Gundlach, Erich; Paldam, Martin

Working Paper

A farewell to critical junctures: Sorting out long-run causality of income and democracy

Kiel Working Paper, No. 1410

Provided in Cooperation with:
Kiel Institute for the World Economy (IfW)

Suggested Citation: Gundlach, Erich; Paldam, Martin (2008) : A farewell to critical junctures: Sorting out long-run causality of income and democracy, Kiel Working Paper, No. 1410, Kiel Institute for the World Economy (IfW), Kiel

This Version is available at: http://hdl.handle.net/10419/4247

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
A farewell to critical junctures: Sorting out long-run causality of income and democracy
by Erich Gundlach and Martin Paldam

No. 1410 | March, 2008
A farewell to critical junctures: Sorting out long-run causality of income and democracy

Erich Gundlach and Martin Paldam

Abstract:
We consider the empirical relevance of two opposing hypotheses on the causality between income and democracy: The Democratic Transition hypothesis claims that rising incomes cause a transition to democracy, whereas the Critical Junctures hypothesis denies this causal relation. Our empirical strategy is motivated by Unified Growth Theory, which hypothesizes that the present international income differences have roots in the prehistoric past. Thus, we use prehistoric measures of biogeography as instruments for modern income levels, and find a large long-run causal effect of income on the degree of democracy. This result rejects the Critical Junctures hypothesis, which is an important part of the Primacy of Institutions view.

Keywords: Long-run growth, democracy, unified growth theory, biogeography

JEL classification: B25, O1

Acknowledgement: We are grateful for comments from Carl-Johan Dalgaard, Douglas A. Hibbs, Jr., and Christian Bjørnskov.

The responsibility for the contents of the working papers rests with the author, not the Institute. Since working papers are of a preliminary nature, it may be useful to contact the author of a particular working paper about results or caveats before referring to, or quoting, a paper. Any comments on working papers should be sent directly to the author.

Coverphoto: uni_com on photocase.com
1. Introduction

Income and democracy are highly correlated across countries for all years of the 20th century (see section 2), so there is an obvious relationship to be understood. However, the pattern of causality between the two variables has long been contested by economists and political scientists. It is difficult to sort out causality because it is easy to point to cases supporting one or the other direction, and there might well be simultaneity (see, e.g., Lipset 1959 and Moore 1966). We consider two testable and opposing hypotheses on the long-run causality between income and democracy.

The older hypothesis is the one of a Democratic Transition, which claims that the political development in the long-run is a consequence of overall development. It is a part of the Grand Transition view, which goes back to Clark (1951) and Kuznets (1965, 1966). Long-run development is held to be an interacting set of transitions in many fields, and thus development is seen as a band of variations around a basic path.1 We have demonstrated that such a path may be derived from the elementary micro theory of production possibility frontiers and indifference curves (Paldam and Gundlach 2008).

The newer hypothesis is the one of Critical Junctures, which is a part of the Primacy of Institutions view. It goes back to Douglas North (1981, 1990) and has been developed in a series of papers by Acemoglu, Johnson, and Robinson (surveyed in their 2005a). Both income and democracy are held to be determined by the power structure of the political system. Countries that make different political decisions at critical historical junctures are predicted to embark on different paths of development. Consequently, the main direction of causality runs from the political system to economic development, and the observed correlation of income and democracy do not imply any causality from income to democracy.2

Hence, if we find a clear long-run causality from income to democracy, we content that the Democratic Transition hypothesis is confirmed. However, if this causal link is rejected, we content that the Critical Junctures hypothesis holds. Causality tests often give unclear and weak results. Fortunately, this is not the case in the present paper.

1 The transitions of mortality, fertility, urbanization, human capital, and the sectoral composition of the economy are standard textbook material. The Grand Transition includes transitions in fields with no obvious connection to the economy, such as in gender roles, corruption, and religiosity; see e.g. Paldam (2007b).

2 See Acemoglu, Johnson, Robinson and Yared (2005b, 2007).
To test the two hypotheses, we use the biogeography variables compiled by Hibbs and Olsson (2004, 2005). They are all exogenous in the perspective of recorded history, so they are a set of really extreme variables, as the reader can ascertain from Appendix A.

Our main test compares two explanations of the present cross-country pattern of democracy. The first is a one stage estimate that explains the democracy pattern by present income. The second is a two stage estimate, where stage 1 “simulates” a set of *institution free* income measures by instrumenting income with the said biogeography variables, and stage 2 explains the democracy pattern by the institution free incomes. The key result of our analysis is that the two explanations of the democracy pattern are equally good. We claim that this proves that the long-run causality is *exclusively* from income to democracy, and that critical junctures play no role in the long run.

Our paper captures political institutions and economic development with one variable each. We believe that we have chosen the best available representations, and we can replicate our results with the main alternative measure of the degree of democracy (see below). Section 2 introduces our selected data series for democracy and income, and explains our empirical strategy in the context of Unified Growth Theory (Galor, 2005). Section 3 presents our basic result. Section 4 includes a number of robustness tests that leave our basic result intact. Section 5 concludes. The measures of biogeography and all other variables used in the paper are listed in Appendix A. Appendix B provides pairwise correlations of our selected control variables with our measures of income and democracy. Appendix C considers an alternative interpretation of the reduced form of our empirical model.

2. Basic data and empirical strategy

We first present the income and democracy data and show how correlated they are. Then we return to the discussion of causality and the theoretical justification for the extreme biogeography variables used as instruments.

2.1 Measures of income and democracy

The two main data series used in this paper are the polity index and income per capita. Both data series are available for a large number of countries and over a time horizon of about 200 years for some countries:
(i) *Income*, y, is the natural logarithm of GDP per capita income, measured in constant international dollars, and taken from the Maddison data set (see Maddison 2003).

(ii) *The polity index*, P, measures the degree of democracy of the political system of a country by a scale ranging from -10 for a fully authoritarian regime to +10 for a fully democratic one (see Marshall and Jaggers, 2006). 3

Figure 1. The annual correlation between income and democracy, 1900-2003

Notes: There are only about 30 observation pairs in the first years compared to about 150 observation pairs in the last years of the 20th century. The increase in the number of observations is reflected in the declining slope of the curve of correlation points and the corresponding decline of the (interpolated) level of correlation that is necessary in order to pass conventional levels of statistical significance.

We take y and P to be the best aggregate measures available for the economic and political development, though both have many weaknesses at the conceptual level as well as at the measurement level. 4

Figure 1 shows the annual correlation between the two variables throughout the 20th century. For each year, all available observations have been used. The result of this

3. The *Gastil index* from Freedom House measures political rights and civil liberties. It is an alternative to the Polity index, but it is only available from 1972. We have replicated most of the analysis in the paper using the Gastil index, see Gundlach and Paldam (2008b).

mechanical exercise is abundantly clear: The correlation has been statistically significant above the 1% level for each and every year of the 20th century.

Another way to look at the data is Figure 2, which also includes the 19th century. For every year the averages for P and y are calculated for the number of countries for which the two data series are available. The number of countries goes up steeply especially in the period from 1960-90.

![Figure 2. The development over time for income and the Polity index](image)

The figure shows a strong relation that looks like a straight line. In certain periods deviations happen, but the deviations are transitory and the long-run path re-emerges. The deviations occur precisely in the well-known periods of large political and economic changes. The figure thus suggests that the long-run pattern is clearer than the medium run pattern, and that the long run may be fairly independent of the short run. This is very much what our regression analysis will show.

2.2 Two problems for the Democratic Transition hypothesis

5. The Democratic Transition is also known as Lipset's Law or the Modernization hypothesis (Lipset, 1959).
The first problem is what long-run causality really means. A theoretical answer may be that long-run causality refers to the steady state. This is not an operational answer for the relation between income and democracy. The democracy variable, P, is constant over fairly long periods. When it moves, it does so in a discrete step. The income variable, y, changes every year, though normally only by 1-2%.

Imagine that P adjusts to y in the long run, but that y can be temporarily kept back by a slow adjustment of P. Since the adjustment of P is stepwise, some of the steps will be large, and before the adjustment, y will be held back. After the adjustment, y will catch up with its long-run trend. In this case, we say that income is the primary variable, and that the whole of the long-run causality is from y to P. However, in the short to medium-run a complex pattern of simultaneous interactions may occur between the two variables. This pattern may sometimes look like reverse causality from P to y. We may even say that the long-run causality works through short run simultaneity.

Our analysis aims at catching long-run causality by concentrating on the cross-country pattern. This does not mean that we reject studies that find a complex interaction process (see, e.g., Persson and Tabellini, 2006), or case studies that show that growth is slowed down by the lack of political reforms and picks up after political reforms. But it means that we are critical of studies that claim there is no causality at all from income to democracy.

The second problem is that the Democratic Transition hypothesis uses income as the primary variable. Income is an aggregate that appears problematic in that role. It works as a catch-all-variable – a “kitchen sink” – for the whole set of transitions that together constitute development. This is not satisfactory because of mutual simultaneity, and hence we have gone one – very long – step further by using biogeography factors as primary variables for development. This identification strategy should help to disentangle the long-run effect of income on the degree of democracy from the complex interactions of the two variables in the medium and short run. So our primary variable goes back to a time long before all existing modern institutions came about, which have roots going down more than 500 years.

To justify this modeling strategy, we need a theoretical framework that explains development both in the era of the Malthusian stagnation that preceded the Industrial Revolution and in the subsequent era of modern economic growth. Such a theory should be able to explain the present large income differences between countries without invoking changes in the institutions of a country as explanatory factors, and in addition it should point to biogeographic factors as possible primary variables that can be used to identify the exogenous long-run variation in income.
2.3 A theoretical approach to the long run

Without such a theory, our key result would be just a strange empirical regularity resting on a black box. However, the Unified Growth Theory of Galor (see his survey 2005) has many of the elements needed. Unified Growth Theory holds that the apparent stability of the last few centuries of the Malthusian era saw a slow but steady growth of the population and subtle but important changes in the composition of the population that ultimately led to the Industrial Revolution (Galor and Moav 2002). The simplest methodology for generating a phase transition from stagnation to sustained growth would be to hypothesize a major shock in an environment characterized by multiple locally stable equilibrium. Yet such a methodology is in conflict with the interpretation of the Industrial Revolution as a gradual process; see, e.g., Clark (2007) and Mokyr (2002).

Unified Growth Theory hypothesizes that the transition from stagnation to growth can be captured by a single dynamical system if the set of steady-state equilibria and their stability are altered qualitatively in the process of development due to latent state variables such as human capital formation, which finally change the qualitative structure of the dynamical system. According to this view, changes in the quality of the institutional framework (or their absence) may support or hinder the transition from one steady state to another. But they are neither necessary nor sufficient to explain why there has been sustained growth of per capita income in the world economy over the last 200 years, but not before in all of human history. In this model, long-run growth is an inevitable consequence of changes in the size and the composition of the population, which may have biological (Galor and Moav, 2002; Clark 2007) and geographical (Diamond, 1997) roots. Thus, instrumenting the level of income with measures of biogeography should produce a measure of the exogenous (institution-free) long-run variation in income that is needed in order to explain the Democratic Transition.

2.4 The biogeographic data for the very long run

Prehistoric biogeographic conditions may explain why the transition from a hunter-gatherer society to an agrarian society started earlier in some regions of the world than in others, and why it sometimes did not start at all. One condition for a sustainable early transition is the

6. Another theory of the very long run is suggested by Hansen and Prescott (2002).
8. Diamond (1997) identifies prehistoric biogeographic conditions that have been conducive for the development of stable agricultural societies, but he is in conflict with Unified Growth Theory in his assessment of the effects of population growth on agricultural technical change. For an early theory of agricultural development that is in line with Unified Growth Theory, see Boserup (1965).
availability of plants that can be domesticated, and the productivity of these plants. Both
conditions are believed to have varied widely across the prehistoric world, with at least five
and probably nine areas with independent agricultural development (Diamond 1997, p. 99).
The Near East or Fertile Crescent of Southwest Asia has been identified as the earliest site for
a string of further developments beyond agriculture, such as cities, writing, and empires
(Diamond 1997, p. 135).

Similar to the availability of domesticable plants, the availability of domesticable large
mammals as a source of food and as a means of transport and warfare differed substantially
across the world in prehistoric times. For instance, no large mammal has ever been
domesticated in Sub-Saharan Africa, and most large mammals became extinct in the
Americas when the continent was invaded by human hunter-gatherers from Asia. As is self-
evident, it will make a difference for military success whether the turkey is the major
domesticated animal and horses are not known, or vice versa. More generally, areas with
domesticated plants and mammals could support larger populations, and larger populations
developed into more complex societies.

An additional factor that has spurred or hindered such developments is geography.
Regular climatic variation with dry and wet seasons and moderate temperatures are obviously
beneficial for agricultural development, as is a large landmass that spreads horizontally rather
than vertically because climatic zones change faster along a north-south axis than along an
east-west axis. This implies that all else constant, agricultural innovations like new
domesticated plants could spread more easily across Eurasia than across the Americas or Sub-
Saharan Africa, and in small isolated places like New Guinea they could not spread at all.
Hence, the prehistoric potential for developing rather stable complex agrarian societies with
large populations was much stronger in some regions of the world than in others.

In addition, the co-evolution of domesticated plants that were partly used to feed
domesticated mammals brought a further advantage for prehistoric societies with favorable
biogeographic conditions. Their populations developed at least partial resistance against a
number of diseases that may have spread from domesticated animals to humans.9 Diamond
(1997) argues that Europe (Eurasia) conquered the Americas and not the other way round just
because of plants, animals, germs, continental axis, and size, despite comparable levels of per
capita income on both continents.

9. Populations living closely with domesticated animals may have suffered from regular outbreaks of diseases like smallpox, measles, influenza, and typhus, but human populations living without close contact to various domesticated animals, and therefore without resistance against the germs that carry the diseases, would be virtually wiped out on first contact, as happened as the consequence of European colonization.
The question not resolved by Diamond (1997) refers to the ultimate factors that explain persistent economic growth since about 1800, first in Europe and its offshoots and later in East Asia and other parts of the world. All available facts point to a more or less constant per capita income that may have differed in levels across the world, but remained trendless throughout all of human history until 200 years ago. Galor and Moav (2002) suggest that natural selection on humans during the seeming income stability of the Malthusian era provides an answer for the emergence of the Industrial Revolution.

Their theory is supported by the historical facts presented by Clark (2007), who suggests that a long history of an institutionally more or less stable society with settled agriculture, as exemplified by England from about 1200 to the beginning of the Industrial Revolution, initiated behavioral changes in the population that ultimately led to the demise of the Malthusian straightjacket of diminishing returns. According to Clark (2007), the main mechanism for this latent development was that the rich had persistently more surviving descendants than the poor. So there was strong and permanent downward social mobility, which may have helped to spread middle class behavior throughout the society, either genetically or by cultural transmission.

2.5 From the theoretical considerations to our test

Many of the arguments in sections 2.3 and 2.4 are speculative, but the authors cited provide a wealth of illuminating detail and a good deal of formal modeling to back up their argument. Our conclusion from this line of reasoning is that the prehistoric variation in measures of biogeographic conditions could be correlated with the modern variation of per capita income.

Taken at face value, it appears inconceivable that the selected measures of biogeography can possibly work. Yet they work rather well as the reader will see. We have two explanations: (i) We mainly look at a cross-section of countries, so we are aiming at the very

10. This Malthusian mechanism appears to have changed the average behavior towards less violence, more working hours, and more investment in human capital, with effective institutions adjusting to the changes in behavioral norms. Hence, slow but steady changes in the composition of the population over a long time span of at least 500 years may help us understand why an Industrial Revolution occurred at all, and why in England and Europe. It appears that beneath the seeming stagnation of the Malthusian era, economically unsuccessful behavior literally died out under the stable conditions provided by settled agriculture.

11. Some of the economically most successful countries are "Western Offshoots" (Maddison) with only small remaining shares of the indigenous population in the total population, so a priori one cannot expect a particularly strong correlation between initial biogeographic conditions and present levels of income if these countries are included in the sample.
long run,12 and (ii) our selected instruments appear to be justified by Unified Growth Theory, which is consistent with historical facts about the Malthusian era \textit{and} the era of modern growth.

Also, we should add that Olsson and Hibbs (2005) show that their biogeographic variables do provide an amazingly good explanation of the cross-country pattern of incomes. Hence, we feel that there is both theoretical and empirical justification behind our use of these variables to generate institution-free incomes demanded by our tests.

3. Specification and main result

Our basic equation is given by

\[P_i = \alpha + \beta y_i + X_i'\gamma + \epsilon_i, \] \hspace{1cm} (1)

where \(P \) is the degree of democracy in country \(i \) in a given year, \(y \) is the natural logarithm of GDP per capita in constant international dollars, \(X_i' \) is a matrix of other covariates, \(\alpha \) is a regression constant, \(\epsilon \) is an error term, and \(\beta \) is the coefficient of interest that measures the long-run effect of income on democracy.

3.1 The underlying structure

The two major problems with estimating equation (1) are omitted variables, which we address in the next section, and reverse causality. As motivated by our empirical strategy, we use prehistoric measures of biogeography to identify the exogenous part of the variation in actual cross-country incomes. More formally, we have the additional equations

\[y_i = \lambda_1 + \eta_1 \text{popchange}_i + X_i'\gamma_1 + u_i, \] \hspace{1cm} (2)

\[\text{popchange}_i = \lambda_2 + \eta_2 \text{agristab}_i + X_i'\gamma_2 + u_2, \text{ and} \] \hspace{1cm} (3)

\[\text{agristab}_i = \lambda_3 + \eta_3 \text{biogeo}_i + X_i'\gamma_3 + u_3, \] \hspace{1cm} (4)

12 The level of development (income) for a cross-section of countries at a given point in time reveals the differences in country-specific rates of long-run growth, given that all countries had similar income levels about 200 years ago. From the 15th century until about 1800, the West did grow by 0.1 to 0.15% per year according to Maddison (2003), while the rest of the world had zero economic growth. The West was thus ahead by about two times in income when modern economic growth started.
where λ_j are regression constants, η_j are parameters, and u_j are error terms; \textit{popchange} is a measure of the changes in the composition of the population that developed slowly but steadily in the Malthusian era before the onset of the Industrial Revolution, \textit{agristab} is a measure of the long-run institutional stability of agrarian societies in the Malthusian era, and \textit{biogeo} is a measure of biogeographic conditions that prevailed at the time of the Neolithic revolution.

Although we lack information to estimate equations (2)-(4), we can nevertheless employ measures of biogeography as instruments for the actual level of income if such measures have no direct impact on the observed degree of democracy and if they are sufficiently correlated with modern cross-country income levels. Both conditions appear to be satisfied, as argued above. Hence, we are confident that our instruments can be used to derive a measure of income that is not affected by the contemporary quality of the institutional framework of a country.

3.2 \textit{Our main result}

Our main estimation results for equation (1) are reported in Table 1, where we present specifications with alternative sets of instruments but do not include any control variables. All specifications refer to a single cross-section of countries for the year 1995, which has been selected to maximize data points. The number of observations (countries) in each column of Table 1 is limited by the available data points for the instrumental variables.

The reader should first note that all of our specifications pass the Cragg-Donald test for weak instruments and the Sargan test for over identifying restrictions. The partial R^2s for the first stage are as high as about 0.5. Hence, all specifications in Table 1 satisfy the statistical preconditions for instrumental variables (IV) regressions.

We find a large and statistically significant effect of our instrumented measure of income on the degree of democracy, in all the regressions presented. The estimated coefficient on income is about 2.8. What this means can be illustrated by an example. Ghana is close to the 25th percentile of the income measure in our sample (7.05), and Thailand is close to the 75th percentile (8.79). The income difference between Thailand and Ghana predicts a $(8.79 - 7.05) \cdot 2.8 \approx 4.9$ Polity-point difference between the countries. The actual difference in 1995 is 10 Polity points, so the estimate explains about half of the observed difference in the said democracy-index of the two countries.
Table 1. The estimated effect of income on the degree of democracy

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of obs. (countries)</td>
<td>101</td>
<td>101</td>
<td>106</td>
<td>101</td>
<td>142</td>
</tr>
<tr>
<td>y (IV)</td>
<td>2.57 (0.68)</td>
<td>2.96 (0.61)</td>
<td>3.41 (0.57)</td>
<td>2.75 (0.67)</td>
<td>3.11 (0.64)</td>
</tr>
<tr>
<td>Instruments</td>
<td>animals, plants</td>
<td>axis, size, climate</td>
<td>bioavg, geoav</td>
<td>biofpc, geofpc</td>
<td>coast, frost, maleco</td>
</tr>
<tr>
<td>First stage partial R^2</td>
<td>0.43</td>
<td>0.54</td>
<td>0.53</td>
<td>0.44</td>
<td>0.48</td>
</tr>
<tr>
<td>CD F-statistic</td>
<td>37.44</td>
<td>37.95</td>
<td>57.49</td>
<td>37.98</td>
<td>42.12</td>
</tr>
<tr>
<td>CD critical value (size)</td>
<td>19.93 (10%)</td>
<td>22.30 (10%)</td>
<td>19.93 (10%)</td>
<td>19.93 (10%)</td>
<td>22.30 (10%)</td>
</tr>
<tr>
<td>Sargan test (p-value)</td>
<td>0.04 (0.85)</td>
<td>1.49 (0.47)</td>
<td>3.33 (0.07)</td>
<td>1.73 (0.19)</td>
<td>0.59 (0.75)</td>
</tr>
<tr>
<td>y (OLS)</td>
<td>2.83 (0.45)</td>
<td>2.83 (0.45)</td>
<td>2.89 (0.42)</td>
<td>2.83 (0.45)</td>
<td>2.67 (0.44)</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.28</td>
<td>0.28</td>
<td>0.31</td>
<td>0.28</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Notes: All observations for 1995 or the next available year; standard errors in parentheses. All specifications include a constant term (not reported). A Cragg-Donald (CD) F-statistic below the critical value (10 percent maximal size) indicates that the instruments are weak. The Sargan test for overidentification tests the joint null hypothesis that the instruments are valid and correctly excluded from the estimate.

The bottom section of the table presents the OLS results for comparison with the IV results. The adjusted R-squared of the OLS regression indicates that 20-30 percent of the cross-country sample variation in the degree of democracy in 1995 is associated with the cross-country variation in (log) GDP per capita.

The key finding in the paper is that we cannot reject that the OLS estimates of the income coefficient are the same as the IV estimates. The OLS-estimates are even smaller than the IV-estimates on average. This finding implies that whatever the institutional history of the countries and irrespective of the critical junctions passed on the way, the long-run outcome is essentially the same, and it is explained fairly well by income.\(^\text{13}\) Though all five estimates are similar, our preferred specification is in column (4), which uses the first principal components of four measures of geographic conditions and two measures of biological conditions.\(^\text{14}\) We use this specification in the further analysis.

\(^{13}\) We have also recalculated Table 1 in the reverse to see if Polity instrumented with the measures of biogeography can explain income as well as can Polity in an OLS regression. We find that in this specification our preferred instruments are rejected by the Cragg-Donald test, so our instruments only work one way from income to democracy. These results are available upon request.

\(^{14}\) Compared to columns (1), (2), and (4), column (3) includes additional country observations on the Western offsprings Australia, Canada, New Zealand, and the United States (plus Germany). In the Western offsprings, only a small share of the indigenous population has remained in the total population, and the present income is higher than would be predicted on the basis of the prehistoric biological and geographic conditions. However, their inclusion does not lead to statistically different results. Column (5) uses a different set of instruments, which may identify the exogenous variation in income through their effect on agricultural productivity (frost), human capital formation (maleco), and international trade (coast), but the results are not statistically significantly different from columns (1)-(4).
4. **Robustness and consistency of the main result**

One possible objection to the main result in Table 1 is that our estimates are biased due to omitted variables. We check the robustness of our results by adding 10 controls, one at a time to avoid multicollinearity. Our controls are either socio-political (see 4.1) or ethnocultural (see 4.2) variables. They are chosen to have an effect on the degree of democracy that is independent of the income effect or may even dominate the income effect.\(^\text{15}\)

Appendix B shows the pairwise correlations between our control variables and our measures of income and democracy. The variables chosen are statistically significantly correlated with democracy or income in all but one case. Since our instruments for income are extreme, it is possible that the inclusion of the control variables may change the estimated income effects.

Another objection may point to the consistency of our result over time. The result in Table 1 is found for the cross-country pattern of democracy in 1995. Since we have these data for two centuries, we check in sections 4.3 and 4.4 if our main result for the long-run is consistent with the pattern both within and between countries.

4.1 **Four socio-political control variables**

The four socio-political control variables included in Table 2 are the share of mining in GDP (\(\text{mining}\)), the Gini coefficient (\(\text{gini}\)), and the relative numbers of deaths by homicide (\(\text{homicavg}\)) and by suicide (\(\text{suicide}\)). These variables vary widely across countries, and they are all significantly correlated to either polity or income (Appendix B). They may be interpreted as measuring the availability of resource rents, the degree of income inequality, the prevalence of violent conflict among individuals, or the disposition for psychic depression. We speculate that each of these measures may affect the degree of democracy in ways that are independent of our income measure.\(^\text{16}\)

We find that conditional on the level of instrumented income, none of these variables is statistically significantly correlated with the degree of democracy. Moreover, the inclusion of each of these variables does not affect the size of the estimated income effect in a statistically

\(^{15}\) For our purpose, it is less important whether the additional control variables are actually exogenous. We are mainly interested in the robustness of our estimated income coefficient.

Table 2. The effect of additional socio-political variables

<table>
<thead>
<tr>
<th>No. of obs. (countries)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>y (IV)</td>
<td>2.53 (0.66)</td>
<td>2.81 (0.97)</td>
<td>3.68 (1.18)</td>
<td>2.84 (1.36)</td>
</tr>
<tr>
<td>Mining</td>
<td>5.60 (7.84)</td>
<td>0.02 (0.07)</td>
<td>0.05 (0.05)</td>
<td>0.03 (0.07)</td>
</tr>
<tr>
<td>Gini</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homicavg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First stage partial R^2</td>
<td>0.47</td>
<td>0.33</td>
<td>0.34</td>
<td>0.35</td>
</tr>
<tr>
<td>CD F-statistic</td>
<td>39.02</td>
<td>16.83</td>
<td>15.00</td>
<td>9.60</td>
</tr>
<tr>
<td>CD critical value (size)</td>
<td>19.93 (10%)</td>
<td>11.59 (15%)</td>
<td>11.59 (15%)</td>
<td>8.75 (20%)</td>
</tr>
<tr>
<td>Sargan test (p-value)</td>
<td>1.22 (0.27)</td>
<td>0.90 (0.34)</td>
<td>0.64 (0.42)</td>
<td>1.01 (0.32)</td>
</tr>
<tr>
<td>y (OLS)</td>
<td>2.79 (0.46)</td>
<td>3.01 (0.57)</td>
<td>3.27 (0.71)</td>
<td>2.85 (0.84)</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.27</td>
<td>0.28</td>
<td>0.24</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Notes: See Table 1. In the IV regressions, biofpc and geofpc are used as instruments, as in column (4) of Table 1. OLS results are conditional on the inclusion of the control variable.

significant way. The Cragg-Donald test for weak instruments does not perform as well in these specifications as in Table 1, but the first stage partial R^2 remains relatively high, and the Sargan test statistic does not reject the exclusion restriction. The key observation is that there is still no difference between the coefficients to y (IV) and y (OLS), even when these controls are added.

4.2 Six ethno-linguistic control variables

The six ethno-cultural control variables included in Table 3 are the index of ethno-linguistic fractionalization ($ethnoel$), dummies for French or English legal origins ($lofre$ and $loeng$), and the share of the population that has certain religious beliefs ($prot$, $romcat$, $muslim$). These variables have been used as controls in many other papers. We speculate that the degree of ethnic and linguistic diversity, the origin of the legal framework of a country, or the adherence to a large religious community may affect democracy independent of the measure of income.

We do not find any statistically significant direct or indirect effect of the ethno-linguistic or legal control variables. But we find that conditional on the level of instrumented income, the share of the population with the two Christian beliefs is positively correlated with the degree of democracy, and the share of the population with Muslim belief is negatively
correlated with democracy. In both specifications with religious beliefs, the size of the estimated income effect is statistically not significantly different from the results in Table 1, and there is no evidence for weak instruments (CD F-statistic) or a rejection of the exclusion restriction (Sargan statistic). Once again, our key result holds: The coefficients to \(y \) (IV) and \(y \) (OLS) are not different.

Table 3. The effect of additional ethno-cultural variables

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of obs. (countries)</td>
<td>97</td>
<td>101</td>
<td>101</td>
<td>101</td>
<td>101</td>
<td>101</td>
</tr>
<tr>
<td>(y) (IV)</td>
<td>2.16 (1.07)</td>
<td>2.69 (0.69)</td>
<td>2.72 (0.70)</td>
<td>2.61 (0.69)</td>
<td>2.92 (0.62)</td>
<td>2.67 (0.64)</td>
</tr>
<tr>
<td>Ethnoel</td>
<td>-2.10 (2.93)</td>
<td>0.31 (1.07)</td>
<td>0.26 (1.22)</td>
<td>3.44 (2.63)</td>
<td>3.51 (1.44)</td>
<td>-5.28 (1.73)</td>
</tr>
<tr>
<td>Lofer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loeng</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romcat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muslim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First stage partial (R^2)</td>
<td>0.28</td>
<td>0.43</td>
<td>0.42</td>
<td>0.43</td>
<td>0.51</td>
<td>0.50</td>
</tr>
<tr>
<td>CD F-statistic</td>
<td>17.96</td>
<td>35.94</td>
<td>35.65</td>
<td>36.07</td>
<td>49.51</td>
<td>49.19</td>
</tr>
<tr>
<td>CD critical value (size)</td>
<td>11.59 (15%)</td>
<td>19.93 (10%)</td>
<td>19.93 (10%)</td>
<td>19.93 (10%)</td>
<td>19.93 (10%)</td>
<td>19.93 (10%)</td>
</tr>
<tr>
<td>Sargan test (p-value)</td>
<td>1.58 (0.21)</td>
<td>1.69 (0.19)</td>
<td>1.70 (0.19)</td>
<td>1.34 (0.25)</td>
<td>1.32 (0.25)</td>
<td>0.32 (0.57)</td>
</tr>
<tr>
<td>(y) (OLS)</td>
<td>2.64 (0.57)</td>
<td>2.82 (0.46)</td>
<td>2.82 (0.46)</td>
<td>2.71 (0.46)</td>
<td>2.57 (0.45)</td>
<td>2.25 (0.46)</td>
</tr>
<tr>
<td>Adjusted (R^2)</td>
<td>0.26</td>
<td>0.27</td>
<td>0.27</td>
<td>0.28</td>
<td>0.32</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Notes: See Table 1. In the IV regressions, biofpc and geofpc are used as instruments, as in column (4) of Table 1. OLS results are conditional on the inclusion of the control variable.

The same pattern of results holds if we run the experiments of Tables 2 and 3 by using the instrumental variables of columns (1), (2), and (5) of Table 1. Overall, we conclude from these findings that adding alternative socio-political or ethno-cultural control variables to our basic specification does not alter our statistically significant and quantitatively important estimate of the long-run effect of income on democracy: most of our estimates are in the range of 2.5-3.0.

17. For similar results, see Borooah and Paldam (2007). Note that even if the coefficient to Prot is insignificant, it is virtually the same as the one to Romcat, and both are statistically different to the one to Muslim.
18. Detailed results are available upon request.
19. As a further robustness test, we have replicated Tables 1, 2 and 3 for the Gastil index. The results are reported in Gundlach and Paldam (2008b). They are virtually the same as the estimates for the Polity index in terms of instrument validity and parameter consistency.
4.3 Specifications with panel data

We have emphasized that our interest is the long-run effect of income on democracy. Ignoring all problems surrounding measurement error, omitted variables, and reverse causality, the long-run effect can be best estimated from a cross-section of countries. Once other data sets are used for estimation, the time horizon that is at the center of the empirical analysis has not always been stated clearly in recent contributions to the literature. We think this is a major defect because it should be clear from the outset that a potential long-run effect of income on democracy that can be estimated from pure cross-section data may not directly show up in panel data based on, say, 5-year averages of all included variables. Whether a long-run effect shows up indirectly mainly depends on the specification of the estimation equation.

The empirical model of income and democracy that has often been used for estimation with panel data is given by:

$$ P_{it} = \alpha_{(i)} + \beta^s y_{it} + \delta P_{it-1} + \varepsilon_{it}, $$

(5)

where $\alpha_{(i)}$ may or may not allow for country heterogeneity, β^s measures the short-run effect of income on democracy, and δ measures the autoregressive adjustment of democracy over time. In this model, the long-run effect of income on democracy is given by

$$ \beta^\infty = \beta^s / (1 - \delta). $$

(6)

A key result of the previous literature on income and democracy has been that estimates of β from a model like equation (1) are close to the estimates of β^∞ from models like (5) with a sufficient time dimension that exceeds five years.\(^\text{20}\) Thus, empirical results based on equation (5) can provide considerable evidence for the Democratic Transition.

As most political systems have long periods of stability, estimates of the annual adjustment parameter δ are very close to 1. Consequently, if the panel data are constructed with a short time horizon, for instance with 5-year data, equation (5) becomes tricky to estimate because it almost contains a unit root. Furthermore, the lagged adjustment is likely to dominate the variation of P if the specification also includes fixed effects for countries, and so the estimate of the income effect on P becomes statistically insignificant, as reported by

\(^{20}\) Empirical models like equation (5) have been estimated on the Polity index and also on the Gastil index, with and without fixed effects for countries and for time, and by using different time periods. For an overview, see Paldam and Gundlach (2008). More details are given in Borooah and Paldam (2007), Paldam (2007) and Jensen and Paldam (2007).
Acemoglu et al. (2005b, 2007). We do not think that evidence based on model (5) with a short time horizon and with country fixed effects can be used to reject the Democratic Transition hypothesis. The Grand Transition view and the Democratic Transition hypothesis are about long-run changes that do follow a distinct trend that can be best handled by pure cross-section estimates, not by a combination of fixed effects and lagged adjustment over a short time horizon.

4.4 Panel data results

We construct an unbalanced panel data set with cross-sections of countries for selected years that partly reflect data availability in the Polity and the Maddison data sets (1820, 1870, 2003) and otherwise approximate important breaks in the economic history of the 20th century, such as the two world wars (1913, 1938), the begin of the cold war (1950), the end of colonialism (1960), the first oil crisis (1973), and the demise of the Soviet Union (1995).

<table>
<thead>
<tr>
<th>No. of obs.</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N o. of countries</td>
<td>572</td>
<td>388</td>
<td>236</td>
<td>785</td>
<td>548</td>
<td>236</td>
</tr>
<tr>
<td>Instruments</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Fixed effects</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>country</td>
<td>country</td>
<td>country</td>
</tr>
<tr>
<td>CD F-statistic</td>
<td>27.55</td>
<td>41.29</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CD critical value (size)</td>
<td>19.93 (10%)</td>
<td>19.93 (10%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F-test (p-value)</td>
<td>-</td>
<td>-</td>
<td>3.96 (0.00)</td>
<td>3.63 (0.00)</td>
<td>2.25 (0.00)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Standard errors in parentheses. All specifications include a constant term (not reported). In columns (1) and (2), we use our preferred instruments biofpc and geofpc, which pass the Cragg-Donald (CD) test for weak instruments. For the within-estimates (country fixed effects), the F-test rejects the hypothesis that all country-specific constant terms are jointly zero (p-value in parentheses).

The panel data may be used for fixed-effects estimation to control for the presumed country heterogeneity. With country fixed effects, we would estimate the expected change in the degree of democracy of one country conditional on its observed income levels at different points in time, as given by the panel years. However, the long-run effect that we have estimated before equals the expected difference in the degree of democracy between two
countries conditional on their observed income levels at a given point in time. Both effects may turn out to be of the same size, but a priori this cannot be taken for granted. Hence, we first estimate the effect of time-averaged income on time-averaged democracy with the so-called between-estimator.

Columns (1) - (3) of Table 4 show the results for alternatively constrained panel data sets. We use our preferred instruments for the estimation of the full panel data set and for the estimation of the panel data set with years since 1960. In light of unreported results, which suggest that our instruments do not work for the smaller samples of countries for the years before 1960, we estimate the panel data with the older cross-sections of countries without instrumental variables. For all three specifications, we find a statistically significant effect of income on democracy. The estimates of the income parameter are similar to our main result of Table 1. For instance, an estimate of the income parameter of 2.8 is within the 95 percent confidence interval of all three between-estimates.

The same holds for our country fixed-effects estimates for the three alternative panel data sets in columns (4)-(5), with the estimate in column (6) narrowly outside the 95 percent confidence interval. The F-test reveals that the country-specific constant terms are not jointly equal to zero, so OLS estimation of the panel data would be inappropriate. In addition, we find for each sample pair in columns (1) and (4), (2) and (5), and (3) and (6) that the estimates of the between-estimator and the fixed-effects estimator are not statistically significantly different from each other, which allows us to interpret our results in a cross-country and in a time series context. We think that this final result further strengthens the support for the Democratic Transition hypothesis.

5. The Democratic Transition

If we take income and the Polity index as the best aggregate representations of the economic and political development, then we have shown that the economy dominates in the long run. We have added a number of qualifications as regards the short to medium run, but in the long

21. We find that our preferred instrumental variables do not pass the CD test for weak instruments for each cross section of countries for the panel years before 1960. The apparent reason for this outcome is the limited number of cross-country observations for the earlier years, when many present sovereign states still had the status of a colony. Detailed results are available upon request.

22. Appendix C discusses the possibility that our instruments identify exogenous variation in a broad measure of the institutional framework of country, such that the observed correlation between income and democracy is actually driven by institutional variation rather than by income variation, as in the Critical Junctures hypothesis. However, we find that our instruments only identify exogenous variation in incomes.
run institutions and critical junctions apparently do not influence the outcomes as regards the political development. Our empirical results suggest that there is a large robust effect of the level of income on the degree of democracy. As is also highlighted by Figure 1, income is certainly not the only determinant of democracy, but it appears to be a rather powerful predictor.

Overall, we confirm Lipset’s original finding (see Lipset 1959 and Barro 1999), though by a new empirical strategy. We think that our strategy can also be applied in other fields where the direction of long-run causality is contested, such as the relation between corruption and income. For instance, we can show that the long-run causality is exclusively from income to honesty, and hence we add the Transition of Corruption along with the Democratic Transition to the set of confirmed transitions (Gundlach and Paldam, 2008a).

There are two strong and politically important conclusions from our results. The positive conclusion is that countries are likely to transform their political regime towards democracy with rising levels of per capita income. Of course this does not mean that all countries will always become democracies once they have reached a certain level of development, but it seems that the political change towards democracy becomes much more likely by getting rich than by staying poor.

However, there is also a downside to our results: We should be pessimistic about attempts to impose a democratic regime in poor countries by outside force. We think that such a regime change cannot be expected to last if a self-contained growth process is missing. The Critical Junctures hypothesis would probably be more optimistic on this point if the change in democracy would reflect a genuine change in the power structure of the political system, but our aggregate results suggest otherwise. We would predict that the degree of democracy of a country is mainly determined by its income level, so the political regimes of poor countries are likely to revert to a level of autocracy that is compatible with their level of development.

At the end, we may turn from the specific hypothesis to the broader views: We conclude that we have found a large piece of evidence that the Grand Transition view provides a better understanding of the broad pattern of development than the Primacy of Institutions view.

23. This finding has a curious parallel to the classical theory of Economic Determinism that originated from Karl Marx.
Appendix A: Definitions and sources of variables used in the tables

Dependent variable and main explanatory variable used in all tables

Biological instruments used in Table 1. Tables 2 and 3 use only \textit{biofpc}

\textit{animals} Number of domesticable big mammals, weighing more than 45 kilos, which are believed to have been present in prehistory in various regions of the world. Source: Olsson and Hibbs (2005).

\textit{bioavg} Average of \textit{plants} and \textit{animals}, where each variable was first normalized by dividing by its maximum value. Source: Hibbs and Olsson (2004).

\textit{biofpc} The first principal component of \textit{plants} and \textit{animals}. Source: Olsson and Hibbs (2005).

\textit{maleco} Measure of malaria ecology; combines climatic factors and biological properties of the regionally dominant malaria vector into an index of the stability of malaria transmission (malaria ecology); the index is measured on a highly disaggregated sub-national level and then averaged for the entire country and weighted by population. Source: Kiszewski and Sachs et al. (2004), here taken from www.earth.columbia.edu/about/director/malaria/index.html#datasets (data as of 27 October 2003).

\textit{plants} Number of annual perennial wild grasses known to have existed in various regions of the world in prehistory, with a mean kernel weight exceeding 10 milligrams. Source: Olsson and Hibbs (2005).

Geographic instruments used in Table 1. Tables 2 and 3 use only \textit{geofpc}

\textit{climate} A ranking of climates according to how favorable they are to agriculture, based on the Köppen classification. Source: Olsson and Hibbs (2005).

\textit{frost} Proportion of a country's land receiving five or more frost days in that country's winter, defined as December through February in the Northern hemisphere and June through August in the Southern hemisphere. Source: Masters and McMillan (2001).

\textit{geoavg} Average of \textit{climate}, \textit{lat}, and \textit{axis}, where each variable was first normalized by dividing by its maximum value. Source: Hibbs and Olsson (2004).

\textit{geofpc} The first principal component of \textit{climate}, \textit{lat}, \textit{axis} and \textit{size}. Source: Olsson and Hibbs (2005).

\textit{lat} Distance from the equator as measured by the absolute value of country-specific latitude in degrees divided by 90 to place it on a [0,1] scale. Source: Hall and Jones (1999).

\textit{size} The size of the landmass to which the country belongs, in millions of square kilometers (a country may belong to Eurasia or it may be a small island). Source: Olsson and Hibbs (2005).

Socio-political control variables used in Table 2

homicavg Total intentional completed homicides per 100,000 population, average for 1990-2000. Source: UNODC (2005).

suicide Total number of suicides per 100,000 population, estimates for early 1990s. Source: Parker (1997).

Ethno-cultural control variables used in Table 3

ethnoel Average value of five different indices of ethno linguistic fractionalization: the probability that two randomly selected persons from a given country: (i) will not belong to the same ethno linguistic group, (ii) will speak different languages, (iii) will not speak the same language; (iv) the percentage share of the population not speaking the official language; (v) and the percentage share of the population not speaking the most widely used language. Source: La Porta et al. (1998).

muslim Share of the population with Muslim religious belief. Source: La Porta et al. (1998).

prot Share of the population with protestant religious belief. Source: La Porta et al. (1998).

romcat Share of the population with roman-catholic religious belief. Source: La Porta et al. (1998).

Additional variables used in Appendix C

kaufavg Unweighted average governance indicator for the year 1996, based on six survey measures: voice and accountability, political stability, government effectiveness, regulatory quality, rule of law, and control of corruption. Source: Kaufmann et al. (2004).

lnmört Natural logarithm of settler mortality rates in European colonies in the early 19th century; fourth mortality estimate. Source: Acemoglu et al. (2001)

socinf Index of social infrastructure, calculated from the years that a country is open to international trade, law and order, bureaucratic quality, corruption, risk of expropriation, and government repudiation of contracts. Source: Hall and Jones (1999).
Appendix B

Table A1. Correlation of control variables with democracy and income

<table>
<thead>
<tr>
<th></th>
<th>P (polity) Coefficient</th>
<th>p-value</th>
<th>No. of obs.</th>
<th>y (income) Coefficient</th>
<th>p-value</th>
<th>No. of obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socio-economic control variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mining</td>
<td>-0.27</td>
<td>0.00</td>
<td>126</td>
<td>0.01</td>
<td>0.87</td>
<td>120</td>
</tr>
<tr>
<td>gini</td>
<td>-0.15</td>
<td>0.17</td>
<td>87</td>
<td>-0.31</td>
<td>0.00</td>
<td>85</td>
</tr>
<tr>
<td>homicavg</td>
<td>0.03</td>
<td>0.78</td>
<td>94</td>
<td>-0.20</td>
<td>0.05</td>
<td>91</td>
</tr>
<tr>
<td>suicide</td>
<td>0.37</td>
<td>0.01</td>
<td>50</td>
<td>0.43</td>
<td>0.00</td>
<td>48</td>
</tr>
<tr>
<td>Ethno-cultural control variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ethnoel</td>
<td>-0.28</td>
<td>0.00</td>
<td>128</td>
<td>-0.55</td>
<td>0.00</td>
<td>123</td>
</tr>
<tr>
<td>lofre</td>
<td>-0.09</td>
<td>0.27</td>
<td>157</td>
<td>-0.17</td>
<td>0.03</td>
<td>152</td>
</tr>
<tr>
<td>loeng</td>
<td>0.03</td>
<td>0.68</td>
<td>157</td>
<td>-0.01</td>
<td>0.86</td>
<td>152</td>
</tr>
<tr>
<td>prot</td>
<td>0.32</td>
<td>0.00</td>
<td>155</td>
<td>0.24</td>
<td>0.00</td>
<td>151</td>
</tr>
<tr>
<td>romcat</td>
<td>0.40</td>
<td>0.00</td>
<td>157</td>
<td>0.20</td>
<td>0.01</td>
<td>152</td>
</tr>
<tr>
<td>muslim</td>
<td>-0.57</td>
<td>0.00</td>
<td>157</td>
<td>-0.26</td>
<td>0.00</td>
<td>152</td>
</tr>
</tbody>
</table>

Note: Coefficient of correlation; the p-value gives the level of statistical significance. All observations for 1995 or the next available year.

Appendix C: The simultaneity of income and some other institutions

Income and institutions have developed simultaneously through economic history. One may therefore object that our main result reflects, at least partly, the effect of the institutional power structure on democracy, rather than a pure income effect. For instance, if we delete the regression constants to simplify and modify our equation (1) as

$$ P_i = \beta y_i + \gamma \text{inst}_i + \epsilon_i, \quad (A1) $$

where inst is a measure of the institutional structure of a country, and subsequently rewrite equations (2) and (3) as

$$ y_i = \eta \text{inst}_i + u_i \quad \text{and} \quad (A2) $$

$$ \text{inst}_i = \mu \text{biogeo}_i + \nu_i \quad (A3) $$

with η and μ as parameters and u and ν as error terms, then the reduced form follows as

$$ P_i = \mu (\beta \eta + \gamma) \text{biogeo}_i + \omega_i \quad (A4) $$
with \(\omega \) as a modified error term. The reduced form shows that our main result could reflect, at least in principle, that there is no direct effect of income \((\beta = 0) \), but instead an effect of the institutional structure on democracy that works through income \((\gamma > 0) \). Since we do not have two independent instruments that would disentangle the separate effects of income and institutions on democracy in equation (A1), we have to rely on indirect estimates to see whether our main result could imply that \(\beta = 0 \) and \(\gamma > 0 \), as in the Critical Junctures hypothesis.

We estimate equation (A2) by using our preferred instruments \((biofpc, geofpc)\). If our preferred instruments are too weak to identify the exogenous variation in the measure of institutions, we would have indirect evidence that our estimates in Table 1 cannot only be due to the effect of institutions on democracy. Put differently, finding that our preferred instruments do not help to predict the effect of institutions on income in equation (A2) would imply that our main result in Table 1 must reflect, at least partly, a direct effect of income on democracy \((\beta > 0) \), as in the Democratic Transition hypothesis.

Table A2. Estimating the effect of institutions on income

<table>
<thead>
<tr>
<th>Dependent variable: (y)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of obs. (countries)</td>
<td>60</td>
<td>62</td>
<td>47</td>
<td>48</td>
<td>62</td>
<td>69</td>
</tr>
<tr>
<td>(exprop) (IV)</td>
<td>0.96 (0.16)</td>
<td>0.62 (0.26)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kauavg) (IV)</td>
<td>1.71 (0.22)</td>
<td>1.35 (0.48)</td>
<td>2.69 (1.68)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(socinf) (IV)</td>
<td>8.78 (3.90)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instruments</td>
<td>(lnmort)</td>
<td>(biofpc, geofpc)</td>
<td>(biofpc, geofpc)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First stage partial R(^2)</td>
<td>0.27</td>
<td>0.33</td>
<td>0.14</td>
<td>0.11</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>CD F-statistic</td>
<td>21.49</td>
<td>29.82</td>
<td>3.49</td>
<td>2.79</td>
<td>0.59</td>
<td>1.31</td>
</tr>
<tr>
<td>CD critical value (size)</td>
<td>16.38 (10%)</td>
<td>16.38 (10%)</td>
<td>7.25 (25%)</td>
<td>7.25 (25%)</td>
<td>7.25 (25%)</td>
<td>7.25 (25%)</td>
</tr>
<tr>
<td>Sargan test (p-value)</td>
<td>-</td>
<td>-</td>
<td>0.01 (0.92)</td>
<td>0.36 (0.55)</td>
<td>0.96 (0.33)</td>
<td>1.56 (0.21)</td>
</tr>
<tr>
<td>(exprop) (OLS)</td>
<td>0.54 (0.06)</td>
<td>0.42 (0.09)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kauavg) (OLS)</td>
<td>1.20 (0.11)</td>
<td>1.29 (0.16)</td>
<td>1.26 (0.15)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(socinf) (OLS)</td>
<td>3.86 (0.49)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted R(^2)</td>
<td>0.54</td>
<td>0.66</td>
<td>0.30</td>
<td>0.57</td>
<td>0.53</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Notes: See Table 1 and text. The samples are restricted to former European colonies.

The first column in Table A2 reproduces the result reported by Acemoglu et al. (2001), with different income data. There is a strong effect on income of the measure of institutions, here the risk of expropriation \((exprop)\), which is identified by the instrumental variable (log) settler
mortality in the early 19th century (Inmort). There is no evidence for a weak instrument problem. The same result appears for an alternative measure of institutions, namely the average of six institutional indices (kaufavg) that are reported by Kaufmann et al. (2004).

Acemoglu et al. (2001) emphasize that a hypothesis like equation (A2) should be estimated for a sample of former (European) colonies, because only for these countries there is exogenous variation in institutions that would allow for identifying a causal effect on income. Columns (3)-(6) report the results for using our preferred instruments instead of settler mortality. Columns (3) and (4) use the same sample of former colonies as in Acemoglu et al. (2001), columns (5) and (6) use a larger sample of former European colonies and a further measure of institutional quality for comparison, namely an index of the social infrastructure (socinf) compiled by Hall and Jones (1999). We find in columns (3)-(6) that our preferred instruments do not pass the Cragg-Donald test for weak instruments, by a wide margin. In addition, we find large differences between the IV and the OLS estimates for the larger samples of former colonies in columns (5) and (6).

We conclude from our results in Table A2 that our preferred instruments are not well suited to identify a causal effect of a broad measure of institutions on democracy that works through income. But our preferred instruments appear to identify a direct causal effect of income on democracy quite well, as reported in Table 1. Hence we maintain that $\beta > 0$, which is in conflict with the Critical Junctures hypotheses but in line with the Democratic Transition hypothesis.

24. The Grand Transition view as motivated by Unified Growth Theory would not be estimated for a sample of former colonies. It should explicitly include the countries where the Industrial Revolution started and exclude countries where the indigenous population has been more or less wiped out after colonization, such as the four Western offshoots.
References

Gundlach, E., Paldam, M., 2008a. The transition of corruption. From poverty to honesty. Mimeo, March. 25

Gundlach, E., Paldam, M., 2008b. A farewell to critical junctures: Tables 1, 2 and 3 replicated for the Gastil index. Mimeo, March. 26

