Bhaduri, Anik; Manna, Utpal; Barbier, Edward B.; Liebe, Jens

Working Paper
Cooperation in transboundary water sharing under climate change

ZEF Discussion Papers on Development Policy, No. 132

Provided in Cooperation with:
Zentrum für Entwicklungsforschung / Center for Development Research (ZEF), University of Bonn

Suggested Citation: Bhaduri, Anik; Manna, Utpal; Barbier, Edward B.; Liebe, Jens (2009) : Cooperation in transboundary water sharing under climate change, ZEF Discussion Papers on Development Policy, No. 132, University of Bonn, Center for Development Research (ZEF), Bonn

This Version is available at:
http://hdl.handle.net/10419/41632
Cooperation in transboundary water sharing under climate change
The CENTER FOR DEVELOPMENT RESEARCH (ZEF) was established in 1995 as an international, interdisciplinary research institute at the University of Bonn. Research and teaching at ZEF aims to contribute to resolving political, economic and ecological development problems. ZEF closely cooperates with national and international partners in research and development organizations. For information, see: http://www.zef.de.

ZEF – DISCUSSION PAPERS ON DEVELOPMENT POLICY are intended to stimulate discussion among researchers, practitioners and policy makers on current and emerging development issues. Each paper has been exposed to an internal discussion within the Center for Development Research (ZEF) and an external review. The papers mostly reflect work in progress.

ISSN: 1436-9931

Published by:
Zentrum für Entwicklungsorschung (ZEF)
Center for Development Research
Walter-Flex-Strasse 3
D – 53113 Bonn
Germany
Phone: +49-228-73-1861
Fax: +49-228-73-1869
E-Mail: zef@uni-bonn.de
http://www.zef.de

The authors:
Anik Bhaduri, Center for Development Research (ZEF), University of Bonn, Germany. (contact: abhaduri@uni-bonn.de)
Utpal Manna, School of Mathematics, Indian Institute of Science Education and Research, Thiruvananthapuram, India (contact: manna.utpal@iisertvm.ac.in).
Edward Barbier, Department of Economics and Finance, University of Wyoming, USA (contact: ebarbier@uwyo.edu)
Jens Liebe, Center for Development Research (ZEF) University of Bonn, Germany. (contact: jliebe@uni-bonn.de)
Cooperation in transboundary water sharing under climate change

CONTENTS

Acknowledgements

Abstract 1

Kurzfassung 1

1 Introduction 2

2 Water Sharing Between Burkina Faso and Ghana 7

2.1 Burkina Faso’s Problem 10

2.2 Ghana’s Problem 12

3 Water and Hydropower Sharing Between Burkina Faso and Ghana 19

3.1 Ghana’s Problem 20

3.2 Burkina Faso’s Problem 24

4 Conclusion 30

References 32
LIST OF FIGURES

Figure 1: The Volta Basin 3
Figure 2: Irrigation Development in Burkina Faso and Ghana 4
Figure 3: Response function of Ghana and Burkina Faso’s Net Benefit Function 23
Figure 4: Change in response function of Ghana with changes in σ 29
ACKNOWLEDGEMENTS

This paper stems from the project “Globaler Wandel des Wasserkreislaufes” (GLOWA), Global Change in the Hydrological Cycle, funded by the Ministry of Education, Science and Technology (BMBF). The second author would like to thank Max Planck Institute for Mathematics in the Sciences, Leipzig for providing financial support and travel grant, where this work was initiated.
ABSTRACT

As multiple countries share a river, the likelihood of a water resource conflict from climate change could be higher between countries. In this paper, we demonstrate how countries can cooperate in transboundary water sharing in a sustainable way, given the impacts of climate change. We illustrate the case of water sharing of the Volta River between the upstream and downstream country, Burkina Faso and Ghana respectively, where the latter country faces a tradeoff of water use between agriculture in the north and production of hydro energy in the south. In the framework of a stochastic Stackelberg differential game, we have shown how the issue of water sharing could be linked to hydropower export that can make water sharing between the countries sustaining in the event of climate change. Our results indicate that during cooperation, Ghana will have an opportunity to increase its water abstraction for agriculture, which has remained largely restricted. We also find that the equilibrium strategies in the long run steady state distribution are stable even with increasing variances of water flow.

KURZFASSUNG

1. **Introduction**

There is broad agreement that global climate change may have substantial impacts on water resources [2, 10]. Possible impacts include accelerated hydrological cycle, alteration in the precipitation rate, and the magnitude and timing of runoff. The intensity and frequency of floods and droughts are also expected to change. In such possible climate change conditions, unreliable rainfall with changes in its spatial and temporal distribution may jeopardize rainfed agriculture and the farmers may respond by increasing the demand for irrigation water [17]. However, with climate change altering the location and timing of water availability, the decision to reallocate more water for irrigation and other vital uses becomes much more complex with host of competing users. The Stern report on the economics of climate change has suggested that climate-induced scarcities of food and water can potentially lead to or exacerbate deadly conflict [20]. The likelihood of water resource dispute and conflict stemming from climate change is even higher in a transboundary setting. As multiple countries share a river, the competition over available water resources will be acute among countries facing a climate change, and meeting the freshwater demand for agriculture and other vital uses could be one of the impending challenge for policy makers.

In past, water planners struggled with the problem of estimating water demand with supply uncertainties. Also, majority of current water sharing allocation arrangements do not take into account the hydrological variability of river flow [13]. Climate change challenges existing water resource management practices by adding further uncertainties. This will be an especially troubling issue for transboundary water sharing agreements [19]. Unless new approaches to water management are developed that take into account these new uncertainties, future conflict over water resource are certain to increase [18].

The following paper is concerned with the allocation of river water in a transboundary setting, and attempts to capture the influence of climate change on its water allocation. The paper illustrates the case of Volta River Basin in Sub-Saharan Africa, which is one of the poorest regions in the world, and where water and food security could be seriously undermined by climate change (see Figure 1 for map).

In the Volta River Basin, the upstream and the downstream countries Burkina Faso and Ghana respectively, comprise nearly 90 percent of the the 400,000km² Volta Basin area, and is dependent on the freshwater availability to a great extent in meeting the water demand of the economy [4]. However the pattern of water demand in these two countries follows different trajectories (see Figure 2). The upstream country, Burkina Faso, is dependent on freshwater
from the Volta River to meet primarily its agricultural water demand; while in the downstream Ghana, the main water use is for hydropower generation. Most of the hydropower in Ghana is generated from Lake Volta (Akosombo Dam, located at the mouth of the River Volta). Unlike in other river basins, as the Dam is located at the very tail of the river, water usage for hydropower is consumptive in such case. It makes this case study very unique, as it allows competition to take place between agriculture and hydropower water usage.

Currently, water withdrawal rate to meet agricultural, domestic and industrial water demand in Ghana is much lower (1.73 per cent) compare to that in Burkina Faso (6.15 per cent). Ghana perceives that higher water abstraction for agriculture in upstream can reduce water inflow in
Lake Volta, and thereby affect hydro-electric generation. This could be one of the reasons that has induced Ghana to restrict its water abstraction for other purposes in its upstream.

However, the Government of Ghana has projected that with higher population, the agricultural water demand will increase several fold in the next two decades [15]. Moreover, higher uncertainly in water availability from climate change can also increase the demand for irrigation significantly [1].

A regional analysis on the impact of climate change on the Volta Basin, conducted by Kunstmann and Jung (2005), shows a high variability of river runoff to changes in climate variables. The study predicted that annual mean temperature could increase by 1.2 to 1.3 degree Celsius during the next thirty years in the Volta River Basin. A change in precipitation is expected with a mean increase of 5 per cent and a strong decrease in rainfall in April, which is connected to a delay in the onset of the rainy season. Increased duration of the dry season and delay of the rainy season could influence the demand for irrigated water [11].

Meeting higher demand for irrigation in the face of climate change is even more challenging for the policy makers in the Basin, as higher water abstraction in the upstream may increase the scarcity value of reserve water in Lake Volta. In the past, increasing demand for water coupled with higher uncertainty in the water flow has been a potential source of water conflict
between Ghana and Burkina Faso. In 1998, the conflict between the two countries exacerbated when low water levels in the dam resulted in the reduction of the hydropower generating capacity by half and caused major energy crisis in Ghana. Ghana accused Burkina Faso of constructing dams in the upstream as reservoirs for irrigation water; and thus the latter country’s higher water consumption was suspected of being the main cause of reduced water levels at the Akosombo Dam [14]. Burkina Faso, however, denied such Ghana’s claim and cited low rainfall and natural variability of water flow as the main causes for the reduction in river flow. The pertinent question is whether higher water abstraction in the upstream Burkina Faso can lead to lower water availability in Lake Volta, where hydropower is generated for Ghana with the help of Akosombo Dam. Van de Giesen et.al (2001) claim that irrigation development activities can create an impact in water availability in the downstream; though, it is difficult to capture such influence [4]. The amount of irrigable area in Burkina Faso is much higher than that of Ghana, estimated at 160000ha [8]. The amount of water that could be used for irrigation in Burkina Faso is approximated to be around 10 percent of the water inflow to downstream Lake Volta. In the recent past, Burkina Faso had already built two large dams and some 1500 small dams in the upper basin of the Volta river [14]. Moreover, Burkina Faso has plans of building three more large dams on the tributaries of the Volta within its territory for water supply to its capital, Ouagadougou. While these trends seem to support the claims that Burkina Faso’s investments in water infrastructures could be the main cause of water deficit in the lower Volta, there are also opposite views suggesting that Burkina Faso has little to do with the reduced flow in Ghana [12, 14].

However, both the counties agree that the sharing of water between Burkina Faso and Ghana will likely be a key issue in coming years, especially if climate change leads to significantly lower rainfall and run-off [16]. Both countries, in principle, have agreed to cooperate given the potential risk of conflict, and the manner of cooperation is still in the planning process [7].

There were several attempts to initiate a self-enforcing cooperative agreement between Ghana and Burkina Faso. One such attempt was made when Ghana offered Burkina Faso with energy in order to prevent the country from unilateral diversion of water. In this paper, we investigate if the issue of water sharing could be linked to hydropower export that can make water sharing between the countries sustaining in the event of climate change.

In this paper, the key issue we raise is whether the countries could gain from such cooperation. However the scope of cooperation largely depends on whether Burkina Faso action can
influence the water inflow to Lake Volta. Bhaduri et.al(2008) suggest that at the present condition, the probability of water stock falling below the critical level is around 1 percent [1]. However, if both countries’ water abstraction rates increase in future, then the probability increases sharply. Under such circumstances, there is an opportunity for Ghana to cooperate. Our paper extends the analytical work of Bhaduri et.al(2008) by evaluating the scope of cooperation in the light of climate change.

The second pertinent issue is whether such kind of cooperation is sustainable in case of climate change. Climate change can increase marginal benefit of water usage from irrigation, and might motivate the upstream country, Burkina Faso to deviate from cooperation, even though Ghana may gain from more from cooperation as future uncertainties in water supply may increase the opportunity cost of storing water in Lake Volta. This paper evaluate such effect of uncertainties on sustainability of cooperation between the two countries.

In this paper, first we model the allocation of stochastic water resource between Ghana and Burkina Faso in a non cooperative framework where the upstream country, Burkina Faso, chooses how much water to divert from the River to maximize it own’s welfare. The downstream country Ghana acts as a ”follower”, whose water availability depends on the flow of water diverted by Burkina Faso.

Second, we formulate a stochastic differential Stackelberg leader-follower game in a setting where Ghana offers a discounted price for energy export to the upstream country, Burkina Faso, for more water in the downstream. The paper attempts to compares both the cooperative as well as non cooperative outcomes in a possible climate change scenario.

There are substantial literature on stochastic water resource management. Fisher et.al(1997) has studied the determination of optimal water storage capacity in a region taking into account the flow into water reserves as uncertain, and found that the reservoir capacity building will become more costly with climate change [3]. Other literatures are concerned mainly with impact of stochastic surface water flows on the value of additional surface reservoir or groundwater stocks [21, 9]. However there are few literatures on the influence of stochastic water resource on transboundary water sharing. This paper extends the work of Fisher et.al(1997) on two frontiers. The paper uniquely applies the framework of Fisher model on uncertainty in water resource management in a transboundary water sharing problem. Second, the paper applies a stochastic differential game to evaluate the scope and sustainability of cooperation possible between the countries in such transboundary setting.
Following Fisher _et al._’s model, in this paper we assume that water resources evolve through time and follow Geometric Brownian motion. However, the characteristics of the Brownian motion in terms of variance are different in both the countries, based on assumption of inter-regional variable effect of climate change. We then derive the steady state conditions of the corresponding stochastic problem with respect to water abstraction rates. We evaluate how these steady state conditions will be modified by changes in the variance of the water resource. In such fashion, we are able to evaluate how riparian countries long run water abstraction will change for increase in variability caused by climate change. Also, if the countries cooperate in water sharing, then what will be the effect on cooperation from increased variance in water flow. Such a framework, although relying on the specific case of water sharing in the Volta River Basin, is potentially relevant to many other river basins in international cooperation on river basin management where climate change may play a role.

Our results indicate that during cooperation, Ghana will have an opportunity to increase its water abstraction for agriculture, which has remained largely restricted. We also find that the equilibrium strategies in the long run steady state distribution are stable even with increasing variances of water flow.

The structure of the paper is as follows. In the next section, we outline the model of water sharing between the Burkina Faso and Ghana in the case with noncooperation on water sharing. In the following section, we formulate a differential game of cooperation and evaluate the outcome with respect to climate change; and finally the conclusion summarizes the main findings and results of the paper.

2. WATER SHARING BETWEEN BURKINA FASO AND GHANA

For years, Volta basin had been one of the few transboundary water basins in Africa without a formal agreement in place for cross-border cooperation and management [16]. This section of the paper is concerned with the allocation of Volta River water between Ghana and Burkina Faso in the case without any cooperation in water sharing. We explore how uncertainty in water supply will affect the water abstraction rates of the countries, and the underlying conditions that may influence such decisions. The upstream country, Burkina Faso has the upper riparian right to unilaterally divert water, while Ghana is a downstream country where the freshwater availability depends on the water usage of the upstream country. We denote the countries by superscript _B_, _G_, where _B_ and _G_ denote Burkina Faso and Ghana respectively. Let _W_B_ be the annual total renewable fresh water resources in Burkina Faso. In the model, we
assume that the water flow is stochastic. The uncertainty in the flow of water can be attributed
to climate change. The total renewable fresh water resources in the upstream country, W^B, evolves through time according to a geometric Brownian Motion1:

$$dW^B = \sigma^B W^B dz^B_t,$$ \hspace{1cm} (2.1)

where z^B_t is a standard Wiener process and $\sigma^B W^B$ is the variance rate in the water flow in Burkina Faso.2 Here σ^B can be considered as a volatility of water flow in Burkina Faso.

Let the total per capita fresh water utilization in each country i ($i = B, G$) be denoted by w^i. Considering the rate of water utilization of country i as α^i, the total per capita freshwater utilization in upstream country Burkina Faso can be exhibited in the form of mathematical equation as

$$w^B = \alpha^B W^B.$$ \hspace{1cm} (2.2)

The water availability in the downstream Ghana depends on the water consumption in the upstream, W^B, and rainfall, R, that the river picks up and added to its volume while flowing. The runoff denoted by R is also stochastic in the model and follows Geometric Brownian motion,3

$$dR = \sigma^R R dz^R_t,$$ \hspace{1cm} (2.3)

where z^R_t is a standard Wiener process. Now on we will suppress the dependency on t and write the Wiener processes as z^B and z^R. The water availability in Ghana can be represented as

$$W^G = (1 - \alpha^B) W^B + R.$$ \hspace{1cm} (2.4)

The water withdrawal in Ghana, w^G, can be expressed as

$$w^G = \alpha^G [(1 - \alpha^B) W^B + R].$$ \hspace{1cm} (2.5)

1 W^B is log-normally distributed random variable and is always positive. The mean $E[W^B] = W^B$ is equal to its initial value, say, W^B_0, and variance is $W^B_0^2 (e^{\sigma^B^2 t} - 1)$, which increases rapidly with increase in σ^B. Moreover equation (2.1) has a unique analytical solution, $W^B(t) = W^B_0 \exp(-\sigma^B t) / 2 + \sigma^B z^B_t$.

2 In the differential equation we have excluded the deterministic drift component. For further reference see Fisher and Rubio(1997) [3].

3 Rainfall and other climatic conditions varies across the River Basin [16]. In the north, average precipitation varies from 500mm in the north to 2000mm in the extreme south. Thus we have assumed different Brownian motions for Burkina Faso and Ghana respectively.
The stock of water in the Lake Volta where hydropower is produced, is denoted by S, is a function of the stochastic water resources and the control variables, the water abstraction rates of both the countries (α^G, α^B). The state equation can be represented as

$$dS = (1 - \alpha^G)[(1 - \alpha^B)W^B + R]dt,$$

(2.6)

$$S(0) = S_0.$$

We also assume that water reserves exceeds a minimum level (critical level) \bar{S}. If the water reserves is above the critical level, then there exits no scarcity of water in Lake volta. However if the constraint is binding, then the scarcity value of water is positive. Consider the benefit of water consumption of the countries as $B^i(w^i)$ for $i = B, G$, where w^i is water utilization in agriculture. The benefit function is assumed to be strictly concave for all possible values of w^i. The cost function of withdrawing water from the river and distribution is $C^i(\alpha^i) = C(w^i/W^i)$ which is assumed to be increasing and convex for all values of $\alpha^i, i = B, G$. We consider that as water becomes increasingly scarce in the economy, the government would exploit less accessible sources of fresh water through appropriating and purchasing a greater share of aggregate economic output, in terms of dams, pumping stations, supply infrastructure etc.

This leads to higher marginal cost and at a certain point, prohibits the country from making further investment in tapping water resource [6]. Apart from agricultural water usage, Ghana also gets benefits from storing water at Lake volta. We denote $H^G(S)$ as the net consumer surplus or economic benefits from hydropower generation.

Based on the above considerations, the net benefit of both the countries can be written as

$$NB^B = B^B(w^B) - C^B(\alpha^B),$$

for Burkina Faso

and

$$NB^G = B^G(w^G) + H^G(S) - C^G(\alpha^G),$$

for Ghana.

Let us redefine the above mentioned state, flow and control variables in more mathematical perspective. Let $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$ be a complete filtered Probability space, and $\varepsilon^B, \varepsilon^R$ are independent standard Wiener processes with trace class covariances. The state of the game at each instant $t \in [0, \infty)$ is described by $S(\cdot) \in \Omega \times X \times [0, T]$, where $X \subset \mathbb{R}^+$ is called the state space, and $0 < T < \infty$. Let $U(S(t))$ be the control set where all the feasible values of α^B and α^G.
lie at time t, and for a fixed $\omega \in \Omega$, i.e., $\alpha^B, \alpha^G : \Omega \times X \times [0, T] \rightarrow U \subset [0, 1]$. One can similarly define the flow variables W^B and R on $\Omega \times Y \times [0, T]$, where Y is the union of the sets which describe the realization of the water resources and runoff in Burkina Faso and Ghana respectively. The payoff functions $J^i \in \mathbb{R}^+$, $i = B, G$, are non-random and are assumed to be continuously differentiable in all the variables.

2.1. **Burkina Faso’s Problem.** In the absence of any agreement, Burkina Faso chooses the ‘economically potential’ rate of water utilization that maximizes its own net benefit. Burkina Faso’s maximization problem is as follows:

$$J^B = E \left[\max_{\alpha^B} \int_t^\infty e^{-r\tau} NB^B d\tau \right],$$

subject to the equation

$$dW^B = \sigma^B W^B dz^B.$$ \hspace{1cm} (2.8)

The Hamilton-Jacobi-Bellman (HJB) equation for this problem can be written as

$$rJ^B = \max_{\alpha^B} \left\{ NB^B + \frac{1}{dt} E \left[dJ^B \right] \right\}.$$ \hspace{1cm} (2.9)

Note that, since W^B is a stochastic process, Itô’s formula on J^B yields,

$$dJ^B = J^B_w dw^B + \frac{1}{2} J^B_{ww^B} (dW^B)^2,$$

which with the help of equation (2.8) reduces to

$$dJ^B = \sigma^B W^B J^B_{wb} dw^B + \frac{1}{2} \sigma^B W^B J^B_{ww^B} dt.$$ \hspace{1cm} (2.10)

Now applying the differential operator $(1/dt)E$ on the above expression and considering that $E[dz^B] = 0$, the HJB equation (2.9) can be written as

$$rJ^B = \max_{\alpha^B} \left\{ B^B (w^B) - C^B (\alpha^B) + \frac{1}{2} \sigma^B W^B J^B_{w^B} \right\}.$$ \hspace{1cm} (2.11)

Differentiating with respect to α^B, we get the first order optimality condition,

$$B^B_{\alpha^B} = C^B_{\alpha^B}, \text{ or, } W^B B^B_{w^B} = C^B_{\alpha^B}.$$ \hspace{1cm} (2.11)

Solution of the above equation will lead to the optimal α^B, denoted by $\alpha^{B*} = \alpha^{B*} (W^B)$. The solution is determined at the point where marginal benefit of water withdrawal is equal to the marginal cost of water withdrawal. The solution clearly indicates the dependence of optimal
water abstraction rate α^B on the uncertainty of water supply, and we evaluate the conditions under which Burkina Faso will increase the water abstraction rate with increase in variance by deriving $\frac{\partial \alpha^B}{\partial \sigma^B}$.

Proposition 2.1. Let us assume that the upstream country, Burkina Faso, has convex marginal benefit function of water withdrawal. Then the country will increase its water abstraction with increase in variance in water supply irrespective of the level of water realization. However, the rate of increase will be lower if the country has concave marginal benefit function.

Proof. Considering $\alpha^B = \alpha^B(W^B)$ along the optimal path, using Itô’s Lemma and substituting (2.1),

$$\frac{d^2 \alpha^B}{dt d\sigma^B^2} = \frac{1}{2} W^B \frac{\partial^2 \alpha^B}{\partial W^B^2}.$$

(2.12)

From the above equation, it is obvious that the slope of $\frac{d^2 \alpha^B}{dt d\sigma^B^2}$ depends on how the marginal abstraction rate of water changes with further changes in water supply, $\frac{\partial^2 \alpha^B}{\partial W^B^2}$. To derive $\frac{\partial^2 \alpha^B}{\partial W^B^2}$, we differentiate equation (2.11) with respect to W^B, and after rearranging, we get

$$B^B_w + \alpha^B W^B B^B_{w,B} = C^B_{B^B_w} \frac{\partial \alpha^B}{\partial W^B},$$

which gives

$$\frac{\partial \alpha^B}{\partial W^B} = \frac{B^B_w + \alpha^B W^B B^B_{w,B}}{C^B_{B^B_w}}.$$

(2.13)

Similarly differentiating again we find,

$$\frac{\partial^2 \alpha^B}{\partial W^B^2} = \frac{2 \alpha^B B^B_{w,B} + \alpha^B W^B B^B_{w,B} - C^B_{B^B _w} \frac{\partial \alpha^B}{\partial W^B} (\frac{\partial \alpha^B}{\partial W^B})^2}{(C^B_{B^B_w})^2}.$$

(2.14)

Note that, as the benefit function for Burkina Faso is concave with respect to water consumption, we have $B^B_w > 0$, $B^B_{w,B} < 0$, and $B^B_{w,B,B} > 0$. Also due to convex cost function as assumed in the model, we get $C^B_{B^B_w} > 0$ and $C^B_{B^B _w} < 0$. Given such benefit and cost functions in (2.13), we get $\frac{\partial \alpha^B}{\partial W^B} < 0$ as the second term of the numerator of the expression will dominate over the first term, due to the presence of $\alpha^B W^B \approx w^B$, which is large. The implication is very straightforward, and it indicates that for a given decline in water supply, Burkina Faso will increase its water abstraction rate.

For the second expression (2.14), if we assume that marginal benefit function is convex, the positive second and third terms of the numerator are large terms and they will mainly
contribute to determine the positive sign of \(\frac{\partial^2 \alpha^B}{\partial W^B} \). It suggests further decline in water supply will strengthen the relationship between \(\alpha^B \) and \(W^B \), and Burkina Faso will react strongly to decline in water supply by increasing the water abstraction more. On the basis of this finding, we get \(\frac{\partial^2 \alpha^B}{\partial W^B} > 0 \) after substituting \(\frac{\partial^2 \alpha^B}{\partial W^B^2} > 0 \) in (2.12). The result suggests that with increase in variance of water flow, Burkina Faso will increase its water abstraction over time. However if marginal benefit function is concave (i.e. \(B^B_{wBwB} < 0 \)) then the increase in consumption of water will have a lower impact on the welfare than the case where marginal benefit is convex (i.e. \(B^B_{wBwB} > 0 \)). In such case, as the third term still dominates the second term in the numerator of (2.14), Burkina Faso will still increase its water abstraction with higher variance but at a lower rate\(^4\).

\[J^G = E\left[\max_{\alpha^G} \int_t^\infty e^{-r\tau} \left(B^G(w^G) + H^G(S) - C^G(\alpha^G) \right) \ d\tau \right], \tag{2.15} \]

where the net benefit function

\[NB^G = B^G(w^G) + H^G(S) - C^G(\alpha^G), \]

subject to the state equation

\[dS = (1 - \alpha^G)W^G d\tau = (1 - \alpha^G)(1 - \alpha^B)W^B + R]d\tau, \tag{2.16} \]

where \(W^B \) and \(R \) are given by the stochastic equations

\[dW^B = \sigma^B W^B d\zeta^B, \tag{2.17} \]

\[dR = \sigma^R R d\zeta^R, \tag{2.18} \]

along with the constraint

\[S \leq \bar{S}. \tag{2.19} \]

Note that, here we work with optimum \(\alpha^B \) which is a function of \(W^B \).

\[\text{The magnitude of the third term is larger than that of the second one due to presence of } w^B \text{ in } (\frac{\partial^2 \alpha^B}{\partial W^B^2})^2. \]

\[\text{The magnitude of the third term is larger than that of the second one due to presence of } w^B \text{ in } (\frac{\partial^2 \alpha^B}{\partial W^B^2})^2. \]
The corresponding HJB equation is as follows:

$$r J^G = \max_{\alpha^G} \left\{ NB^G + \frac{1}{dt} E \left[dJ^G \right] + \lambda (S - \bar{S}) \right\}.$$ \hspace{1cm} (2.20)

Here the parameter λ represents the scarcity value of water. Since $J^G = J^G(S, W^B, R)$, using Itô’s formula we can get,

$$dJ^G = J^G_S dS + J^G_{wB} dW^B + J^G_R dR + \frac{1}{2} J^G_{wBwB} (dW^B)^2 + \frac{1}{2} J^G_{RR} (dR)^2 + J^G_{wBR} d[W^B, R].$$

Substituting for dS, dW^B, and dR and assuming that W^B and R are uncorrelated, we have,

$$dJ^G = (1 - \alpha^G) [(1 - \alpha^B) \tilde{W}^B + \bar{R}] J^G_S dt + \sigma^B W^B J^G_{wB} d\tilde{z}^B + \sigma^R R J^G_R d\tilde{z}^R + \frac{1}{2} \sigma^B W^B J^G_{wBwB} dt + \frac{1}{2} \sigma^R R J^G_{RR} dt.$$

Since the mean of the Wiener processes \tilde{z}^B and \tilde{z}^R are zero, we can write,

$$\frac{1}{dt} E \left[dJ^G \right] = (1 - \alpha^G) [(1 - \alpha^B) \tilde{W}^B + \bar{R}] J^G_S$$

$$+ \frac{\sigma^B}{2} E \left[W^B^2 \right] J^G_{wBwB} + \frac{\sigma^R}{2} E \left[R^2 \right] J^G_{RR}.$$

Then the HJB equation yields,

$$r J^G = \max_{\alpha^G} \left\{ B^G(w^G) + H^G(S) - C^G(\alpha^G) + (1 - \alpha^G) [(1 - \alpha^B) \tilde{W}^B + \bar{R}] J^G_S$$

$$+ \frac{\sigma^B}{2} E \left[W^B^2 \right] J^G_{wBwB} + \frac{\sigma^R}{2} E \left[R^2 \right] J^G_{RR} + \lambda (S - \bar{S}) \right\}.$$ \hspace{1cm} (2.21)

Differentiating with respect to α^G we can get the optimality condition,

$$B^G_{\alpha^G} - C^G_{\alpha^G} = [(1 - \alpha^B) \tilde{W}^B + \bar{R}] J^G_S.$$

Thus

$$J^G_S = \frac{1}{K} [B^G_{\alpha^G} - C^G_{\alpha^G}],$$ \hspace{1cm} (2.22)

where

$$K = (1 - \alpha^B) \tilde{W}^B + \bar{R}.$$
The above first order condition says that at the margin, water is equally valuable for agricultural consumption and for water reserve accumulation in Lake Volta for hydropower generation. The right hand side of the above equation represents the marginal benefit of water consumption, while the left hand side, J^G_S, denotes the marginal value of water for storage. It indicates that the price used to value increments to water reserves in Lake Volta is equal to the net marginal benefit of water consumption. Now, for notational simplicity, we denote

$$
\frac{1}{K} \left[B^G_{G\,G} - C^G_{G\,G} \right] = A^G (\alpha^G, \alpha^B).
$$

(2.23)

Now, differentiating equation (2.21) with respect to the state variable S for the optimal values of the control variables α^G and α^B, one finds

$$
r J^G_S = H^G_S + \frac{1}{dt} E \left[dJ^G_S \right] + \lambda.
$$

(2.24)

Substituting J^G_S from (2.22) in (2.24),

$$
\frac{1}{dt} E \left[dA^G \right] = r A^G - H^G_S + \lambda.
$$

(2.25)

Using Itô’s formula once again,

$$
dA^G = A^G_{G\,G} d\alpha^G + \frac{1}{2} A^G_{G\,G\,G\,G} (d\alpha^G)^2.
$$

(2.26)

Since from the optimality condition we notice that $\alpha^G = \alpha^G(S, W^B, R)$, using Itô’s formula,

$$
d\alpha^G = \frac{\partial \alpha^G}{\partial S} dS + \frac{\partial \alpha^G}{\partial W^B} dW^B + \frac{\partial \alpha^G}{\partial R} dR
$$

$$
+ \frac{1}{2} \frac{\partial^2 \alpha^G}{\partial W^B^2} (dW^B)^2 + \frac{1}{2} \frac{\partial^2 \alpha^G}{\partial R^2} (dR)^2.
$$

Replacing dS, dW^B, and dR and using the properties of Wiener processes, we have

$$
(d\alpha^G)^2 = \left[\sigma^B W^B^2 \left(\frac{\partial \alpha^G}{\partial W^B} \right)^2 + \sigma^R R^2 \left(\frac{\partial \alpha^G}{\partial R} \right)^2 \right] dt.
$$

Thus from equation (2.26)

$$
dA^G = A^G_{G\,G} d\alpha^G + \frac{1}{2} A^G_{G\,G\,G\,G} \left[\sigma^B W^B^2 \left(\frac{\partial \alpha^G}{\partial W^B} \right)^2 + \sigma^R R^2 \left(\frac{\partial \alpha^G}{\partial R} \right)^2 \right] dt.
$$
Using the differential operator $\frac{1}{dt}E$ on the both sides of the above expression, we can rewrite the equation (2.25) as

$$rA^G - H^G_g - \lambda = A^G_{G_o} \frac{1}{dt}E[d\alpha^G]$$

$$+ \frac{1}{2} A^G_{G_oG_o} \left[\sigma^2 B_2^2 W B_2^2 \left(\frac{\partial \alpha^G}{\partial W} \right)^2 + \sigma^R_2 R_2^2 \left(\frac{\partial \alpha^G}{\partial R} \right)^2 \right].$$

For the existence of an equilibrium in the long run steady state distribution the conditions

$$\frac{1}{dt}E[dS] = \frac{1}{dt}E[d\alpha^G] = 0,$$

must be satisfied.

Hence

$$\lambda = rA^G - H^G_g - \frac{1}{2} A^G_{G_oG_o} \left[\sigma^2 B_2^2 W B_2^2 \left(\frac{\partial \alpha^G}{\partial W} \right)^2 + \sigma^R_2 R_2^2 \left(\frac{\partial \alpha^G}{\partial R} \right)^2 \right].$$

(2.27)

The above equation (2.27) establishes another optimality condition. It can be interpreted by saying that the shadow price of the constraint or the scarcity value of water in lake Volta, λ, is equal to the difference between the marginal benefit of water consumption, $[rA^G]$, and opportunity cost of the water consumption. The opportunity cost of water consumption includes the benefits forgone for hydropower generation from higher water abstraction in the upstream, $[H^G_g]$ and also incorporates a term related to the instantaneous variance rate, $[\frac{1}{2} A^G_{G_oG_o} \left[\sigma^2 B_2^2 W B_2^2 \left(\frac{\partial \alpha^G}{\partial W} \right)^2 + \sigma^R_2 R_2^2 \left(\frac{\partial \alpha^G}{\partial R} \right)^2 \right]]$. The sign of the latter term depends on the convexity of the net marginal benefit from water consumption.

The key issue that emerges here, is how Ghana will act in the case of extreme events of climate change. It leads us to determine the effect on Ghana’s optimal water abstraction rate α^G with the changes in variances σ^B, and σ^R during the extreme events. Two possible outcome may occur. First, under low extreme events (drought) in both the countries, Ghana may decrease its water abstraction in upstream to keep the stock of water in Akosombo Dam above the critical level so that hydropower generation is not affected. But this will certainly affect the benefit, B^G, from the water abstraction (mainly from agriculture in upstream Ghana). The other possibility is that under low extreme events, Ghana may increase its water abstraction to maximize its benefit B^G from the water abstraction. In such circumstances, partial hydropower will be generated, and the rest of the needed power can be bought from other countries.

From (2.27), it is evident that the nature of the marginal benefit function plays an important role to evaluate the sign of $\frac{d\alpha^G}{d\sigma^B}$, and $\frac{d\alpha^G}{d\sigma^R}$; and thus to determine which action that Ghana will
take for higher uncertainty in water flow caused by climate change. Let us assume that the marginal benefit function A^G is convex. Since $K > 0$, and the net benefit function $B^G - C^G$ is concave, we have $A^G > 0, A^G_{\alpha^G} < 0, A^G_{\sigma^B} > 0$. We also assume that all third and higher order derivatives of A^G are zero. Note that in the long run steady state equilibrium as the scarcity value of reserve water will tend to zero or $d\lambda = 0$. Then totally differentiating equation (2.27) with respect to S, α^G, σ^B, and σ^R we get

$$0 = \left[H_{SS} + A^G_{\alpha^G} \left[\sigma^2 W_B^2 \frac{\partial \alpha^G}{\partial W_B} \frac{\partial^2 \alpha^G}{\partial S \partial W_B} + \sigma^R R^2 \frac{\partial \alpha^G}{\partial R} \frac{\partial^2 \alpha^G}{\partial S \partial R} \right] \right] dS$$

$$+ A^G_{\alpha^G} W_B^2 \left(\frac{\partial \alpha^G}{\partial W_B} \right)^2 d\sigma^B^2 + A^G_{\alpha^G} R^2 \left(\frac{\partial \alpha^G}{\partial R} \right)^2 d\sigma^R^2$$

$$- r A^G_{\alpha^G} d\alpha^G. \quad (2.28)$$

This gives,

$$\frac{d \alpha^G}{d \sigma^B^2} = \frac{1}{r A^G_{\alpha^G}} \left[H_{SS} + A^G_{\alpha^G} \left[\sigma^2 W_B^2 \frac{\partial \alpha^G}{\partial W_B} \frac{\partial^2 \alpha^G}{\partial S \partial W_B} + \sigma^R R^2 \frac{\partial \alpha^G}{\partial R} \frac{\partial^2 \alpha^G}{\partial S \partial R} \right] \right] \frac{dS}{d \sigma^B^2} + \frac{1}{r A^G_{\alpha^G}} A^G_{\alpha^G} W_B^2 \left(\frac{\partial \alpha^G}{\partial W_B} \right)^2$$

$$+ \frac{1}{r A^G_{\alpha^G}} A^G_{\alpha^G} R^2 \left(\frac{\partial \alpha^G}{\partial R} \right)^2 \frac{d \sigma^R^2}{d \sigma^B^2}. \quad (2.29)$$

A similar expression can also be found from (2.28) for $\frac{d \alpha^G}{d \sigma^R^2}$.

Note that the relationship between Ghana’s water abstraction rate α^G with the flow variables W_B which is the water resources in upstream Burkina Faso is positive $[\frac{\partial \alpha^G}{\partial W_B} > 0]$. On the other hand, the assumption of $\frac{\partial^2 \alpha^G}{\partial S \partial W_B} < 0$ makes more sense, since it signifies that an decrease (increase) in stock S of water in Akosombo Dam strengthen (weaken) the relationship between the water abstraction rate α^G with the flow variable W_B. By the similar arguments $\frac{\partial \alpha^G}{\partial R} > 0$ and assume $\frac{\partial^2 \alpha^G}{\partial S \partial R} < 0$. Suppose that the variances of water flow in the upstream σ^B, and the variance of runoff in the downstream country, σ^R is uncorrelated, or, $\frac{d \sigma^R^2}{d \sigma^B^2} = 0$.

Cooperation in transboundary water sharing under climate change

Then under the above mentioned assumptions, from (2.29) we get the following results,

$$\frac{d\alpha^G}{d\sigma^B} < 0, \quad \text{and} \quad \frac{d\alpha^G}{d\sigma^R} < 0,$$

for low extremes where \(\frac{dS}{d\sigma^B} < 0\).

$$\frac{d\alpha^G}{d\sigma^B} > 0, \quad \text{and} \quad \frac{d\alpha^G}{d\sigma^R} > 0,$$

for high extremes where \(\frac{dS}{d\sigma^B} > 0\).

If the marginal benefit function \(A^G\) is concave, then under the same assumptions as above, from (2.29) we have the following results,

$$\frac{d\alpha^G}{d\sigma^B} > 0, \quad \text{and} \quad \frac{d\alpha^G}{d\sigma^R} > 0,$$

for low extremes where \(\frac{dS}{d\sigma^B} < 0\).

$$\frac{d\alpha^G}{d\sigma^B} < 0, \quad \text{and} \quad \frac{d\alpha^G}{d\sigma^R} < 0,$$

for high extremes where \(\frac{dS}{d\sigma^B} > 0\).

The above results suggests that if the marginal benefit of water consumption is convex, then the effect of increasing water consumption on the country’s welfare is limited, and Ghana will decrease the water abstraction to ensure sufficient water flows to Lake Volta during lower water realization. If the marginal benefit of water consumption is concave, then the Ghana’s welfare will increase much from higher water consumption, and this may lead Ghana to increase water abstraction. In the case with high extremes or higher realization of water flow, opposite outcomes were observed. These results can be presented as a Proposition.

Proposition 2.2. Let us assume that the marginal benefit function of water withdrawal for Ghana is convex. We also assume that \(\frac{\partial^2 \alpha^G}{\partial S \partial W} < 0\), and \(\frac{\partial^2 \alpha^G}{\partial S \partial R} < 0\). Then there exists a optimal value for the water abstraction rate of Ghana, which will decrease or increase with the increase in variances during low or high extreme events respectively.

Remark 2.3. If we assume that the marginal benefit function \(A^G\) is convex, \(\frac{\partial^2 \alpha^G}{\partial S \partial W} > 0\), and \(\frac{\partial^2 \alpha^G}{\partial S \partial R} > 0\). Then from (2.29), we see that the signs of \(\frac{d\alpha^G}{d\sigma^B}\) and \(\frac{d\alpha^G}{d\sigma^R}\) can not be determined clearly.

It is pertinent to understand how Ghana may response to Burkina Faso action of higher water abstraction under uncertainty. We evaluate the reaction function of Ghana and also to understand the effect of \(\alpha^G\) with changes in \(\alpha^B\).

Proposition 2.4. The downstream country will decrease its water abstraction with increase in the water abstraction rates of the upstream country. The rate of decline will be higher with increase in variance in water supply caused by climate change.
Proof. We totally differentiate the equation (2.27) with respect to S, α^G, and α^B, rearrange the terms and assume in the long run steady state equilibrium $d\lambda = 0$,

\[
\frac{d\alpha^G}{d\alpha^B} = \frac{1}{rA^G_{\alpha G}} \left[H^G_{SS} + A^G_{\alpha G} \left[\sigma^2 W^B \frac{\partial \alpha^G}{\partial W^B} \frac{\partial^2 \alpha^G}{\partial S \partial W^B} + \sigma^2 R^2 \frac{\partial \alpha^G}{\partial R} \frac{\partial^2 \alpha^G}{\partial S \partial R} \right] \right] \frac{dS}{d\alpha^B} - \frac{A^G_{\alpha B}}{A^G_{\alpha G}}. \tag{2.30}
\]

Let us assume that the marginal benefit function of water withdrawal for Ghana is convex. We also assume that $\frac{\partial^2 \alpha^G}{\partial S \partial W^B} < 0$, and $\frac{\partial^2 \alpha^G}{\partial S \partial R} < 0$. Then

\[
A^G_{\alpha G} < 0, \quad \frac{dS}{d\alpha^B} < 0,
\]

\[
H^G_{SS} + A^G_{\alpha G} \left[\sigma^2 W^B \frac{\partial \alpha^G}{\partial W^B} \frac{\partial^2 \alpha^G}{\partial S \partial W^B} + \sigma^2 R^2 \frac{\partial \alpha^G}{\partial R} \frac{\partial^2 \alpha^G}{\partial S \partial R} \right] < 0,
\]

We also find that,

\[
A^G_{\alpha B} < 0, \text{ if } (B^G_{\alpha G} - C^G_{\alpha G})_{\alpha B} < 0,
\]

and \[
(B^G_{\alpha G} - C^G_{\alpha G}) < \frac{K}{W^B} \left| (B^G_{\alpha G} - C^G_{\alpha G})_{\alpha B} \right|.
\]

Then from equation (2.30), $\frac{d\alpha^G}{d\alpha^G} < 0$, which implies with increase in water abstraction in Burkina Faso, Ghana will decrease its own water abstraction. Moreover we see that, from equation (2.30), with increase in uncertainty (or, with increase in variances), the value of $\frac{d\alpha^G}{d\alpha^B}$ will become more and more negative. Taking the differentiation of $\frac{d\alpha^G}{d\alpha^B}$ with respect to σ^2 in (2.30), we get

\[
\frac{d^2 \alpha^G}{d\alpha^B d\sigma^2} = \frac{A^G_{\alpha G} W^B \frac{\partial \alpha^G}{\partial W^B} \frac{\partial^2 \alpha^G}{\partial S \partial W^B} \frac{dS}{d\alpha^B}}{rA^G_{\alpha G}}. \tag{2.31}
\]

As $\frac{\partial^2 \alpha^G}{\partial S \partial W^B} < 0$, $A^G_{\alpha G} < 0$, $A^G_{\alpha G} > 0$ and $\frac{\partial \alpha^G}{\partial W^B} > 0$, we get $\frac{d^2 \alpha^G}{d\sigma^2 d\sigma^2} < 0$. It means higher variance will increase the slope of the reaction function, $\frac{d\alpha^G}{d\alpha^G}$ and Ghana will react more by decreasing its water abstraction if there is an increase in water abstraction in the upstream, Burkina Faso.
3. **Water and Hydropower Sharing Between Burkina Faso and Ghana**

In this section, we model the water allocation between Ghana and Burkina Faso, in a cooperation setting, where Ghana offers a discounted price for hydropower export to the upstream country, Burkina Faso, for more water in the downstream. We formulate the problem in the framework of a Differential Stackelberg leader-follower game to determine the optimal share of water between Ghana and Burkina Faso, and to explore the conditions of sustainability of cooperation in water sharing with respect to increasing variances in water flow from climate change.

In the model Burkina Faso, as a leader moves first, and it *a-priori* knows that follower country, Ghana, observes its actions and moves accordingly. We follow the usual way to solve the Stackelberg leader-follower game, where we first solve the follower’s problem to maximize its pay-off function; and then using follower’s reaction function, the leader’s objective function is maximized\(^5\). We assume that the respective countries use Markovian perfect strategies. These strategies are decision rules that dictate optimal action of the respective players, conditional on the current values of the water stock \(S(t)\), that summarize the latest available information of the dynamic system. The Markovian perfect strategies determine a sub game-perfect equilibrium for every possible value of \(S(t)\), and the strategy defines an equilibrium set of decisions dependent of previous actions.

In this section, we denote Burkina Faso’s benefit or net consumer surplus from power imported from Ghana as \(H^B(S, \alpha^B)\). It is a function of the stock of the water at Lake Volta, \(S\) as higher stock will reduce the price of power at which Ghana is exporting to Burkina Faso. This will allow Burkina Faso to gain from higher \(S\). However, the benefit, \(H^B\), also depends on Burkina Faso action of restricting water abstraction. If Burkina Faso increases its water abstraction then Ghana will increase the price of power, and it will reduce the net consumer surplus of Burkina Faso. The net consumer surplus or economic benefit from power, \(\frac{\partial H^B}{\partial S} > 0\) and \(\frac{\partial H^B}{\partial \alpha^B} < 0\). The size of \(H^B\), the total consumer surplus derived by Burkina Faso from the hydropower it receives from Ghana can also be represented as a measure of

\(^5\)In a standard Stackelberg game, the follower maximizes its objective function given an arbitrary level of leader’s choice variable. However, in a differential Stackelberg game the follower’s objective function is maximized given a policy rule of the leader, where the control variable of the leader is a function of the state variable.

\(^6\)Since we are looking at the Markovian Stackelberg strategies, leader’s current strategy is dependent on its own past strategies and also that of rival. So the benefit from hydropower import \(H^B\) for Burkina Faso is not only depends on stock \(S\), but also on its own action \(\alpha^B\).
the degree of cooperation between the countries. If H_B is large, then the true net benefit of Burkina Faso will take into account more of the benefits gained from cooperating with Ghana. If H_B tends to zero, then the cooperative case degenerates into the original non-cooperative situation as modeled in section 2 of the paper.

As part of the agreement, Burkina Faso cooperates with Ghana, in increasing the level of water level at Lake Volta, by reducing or restricting its water abstraction. Suppose Burkina Faso, the leader announces to the follower a policy rule that it will use throughout the game. Let this policy rule be denoted by $\alpha^B(t) = \phi^B(S(t))$. The follower, taking this policy rule as given, seeks to maximize its payoff. In principle, this yields the follower’s reaction function of the form $\alpha^G(t) = \phi^G(S(t), \phi^B(\cdot))$. The leader knowing this reaction function, then chooses among all possible rules $\phi^B(\cdot)$ one that maximizes its objective function. However, since $\phi^B(\cdot)$ can be any function, it is not clear how such an optimal rule can be obtained in practice [5]. One of the ways to resolve this problem is to restrict the space of functions from which Burkina Faso, the leader can choose the strategy $\phi^B(\cdot)$. One possible restriction is that $\phi^B(\cdot)$ can be a quadratic function of the state variable, the stock of water. Let the policy rule be denoted as

$$\alpha^B = \phi^B(\cdot) = aS^2 + b,$$

where a and b are control parameters and independent of time\(^7\).

3.1. Ghana’s Problem. Given such response function of Burkina Faso, as given in (3.1), Ghana will maximize its net benefit as follows:

$$J^G = E\left[\max_{\alpha^G} \int_t^\infty e^{-r\tau} NB^G d\tau\right],$$

where the net benefit function is given by\(^8\)

$$NB^G = B^G(w^G) + H^G(S) - C^G(\alpha^G),$$

subject to the state equation

$$dS = (1 - \alpha^G)[(1 - \alpha^B)WB + R]dt,$$

\(^7\)The policy rule also reflect the preferences that Burkina Faso expresses in substituting α^B for S at the margin in terms of the consumer surplus generated by hydropower (which is a true measure of a welfare change in hydropower if income effects are negligible). Due to non-linearities of such preference, we have assumed the policy rule as quadratic.

\(^8\)As a follower Ghana is observing Burkina Faso’s move and accordingly adjusting the discount price for power to export, and hence Ghana’s Hydropower function H^G depends only on stock of water, S.

20
and other constraints given in the equations (2.1), (2.3), (2.5), and (3.1). Here we also assume that water reserves \((S)\) exceeds the critical level \((\bar{S})\), i.e. \(S \geq \bar{S}\).

We can write the HJB equation corresponding to the above formulated problem as follows:

\[
rJ^G = \max_{\alpha^G} \left\{ NB^G + \frac{1}{dt} E \left[dJ^G \right] + \lambda(S - \bar{S}) \right\}, \tag{3.3}
\]

where the parameter \(\lambda\) represents the scarcity value of water in the Dam.

Since \(J^G = J^G(S, W_B, R)\), applying Itô’s formula on \(J^G\), using the equations (2.2),(2.3) and (2.6), and rearranging one can get an equation similar to (2.21),

\[
rJ^G = \max_{\alpha^G} \left\{ B^G(\alpha^G) + H^G(S) - C^G(\alpha^G) \right\} + \frac{1}{dt} \left[(1 - \alpha^G)(1 - aS^2 - b)\bar{W}B + \bar{R} \right] J^G_S
\]

\[
+ \frac{\sigma^2}{2} E \left[W^2 \right] J^G_{wB} + \frac{\sigma^2}{2} E \left[R^2 \right] J^G_{RR} + \lambda(S - \bar{S}) \right\}. \tag{3.4}
\]

Let us denote

\[
K(a, b, S) = (1 - aS^2 - b)\bar{W}B + \bar{R}.
\]

Then differentiating the equation (3.4) with respect to \(\alpha^G\) we can get the optimality condition,

\[
B^G_{\alpha^G} - C^G_{\alpha^G} = K(a, b, S) J^G_S. \tag{3.5}
\]

We denote

\[
A^G(\alpha^G, a, b, S) = \frac{B^G_{\alpha^G} - C^G_{\alpha^G}}{K(a, b, S)}.
\]

For notational simplicity, we will not write the functional dependence in every step. Now differentiating equation (3.4) with respect to the state variable \(S\) for the optimal values of the control variable \(\alpha^G\),

\[
rA^G = H^G_S + \frac{1}{dt} E \left[dA^G(\alpha^G, a, b, S) \right] + \lambda.
\]

We can proceed in the similar fashion as before (see Ghana’s problem in the previous section) and in the long run steady state distribution (i.e. \(\frac{1}{dt} E [dS] = \frac{1}{dt} E [d\alpha^G] = 0\)) we obtain an expression of \(\lambda\),

\[
\lambda = rA^G - H^G_S - \frac{1}{2} A^G(\alpha^G, a, b, S) \frac{\partial^2}{\partial W^2} \left[\sigma^2 W^2 \left(\frac{\partial \alpha^G}{\partial W} \right)^2 + \sigma^2 R^2 \left(\frac{\partial \alpha^G}{\partial R} \right)^2 \right]. \tag{3.6}
\]
The above equation leads us to derive the optimal Markov strategy of Ghana, and to evaluate the latter country’s optimal response to the changes in Burkina Faso’s water abstraction rate. In order to find the optimal response function, we need to understand the effect of α^G with changes in a and b.

Proposition 3.1. During cooperation Ghana will have an opportunity to increase water abstraction for agriculture. If Burkina Faso increases its water abstraction during this period, then Ghana will reduce its water abstraction initially due to higher level of cooperation. However, after a certain point the change in Ghana’s marginal benefit of water consumption in agriculture is greater than the change in its marginal benefit of water stock at Lake Volta from the change in water abstraction of Burkina Faso. Under such situation, Ghana will increase its water abstraction to prevent Burkina Faso to gain from further increasing water abstraction under agreement.

Proof. We totally differentiate equation (3.6) with respect to S, α^G, a, b, rearrange the terms and assume in the long run steady state equilibrium $d\lambda = 0$,

\[
\frac{d\alpha^G}{da} = \frac{1}{rA^G_a} \left[-rA^G_s + H^G_{ss} + A^G_{aG} \left(\sigma^2 B^2 W^2 B^2 \frac{\partial \alpha^G}{\partial W^B} \frac{\partial^2 \alpha^G}{\partial S \partial W^B} + \sigma^2 R^2 \frac{\partial \alpha^G}{\partial R} \frac{\partial^2 \alpha^G}{\partial S \partial R} \right) \right] \frac{dS}{da} - \frac{A^G_{b}}{A^G_{aG}} \frac{db}{da} - \frac{A^G_{a}}{A^G_{aG}}. \tag{3.7}
\]

Let us assume that the parameters a and b are mutually independent so that $\frac{db}{da}$ is zero. As before, we also assume that the marginal benefit function A^G is convex, $\frac{\partial^2 \alpha^G}{\partial S \partial W^B} < 0$, and $\frac{\partial^2 \alpha^G}{\partial S \partial R} < 0$. Then we find that for $a > 0$, the sign of $\frac{dS}{da}$ and the expression in the bracket on the right hand side of the above equation are both negative, and $A^G_a > 0$.

Then the following results hold:

If

\[
\begin{align*}
rA^G_a &< \left[-rA^G_s + H^G_{ss} + A^G_{aG} \left(\sigma^2 B^2 W^2 B^2 \frac{\partial \alpha^G}{\partial W^B} \frac{\partial^2 \alpha^G}{\partial S \partial W^B} + \sigma^2 R^2 \frac{\partial \alpha^G}{\partial R} \frac{\partial^2 \alpha^G}{\partial S \partial R} \right) \right] \frac{dS}{da}, \tag{3.8}
\end{align*}
\]

then

\[
\frac{d\alpha^G}{da} < 0.
\]
It suggests that, if decrease in Burkina Faso’s water abstraction rate from higher cooperation (i.e. part of the graph of Ghana’s reaction function which is on the left of the vertical line OA in Fig 3.) decreases the marginal benefit of water consumption in agriculture for Ghana less than the decrease in marginal benefit from increase in the stock of water at Lake Volta, then Ghana will increase its water abstraction with further decrease in Burkina Faso’s water abstraction (decrease in \(a\) for a given level of \(b\)). However, if the inequality sign of the condition (3.8) is reversed, then the change in marginal benefit of water consumption in agriculture will be more than the change in marginal benefit of water stock at Lake Volta from an increase in water abstraction rate of Burkina Faso, and we get

\[
\frac{d\alpha_G}{da} > 0.
\]

It implies that under such condition, Ghana will increase its water abstraction with increase in water abstraction of Burkina Faso. If we differentiate both sides of (3.7) with respect to \(a\), we observe that \(\frac{d^2\alpha_G}{da^2} > 0\) for low values of \(a\) (i.e. in the left part of the line OA) and \(\frac{d^2\alpha_G}{da^2} < 0\) for high values of \(a\) (i.e. in the right part of the line OA). It suggests that the relationship between \(\alpha_G\) and \(a\) is convex for low values of \(a\) and concave for high values of \(a\). The above result is illustrated in Figure 3. It implies that for a high level of cooperation, Ghana will have an
opportunity to increase water abstraction. However, if Burkina Faso increases its water abstraction during this period, Ghana will reduce its water abstraction initially, due to higher level of cooperation, to ensure sufficient amount of water flows to Lake Volta. However, after reaching a point called “threshold point”, the change in Ghana’s marginal benefit of water consumption in agriculture is greater than the change in marginal benefit of water stock at Lake Volta from increase in water abstraction rate of Burkina Faso. Under such situation, Ghana will increase its water abstraction to deter Burkina Faso to gain further from increasing its water abstraction. Otherwise, if Ghana further decreases its water abstraction, then Burkina Faso can increase its water abstraction, and still enjoy the benefits of hydropower from higher stock of water. This phase can be labeled as a ”deterrence Phase”, and it will continue till the marginal benefits of Ghana from increasing its water abstraction with higher water abstraction of Burkina Faso is equal to its opportunity cost. After that Ghana will reduce its water abstraction again.

We get similar results for the relationship between α^G and b. Similar kind of condition (replace the derivatives with respect to a by b in inequality (3.8)) is also required to show $\frac{d\alpha^G}{db}$ is negative and positive for low and high values of b respectively.

\[\square\]

3.2. **Burkina Faso’s Problem.** Assuming that the downstream country Ghana play the above Markovian strategy, say $\phi^G(S(t), a(t), b(t))$, the upstream country Burkina Faso chooses the optimal water abstraction rate under cooperation by solving the following maximization problem:

\[J^B = E\left[\max_{a,b} \int_t^\infty e^{-r\tau} NB^B d\tau\right], \tag{3.9}\]

where the net benefit function of Burkina Faso is given by

\[NB^B = B^B(w^B) + H^B(S, \alpha^B) - C^B(\alpha^B),\]

subject to the state equation

\[dS = \left(1 - \alpha^G(a, b)\right)\left(1 - \alpha^B W^B + R\right)dt,\]

and given other equations (2.1), (2.3), (2.5), (2.6), and (3.1). Here α^G is obtained from the optimality condition (3.5). The HJB equation for the above formulated problem can be written
as:

\[rJ^B = \max_{a,b} \left\{ B^B(w^B) + H^B(S, \alpha^B) - C^B(\alpha^B) \right\} \]

\[+ (1 - \alpha^G)[(1 - aS^2 - b)\bar{W}^B + \bar{R}]J^B_s \]

\[+ \frac{\sigma^2}{2}E[J^B_w^2]J^B_w + \frac{\sigma^2}{2}E[J^B_R^2]J^B_{RR} \]. \quad (3.10)

As before we denote

\[K(a, b, S) = (1 - aS^2 - b)\bar{W}^B + \bar{R}. \]

Then differentiating the equation (3.5) with respect to \(a\) and \(b\) we can get the optimality conditions,

\[B^B_a - C^B_a + H^B_a - K(a, b, S)\frac{\partial \alpha^G}{\partial a}J^B_s - (1 - \alpha^G)S^2\bar{W}^B J^B_s = 0, \quad (3.11) \]

\[B^B_b - C^B_b + H^B_b - K(a, b, S)\frac{\partial \alpha^G}{\partial b}J^B_s - (1 - \alpha^G)\bar{W}^B J^B_s = 0. \quad (3.12) \]

From the above two equations one obtains

\[J^B_s = \frac{B^B_a - C^B_a + H^B_a}{K\frac{\partial \alpha^G}{\partial a} + (1 - \alpha^G)\bar{W}^B} = \frac{B^B_b - C^B_b + H^B_b}{K\frac{\partial \alpha^G}{\partial b} + (1 - \alpha^G)S^2\bar{W}^B}, \]

\[:= A^B(\alpha^G, a, b, S). \quad (3.13) \]

The above equation can be interpreted by saying that during cooperation at the margin, the value of the water stock at Lake volta for Burkina Faso is equal to its opportunity cost of increasing water abstraction in terms of agricultural benefits forgone.

Now differentiating equation (3.10) with respect to the state variable \(S\) for the optimal values of the control variables \(\alpha^G, a\) and \(b\),

\[rA^B = H^B_s + \frac{1}{dr}E[\text{d}A^B]. \]

Finally in the long run steady state distribution (i.e. \(\frac{1}{dr}E[\text{d}S] = \frac{1}{dr}E[\text{d}a] = \frac{1}{dr}E[\text{d}b] = 0 \)) we obtain the following expression,
The above equation says that in the long run steady state, the marginal cost of reducing water abstraction in terms of agricultural benefits forgone is equal to the sum of the marginal benefits that Burkina Faso may gain in hydropower from higher level of stock due to cooperation and a term related to the instantaneous variance rate, \[\frac{1}{2} A_{aa}^B \sigma_B^2 W_B^2 \left(\frac{\partial a}{\partial W_B} \right)^2 + \sigma_R^2 R^2 \left(\frac{\partial a}{\partial R} \right)^2 \] and \[\frac{1}{2} A_{bb}^B \sigma_B^2 W_B^2 \left(\frac{\partial b}{\partial W_B} \right)^2 + \sigma_R^2 R^2 \left(\frac{\partial b}{\partial R} \right)^2 \]. The sign of the latter term depends on the convexity of net marginal benefit from cooperation.

Note that the optimal \(a^* \) and \(b^* \) can be achieved from the optimality conditions (3.11)-(3.12). We now characterize the stability of above solution given the optimal strategy of Ghana. We judge the stability of the solution with respect to higher variance in water flow caused by climate change.

Proposition 3.2. Let us assume that the marginal benefit function of water withdrawal for Burkina Faso is convex. Then there exists an optimal value for the water abstraction rate of Burkina Faso, which will decrease or increase during low extreme events with the increase in variances at higher and lower level of water abstraction respectively.

Proof. To find the effect of \(a(>0) \) and \(b(>0) \) with changes in \(\sigma^B \) and \(\sigma^R \), we totally differentiate the above equation with respect to \(S, a, \sigma^B \), and \(\sigma^R \) and rearrange the terms,

\[
\frac{da}{d\sigma^B} = \frac{X_1 \frac{dS}{d\sigma^B} + X_2}{rA_a^B - H_{3a}^B}, \quad \frac{da}{d\sigma^R} = \frac{X_1 \frac{dS}{d\sigma^R} + X_3}{rA_a^B - H_{3a}^B},
\]

(3.15)
where

\[
X_1 = \left[-r A_B^S + H_B^S + A_B^R \right] \left\{ \sigma^B W_B^2 \frac{\partial a}{\partial W_B} \frac{\partial^2 a}{\partial S \partial W_B} \\
+ \sigma^R^2 W_B^2 \frac{\partial a}{\partial R} \frac{\partial^2 a}{\partial S \partial R} \right\} + A_B^{ab} \left\{ \sigma^B W_B^2 \frac{\partial b}{\partial W_B} \frac{\partial^2 b}{\partial S \partial W_B} \\
+ \sigma^R^2 W_B^2 \frac{\partial b}{\partial R} \frac{\partial^2 b}{\partial S \partial R} \right\},
\]

\[
X_2 = \frac{1}{2} \left[A_B^{aa} W_B^2 \left(\frac{\partial a}{\partial W_B} \right)^2 + A_B^{bb} W_B^2 \left(\frac{\partial b}{\partial W_B} \right)^2 \right],
\]

\[
X_3 = \frac{1}{2} \left[A_B^{aa} R^2 \left(\frac{\partial a}{\partial R} \right)^2 + A_B^{bb} R^2 \left(\frac{\partial b}{\partial R} \right)^2 \right].
\]

Let us assume that the marginal benefit function \((B^B - C^B + H^B)_{ab}\) of water withdrawal for Burkina Faso is convex. Moreover as before we assume \(\frac{\partial^2 a}{\partial S \partial j} < 0\) for \(i = a, b\), and \(j = W_B, R\). Then we find from (3.13), \(A^{as}_B > 0, A^{af}_a < 0, A^{af}_b > 0\), and \(A^{bb}_B > 0\). Also \(H^{ss}_B < 0, H^{sa}_a < 0\), and thus we get \(X_1 < 0, X_2 > 0\), and \(X_3 > 0\). Given the Markovian strategy of Ghana of increasing its water abstraction for a decrease in water abstraction level of Burkina Faso during cooperation, we observe that \(r A^B_a - H^{B}_{sa} > 0\). It suggests that for a lower level of water abstraction, further decrease in water abstraction will increase the opportunity cost in terms of forgone agricultural benefits more than the increase in marginal benefit from change in the stock of the water at Lake Volta. Under such conditions, \(\frac{da}{d\sigma^2} > 0\) and Burkina Faso will increase its water abstraction with increase in variance of water flow during extreme drought conditions.

Again, at Burkina Faso’s higher level of water abstraction where Ghana will respond by increasing its water abstraction, additional increase in water abstraction by Burkina Faso will decrease its marginal benefit of the stock of water at Lake Volta more than the increase in marginal benefit of water consumption in agriculture; and we get \(r A^B_a - H^{B}_{sa} < 0\). As a consequence, \(\frac{da}{d\sigma^2} < 0\) and Burkina Faso will reduce its water abstraction with higher variance in drought.

Similarly, one can also find the effect of \(b(> 0)\) with changes in \(\sigma^B\) and \(\sigma^R\), by totally differentiating the equation (3.14) with respect to \(S, b, \sigma^B\), and \(\sigma^R\) and rearranging the terms.

\(^8\)We omit details of mathematical calculations for interested readers. Determination of signs are not trivial, but one has to understand and identify the effect of large and small terms in an expression to determine the exact sign.
to get,
\[
\frac{db}{d\sigma^B} = X_1 \frac{dS}{d\sigma^B} + X_2, \quad \frac{db}{d\sigma^R} = X_1 \frac{dS}{d\sigma^R} + X_3, \quad (3.16)
\]

and proceeding in a similar manner as above one has the similar results.

Then for \(\alpha^B = \alpha^B(a^*, b^*) \), we get
\[
\frac{d\alpha^B}{d\sigma^B} = \frac{d\alpha^B}{da} \frac{da}{d\sigma^B} + \frac{d\alpha^B}{db} \frac{db}{d\sigma^B} = S^2 \frac{da}{d\sigma^B} + \frac{db}{d\sigma^B}.
\]

Using the above equation and combining the above results we can now deduce the effect of optimal water abstraction of Burkina Faso \(\alpha^B \) with changes in variances \(\sigma^B \) and \(\sigma^R \). During drought (i.e. when \(\frac{dS}{dk} < 0, k = \sigma^B, \sigma^R \)), \(\frac{d\alpha^G}{dk} < 0 \), for \(\frac{d\alpha^G}{di} < 0, (i = a, b) \) (i.e. for low values of \(a^* \) and \(b^* \)). But \(\frac{d\alpha^G}{dk} < 0 \) for \(\frac{d\alpha^G}{di} > 0, (i = a, b) \) (i.e. for high values of \(a^* \) and \(b^* \)). \(\square \)

Given the Markovian strategy of Ghana and optimal level of water abstraction, we can deduce the optimal level of water abstraction in Ghana. We are in a position to determine the effect of climate change on optimal water abstraction of Ghana. We demonstrate the conditions and evaluate the effect of changes in variances \(\sigma^B \) and \(\sigma^R \) on \(\alpha^G \).

Proposition 3.3. Let us assume that the marginal benefit function of water withdrawal for Ghana is convex. We also assume that \(\frac{\partial^2 \alpha^G}{\partial S j^2} < 0 \) for \(j = W^B, R \). Then there exists an optimal value for the water abstraction rate of Ghana, which will decrease in low extreme event (drought), with the increase in variances. However, the rate of decline will be lesser with lower water abstraction rate of Burkina Faso.

Proof. Totally differentiating the equation (3.6) with respect to \(S, \alpha^G, a, b, \sigma^B, \) and \(\sigma^R \), we find
\[
\frac{d\alpha^G}{d\sigma^B} = X_4 \frac{dS}{d\sigma^B} - \frac{rA^G}{a} \frac{da}{d\sigma^B} - \frac{rA^G}{b} \frac{db}{d\sigma^B} + X_5 + X_6 \frac{d\sigma^B}{d\sigma^B}.
\] (3.17)
where

\[X_4 = -rA^G_s + H^G_{ss} + A^G_{aGaG} \left[\sigma^2 B^2 W^2 B^2 \frac{\partial^2 \alpha^G}{\partial W \partial S \partial W} \right], \]

\[X_5 = \frac{1}{2} A^G_{aGaG} W^2 B^2 \left(\frac{\partial \alpha^G}{\partial W} \right)^2, \]

\[X_6 = \frac{1}{2} A^G_{aGaG} R^2 \left(\frac{\partial \alpha^G}{\partial R} \right)^2. \]

A similar expression can also be found for \(\frac{\partial \alpha^G}{\partial \sigma^2} \). Suppose there is no effect on variance in the upstream country with changes in variance in the downstream country and vice versa, i.e. \(\frac{\partial \sigma^2_i}{\partial \sigma^2} = 0 \), and \(\frac{\partial \sigma^2_j}{\partial \sigma^2} = 0 \). Now with the assumption that the marginal benefit function of water withdrawal for Ghana is convex and \(\frac{\partial^2 \alpha^G}{\partial \sigma \partial \sigma} < 0 \) for \(j = W^B, R \), we have already shown that \(X_4 < 0, X_5 > 0, A^G_a > 0, A^G_b > 0, \) and \(A^G_{aG} < 0 \). Then from equation (3.17) by using the proposition 3.2 we obtain the following results,
\[\frac{\text{d} \alpha_k}{\text{d} t} < 0, (k = \sigma^B, \sigma^R), \] for any level of water abstraction of Burkina Faso during drought (when \(\frac{\text{d} S}{\text{d} t} < 0 \)) irrespective of the sign of \(\frac{\text{d} i}{\text{d} t} (i = a, b) \). However \(|\frac{\text{d} \alpha_k}{\text{d} t}| \) is higher if \(\frac{\text{d} i}{\text{d} t} < 0 \). □

4. Conclusion

In this paper we have studied how countries can cooperate in a sustainable way given the effects of climate change. The motivation of this study is based on the perception that climate change increases the variability in water flow and might exacerbate conflict between countries sharing same river basin. We illustrate the case of water sharing of the Volta River between the upstream and downstream countries, Burkina Faso and Ghana respectively, where Ghana faces a tradeoff of water use between agriculture in the north and production of hydro energy in the south. In the framework of a stochastic Stackelberg differential game, we have shown how the issue of water sharing could be linked to hydropower export, that can make water sharing between the countries sustaining in the event of climate change. We consider that the downstream country, Ghana, offers a discounted price for energy export to the upstream country, Burkina Faso, to restrict its water abstraction rate in the upstream. We model water availability as stochastic process and focus on the scope and sustainability of cooperation.

We find that without cooperation Ghana will decrease its water abstraction with increasing variance in drought situations to ensure sufficient water flows to Lake Volta for Hydropower generation. This holds under the case where the marginal benefit function of Ghana is convex. However cooperation will give Ghana an opportunity to increase water abstraction for agriculture without losing water at Lake Volta. If Burkina Faso increases it water abstraction, then Ghana will reduce its water abstraction initially due to higher level of cooperation. However, after a certain point where the change in the marginal benefit of water consumption in agriculture is equal to the change in marginal benefit from higher water stock, it will increase it water abstraction to prevent Burkina Faso to gain from increasing water abstraction under agreement. We also find that the equilibrium strategies in the long run steady state distribution are stable even with increasing variances of water flow; and the optimal value for the water abstraction rate of Burkina Faso will decrease or increase during low extreme events with the increase in variances at higher and lower level of water abstraction of Burkina Faso respectively.

We present our summary of the results under the cooperation and non-cooperation cases in the tabular form:
<table>
<thead>
<tr>
<th>Without co-operation</th>
<th>With co-operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marginal Benefit of Burkina Faso convex;</td>
<td>Marginal Benefit of Burkina Faso convex;</td>
</tr>
<tr>
<td>$\sigma \uparrow \Rightarrow \alpha_B^\uparrow$.</td>
<td>$\frac{\partial^2 \alpha_B}{\partial \sigma^2 j} < 0$ for $j = W_B, R. \Rightarrow \alpha_B^* \text{ exists.}$</td>
</tr>
<tr>
<td>irrespective of low or high extreme events.</td>
<td>low extreme: $\sigma \uparrow \Rightarrow \alpha_B^\downarrow$ at higher level of water abstraction of Burkina Faso.</td>
</tr>
<tr>
<td></td>
<td>$\sigma \uparrow \Rightarrow \alpha_B^\downarrow$ at lower level of water abstraction of Burkina Faso.</td>
</tr>
<tr>
<td>Marginal Benefit of Ghana convex;</td>
<td>Marginal Benefit of Ghana convex;</td>
</tr>
<tr>
<td>$\frac{\partial^2 \alpha_G}{\partial \sigma^2 j} < 0 \Rightarrow \alpha_G^* \text{ exists.}$</td>
<td>$\frac{\partial^2 \alpha_G}{\partial \sigma^2 j} < 0 \Rightarrow \alpha_G^* \text{ exists.}$</td>
</tr>
<tr>
<td>low extreme: $\sigma \uparrow \Rightarrow \alpha_G^\downarrow$.</td>
<td>low extreme: $\sigma \uparrow \Rightarrow \alpha_G^\downarrow$ at higher level of water abstraction of Burkina Faso.</td>
</tr>
<tr>
<td></td>
<td>$\sigma \uparrow \Rightarrow \alpha_G^\downarrow$ at lower level of water abstraction of Burkina Faso,</td>
</tr>
<tr>
<td></td>
<td>but with much lesser rate of decline.</td>
</tr>
<tr>
<td>For a given σ: $\alpha_B^\downarrow \Rightarrow \alpha_G^\uparrow$.</td>
<td>For a given σ: in the co-op phase, $\alpha_B^\uparrow \Rightarrow \alpha_G^\downarrow$;</td>
</tr>
<tr>
<td></td>
<td>after it crosses the threshold point</td>
</tr>
<tr>
<td></td>
<td>(i.e. in the deterrence phase) $\alpha_B^\downarrow \Rightarrow \alpha_G^\uparrow$,</td>
</tr>
<tr>
<td></td>
<td>to restrict Burkina Faso to gain from more abstraction.</td>
</tr>
<tr>
<td>$\left[\frac{d\alpha_G}{d\sigma} \right]{\sigma_1} < \left[\frac{d\alpha_B}{d\sigma} \right]{\sigma_2} < 0$, for $\sigma_1 > \sigma_2$.</td>
<td>In co-op phase: $\left[\frac{d\alpha_G}{d\sigma} \right]{\sigma_1} < \left[\frac{d\alpha_B}{d\sigma} \right]{\sigma_2} < 0$, $\sigma_1 > \sigma_2$</td>
</tr>
<tr>
<td></td>
<td>In deterrence phase: $0 < \left[\frac{d\alpha_G}{d\sigma} \right]{\sigma_1} < \left[\frac{d\alpha_B}{d\sigma} \right]{\sigma_2}$.</td>
</tr>
</tbody>
</table>
REFERENCES

The following papers have been published so far:

<table>
<thead>
<tr>
<th>No.</th>
<th>Authors</th>
<th>Title</th>
<th>Institution</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ulrike Grote, Arnab Basu, Diana Weinhold</td>
<td>Child Labor and the International Policy Debate</td>
<td>Zentrum für Entwicklungsforschung (ZEF), Bonn,</td>
<td>September 1998,</td>
<td>47</td>
</tr>
<tr>
<td>2</td>
<td>Patrick Webb, Maria Iskandarani</td>
<td>Water Insecurity and the Poor: Issues and Research Needs</td>
<td>Zentrum für Entwicklungsforschung (ZEF), Bonn,</td>
<td>Oktober 1998,</td>
<td>66</td>
</tr>
<tr>
<td>3</td>
<td>Matin Qaim, Joachim von Braun</td>
<td>Crop Biotechnology in Developing Countries: A Conceptual Framework for Ex Ante Economic Analyses</td>
<td>Zentrum für Entwicklungsforschung (ZEF), Bonn,</td>
<td>November 1998,</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>Sabine Seibel, Romeo Bertolini, Dietrich Müller-Falcke</td>
<td>Informations- und Kommunikationstechnologien in Entwicklungsländern</td>
<td>Zentrum für Entwicklungsforschung (ZEF), Bonn,</td>
<td>January 1999,</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>Jean-Jacques Dethier</td>
<td>Governance and Economic Performance: A Survey</td>
<td>Zentrum für Entwicklungsforschung (ZEF), Bonn,</td>
<td>April 1999,</td>
<td>62</td>
</tr>
<tr>
<td>6</td>
<td>Mingzhi Sheng</td>
<td>Lebensmittelhandel und Konsumtrends in China</td>
<td>Zentrum für Entwicklungsforschung (ZEF), Bonn,</td>
<td>May 1999,</td>
<td>57</td>
</tr>
<tr>
<td>7</td>
<td>Arjun Bedi</td>
<td>The Role of Information and Communication Technologies in Economic Development – A Partial Survey</td>
<td>Zentrum für Entwicklungsforschung (ZEF), Bonn,</td>
<td>May 1999,</td>
<td>42</td>
</tr>
<tr>
<td>8</td>
<td>Abdul Bayes, Joachim von Braun, Rasheda Akhter</td>
<td>Village Pay Phones and Poverty Reduction: Insights from a Grameen Bank Initiative in Bangladesh</td>
<td>Zentrum für Entwicklungsforschung (ZEF), Bonn,</td>
<td>June 1999,</td>
<td>47</td>
</tr>
<tr>
<td>9</td>
<td>Johannes Jütting</td>
<td>Strengthening Social Security Systems in Rural Areas of Developing Countries</td>
<td>Zentrum für Entwicklungsforschung (ZEF), Bonn,</td>
<td>June 1999,</td>
<td>44</td>
</tr>
<tr>
<td>10</td>
<td>Mamdouh Nasr</td>
<td>Assessing Desertification and Water Harvesting in the Middle East and North Africa: Policy Implications</td>
<td>Zentrum für Entwicklungsforschung (ZEF), Bonn,</td>
<td>July 1999,</td>
<td>59</td>
</tr>
<tr>
<td>11</td>
<td>Oded Stark, Yong Wang</td>
<td>Externalities, Human Capital Formation and Corrective Migration Policy</td>
<td>Zentrum für Entwicklungsforschung (ZEF), Bonn,</td>
<td>August 1999,</td>
<td>17</td>
</tr>
</tbody>
</table>
| No. 12 | John Msuya | Nutrition Improvement Projects in Tanzania: Appropriate Choice of Institutions Matters
Zentrum für Entwicklungsforschung (ZEF), Bonn,
August 1999, pp. 36. |
| No. 13 | Liu Junhai | Legal Reforms in China
Zentrum für Entwicklungsforschung (ZEF), Bonn,
August 1999, pp. 90. |
| No. 14 | Lukas Menkhoff | Bad Banking in Thailand? An Empirical Analysis of Macro Indicators
Zentrum für Entwicklungsforschung (ZEF), Bonn,
August 1999, pp. 38. |
| No. 15 | Kaushalesh Lal | Information Technology and Exports: A Case Study of Indian Garments Manufacturing Enterprises
Zentrum für Entwicklungsforschung (ZEF), Bonn,
| No. 16 | Detlef Virchow | Spending on Conservation of Plant Genetic Resources for Food and Agriculture: How much and how efficient?
Zentrum für Entwicklungsforschung (ZEF), Bonn,
September 1999, pp. 37. |
| No. 17 | Arnulf Heuermann | Die Bedeutung von Telekommunikationsdiensten für wirtschaftliches Wachstum
Zentrum für Entwicklungsforschung (ZEF), Bonn,
September 1999, pp. 33. |
| No. 18 | Ulrike Grote, Arnab Basu, Nancy Chau | The International Debate and Economic Consequences of Eco-Labeling
Zentrum für Entwicklungsforschung (ZEF), Bonn,
September 1999, pp. 37. |
| No. 19 | Manfred Zeller | Towards Enhancing the Role of Microfinance for Safety Nets of the Poor
Zentrum für Entwicklungsforschung (ZEF), Bonn,
| No. 20 | Ajay Mahal, Vivek Srivastava, Deepak Sanan | Decentralization and Public Sector Delivery of Health and Education Services: The Indian Experience
Zentrum für Entwicklungsforschung (ZEF), Bonn,
January 2000, pp. 77. |
Zentrum für Entwicklungsforschung (ZEF), Bonn,
March 2000, pp. 29. |
| No. 22 | Susanna Wolf, Dominik Spoden | Allocation of EU Aid towards ACP-Countries
Zentrum für Entwicklungsforschung (ZEF), Bonn,
March 2000, pp. 59. |
<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title</th>
<th>Zentrum für Entwicklungsforschung (ZEF), Bonn, Month, pp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Mahendra Dev</td>
<td>Economic Liberalisation and Employment in South Asia</td>
<td>August 2000, pp. 82.</td>
</tr>
<tr>
<td>31</td>
<td>Kakoli Roy, Susanne Ziemek</td>
<td>On the Economics of Volunteering</td>
<td>August 2000, pp. 47.</td>
</tr>
</tbody>
</table>
No. 34 Oded Stark On a Variation in the Economic Performance of Migrants by their Home Country’s Wage
Zentrum für Entwicklungsfororschung (ZEF), Bonn, October 2000, pp. 10.

No. 35 Ramón Lopéz Growth, Poverty and Asset Allocation: The Role of the State
Zentrum für Entwicklungsfororschung (ZEF), Bonn, March 2001, pp. 35.

No. 36 Kazuki Taketoshi Environmental Pollution and Policies in China’s Township and Village Industrial Enterprises
Zentrum für Entwicklungsfororschung (ZEF), Bonn, March 2001, pp. 37.

No. 38 Claudia Ringler Optimal Water Allocation in the Mekong River Basin
Zentrum für Entwicklungsfororschung (ZEF), Bonn, May 2001, pp. 50.

No. 39 Ulrike Grote, Stefanie Kirchhoff Environmental and Food Safety Standards in the Context of Trade Liberalization: Issues and Options
Zentrum für Entwicklungsfororschung (ZEF), Bonn, June 2001, pp. 43.

No. 40 Renate Schubert, Simon Dietz Environmental Kuznets Curve, Biodiversity and Sustainability
Zentrum für Entwicklungsfororschung (ZEF), Bonn, October 2001, pp. 30.

No. 41 Stefanie Kirchhoff, Ana Maria Ibañez Displacement due to Violence in Colombia: Determinants and Consequences at the Household Level
Zentrum für Entwicklungsfororschung (ZEF), Bonn, October 2001, pp. 45.

No. 42 Francis Matambalya, Susanna Wolf The Role of ICT for the Performance of SMEs in East Africa – Empirical Evidence from Kenya and Tanzania

No. 43 Oded Stark, Ita Falk Dynasties and Destiny: On the Roles of Altruism and Impatience in the Evolution of Consumption and Bequests
Zentrum für Entwicklungsfororschung (ZEF), Bonn, December 2001, pp. 20.

No. 44 Assefa Admassie Allocation of Children’s Time Endowment between Schooling and Work in Rural Ethiopia
Zentrum für Entwicklungsfororschung (ZEF), Bonn, February 2002, pp. 75.
<p>| No. 47 | Joachim von Braun, Peter Wobst, Ulrike Grote | "Development Box" and Special and Differential Treatment for Food Security of Developing Countries: Potentials, Limitations and Implementation Issues Zentrum für Entwicklungsforschung (ZEF), Bonn, May 2002, pp. 28 |
| No. 49 | L. Adele Jinadu | Ethnic Conflict & Federalism in Nigeria Zentrum für Entwicklungsforschung (ZEF), Bonn, September 2002, pp. 45 | |
| No. 50 | Oded Stark, Yong Wang | Overlapping Zentrum für Entwicklungsforschung (ZEF), Bonn, August 2002, pp. 17 |
| No. 51 | Roukayatou Zimmermann, Matin Qaim | Projecting the Benefits of Golden Rice in the Philippines Zentrum für Entwicklungsforschung (ZEF), Bonn, September 2002, pp. 33 |
| No. 52 | Gautam Hazarika, Arjun S. Bedi | Schooling Costs and Child Labour in Rural Pakistan Zentrum für Entwicklungsforschung (ZEF), Bonn October 2002, pp. 34 |
| No. 53 | Margit Bussmann, Indra de Soysa, John R. Oneal | The Effect of Foreign Investment on Economic Development and Income Inequality Zentrum für Entwicklungsforschung (ZEF), Bonn, October 2002, pp. 35 |
| No. 54 | Maximo Torero, Shyamal K. Chowdhury, Virgilio Galdo | Willingness to Pay for the Rural Telephone Service in Bangladesh and Peru Zentrum für Entwicklungsforschung (ZEF), Bonn, October 2002, pp. 39 |
| No. 55 | Hans-Dieter Evers, Thomas Menkhoff | Selling Expert Knowledge: The Role of Consultants in Singapore’s New Economy Zentrum für Entwicklungsforschung (ZEF), Bonn, October 2002, pp. 29 |
| No. 56 | Qiuxia Zhu, Stefanie Elbern | Economic Institutional Evolution and Further Needs for Adjustments: Township Village Enterprises in China | Zentrum für Entwicklungsforschung (ZEF), Bonn, November 2002, pp. 41 |
| No. 57 | Ana Devic | Prospects of Multicultural Regionalism As a Democratic Barrier Against Ethnonationalism: The Case of Vojvodina, Serbia’s “Multiethnic Haven” | Zentrum für Entwicklungsforschung (ZEF), Bonn, December 2002, pp. 29 |
| No. 58 | Heidi Wittmer, Thomas Berger | Clean Development Mechanism: Neue Potenziale für regenerative Energien? Möglichkeiten und Grenzen einer verstärkten Nutzung von Bioenergieträgern in Entwicklungsländern | Zentrum für Entwicklungsforschung (ZEF), Bonn, December 2002, pp. 81 |
| No. 59 | Oded Stark | Cooperation and Wealth | Zentrum für Entwicklungsforschung (ZEF), Bonn, January 2003, pp. 13 |
| No. 60 | Rick Auty | Towards a Resource-Driven Model of Governance: Application to Lower-Income Transition Economies | Zentrum für Entwicklungsforschung (ZEF), Bonn, February 2003, pp. 24 |
| No. 61 | Andreas Wimmer, Indra de Soysa, Christian Wagner | Political Science Tools for Assessing Feasibility and Sustainability of Reforms | Zentrum für Entwicklungsforschung (ZEF), Bonn, February 2003, pp. 34 |
| No. 62 | Peter Wehrheim, Doris Wiesmann | Food Security in Transition Countries: Conceptual Issues and Cross-Country Analyses | Zentrum für Entwicklungsforschung (ZEF), Bonn, February 2003, pp. 45 |
| No. 63 | Rajeev Ahuja, Johannes Jütting | Design of Incentives in Community Based Health Insurance Schemes | Zentrum für Entwicklungsforschung (ZEF), Bonn, March 2003, pp. 27 |
| No. 64 | Sudip Mitra, Reiner Wassmann, Paul L.G. Vlek | Global Inventory of Wetlands and their Role in the Carbon Cycle | Zentrum für Entwicklungsforschung (ZEF), Bonn, March 2003, pp. 44 |
| No. 65 | Simon Reich | Power, Institutions and Moral Entrepreneurs | Zentrum für Entwicklungsforschung (ZEF), Bonn, March 2003, pp. 46 |
| No. 66 | Lukas Menkhoff, Chodechai Suwanaporn | The Rationale of Bank Lending in Pre-Crisis Thailand | Zentrum für Entwicklungsforschung (ZEF), Bonn, April 2003, pp. 37 |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Authors</th>
<th>Title</th>
<th>Institution</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>Arnab K. Basu, Nancy H. Chau, Ulrike Grote</td>
<td>On Export Rivalry and the Greening of Agriculture – The Role of Eco-labels</td>
<td>Zentrum für Entwicklungsforschung (ZEF), Bonn</td>
<td>April 2003</td>
<td>38</td>
</tr>
<tr>
<td>69</td>
<td>Gerd R. Rücker, Soojin Park, Henry Ssali, John Pender</td>
<td>Strategic Targeting of Development Policies to a Complex Region: A GIS-Based Stratification Applied to Uganda</td>
<td>Zentrum für Entwicklungsforschung (ZEF), Bonn</td>
<td>May 2003</td>
<td>41</td>
</tr>
<tr>
<td>70</td>
<td>Susanna Wolf</td>
<td>Private Sector Development and Competitiveness in Ghana</td>
<td>Zentrum für Entwicklungsforschung (ZEF), Bonn</td>
<td>May 2003</td>
<td>29</td>
</tr>
<tr>
<td>71</td>
<td>Oded Stark</td>
<td>Rethinking the Brain Drain</td>
<td>Zentrum für Entwicklungsforschung (ZEF), Bonn</td>
<td>June 2003</td>
<td>17</td>
</tr>
<tr>
<td>72</td>
<td>Andreas Wimmer</td>
<td>Democracy and Ethno-Religious Conflict in Iraq</td>
<td>Zentrum für Entwicklungsforschung (ZEF), Bonn</td>
<td>June 2003</td>
<td>17</td>
</tr>
<tr>
<td>73</td>
<td>Oded Stark</td>
<td>Tales of Migration without Wage Differentials: Individual, Family, and Community Contexts</td>
<td>Zentrum für Entwicklungsforschung (ZEF), Bonn</td>
<td>September 2003</td>
<td>15</td>
</tr>
<tr>
<td>74</td>
<td>Holger Seebens, Peter Wobst</td>
<td>The Impact of Increased School Enrollment on Economic Growth in Tanzania</td>
<td>Zentrum für Entwicklungsforschung (ZEF), Bonn</td>
<td>October 2003</td>
<td>25</td>
</tr>
<tr>
<td>75</td>
<td>Benedikt Korf</td>
<td>Ethnicized Entitlements? Property Rights and Civil War in Sri Lanka</td>
<td>Zentrum für Entwicklungsforschung (ZEF), Bonn</td>
<td>November 2003</td>
<td>26</td>
</tr>
<tr>
<td>76</td>
<td>Wolfgang Werner</td>
<td>Toasted Forests – Evergreen Rain Forests of Tropical Asia under Drought Stress</td>
<td>Zentrum für Entwicklungsforschung (ZEF), Bonn</td>
<td>December 2003</td>
<td>46</td>
</tr>
<tr>
<td>77</td>
<td>Appukuttannair, Damodaran, Stefanie Engel</td>
<td>Joint Forest Management in India: Assessment of Performance and Evaluation of Impacts</td>
<td>Zentrum für Entwicklungsforschung (ZEF), Bonn</td>
<td>October 2003</td>
<td>44</td>
</tr>
</tbody>
</table>
Zentrum für Entwicklungsforschung (ZEF), Bonn, January 2004, pp. 62 |
| No. 79 | Richard Pomfret | Resource Abundance, Governance and Economic Performance in Turkmenistan and Uzbekistan
Zentrum für Entwicklungsforschung (ZEF), Bonn, January 2004, pp. 20 |
| No. 80 | Anil Markandya | Gains of Regional Cooperation: Environmental Problems and Solutions
Zentrum für Entwicklungsforschung (ZEF), Bonn, January 2004, pp. 24 |
| No. 81 | Akram Esanov, Martin Raiser, Willem Buiter | Gains of Nature's Blessing or Nature's Curse: The Political Economy of Transition in Resource-Based Economies
Zentrum für Entwicklungsforschung (ZEF), Bonn, January 2004, pp. 22 |
| No. 82 | John M. Msuya, Johannes P. Jütting, Abay Asfaw | Impacts of Community Health Insurance Schemes on Health Care Provision in Rural Tanzania
Zentrum für Entwicklungsforschung (ZEF), Bonn, January 2004, pp. 26 |
| No. 83 | Bernardina Algieri | The Effects of the Dutch Disease in Russia
Zentrum für Entwicklungsforschung (ZEF), Bonn, January 2004, pp. 41 |
| No. 84 | Oded Stark | On the Economics of Refugee Flows
Zentrum für Entwicklungsforschung (ZEF), Bonn, February 2004, pp. 8 |
Zentrum für Entwicklungsforschung (ZEF), Bonn, March 2004, pp. 33 |
| No. 86 | Qiuxia Zhu | The Impact of Rural Enterprises on Household Savings in China
Zentrum für Entwicklungsforschung (ZEF), Bonn, May 2004, pp. 51 |
| No. 87 | Abay Asfaw, Klaus Frohberg, K.S. James, Johannes Jütting | Modeling the Impact of Fiscal Decentralization on Health Outcomes: Empirical Evidence from India
Zentrum für Entwicklungsforschung (ZEF), Bonn, June 2004, pp. 29 |
No. 88 Maja B. Micevska Arbab K. Hazra The Problem of Court Congestion: Evidence from Indian Lower Courts Zentrum für Entwicklungsforforschung (ZEF), Bonn, July 2004, pp. 31

No. 89 Donald Cox Oded Stark On the Demand for Grandchildren: Tied Transfers and the Demonstration Effect Zentrum für Entwicklungsforforschung (ZEF), Bonn, September 2004, pp. 44

No. 90 Stefanie Engel Ramón López Exploiting Common Resources with Capital-Intensive Technologies: The Role of External Forces Zentrum für Entwicklungsforforschung (ZEF), Bonn, November 2004, pp. 32

No. 91 Hartmut Ihne Heuristic Considerations on the Typology of Groups and Minorities Zentrum für Entwicklungsforforschung (ZEF), Bonn, December 2004, pp. 24

No. 92 Johannes Sauer Klaus Frohberg Heinrich Hockmann Black-Box Frontiers and Implications for Development Policy – Theoretical Considerations Zentrum für Entwicklungsforforschung (ZEF), Bonn, December 2004, pp. 38

No. 95 Oded Stark Status Aspirations, Wealth Inequality, and Economic Growth Zentrum für Entwicklungsforforschung (ZEF), Bonn, February 2005, pp. 9

No. 97 Ramon Lopez Edward B. Barbier Debt and Growth Zentrum für Entwicklungsforforschung (ZEF), Bonn March 2005, pp. 30

No. 98 Hardwick Tchale Johannes Sauer Peter Wobst Impact of Alternative Soil Fertility Management Options on Maize Productivity in Malawi’s Smallholder Farming System Zentrum für Entwicklungsforforschung (ZEF), Bonn August 2005, pp. 29
| No. 99 | Steve Boucher
Oded Stark
J. Edward Taylor | A Gain with a Drain? Evidence from Rural Mexico on the New Economics of the Brain Drain
Zentrum für Entwicklungsforschung (ZEF), Bonn
October 2005, pp. 26 |
| No. 100 | Jumanne Abdallah
Johannes Sauer | Efficiency and Biodiversity – Empirical Evidence from Tanzania
Zentrum für Entwicklungsforschung (ZEF), Bonn
November 2005, pp. 34 |
| No. 101 | Tobias Debiel | Dealing with Fragile States – Entry Points and Approaches for Development Cooperation
Zentrum für Entwicklungsforschung (ZEF), Bonn
December 2005, pp. 38 |
| No. 102 | Sayan Chakrabarty
Ulrike Grote
Guido Lüchters | The Trade-Off Between Child Labor and Schooling: Influence of Social Labeling NGOs in Nepal
Zentrum für Entwicklungsforschung (ZEF), Bonn
February 2006, pp. 35 |
| No. 103 | Bhagirath Behera
Stefanie Engel | Who Forms Local Institutions? Levels of Household Participation in India’s Joint Forest Management Program
Zentrum für Entwicklungsforschung (ZEF), Bonn
February 2006, pp. 37 |
| No. 104 | Roukayatou Zimmermann
Faruk Ahmed | Rice Biotechnology and Its Potential to Combat Vitamin A Deficiency: A Case Study of Golden Rice in Bangladesh
Zentrum für Entwicklungsforschung (ZEF), Bonn
March 2006, pp. 31 |
| No. 105 | Adama Konseiga | Household Migration Decisions as Survival Strategy: The Case of Burkina Faso
Zentrum für Entwicklungsforschung (ZEF), Bonn
April 2006, pp. 36 |
| No. 106 | Ulrike Grote
Stefanie Engel
Benjamin Schraven | Migration due to the Tsunami in Sri Lanka – Analyzing Vulnerability and Migration at the Household Level
Zentrum für Entwicklungsforschung (ZEF), Bonn
April 2006, pp. 37 |
| No. 107 | Stefan Blum | East Africa: Cycles of Violence, and the Paradox of Peace
Zentrum für Entwicklungsforschung (ZEF), Bonn
April 2006, pp. 42 |
| No. 108 | Ahmed Farouk Ghoneim
Ulrike Grote | Impact of Labor Standards on Egyptian Exports with Special Emphasis on Child Labor
Zentrum für Entwicklungsforschung (ZEF), Bonn
April 2006, pp. 50 |
| No. 109 | Oded Stark | Work Effort, Moderation in Expulsion, and Illegal Migration
Zentrum für Entwicklungsforschung (ZEF), Bonn
May 2006, pp. 11 |
| No. 110 | Oded Stark
| | C. Simon Fan
| | International Migration and "Educated Unemployment"
| | Zentrum für Entwicklungsforschung (ZEF), Bonn
| | June 2006, pp. 19
| No. 111 | Oded Stark
| | C. Simon Fan
| | A Reluctance to Assimilate
| | Zentrum für Entwicklungsforschung (ZEF), Bonn
| | October 2006, pp. 12
| No. 112 | Martin Worbes
| | Evgeniy Botman
| | Asia Khamzina
| | Alexander Tupitsa
| | Christopher Martius
| | John P.A. Lamers
| | Scope and Constraints for Tree Planting in the Irrigated Landscapes of the Aral Sea Basin: Case Studies in Khorezm Region, Uzbekistan
| | Zentrum für Entwicklungsforschung (ZEF), Bonn
| | December 2006, pp. 49
| No. 113 | Oded Stark
| | C. Simon Fan
| | The Analytics of Seasonal Migration
| | Zentrum für Entwicklungsforschung (ZEF), Bonn
| | March 2007, pp. 16
| No. 114 | Oded Stark
| | C. Simon Fan
| | The Brain Drain, "Educated Unemployment," Human Capital Formation, and Economic Betterment
| | Zentrum für Entwicklungsforschung (ZEF), Bonn
| | July 2007, pp. 36
| No. 115 | Franz Gatzweiler
| | Anke Reichhuber
| | Lars Hein
| | Why Financial Incentives Can Destroy Economically Valuable Biodiversity in Ethiopia
| | Zentrum für Entwicklungsforschung (ZEF), Bonn
| | August 2007, pp. 14
| No. 116 | Oded Stark
| | C. Simon Fan
| | Losses and Gains to Developing Countries from the Migration of Educated Workers: An Overview of Recent Research, and New Reflections
| | Zentrum für Entwicklungsforschung (ZEF), Bonn
| | August 2007, pp. 14
| No. 117 | Aimée Hampel-Milagrosa
| | Social Capital, Ethnicity and Decision-Making in the Philippine Vegetable Market
| | Zentrum für Entwicklungsforschung (ZEF), Bonn
| | September 2007, pp. 74
| No. 118 | Oded Stark
| | C. Simon Fan
| | Rural-to-Urban Migration, Human Capital, and Agglomeration
| | Zentrum für Entwicklungsforschung (ZEF), Bonn
| | December 2007, pp. 25
| No. 119 | Arnab K. Basu
| | Matin Qaim
| | Pricing, Distribution and Adoption of Genetically Modified Seeds under Alternative Information Regimes
| | Zentrum für Entwicklungsforschung (ZEF), Bonn
| | December 2007, pp. 32
| No. 120 | Oded Stark
| | Doris A. Behrens Yong Wang
| | On the Evolutionary Edge of Migration as an Assortative Mating Device
| | Zentrum für Entwicklungsforschung (ZEF), Bonn
| | February 2008, pp. 19

No. 122 Nicolas Gerber Bioenergy and Rural development in developing Countries: a Review of Existing Studies Zentrum für Entwicklungsforschung (ZEF), Bonn June 2008, pp. 58

No. 123 Seid Nuru, Holger Seebens The Impact of Location on Crop Choice and Rural Livelihood: Evidences from Villages in Northern Ethiopia Zentrum für Entwicklungsforschung (ZEF), Bonn July 2008, pp. 27

No. 124 Anik Bhaduri, Nicostrato Perez and Jens Liebe Scope and Sustainability of Cooperation in Transboundary Water Sharing of the Volta River Zentrum für Entwicklungsforschung (ZEF), Bonn September 2008, pp. 28

No. 126 Prof. Dr. habil. Michael Bohnet Chinas langer Marsch zur Umweltrevolution Zentrum für Entwicklungsforschung (ZEF), Bonn October 2008, pp. 22

No. 127 Nicolas Gerber, Manfred van Eckert, Thomas Breuer The Impacts of Biofuel Production on Food Prices: a review Zentrum für Entwicklungsforschung (ZEF), Bonn December 2008, pp.19

No. 128 Oded Stark and Doris A. Behrens An Evolutionary Edge of Knowing Less (or: On the “Curse” of Global Information) Zentrum für Entwicklungsforschung (ZEF), Bonn March 2009, pp.21

No. 129 Daniel W. Tsegai, Teresa Linz, Julia Kloos Economic analysis of water supply cost structure in the Middle Olifants sub-basin of South Africa Zentrum für Entwicklungsforschung (ZEF), Bonn April 2009, pp.20

No. 130 Teresa Linz, Daniel W. Tsegai Industrial Water Demand analysis in the Middle Olifants sub-basin of South Africa: The case of Mining Zentrum für Entwicklungsforschung (ZEF), Bonn April 2009, pp.27
No. 131 Julia Kloos
 Daniel W. Tsegai
Preferences for domestic water services in the Middle
Olifants sub-basin of South Africa
Zentrum für Entwicklungsforschung (ZEF), Bonn
May 2009, pp.23

No. 132 Anik Bhaduri
 Utpal Manna
 Edward Barbier
 Jens Liebe
Cooperation in Transboundary Water Sharing under
Climate Change
Zentrum für Entwicklungsforschung (ZEF), Bonn
June 2009, pp. 33

ISSN: 1436–9931

The papers can be ordered free of charge from:
Zentrum für Entwicklungsforschung (ZEF) Phone: +49-228-73-1861
Center for Development Research Fax: +49-228-73-1869
Walter-Flex-Str. 3 E-Mail: zef@uni-bonn.de
D – 53113 Bonn, Germany http://www.zef.de