donald test (but pass a 15 percent size in columns (2) and (3)).

Table 4. The effect of selected ethno-cultural variables on corruption

<table>
<thead>
<tr>
<th></th>
<th>Dependent variable: (\kappa) (average TI index for 1995-2006), inverted scale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>No. of obs. (countries)</td>
<td>94</td>
</tr>
<tr>
<td>(y) (IV) in 2003</td>
<td>1.83 (0.25)</td>
</tr>
<tr>
<td>ethnoel</td>
<td>0.93 (0.71)</td>
</tr>
<tr>
<td>lofre</td>
<td></td>
</tr>
<tr>
<td>loeng</td>
<td></td>
</tr>
<tr>
<td>prot</td>
<td></td>
</tr>
<tr>
<td>romcat</td>
<td></td>
</tr>
<tr>
<td>muslim</td>
<td></td>
</tr>
<tr>
<td>First stage partial R²</td>
<td>0.28</td>
</tr>
<tr>
<td>CD F-statistic</td>
<td>17.57</td>
</tr>
<tr>
<td>Sargan test (p-value)</td>
<td>0.00 (0.99)</td>
</tr>
<tr>
<td>(y) (OLS)</td>
<td>1.39 (0.13)</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Notes: See Table 3.
percent maximal test size). Our estimates of the income effect on corruption again remain the same as before, with all OLS-estimates within the 95 percent confidence interval of the IV estimates. More generally, we find with only one (narrow) exception that an estimate of 1.4 is within the 95 percent confidence interval of all income effects reported in Tables 2-4.

4. The Corruption Transition

We follow Simon Kuznets (1965) and many later researchers by arguing that current cross-country levels of income provide the best information about cross-country differences in long-run development. Our paper uses the cross-country levels of income to explain the long-run causality from income to corruption. We handle the problem of reverse causality by a unique set of prehistoric measures of biogeography, which pass statistical tests for weak instruments. Our main results are:

The cross-country pattern of corruption can be fully explained by the cross-country pattern of income. To the extent that there is short-run interaction between corruption and income – as there may very well be – it is irrelevant for the long-run effect. The long-run causality is entirely from income to corruption. Corruption vanishes as countries get rich, and there is a transition from poverty to honesty.
References:
Maddison homepage: http://www.ggdc.net/maddison/.
Appendix Table: Definitions and sources of variables used in tables

Dependent variable and main explanatory variable. Used in Tables 1 to 4.

- **κ** Corruption/honesty index from Transparency International, scale from 0 (honesty) to 10 (corruption).
- **y** Natural logarithm of GDP per capita in 1990 PPP-$. Source: Maddison homepage.

Biogeographical instrumental variables. Used in Table 2. Tables 3 and 4 only use biofpc and geofpc.

- **animals** Number of domesticable big mammals in prehistory. Source: Olsson and Hibbs (2005).
- **bioavg** Average of plants and animals. Source: Hibbs and Olsson (2004).
- **biofpc** The first principal component of plants and animals. Source: Olsson and Hibbs (2005).
- **climate** Ranking of climates by how favorable they are to agriculture. Source: Olsson and Hibbs (2005).
- **coast** Proportion of land area within 100 km of the sea coast. Source: McArthur and Sachs (2001).
- **frost** Proportion of a country with five or more frost days. Source: Masters and McMillan (2001).
- **geoavg** Average of climate, lat, and axis. Source: Hibbs and Olsson (2004).
- **geofpc** The first principal component of climate, lat, axis and size. Source: Olsson and Hibbs (2005).
- **lat** Distance from the equator. Source: Hall and Jones (1999).
- **maleco** Measure of malaria ecology, www.earth.columbia.edu/about/director/malaria/index.html#datasets.
- **plants** Number of domesticable wild grasses in prehistory. Source: Olsson and Hibbs (2005).
- **size** The size of the landmass to which the country belongs. Source: Olsson and Hibbs (2005).

Socio-political control variables. Used in Table 3.

- **homicavg** Total completed homicides per 100,000 population, average for 1990-2000. Source: UNODC (2005).
- **suicide** Total number of suicides per 100,000 population, estimates for early 1990s. Source: Parker (1997).

Ethno-cultural control variables. Used in Table 4.

- **ethnoel** Average value of five indices of ethno-linguistic fractionalization. Source: La Porta et al. (1998).
- **loeng** Dummy for English origin of commercial and company laws. Source: La Porta et al. 1998
- **lofre** Dummy for French origin of commercial and company laws. Source: La Porta et al. 1998
- **muslim** Share of the population with Muslim religious belief. Source: La Porta et al. (1998).
- **prot** Share of the population with protestant religious belief. Source: La Porta et al. (1998).
- **romcat** Share of the population with roman-catholic religious belief. Source: La Porta et al. (1998).

Note: See also Gundlach and Paldam (2008) and sources.