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Non-technical Summary 
 
Industrial Ecology is a relatively new, interdisciplinary field of research, analysing the 
interaction between industrial activity and nature. Within this field, a multitude of instruments 
has been developed. Two of the most important are Life Cycle Assessment (LCA) and 
Material Flow Analysis (MFA). 
 
Life Cycle Assessment records the environmental consequences caused by a product 
throughout its whole life cycle, from cradle to grave. Material Flow Analysis measures the 
input and output of materials of an economy in tonnes. Especially LCA has recently been 
gaining importance in European environmental policy. This development raises the question, 
if political measures can be developed and evaluated based on LCA and MFA. For this being 
the case, the instruments must be able to capture the complex consequences caused by 
regulatory action. 
 
Environmental intervention triggers a multitude of effects. These include benefits and costs of 
measures. It has to be emphasised that in this case costs go beyond monetary costs borne by 
directly affected firms. Opportunity costs and costs of indirectly affected stakeholders need to 
be accounted for. The environmentally important rebound effect has to be covered as well. 
Redistributive outcomes triggered by the regulatory act are also important. 
 
LCA and MFA as independent tools do not consider these effects adequately. LCA is able to 
include some of the results of environmental regulation, especially when they are directly 
connected to the product. Effects that only occur on the economy-wide level, however, are 
captured insufficiently. The MFA does measure all material flows in tonnes. The connection 
between weight and environmental effects remains unclear. Specific regulatory acts cannot be 
developed using MFA. 
 
LCA alone as a tool to evaluate environmental policy is not sufficient. At the same time, the 
approach to assess the impacts of products throughout the whole life cycle appears to be 
promising. Therefore, a Life Cycle Based Computable General Equilibrium Model (LCB-
CGE) is proposed. This model represents the whole economy at industry level, while 
implementing the advantages of life cycle thinking. This tool could be used to evaluate 
political measures ex ante. 



Das Wichtigste in Kürze 
 
Industrial Ecology ist ein relativ junges, interdisziplinäres Forschungsfeld, das die Interaktion 
zwischen industrieller Aktivität und der Natur untersucht. In diesem Feld sind verschiedene 
Instrumente entwickelt worden, zwei der wichtigsten sind die Ökobilanz (Life Cycle 
Assessment, LCA) und die Stoffstromanalyse (Material Flow Analysis, MFA). 
 
Mit einer Ökobilanz werden die Umweltwirkungen eines Produktes über den ganzen 
Lebenszyklus hinweg erfasst, von der Wiege bis zur Bahre. Die Stoffstromanalyse misst 
Materialinput und –output einer Volkswirtschaft in Tonnen. Insbesondere die Ökobilanz hat 
in der europäischen Umweltpolitik an Bedeutung gewonnen. Diese Entwicklung wirft die 
Frage auf, ob auf Basis von Ökobilanz und Stoffstromanalyse Politikmaßnamen entwickelt 
und bewertet werden können. Damit dies der Fall ist, müssten die Instrumente die komplexen 
Konsequenzen von Regulierungsmaßnahmen erfassen können. 
 
Umweltpolitische Eingriffe lösen eine Vielzahl von Effekten aus. Dazu gehören Nutzen und 
Kosten der Maßnahmen. Es ist zu beachten, dass die Kosten über die monetären Kosten der 
betroffenen Unternehmen hinausgehen. Auch Opportunitätskosten, sowie die Kosten indirekt 
betroffener Akteure müssen in die Betrachtung mit einbezogen werden. Weiterhin ist der 
ökologisch bedeutsame Rebound-Effekt zu berücksichtigen. Auch Umverteilungswirkungen, 
die durch Eingriffe in die Märkte ausgelöst werden, sind von Bedeutung. 
 
Sowohl Ökobilanz als auch Stoffstromanalyse können diese Effekte als eigenständiges 
Werkzeug nicht ausreichend erfassen. Die Ökobilanz kann die Wirkungen von 
Umweltregulierung zum Teil mit einbeziehen. Das gilt vor allem für Wirkungen, die einem 
Produkt direkt zurechenbar sind. Wirkungen, die erst auf gesamtwirtschaftlicher Ebene 
sichtbar werden, können jedoch nur unzureichend berücksichtigt werden. Die 
Stoffstromanalyse misst alle Materialbewegungen in Tonnen. Der Zusammenhang zwischen 
Gewicht und ökologischen Wirkungen erscheint allerdings unklar. Konkrete politische 
Maßnahmen können auf Grundlage von Stoffstromanalysen nicht entwickelt werden. 
 
Die Ökobilanz ist als Werkzeug zur Beurteilung von Regulierungsmaßnahmen nicht 
ausreichend. Gleichzeitig erscheint der Ansatz vielversprechend, durch Produkte verursachte 
Umweltprobleme über den ganzen Lebenszyklus hinweg zu untersuchen. Daher wird in dieser 
Arbeit ein lebenszyklusbasiertes berechenbares allgemeines Gleichgewichtsmodell (Life 
Cycle Based Computable General Equilibrium Model, LCB-CGE) vorgeschlagen. Das 
Modell soll die gesamte Volkswirtschaft auf sektoraler Ebene abbilden und gleichzeitig die 
Vorteile des Lebenszyklus-Gedankens besitzen. Mit dem Modell wäre es möglich, politische 
Maßnahmen ex ante zu beurteilen. 
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1 Introduction 
 
Even though Industrial Ecology is a relatively young field of research, it has developed a 

diverse set of tools, including Life Cycle Assessment (LCA) and Material Flow Analysis 

(MFA). These tools encounter rising interest from policy makers, a fact that especially holds 

true for Life Cycle Assessment, which is increasingly used in product based regulation. A 

notable example is the EU Commission’s communication on the Integrated Product Policy, 

which states that “LCAs provide the best framework for assessing the potential environmental 

impacts of products currently available” (European Commission, 2003). Another example of 

European legislation is the Energy-Using Products Directive (European Commission, 2005).1 

Indeed, Industrial Ecology tools are now used to make the step from “what” to “how” 

(Andrews, 2000).  

Regulation always implies an intervention in market mechanisms. This induces a variety of 

effects. Some people benefit from a regulatory act, others have to bear its costs. In 

environmental regulation, rebound effects can occur dampening the effectiveness of an 

instrument. The new rules may also have redistributive consequences. Sound policy making 

has to keep these effects in mind and a careful weighing of costs and benefits is necessary. It 

is important to take an economy-wide perspective for this task. To model and to analyse the 

complex mechanisms lying beneath such effects are the realm of economics. 

It is challenging to bridge the gap between both worlds. That is, to combine Industrial 

Ecology’s holistic perspective on environmental problems with Economics’ knowledge about 

market mechanisms. This paper seeks to contribute to this task by answering three questions: 

Are LCA and MFA appropriate tools for policy making? Which economic model is advisable 

for policy evaluation for which regulation to be assessed? How could a combination between 

quantitative economic models in particular Computable General Equilibrium Models and 

LCA look like? 

The paper is organised as follows: In chapter 2 we describe and discuss two of the major 

instruments in Industrial Ecology, Life Cycle Assessment (LCA) and Material Flow Analysis 

(MFA). In chapter 3 we explain important effects of environmental regulation that need to be 

taken into consideration in thorough policy making. Building upon this, Chapter 4 analyses if 

LCA and MFA can be used as independent tools in policy making. Furthermore, approaches 

                                                 
1 More examples can be found in Rebitzer et al. (2004). 
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to combine Life Cycle Assessment with economic modelling are discussed. Chapter 5 

concludes. 

2 Industrial Ecology and its Tools 

2.1 Foundations of Industrial Ecology 

Industrial Ecology is a relatively new field of research. The article “Strategies for 

Manufacturing” by Frosch and Gallopoulos (1989) is commonly seen as its initial point, 

though similar concepts appeared before (for an overview see Erkman, 1997). Industrial 

Ecology is concerned with industry, thus with products and their manufacturing processes. 

Furthermore, human industrial activity as a whole are perceived similar to a biological system 

that is embedded within nature (Lifset and Graedel, 2002). The perception of human industrial 

activity similar to biological systems has been coined “biological analogy” (Allenby and 

Cooper, 1994). 

There are two main biological analogies. The first one is the industrial ecosystem analogy. 

Firms, households, and other economic subjects together form an ecosystem, which is 

embedded within the bigger ecosystem of nature. Both systems are linked in various ways 

(Frosch and Gallopoulos, 1989). The second analogy is the industrial metabolism analogy. 

There, human activity as a whole is perceived like an organism. Similar to its biological 

counterpart, the industrial metabolism ingests raw materials and excrements wastes (Ayres, 

1994).2  

Although being a young field, Industrial Ecology has developed a diverse set of tools. This 

paper focuses on two of the most important instruments, Life Cycle Assessment (LCA) and 

Material Flow Analysis (MFA). Life Cycle Assessment essentially identifies the 

environmental effects caused by a product over its whole life cycle. It is an instrument at 

micro level, analysing the basic cause of environmental impacts, the product. MFA on the 

other hand is a macro level tool that quantifies physical inputs and outputs of an economy at a 

highly aggregated level. These instruments are discussed in a somewhat general manner. This 

leads to a danger of omitting other instruments or developments within the LCA and MFA 

methodology, which may offset some of the critique. But we take this risk in order to keep our 

arguments general enough to be applicable in the whole realm of Industrial Ecology.   

                                                 
2 For an historical overview over the industrial (or, more broadly, society’s) metabolism analogy see Fischer-
Kowalski (1998). 
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2.2 Life Cycle Assessment 

The general idea of Life Cycle Assessment is to record all environmental impacts caused by a 

product during its whole life cycle, from the extraction of raw materials, to the production, the 

use phase and the disposal (cradle-to-grave approach). A Life Cycle Assessment consists of 

four steps, defined in the ISO 14040 series. The first step is the goal and scope definition. At 

this point, the exact target of the LCA, the coverage of the study and the functional unit are 

defined. The functional unit is the subject of the analysis. It does in general not correspond to 

a product, but the service provided by this product. The functional unit is not “a light bulb”, 

but “five hours of lighting per day with certain brightness”. One has to bear this in mind, even 

though LCA is commonly referred to as a concept to assess the environmental impacts of 

products. The second step is the Life Cycle Inventory Analysis in which the life cycle of the 

product is modelled and the associated emissions and resources needed are recorded. In the 

third step, the Life Cycle Impact Assessment, this information is composed into impact 

categories such as climate change, acidification or human toxicity. These categories can be 

normalised against reference values, grouped into other categories or weighted by several 

methods. An LCA ends with an interpretational step. Assumptions and results are discussed in 

this step.3 The steps are pictured in Figure (1). 

 

Fig. 1: The four steps of a Life Cycle Assessment (based on Guinée, 2002). 

                                                 
3 A more detailed description can be found in Rebitzer, et al. (2004) and Pennington et al. (2004). A 
methodological guide for the conduction of an LCA can be found in Guinée (2002). 
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It is commonly said that the first Life Cycle Assessment was conducted for Coca-Cola to 

compare the environmental effects of different soft drink containers (Hunt and Franklin, 

1996). The LCA approach has been evolved in several directions, see e.g. Udo de Haes et al. 

(2004) and Finnveden et al. (2009) who summarise recent developments. One can also see the 

emergence of broader life cycle thinking that goes beyond the limitations of a single 

analytical tool (Heiskanen, 2002).  

LCAs are used to analyse the impact of a vast variety of products, ranging from food and 

beverages (Andersson et al., 1998; Cordella et al., 2008) to solar cells (Stoppato, 2008), from 

paper production (Lopes et al., 2003) to military equipment (Hochschorner et al., 2006). The 

comparison between organic and conventional milk production in Sweden, conducted by 

Cederberg and Mattsson (2000), will here serve as an example for a Life Cycle Assessment. 

The functional unit in their LCA is 1000 kg of milk, corrected for fat and protein content. 

Data is to a large extent provided by two dairy farms in the West of Sweden. The life cycle 

inventory includes the production of milk on the farm, the cultivation of fodder (including 

necessary fertilisers and pesticides) and transports. Buildings are excluded, because their 

design is very similar for both organic and conventional production. Machinery is also 

excluded due to data uncertainties. Main differences in the life cycle of conventional and 

organic milk result from differences in the fodder used. Organic farms are obligated to 

produce half of their feed themselves, and their use of conventionally produced feed is limited 

to 5% of all feed. The LCA shows that organic farming is the preferable form an 

environmental point of view, for most of the impact categories. A drawback is the 

significantly higher land use of organic feed production.  

Life Cycle Assessment yields a holistic image of environmental consequences connected with 

products. In this context holistic means that not only production is covered, but also use and 

disposal which significantly influence the environmental impacts of many products. An LCA 

can be carried out on a very detailed level, and it can be used in a comparative manner. By 

modelling hypothetical production processes or inputs, LCA can also guide the development 

of ecologically sound products. The holistic perspective avoids shifting problems between the 

phases of the life cycle. 

Life Cycle Assessment underlies several limitations. Firstly, the impacts calculated within the 

impact assessment phase are neither specific to regions, nor to time periods (Udo de Haes, et 

al., 2004). Therefore, potential environmental impacts rather than actual impacts are 

calculated. Secondly, LCA calculates environmental impacts per unit of the product. This 
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implies that the impact rises linearly with the amount of product manufactured. Such a 

calculation ignores for example, that many harmful substances have limits that, if exceeded, 

make them dangerous, which is a nonlinear effect (Owens, 1997). Thirdly, a complete cradle-

to-grave analysis is usually not feasible for complex products, which are sometimes composed 

of thousands of parts. This raises the problem of setting the system boundaries appropriately 

(Suh et al., 2004). Fourthly, a thorough LCA is expensive and time consuming. The fifth point 

to mention here is the implicit assumption about the production function set during the 

inventory analysis. They are usually assumed to be of Leontief type, meaning that no 

substitution between inputs is possible. A change of inputs or production technology, for 

example due to regulatory action, is not explained endogenously within the model, but has to 

be implemented by the researcher. 

The standard process based LCA models the production process of a product to collect the 

corresponding environmentally relevant emissions. Alternatively, one can collect 

environmentally relevant emissions using economy-wide input-output tables. Input-Output 

modelling was developed by Leontief (1936). The idea is as follows (for a more detailed 

discussion see Miller and Blair, 2009). The whole economy is described by the system of 

linear equations  

 fAxx  ,          (1) 

where f  denotes the vector of final consumption, x  the vector of production of all industries 

in the economy and A  the matrix of technical coefficients. Each element ija  in matrix A  

shows, how much input from industry i  is necessary for the production of industry j . Two 

things are important to note here. First, everything is measured in monetary terms, so the 

matrices do not show physical production and consumption, but purchases and sales. Second, 

the tables are based on industries here. Even though is possible to construct input-output 

tables on a product-by-product base, it is usually done on an industry-by-industry base. 

Factoring out x  and premultiplying with 1)(  AI  yields: 

 fAIx 1)(  .         (2) 

The term 1)(  AI  is known as the Leontief-Inverse. Each of its elements  ijl  indicates how 

far the production of i  rises, if the final demand in industry j  rises by one unit. The Input-

Output Approach can be extended to incorporate environmental impacts (Leontief, 1970). Let 
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][ jkrR   denote the matrix of pollution output, where each element indicates the physical 

amount of emission of pollutant k  associated with one monetary unit of production in 

industry j . Multiplying this matrix with (2) yields the vector e  of environmental impacts of 

the economy 

 fAIRRxe 1)(  .        (3) 

Matrix 1)(  AIR  shows the total environmental impacts induced by one unit of final demand 

(Miller and Blair, 2009). This framework is used to compute total emissions in an Economic 

Input-Output LCA (EIO-LCA), see e.g. Lave et al. (1995) and Hendrickson et al. (1998).  

By avoiding the challenge to model the whole production process by hand, an EIO-LCA can 

be conducted much quicker and at lower costs than a process based LCA. It also comprises 

the whole economy in its input-output tables and therefore boundary setting is unnecessary. 

The drawbacks of EIO-LCA include the problem of linking monetary information in IO tables 

to physical environmental values and the high level of aggregation within the data 

(Hendrickson et al., 2006). A disaggregation of input-output matrices may sometimes be 

necessary. Approaches to this are proposed by Joshi (1999). Also, the use phase and the 

disposal are not connected to the corresponding products in the IO tables, which is necessary 

to perform a cradle-to-grave analysis. An introduction of the use and disposal phase is 

possible, but necessitates additional effort (Heijungs et al., 2006). 

2.3 Material Flow Analysis 

Another important element of the Industrial Ecology toolbox is the Material Flow Analysis 

(MFA). This tool is rooted in the industrial metabolism analogy. Human economic activity is 

perceived as an organism, which ingests raw materials and egests wastes and emissions. The 

general idea of MFA and other related instruments is to measure the size of the industrial 

metabolism (Daniels and Moore, 2001).4  

Generally speaking, MFA calculates the size of the industrial metabolism in tonnes. The 

methodology is described in detail in Eurostat (2001). It accounts for the inputs and the 

outputs of the economy, as well for the stock of materials. The stock includes building, 

infrastructure, machinery and durable consumer goods. The flows include materials that are 

processed into products and the corresponding emissions as well as material that accrues in 

                                                 
4 Daniels and Moore (2001) and Daniels (2002) review some of these instruments. 
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fabrication but is not used as an input to the economy. This material is often called hidden 

flow. Seminal MFAs have been conducted by Adriaanse et al. (1997) and Matthews et al. 

(2000) for the World Resource Institute. For an overview over the development of MFA see 

Fischer-Kowalski and Hüttler (1998).  

After quantifying inputs, outputs and the physical stock, one can compile a set of indicators 

that describe the size of the industrial metabolism (for an overview see Eurostat, 2001; for 

further discussion Bringezu et al., 2003). Two well known indicators are the Direct Material 

Input (DMI) and the Total Material Requirement (TMR). The DMI measures all materials that 

are processed into products, either domestically or as imports. The TMR includes all materials 

in the DMI, plus the domestic and foreign hidden flows. The indicators can be compared with 

macroeconomic indicators, such as the GDP. 

Material Flow Analysis can be used to draw a quantitative picture of the industrial 

metabolism. It shows the connection between inputs and outputs. The physical growth of the 

economy is made visible. When compared with economic indicators, derived indicators can 

illustrate the connection between economic and physical growth (see e.g. Bringezu et al., 

2004).  

MFA underlies several severe limitations. It aggregates all flows based on their weight, first 

into input, output and stock categories, later into scalar indicators. When one wants to tackle 

environmental problems using the gathered information, it is necessary to (at least implicitly) 

assume that moved masses are correlated with environmental problems. This assumption is 

highly questionable (see e.g. Cleveland and Ruth, 1998). One may use derived indicators as a 

proxy for yet unknown environmental impacts, in the sense of the precautionary principle. 

Again, it is doubtable that indicators that are dominated by big masses which are moved in 

and out of the economy reflect future problems very well. Another problem is that the 

economy itself is treated as a black box. While recording the inputs, outputs and stocks, 

material flows within the metabolism are neglected in the economy-wide MFA. To get deeper 

insights into the flow of materials within an economy necessitates modelling them explicitly, 

for example with physical-input output tables (Giljum and Hubacek, 2009). 
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3 Economic Assessment of Environmental Policy 

3.1 Benefits of Environmental Regulation 

From an economist’s point of view, environmental problems are cases of external effects. The 

economic activities of one party have consequences on utility or production of another: 

polluted water can cause crop failure; polluted air can cause health damages. The underlying 

problem is, that these consequences are not compensated through market transactions, 

because property rights are set insufficiently (Coase, 1960). The results are too large 

quantities of pollution, causing welfare losses to society. The goal of environmental policy is 

to correct these market failures by internalising external costs and thus improve the welfare of 

society.  

The valuation of environmental impacts, in monetary or other terms, is a complicated and 

controversial task. It may even be considered impossible, because it assumes that different 

environmental problems can be offset against each other (for a discussion see Finnveden, 

1997). Despite these fundamental questions, valuation always takes place in environmental 

policy. This may happen explicitly (e.g. by valuation in monetary units) or implicitly (e.g. by 

deciding whether an environmental policy measure is undertaken or not). Policy makers 

operate in a world with scarce resources; each Euro or Dollar in the government budget can 

only be spent once. Hence, when policy makers decide to implement e.g. greenhouse gas 

abatement measures, they implicitly value climate change more important than other 

problems. To evaluate environmental problems in monetary terms makes the decision process 

more transparent and benefits comparable to costs.  

A large body of literature exists about methods to measure the value of environment in 

economics. An overview can be found in Friedman (2003) and in Haab and McConnell 

(2002), who focus more on empirical aspects. The general idea of the economic methods is 

the following: environmental quality yields utility to people. Furthermore, it is assumed, that 

this utility can be substituted by utility from the consumption of other goods. Yet, there are no 

markets for environmental quality. Therefore, it is necessary to use non-market valuation 

methods to determine how much money people are willing to pay for environmental quality, 

or how much money people would accept to waive for environmental quality. The most 

prominent approaches to this are stated preference and revealed preference approaches (Haab 

and McConnell, 2002). Stated preference methods ask directly for the willingness to pay or to 

accept, while revealed preference methods take a reading from actual behaviour. 
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Environmental quality can also serve as an input to production, water and soil quality for 

example is essential to agriculture. When regulation raises the quality of inputs, additional 

benefits arise that should be accounted for.   

LCA includes an optional step of weighting or valuation (Guinée, 2002). As the name 

suggests, weights are assigned to impact categories reflecting their importance. Weighted 

categories themselves can be aggregated into a scalar indicator of environmental impact. 

There are several methods to value environmental impacts in the LCA framework (see e.g. 

Hertwich et al., 1997; Notarnicola et al., 1998; Finnveden, 1999). These include approaches 

expressing environmental impacts in monetary terms derived from economic methodology. 

Therefore, it is generally possible to quantify the benefits from environmental regulation 

within the LCA framework.  

3.2 Costs of regulation 

3.2.1 Direct Costs of Regulation 

From an economic point of view, environmental regulation introduces new incentives to 

change the behaviour of firms or individuals. These incentives can be implemented by 

command-and-control regulation, or they can be established by changing prices in economic 

regulation. But adaptation to new incentives is a costly task. It is important to note that the 

term costs in economics goes beyond monetary values. Whenever scarce resources are used 

due to environmental regulation, other beneficial activities can not be performed. These 

opportunity costs have to be considered as well. An overview over the costs associated with 

environmental regulation can be found in Jaffe et al. (1995) and Pizer and Kopp (2005). In 

this section the most obvious type of costs will be described. Those stem directly from the 

adaptation to environmental laws, i.e. direct costs of regulation. 

When firms are affected by regulation, they react in several ways to comply with the rules. In 

some situations, a substitution of a “dirty” by a “clean” input is the best way to comply. An 

example is fuel switching from coal to natural gas in electricity generation after the 

implementation of a CO2 emission trading scheme. In other cases, the law leads to changes in 

production processes. The installation of scrubbers for fuel-gas desulphurisation may serve as 

an example here. In some cases it is required to redesign products to comply with the 

regulation. For example, the limitations in the use of tetraethyl lead in gasoline beginning in 

the 1970s necessitated engines that work with unleaded gasoline.  
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Market based regulation provides the opportunity to avoid these compliance measures, at least 

to some degree, by paying taxes, fees, etc. instead. This mechanism generally ensures that 

compliance is performed where it is least costly, minimising the costs of compliance on an 

economy-wide level.  

One also has to comprise transaction costs associated with the regulation. Firms need to be 

informed about current regulations to do their paperwork, to buy and sell emission rights in 

trading systems, and so on. These are also compliance costs of regulation, despite the fact that 

they are hard to measure. But irrespective of the concrete method they choose, adaption to the 

new rules generally imposes additional costs on firms. 

Consumer based regulation works similarly. Command-and-control regulation forces people 

to change their behaviour and by that incurs a loss of utility. A notable example is the ban on 

incandescent light bulbs in several countries worldwide. Even though compact fluorescent 

lamps save energy as well as money over their lifetime, time discounting makes incandescent 

light bulbs with their low purchase costs preferable to consumers (Kooreman, 1996). 

Prohibiting their sale implies a loss of utility to consumers. Economic regulation leaves a 

choice to alternatively pay taxes or fees that punish environmentally undesirable behaviour. 

Money spent this way can not be used to consume other goods, also leading to a loss of 

utility. 

Changes in inputs, production processes or product characteristics can be modelled well in an 

LCA as it is a product based instrument. The same holds true for consumer based regulation, 

if it results in changed patterns of usage. The costs of such changes are, however, not 

addressed. But when modelling an economic life cycle together with an ecologic one, direct 

costs can be captured. The approach that calculates costs of a product over its whole life cycle 

is known as Life Cycle Costing (LCC). Its usefulness has been highlighted by Norris (2001a; 

2001b).5 

3.2.2 Partial Equilibrium Costs 

As discussed before, firms can take several actions to comply with environmental regulation. 

They can substitute inputs, change the production process or redesign products. All these 

measures induce second round effects for the sector affected by regulatory action. Consider 

                                                 
5 The details of Life Cycle Costing and its methodology are not within the scope of this paper. For an overview 
see Hunkeler et al. (2008). Applications can be found for example in Schwab Castella et al. (2009) and  
Vercalsteren et al. (2010). 
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the fuel switch mentioned before. When firms are forced to change their inputs towards 

natural gas, this leads to an increasing demand for gas. The increased demand will lead to an 

increase of the price for gas. The magnitude of the price rise is determined by the elasticity of 

supply. When gas suppliers are close to their capacity constraints, the price increase can 

become significant.  

Firms may also need to change the production technology or their products to comply with 

environmental rules. Besides financial expenditures on e.g. new machinery, and rising prices 

of investment goods due to rising demand for machinery, there are opportunity costs to be 

recognised. Whenever a company spends resources on pollution control measures, these 

resources can not be employed to enhance productivity or the quality of products. Hence, 

profits of such improvements are lost. The same holds true for innovation, where green 

innovation may crowd out other, possibly more profitable, innovation (Schmalensee, 1993).  

For the regulated industry, costs rise through several channels, either directly or indirectly by 

second round effects. Higher costs lead to higher prices of the products manufactured in the 

regulated industry. This, in turn, reduces the demand for the product and thereby profits in the 

considered industry.  

LCAs do not incorporate costs. But could partial equilibrium effects be captured, at least in 

principle, within the LCA framework? At this point, the situation is more complicated 

compared to direct costs. The partial equilibrium costs arise because compliance efforts alter 

scarcities and thereby relative prices on markets. Regarding inputs, prices to be modelled can 

not be represented by fixed numbers any more, but need to be expressed as functions 

dependent on the quantity of the input. This, however, would complicate the whole 

(enhanced) LCA. The LCA does analyse environmental impacts of a product measured per 

unit of this product. When a changing demand for the product, or more general the functional 

unit, shall be considered, an assessment of the overall impacts of the product has to be made. 

At this point, we leave the conceptual framework of Life Cycle Assessment and enter the 

realm of economics.  

3.2.3 General Equilibrium Costs 

Generally, industries are affected by environmental regulation to a varying extend. In 

particular, product based regulation is specifically determined to cover one industry: the one 

that manufactures the product. But usually we can not plausibly assume that the effects of the 
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regulation are limited to this industry. Consider for example the case of a CO2 emissions 

trading system that is introduced on a market for a CO2 intensive goods. Producers that are 

affected will seek to minimise their compliance costs, either by reducing their emissions or by 

buying emission permits. Still, compliance remains costly and market prices rise. Therefore, 

the demand side is affected indirectly as well. The magnitude of the indirect effect is 

governed by the elasticities of substitution on the demand side. If the CO2 intensive good, 

which just became more expensive because of the emission trading system, can be replaced 

easily by a “green” good, mainly the polluting industry will be hit by the regulation. If the 

CO2 intensive product can not be exchanged easily by a “green” one, because it is too 

expensive, the regulation costs are actually burdened on the demand side. Similar effects 

appear for the inputs of the regulated industry. In an interdependent economy, this process 

continues through the whole economy and eventually results in a new equilibrium. These 

general equilibrium effects exist and they are quantitatively significant (Hazilla and Kopp, 

1990). 

As indicated, elasticities of substitution govern the extent to which an industry bears the costs 

of a policy. For policy making, it may be important how the burden of a measure is distributed 

between the industries. A model that encompasses the whole on an industry level is necessary 

to handle this task.  

The aforementioned mechanism essentially distributes the costs of regulation through the 

economy. In a world of perfectly competitive markets the question of distribution is the only 

one to worry about, whereas, the problem becomes increasingly complicated in a more 

realistic framework. When markets are distorted, for example by taxes, the effects of 

environmental regulation interact with these distortions (a simple example is discussed in 

Pizer and Kopp, 2005). In such a case, the new intervention alters the costs of the existing 

one, changing the overall costs of regulation.  

When assessing environmental taxes, another effect emerges that can lower the costs of the 

tax, the “double dividend”. The general idea is intuitive: The government levies several taxes, 

for example on labour or consumption. These taxes cause distortions on the markets. If we 

assume now that a new tax on certain pollution is raised, or alternatively an emissions trading 

scheme is introduced the created revenue is used to lower the rate of a distortionary tax. The 

first dividend stems from the fact that the tax internalises the external effect and lowers the 

amount of pollution. The second dividend comes from the way the revenue is used. By 

lowering the rate of the other tax, the distortion on the markets will be reduced. For an 
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extensive discussion of the double dividend hypothesis see Goulder (1995) and the references 

cited within.    

While the double dividend can actually lower costs of regulation, the government also has to 

pay other expenses in environmental policy. Environmental legislation requires, among 

others, work of parliaments and bureaucracy. Compliance has to be controlled by 

governmental agencies, courts have to resolve ambiguities and enforce laws.  The extent of 

these costs differs significantly, depending on the respective instrument chosen. 

Other, more specific consequences of environmental regulation are discussed in economic 

literature as well. Strict environmental regulation may for example harm the international 

competitiveness of an economy (Jaffe, et al., 1995). Compliance efforts may also harm the 

overall growth of the economy in the long run (Jorgenson and Wilcoxen, 1990). These 

aspects, however, are eventually part of the cost of environmental regulation.  

General equilibrium effects result from the fact that a substitution between goods is generally 

possible and the world is essentially non-linear. To capture them, a model representing the 

whole economy is needed. This goes beyond the LCA framework. 

3.3 Rebound Effect 

A big share of current environmental policy deals with energy efficiency.6 The EU Energy-

Using Products Directive (European Commission, 2005) may serve as an example here. This 

approach is perceived as the via regia to reduce environmental impacts without endangering 

prosperity or competitiveness. Economic theory casts doubt on the effectiveness of such a 

policy. The decline in energy consumption due to an enhancement in energy efficiency may 

be significantly less than expected as a resulting from the rebound effect. In extreme cases, a 

rise in energy efficiency may even lead to an increase in energy consumption. Energy 

efficiency is then said to backfire. The topic was introduced to contemporary literature by 

Khazzoom (1980). Several aspects of the rebound effect can be distinguished, we will focus 

on the two most prominent ones: The direct rebound effect, which is a partial equilibrium 

effect and the indirect rebound effect, a general equilibrium effect. What is the economic 

intuition behind the rebound effect? 7 

                                                 
6 Rebound effects are usually discussed in terms of energy. But we can expect similar rebound effects when the 
use of other inputs, like raw materials, becomes more efficient. 
7 Other effects include implications for technological change and investment in a dynamic setting (Greening et 
al., 2000) or time use rebound effects (Jalas, 2002). 
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First we consider the direct rebound effect. We Assume that the energy efficiency of a 

product, for example TV sets, increases by 10 percent. To simplify the discussion, we also 

assume that this increase does not raise the price of the product itself. When holding the using 

pattern constant, the energy consumption from watching TV decreases by 10 percent. The 

demand for electricity then falls and energy suppliers must lower their prices, which makes 

electricity cheaper. In addition to that, consumers become richer in real terms, since they buy 

10 percent less electricity for watching TV at a lower price. The rebound effect stems from 

the reaction to this new situation. In the short run, people may spend more time watching TV. 

In the long run, they may buy more or bigger TV sets. Both would increase the energy 

consumption again, possibly leading to a decrease in the total electricity demand of less than 

10 percent due to the efficiency gain of 10 percent. Empirical studies of the direct rebound 

mainly cover automotive transport, household heating and cooling in OECD countries. They 

estimate that usually between 10 and 30 percent of energy savings derived from more 

efficient technology are offset by the direct rebound effect (Greening, et al., 2000; Sorrell et 

al., 2009).      

The direct rebound effect is limited to the product where the efficiency gain occurred. But for 

many products, it seems plausible that this effect is not of a high magnitude. Again, we 

consider the example of the TV set. For many people, it is probable that they will not spend 

more time watching TV, because time is the limiting factor for them, not the electricity bill. 

The size and number of TV sets is possibly constrained by their housing. Still, there is the 

indirect rebound effect. As mentioned before, efficiency gains make people richer in real 

terms and decrease electricity prices. This now may trigger an indirect rebound effect. The 

additional income can be spend on energy intensive goods other than TV sets, and the lower 

relative price of electricity sets incentives to do so. Thereby, another part of energy savings 

can be offset. Empirical evidence is relatively scarce for the indirect rebound effect. An 

overview is provided by Sorrell and Dimitropoulos (2007). But existing studies suggest that 

the indirect rebound effect often quantitatively exceeds the direct one. In some cases, gains in 

energy efficiency may indeed backfire (see e.g. Hanley et al., 2009). For example, a 

household that has significantly reduced the energy bill by saving electricity may spend the 

money for a flight to South East Asia.    

When taking the rebound effect into consideration, the via regia may be a more bumpy way 

than assumed by many. Nevertheless, the existence of rebound effects does not generally 

discard energy efficiency policy, especially since backfire seems to be a rare case. But in 



 - 15 -

policy making, possible rebounds should be taken into consideration to ensure the 

effectiveness of a measure.  

Even though the importance of the rebound effect is widely acknowledged within the field of 

Industrial Ecology, the attempts to introduce it into LCA modelling remain rare. Thiesen et al. 

(2008) focus on a situation, where products which differ in prices are compared in a 

consequential LCA. They assume that the money saved by buying the cheaper good will be 

spend in a way that households trends towards the consumption patterns of richer households. 

This methodology covers an income effect, but does not account for substitution which is 

likely to occur when scarcities are changed by regulation. 

Spielmann et al. (2008) discuss the introduction of an underground maglev train in 

Switzerland. They focus on time rebound effects. Therefore, they assume that the time budget 

devoted to travelling remains unchanged, setting the (time) income effect to zero. The 

substitution effects implied by the introduction of the maglev train are taken from a stated 

preference study.   

The rebound effect arises, when microeconomic changes translate to macroeconomic changes 

in a non-linear manner. As a micro level tool, it is difficult to introduce these effects 

rigorously. To assess regulation, especially larger ones, a model that captures economy-wide 

phenomena is needed to account for the rebound effect appropriately.   

3.4 Distributive Effects of Environmental Regulation 

The aforementioned points are costs that appear in a standard economic cost benefit 

reasoning. The focus lies on the efficiency of political action. Still, in actual policy making, 

distributive effects play an important role. They are also relevant for the social pillar of 

sustainability. This eventually leads us to another relevant question: Who pays the costs of 

environmental protection within a society eventually?  

Several surveys examine the distributional consequences of different environmental policies, 

including command and control measurements, tradable emission permits and in particular 

environmental taxes. An overview is compiled by Parry et al. (2005). Environmental 

regulation generally tends to be regressive. The burdens of environmental regulation are 

bigger for poor households, compared to their income. Still, this result is strongly dependent 

of the concrete implementation of an instrument.  
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In the public discussion about environmental protection, employment arguments are used 

frequently and in an emotional way. The argument focuses on the loss of existing jobs and on 

the creation of new green jobs respectively, depending on the position. When trying to 

quantify the employment effects of pollution regulation, these sometimes seem to be even 

positive, yet generally small in magnitude (Morgenstern et al., 2002). 

Redistributive consequences are usually not the topic of LCA. Social aspects can be covered 

using Social LCA (see e.g. Jørgensen et al., 2008). The issues covered in Social LCAs tend to 

be those that are directly connected to the production of certain goods, and the firms 

producing them. Redistributive effects, which can be spread throughout the whole economy, 

necessitate economic modelling. 

4 Shortcomings of Industrial Ecology Tools in Policy Making and Ways to Overcome 

Them 

4.1 Are Industrial Ecology Tools Appropriate Tools for Policy Making? 

MFA is advocated to be introduced as an information tool for policy making (Bauer, 2009). It 

is based, however, on the assumption that today’s, or at least tomorrows unknown, 

environmental problems are correlated with the weight of material flows. This assumption 

does not seem convincing, hence it is not possible to make statements about what is gained or 

lost when the derived indicators change. MFA also treats the economy itself as a black box. 

This implies that nothing can be said about the economic consequences of regulatory 

intervention. As a consequence, MFA can only be used as an instrument to measure the 

physical size of the economy, but not as a tool for policy making. 

LCA is already used in policy making, mainly as a tool to detect products with major 

environmental impacts, i.e. for setting priorities in policy making. But what more is possible? 

LCA can provide a comprehensive and holistic overview of impacts associated with a product 

over its life cycle. LCA is a product based instrument and it is therefore natural to use it in 

product based regulation. Still, as the discussion about the rebound effect showed, an 

efficiency gain of x percent does usually not translate into a reduction of impact by x percent. 

Regulation is embedded in the economy and causes several forms of costs and benefits, as 

well as distributive side effects. LCA takes them insufficiently into account, but for sound 

policy making it is necessary to include them as well. Therefore, LCA is not appropriate as a 

standalone tool in this context. A combination between LCA and economic models seems 
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interesting in order to overcome the problems. Several ways to construct such a combination 

are imaginable. Two of the most promising will be discussed below.   

4.2 Linking Life Cycle Assessment to Partial Equilibrium Models 

A Partial Equilibrium Model is an economic tool that represents a single market. It can be 

used to investigate the effects of regulation on this market, including effects of changed prices 

for inputs and outputs. It takes the perspective of a sector, instead of a single firm. 

It is quite complicated to work out the assumptions and key characteristics of Partial 

Equilibrium Models. There are numerous Partial Equilibrium Models, and their structure is 

chosen to mimic the market of interest. Still, there are two assumptions that are typical for 

Partial Equilibrium Models. The first assumption concerns the markets for other products. It is 

assumed that the prices of all other products outside of the model remain constant and that 

their markets are in equilibrium. Essentially, potential effects on other markets are neglected. 

Consider a hypothetical model of the market for illuminants to assess the effects of a ban of 

incandescent light bulbs. In this model, it is assumed that the prices for lamps themselves, 

which serve as complements for light bulbs, remain unchanged. The same holds true for other 

sources of light, like candles, that can serve as substitutes. The second assumption covers 

income effects. It is assumed that the consumer’s income level does not change due to the 

policy measure. The ban of the light bulbs may reduce the costs of lighting over the life cycle, 

increasing people’s income in real terms. This may also contribute to a rebound effect. Such 

income effects are assumed non-existent as well. 

A topic that may serve as an example for the usefulness of Partial Equilibrium Models is the 

promotion of bio fuels.8 Fuels gained from renewable sources are seen as an environmentally 

sound substitute for fossil fuels, reducing the emissions of greenhouse gases and the depletion 

of non-renewable resources alike. When analysing bio fuels from a life cycle perspective, it 

becomes clear that farming the biomass, processing it into fuels and delivering the final 

product to the customer needs fossil fuels as inputs, which partly offsets the gains (see e.g. 

von Blottnitz and Curran, 2007 for an overview over recent studies).  

Besides these environmental effects, other impacts of the promotion of bio fuels are induced 

by economic mechanisms. These mechanisms are sketched here briefly to demonstrate the 

usefulness of Partial Equilibrium Models. First notice that biomass for bio fuel production, 

                                                 
8 Thanks to Gjalt Huppes for suggesting this topic as an example.  
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especially for those of the first generation, are substitutes to biomass for food production. The 

policy intervention now increases the demand for bio fuels and thereby the demand for 

biomass. This has important implications for land use. From a farmer’s point of view, the 

rising demand makes production for bio fuels more profitable. It is possible to employ land 

which is already being used for agricultural purposes to produce bio fuel instead of food. The 

second option is to convert non-agricultural areas into cropland, which again has 

environmental implications for both net greenhouse gas emissions and for biodiversity. An 

increase in production of biomass for fuel production crowds out food production and 

increases the costs of inputs, both leading to increasing food prices. Especially the impact of 

bio fuel demand on the drastic increase in food prices between 2003 and 2008 is subject to a 

heated debate (e.g. Mitchell, 2008; Headey and Fan, 2008). For actual decision making, it is 

important to answer the questions of price effects, increased land use or the efficiency of 

policy instruments in a quantitative manner. A Partial Equilibrium Model of agricultural 

markets can be used to answer these questions (OECD, 2008). It should be emphasised, that a 

boundary setting problem arises here. It is crucial that the model covers food as well as 

biomass production, in order to the trade-off to become visible. Additionally, the assumption 

that prices in other markets stay unchanged and that income effects are negligible, is 

questionable. Especially when questions about economic growth or income distribution are 

addressed, a general equilibrium framework seems more appropriate (Arndt et al., 2010).   

Partial Equilibrium Models focus on one industry and assume the rest of the economy to be 

constant. This enables the model to concentrate on the market of interest. This market can be 

modelled in detail and therefore we can draw conclusions in a much more precise manner 

than with more general models of the whole economy. Still, the approach only gives reliable 

results, when the underlying assumptions hold. Generally, one can presume that prices outside 

of the model remain constant and income effects are negligible, if policy intervention is 

concentrated on a single industry and small in magnitude. 

We have described the circumstances under which a Partial Equilibrium Model is appropriate. 

Now, they are to be combined with life cycle modelling. There are two approaches to archive 

this goal. We could either hard link both models into one combined model or use two distinct 

models that are soft linked by an exchange of data. A notable example of the latter approach 

is Bouman et al. (2000), who discuss a comparison of conventional lead batteries and lead 

free “green” batteries. They carried out the comparison by using a Substance Flow Analysis 

(SFA), a Life Cycle Assessment and Partial Equilibrium Model in an iterative manner. All 
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three models are applied to reduce material depletion, emissions and waste disposal, 

discussing potential measures to reach these goals.  

A soft linking approach allows the researcher to avoid an increase in complexity of a single 

model that would contain the characteristics of all three models. The stepwise approach also 

makes interpretation and critique of every single step possible. From a practical point of view, 

the use of already existing models is advantageous, as it reduces costs and effort in the 

analysis. A hard link model would allow for a consistent framework, with corresponding 

boundaries. Still, Life Cycle Assessment and economic Partial Equilibrium Models come up 

with very different characteristics, making an integrated approach complex. Soft linking 

therefore seems to be the more promising. 

4.3 Linking Life Cycle Assessment to General Equilibrium Models 

While Partial Equilibrium Models only analyse one certain market within an economy, 

General Equilibrium Models represent the economy as a whole. They are theoretically based 

on the work of Arrow and Debreu (1954), who prove that under certain assumptions there is a 

competitive equilibrium in an economy. While theoretical models of a whole economy can be 

used to draw conclusions about policy intervention in a comparative-static manner, they need 

to be extremely stylised to keep them analytically traceable.  

Numerical models are called for, if real world policy measures are to be evaluated. Such 

models, which are rooted in the Arrow/Debreu framework and which are constructed on a 

sufficient level of detail are called Computable General Equilibrium (CGE) or Applied 

General Equilibrium (AGE) Models. Since the seminal work of Johansen (1960), Computable 

General Equilibrium Models have developed rapidly and have gained importance in policy 

making (Devarajan and Robinson, 2005). One major area of application is Environmental 

Economics (for an overview see e.g. Conrad, 2002; Böhringer and Löschel, 2006).  

To grasp the spirit of CGE Models, key assumptions underlying a basic CGE Model are 

outlined below. A more detailed description is provided by Shoven and Whalley (1992), 

Böhringer et al. (2003) and Sue Wing (2004). The model is based on neo-classical 

microeconomic theory. The economy consists of several industries, each producing one good. 

Each industry is typified by one representative firm that maximises its profits. The households 

are modelled as one representative household that maximises its utility. Usually, the 

production functions in the model are of a Constant Elasticity of Substitution (CES) type, and 



 - 20 -

so is the utility function. The whole economy exhibits constant elasticites of scale, meaning 

that an increase by 10 percent in all input factors yields an increase of output by 10 percent. 

All markets are assumed to be competitive. Most CGE models are static, so investment and 

savings decisions are exogenous.  

To be in equilibrium, the model has to fulfil three conditions. The first one is market 

clearance. All goods produced are demanded and all production factors are employed by the 

firms. The second condition is the zero profit condition. Firms spend all their revenue on 

intermediate inputs and production factors. The last condition is that the household income 

balance has to hold. The representative consumer spends all his factor income on goods (Sue 

Wing, 2004). 

After discussing the main assumptions, data underlying CGE Models remains to be explained. 

The methods to feed numbers into the model are described exemplarily for a CES production 

function. Within these production functions an endogenous substitution between inputs is 

possible.  A production function of this type with two inputs, Labour and Capital, is presented 

in equation (4) 

    /1))1(( KLy  , with 


 1
 .     (4) 

In this equation, y denotes the output of the representative firm and L and K  the labour and 

capital inputs, respectively.   is a scaling parameter and   the substitution parameter, which 

is determined by the elasticity of substitution between the input factors  . The variable   is 

the share parameter in the production function, it determines the shares of labour and capital 

used to produce the output y .  

The elasticites are typically either taken from the economic literature or set to values that 

appear reasonable to the modeller. The scale and share parameters remain to be determined. 

This is usually done by calibrating the model to a base year dataset (for an overview see 

Dawkins et al., 2001). The source of data for this process is Social Accounting Matrices 

(SAM).9 An SAM is an economy wide accounting system in matrix form, based on the 

principle of double bookkeeping. It is similar to Input-Output tables, but extends them by 

displaying the links between factor income and demand for goods explicitly (Robinson, 

2006). When calibrating the model, the scale and share parameters are set in a way that they 

                                                 
9 For an introduction into Social Accounting Matrices, see King (1985). 
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reproduce the base year. Then, the model is set up numerically and can be used to simulate the 

effects of policy intervention. 

Computable General Equilibrium Models enable the researcher to analyse the whole economy 

on a disaggregated level, building upon a coherent microeconomic theoretical foundation. 

Using the theoretical framework, ex ante assessments of policy intervention are possible. 

Scenarios can be defined, computed and compared to a “no policy” base case. Due to the 

model covering the whole economy, general equilibrium effects as those discussed in chapter 

3 can be included. Furthermore, when assessing impacts on sustainability, CGE models can 

incorporate environmental, economic and social aspects simultaneously (Böhringer and 

Löschel, 2006).10 

The critique of CGE Models is concerned mainly with three arguments. The first one is the 

black box problem (Böhringer, et al., 2003). Due to the computational complexity and the 

comprehensiveness of the model, it is hard to capture mechanisms that produce the outcome 

intuitively. Therefore, the results need to be accompanied by a comprehensible discussion of 

the model. The second argument focuses on the calibration approach. Calibration determines 

the parameters of interest. It is based on one observation and rules out the possibility to 

statistically test the model. It is also possible that biases occurring in the base year are 

introduced into the parameters (for a discussion see Dawkins, et al., 2001). The third 

argument deals with the strong assumptions of the model. It ranges from the problem of too 

strict function forms (McKitrick, 1998) to a complete refusal of the model (Ackerman, 2002). 

With regards to this argument, one has to keep in mind that it is not developed as an exact 

representation of reality. Instead, it must be able to yield results sufficiently close enough to 

reality to be of relevance. CGE models can archive this (Kehoe et al., 1995).  

If large scale regulatory measures are to be assessed, where the key assumptions of Partial 

Equilibrium Models do not hold any more, CGE Models are promising. The question is how 

they can be linked with LCA. The use of CGE models in Industrial Ecology has been 

discussed before (Ekvall, 2002; Lave, et al., 1995), but also rejected for computational 

reasons (Lave, et al., 1995). The actual introduction of CGE modelling into the field of 

Industrial Ecology remains scarce (Ibenholt, 2002).  

A notable example can be found in Kandelaars (1999). There, a CGE model is linked to a 

model of physical flows and applied to compare several forms of levies on zinc and lead. 
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Another application of CGE Modelling can be found in Kløverpris et al. (2008, 2010). There, 

the authors modify the Global Trade Analysis Project (GTAP) CGE Model to calculate the 

effects on land use triggered by an increase in demand for agricultural goods. The approach 

was chosen to allow for a more realistic modelling of land use in the Inventory Analysis phase 

for LCAs dealing with agricultural goods. 

A promising way to unite Life Cycle Thinking and economic modelling is a Life Cycle Based 

CGE (LCB-CGE) Model. Several extensions are needed in order to be able to analyse product 

based regulation, compared to the basic CGE model outlined before. First of all, it is 

necessary to make functional units the object of observation, instead of goods, at least for the 

product of interest. A comparable approach has been chosen by Huppes et al. (2006). It is 

advantageous here, that the whole production side is covered by the model, similar to an 

Input-Output model. Boundary setting problems are avoided, it is just necessary to connect 

the products that belong to a functional unit.  

The functional unit will most certainly include durable goods. These goods are not consumed 

once and then are “gone”, but they are used over a longer time span and disposed afterwards. 

The length of the life cycle of these goods may depend on the regulatory measure. Therefore, 

it becomes necessary to dynamise the model to make replacement decisions endogenous. 

Also, a way to determine which goods produced belong to a functional unit is needed. The 

information gathered in Life Cycle Inventory Analyses can serve as an input here11, but they 

need to be projected on an economy-wide level. Sometimes it is the case, that a product of 

interest is composed in a sector with other very different products. Then it becomes necessary 

to disaggregate the sector to reach appropriate results.  

5 Conclusions 

Industrial Ecology in general and Life Cycle Assessment in particular gain increasing 

importance in policy making. This paper seeks to clarify the role of Industrial Ecology tools 

to this objective. Three questions were asked regarding this. They remain to be answered. 

The first question is: Are LCA and MFA appropriate tools for policy making? They would be, 

if they were able to consider the economic effects induced by regulatory action. These include 

benefits and costs within the whole economy, rebound effects and distributive consequences. 

MFA is a highly aggregated macro tool, measuring everything in weight. Economy is 

                                                                                                                                                         
10 In practice, most CGE Models focus on economic aspects and, to a lesser degree, on ecological questions.   
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perceived as a black box. Due to these characteristics, economy-wide MFA can not guide 

policy makers appropriately. LCA analyses the environmental impacts of products from 

cradle to grave. It can capture the benefits of regulation and, with reasonable modification, 

direct costs of regulation as well. As an instrument on micro level, it has difficulties with 

effects that occur in a partial or general equilibrium framework. Therefore, LCA is a 

promising approach to tackle environmental problems, but it can not guide policy makers as a 

standalone tool. 

This leads to the second question: Which economic model is advisable for policy evaluation, 

depending on the regulation to be assessed? When looking at measures that are small in 

magnitude and concentrated on a specific industry, a Partial Equilibrium Model that mimics 

this industry is appropriate. In other cases, the multifarious general equilibrium effects call for 

adequate modelling framework. Computable General Equilibrium Models provide such a 

framework for ex ante policy evaluation.  

The last question is: What could a combination between quantitative economic models, in 

particular Computable General Equilibrium Models, and LCA look like? For a combination 

with Partial Equilibrium Models, a soft link between LCA and an, maybe already existing, 

Economic Model seems most promising. For CGE Models, it appears preferable to develop a 

consistent Life Cycle Based CGE Model. It needs to be based on functional units rather than 

on goods for the product to be assessed. LCA can serve as an input to construct the life cycle 

correctly. The model should also capture the fact that life cycles usually are the life cycles of 

durable goods, inducing the need for a dynamised CGE model.  

There are several directions of further research needed in the future. First of all, it is intended 

by this paper to stimulate the discussion about the role of economic thought and economic 

modelling in Industrial Ecology. This holds especially true, when the tools are intended to be 

used in policy making. When looking in the other direction, Industrial Ecology can also 

inspire the work of environmental economists. The most obvious need for research, however, 

is the actual development of a LCB-CGE model. The model recommended in this paper from 

a theoretical point of view has to be constructed and applied. Then, the idea behind this paper 

can prove itself to reality.  

 
 

                                                                                                                                                         
11 This approach was indicated before by Ekvall (2002).  
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