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Abstract

This paper addresses and resolves the problems caused by microstructure effects

when measuring the relative importance of home and U.S. market in the price

discovery process of internationally cross listed stocks. In order to avoid large

bounds for information shares, previous studies applying the Cholesky decomposi-

tion within the Hasbrouck (1995) framework had to rely on high frequency data.

However, this entails a potential bias of estimated information shares induced by

microstructure effects. We propose a modified approach that relies on distribu-

tional assumptions and yields unique and unbiased information shares. Our results

indicate that the role of the U.S. market in the price discovery process of Canadian

interlisted stocks has been severely underestimated to date. Moreover, we find that

rather than stock specific factors, market design determines information shares.
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1 Introduction

According to Coffee (2002), increasing globalisation and improved technology will lead

to a decay in the number of securities exchanges around the world. Small national ex-

changes will lose their share in trading to large international exchanges, which provide

a more efficient trading environment. Carpentier et al. (2007) examine this develop-

ment for the Canadian stock exchanges with respect to the U.S. markets. They report

a rapidly growing share of U.S. markets in trades of Canadian interlisted stocks, up to

the point where interlisted stocks are absorbed by the foreign market and delisted on

the home market. These developments foreshadow small national stock exchanges to

become markets for illiquid stocks that failed to attract investors on the large markets

(Gaa et al., 2002). Thus, within the context of internationally cross-listed stocks, it is

of paramount interest for national stock exchanges to remain the dominant market in

regard to the price discovery process.1 The competition among smaller national and

the giant U.S. markets for the leadership in price discovery of interlisted stocks has

grown immensely and has triggered a growing field of research.

In a recent study, Eun and Sabherwal (2003) examine US-listed Canadian stocks. They

conclude that price discovery mainly takes place in the home market. This evidence is

supported by Grammig et al. (2005, 2008), Hupperets and Menkveld (2002), and Phy-

laktis and Korczak (2007), who apply the Hasbrouck (1995) methodology to estimate

the home and foreign market share in price discovery (information share) of interlisted

stocks from various countries. They also find that the home market evolves as the dom-

inant trading venue, while trading on the New York Stock Exchange (NYSE) mainly

takes place to offset arbitrage opportunities.

In this paper we argue that this evidence might be misleading, since it is a) based on

non-unique estimators and b) ignores microstructure effects present in high frequency

financial data. We show that estimates resulting from the standard approach are either

biased or rather imprecise and offer an alternative approach that resolves these draw-

backs. This paper thus connects two strands of research, namely studies concerned

with international price discovery and those dealing with market microstructure effects

and their impact on financial volatility estimators.

As outlined by Hasbrouck (2002), Bandi and Russell (2008) and Aı̈t-Sahalia et al.

(2005), high frequency financial data contain a microstructure effects component which

reflects characteristics of the trading mechanism. We reveal that if prices are sampled

at high frequencies, and microstructure components differ in home and foreign market,

information share estimates become severely biased. At lower sampling frequencies,

1 For a comprehensive study concerned with international cross-listings in stock markets see Karolyi
(2006).
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however, at which microstructure effects are less pronounced, the applicability of the

Hasbrouck (1995) methodology is limited as it delivers merely upper and lower bounds

for information shares. The empirical analysis faces the following dilemma. On the one

hand, in the case of low frequencies, the information share bounds diverge considerably

due to the increasing contemporaneous correlation of the price series. The commonly

reported midpoint of upper and lower bound then becomes rather unreliable as a proxy

for the true information share. On the other hand, using high frequency data, the

information share estimates are prone to a distortion by microstructure effects.

The methodological contribution of this paper is a modification of the Hasbrouck (1995)

approach that yields unique information share estimates. The method is applicable to

data sampled at lower frequencies which avoids distortion of the estimated information

shares by microstructure effects. It is based on a recent contribution by Lanne and

Lütkepohl (2005), and relies on distributional assumptions to identify structural shocks

in a cointegrated vector autoregression. This idea is particularly appealing within the

context of internationally cross-listed stocks, since stock returns exhibit a leptokurtic

distribution and the application of a mixture distribution is quite appropriate to ac-

count for such non-normal price innovations.

We apply our method to Canadian stocks, which are traded on the Toronto Stock Ex-

change (TSX) and cross-listed on the NYSE. Our results imply bad and good news

for the national exchanges facing the threat of the U.S. market. First, we show that

the role of the NYSE within the price discovery process of Canadian interlisted stocks

has to date been severely underestimated. In light of our findings, it seems that the

processes described by Coffee (2002) have gained momentum and that the concern ex-

pressed by Carpentier et al. (2007) is quite justified. Second, compared to standard

methods, we find a much smaller cross-sectional variation of information shares among

our sample stocks. This suggests that contributions to price discovery are determined

by market characteristics rather than by stock specific factors. Thus, by the design of

their trading protocol, national stock exchanges themselves are able to influence the

role they play within the price discovery process of interlisted stocks and use this to

their advantage when facing the threat of the large international exchanges.

The remainder of the paper is organized as follows: Section 2 outlines the basic economic

and statistical framework for our analysis as well as the main features and caveats of

standard methods. Section 3 discusses the role of microstructure effects within the con-

cept of measuring price discovery for internationally cross-listed stocks. We also report

simulation evidence on the bias of information share estimates induced by microstruc-

ture effects. Section 4 explains the methodological details of our modified approach.

Section 5 describes the data and sampling details. In Section 6 we present and discuss

our empirical results. Section 7 concludes the paper.
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2 Basic economic and statistical framework

2.1 International price discovery as an error correction process

There exist two prevalent methodologies in the current literature concerned with mea-

suring contributions to international price discovery. A number of studies, including

Eun and Sabherwal (2003) and Phylaktis and Korczak (2007), apply the methodology

advocated by Harris et al. (2002b) and gauge a market’s contribution to price discovery

by its common factor component weight. The second approach put forth by Hasbrouck

(1995) focuses on decomposing the variance of the efficient price into contributions at-

tributable to home and foreign market. As pointed out by Baillie et al. (2002), both

methodologies are closely related (see also De Jong, 2002; Harris et al., 2002a; Has-

brouck, 2002; Lehmann, 2002; Hasbrouck, 2007, chap. 10). In the following, we briefly

review the economic and statistical framework which provides the foundation for our

alternative methodology.

According to the law of one price, the quoted home market and exchange rate adjusted

foreign market prices cannot diverge in the long run, since traders who seize arbitrage

opportunities will force prices back together. In econometric terms the series of log

home market prices (ph
t ) and log foreign market prices denominated in home market

currency (pf
t ) are cointegrated with cointegrating vector β = (1,−1)′. This implies

that one common stochastic trend associated with the notion of the efficient price

exists. When we further assume that home and foreign market price dynamics can

be described by a bivariate vector autoregression of order q, Granger’s representation

theorem applies, and the prices of interlisted stocks evolve according to a bivariate error

correction process (ECM),

∆pt = αβ′pt−1 + Γ1∆pt−1 + . . . + Γq−1∆pt−q+1 + ut, (1)

where pt = (ph
t , p

f
t )′, Γ1 to Γq−1 are 2 × 2 parameter matrices. ut = (uh

t , u
f
t )′ is vector

white noise with zero mean and covariance matrix Σu. The vector α = (αh, αf )′

contains the coefficients associated with the speed of adjustment of each price series to

deviations from the equilibrium. With cointegrating vector β = (1,−1)′, the long-run

impacts of a one unit innovation in the home and the foreign price on the efficient

price/common stochastic trend are given by

ξh = παh
⊥ (long-run impact of an innovation in uh

t )

ξf = παf
⊥ (long-run impact of an innovation in uf

t ), (2)

where π = [α′
⊥(I2 −

∑q−1
i=1 Γi)β⊥]−1 (Johansen, 1995). Here, α⊥ = (αh

⊥, α
f
⊥)′ and
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β⊥ = (1, 1)′ represent the orthogonal complements of α and β.2 It can be shown that

the adjustment coefficients are orthogonal to the Gonzalo and Granger (1995) common

factor weights. The Gonzalo/Granger methodology thus provides the theoretical basis

for Eun and Sabherwal’s (2003) idea to draw on the adjustment coefficient ratios

Adjh =
αh

αh + |αf |
and Adjf =

|αf |

αh + |αf |
(3)

as measures for home and foreign market contributions to the price discovery process.

2.2 Hasbrouck information shares

The exclusive focus on adjustment coefficients neglects two important aspects of the

price process: the contemporaneous correlation between the innovations uh
t and uf

t and

their variances. Hasbrouck’s (1995) methodology avoids these drawbacks by identifying

idiosyncratic price innovations in each market, and by decomposing the variance of the

efficient price into home and foreign market contributions. Idiosyncratic innovations are

contemporaneously and serially uncorrelated zero mean unit variance random variables,

εt = (εht , ε
f
t )′ ∼ (0, I2). They relate to the ”composite” innovations as ut = Bεt.

Thus, vt = ξ′Bεt, where ξ = (ξh, ξf )′, gives the long-run impact of time t idiosyncratic

innovations on the efficient price. Hasbrouck (1995) proposes to decompose the variance

of efficient price innovations (Var(vt) = ξ′BB′ξ) into contributions of idiosyncratic

innovations in each market. However, unless the variance covariance matrix Σu is

diagonal, the matrix B is underidentified. This problem can be resolved by a Cholesky

factorization of the variance covariance matrix Σu = CC ′, where C denotes the lower

triangular matrix derived from the Cholesky decomposition. This implies B = C, i.e.

a hierarchic ordering of markets. Idiosyncratic innovations in the market ordered first

contemporaneously affect both markets, while price innovations in the market ordered

second do not contemporaneously affect the price in the market ordered first. With the

home market ordered first, Hasbrouck information shares of home (ISh) and foreign

(ISf ) market can be computed as

ISh =
[ξ′C]2[1]

ξ′CC ′ξ
and ISf =

[ξ′C]2[2]

ξ′CC ′ξ
, (4)

where ξ′C[j] denotes the jth element of the vector ξ′C. Due to the arbitrary ordering

of markets, the information shares in (4) are not unique. The contribution of the

2 The ratio of long-run impacts ξh/ξf represents an intuitive measure for the significance of a market
concerning price discovery. Since π is a scalar, it follows from (2) that ξh/ξf = αh

⊥/α
f
⊥. Hence,

a simple way to compute the long-run impacts ratio is to use the information contained in the
adjustment coefficients.
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market ordered first is maximized and that of the market ordered second is minimized.

Since there is no theoretical justification for such a hierarchy, the common solution is

to permutate the ordering of the markets. This yields information share upper and

lower bounds. The main drawback of the Hasbrouck methodology is that these bounds

can diverge considerably, as the contemporaneous correlation between the composite

innovations uf
t and uh

t tends to increase with decreasing sampling frequency. Figure 1

illustrates this phenomenon for one of our NYSE interlisted Canadian stocks (Abidibi

Consolidated, ABY).

<Insert Figure 1 about here>

The graph shows that sampling prices at intervals longer than two minutes already leads

to wide bounds of the foreign market information share. The midpoint therefore yields

a very inaccurate measure for the true information share at lower sampling frequencies.

3 Price discovery and microstructure effects: concern, ev-

idence, and implications

3.1 Sampling frequency and microstructure effects: the concern

In order to avoid divergence of information share bounds, the obvious strategy is to

use data sampled at the highest possible frequency. In his seminal application Has-

brouck (1995) performed the econometric analysis based on price data sampled at one

second intervals. However, a glance at recent papers dealing with the estimation of

return volatility using high frequency data suggests that this is a problematic strategy.

Andersen et al. (2001), Andersen et al. (2003) and Barndorff-Nielsen and Shephard

(2002) popularized the idea to use price data sampled at high frequencies, e.g. five

minutes, to estimate return volatility at a lower, e.g. daily, frequency. The basic idea

is to divide the trading day d into M equi-distant time intervals, compute log price

changes rd,j for each interval j, and compute the so-called realized variance estimator

as RVd =
∑M

j=1 r
2
d,j. If the underlying price process is a diffusion process with stochastic

volatility, then RVd converges in probability to the integrated volatility for day d.

Shortening the sampling intervals, i.e. increasing M , should improve the precision of

the estimator. However, Aı̈t-Sahalia et al. (2005) and Bandi and Russell (2008) point

out that thriving for precision by increasing the sampling frequency is misleading. They

show that in the case of too short a sampling interval, the realized variance estimator

exhibits erratic behaviour. Figure 2 illustrates this effect, again for ABY. The graph

shows that the realized variance estimate using NYSE returns is stable up to a sampling

frequency of about two minutes and then sharply increases at shorter intervals. The
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effect is different for the home market. Here, the realized variance estimate remains

stable up to a sampling frequency of about one minute.

<Insert Figure 2 about here>

As a possible explanation for this phenomenon, Bandi and Russell (2008) and Äıt-

Sahalia et al. (2005) state that market microstructure effects interfere with the fun-

damental price process. These effects are negligible at longer sampling intervals, but

dominate the realized variance estimate at high frequencies. Microstructure effects are

transient price changes which are uninformative concerning the fundamental value of

an asset. They arise from sources such as bid-ask bounces, temporary liquidity shocks,

inventory effects, and minimum tick size.

As outlined above, computation of Hasbrouck information shares amounts to estimating

and decomposing the variance of the efficient price. Our concern is that the strategy to

move to a higher sampling frequency avoids large bounds, but at the same time might

bias the estimated information shares. The question is therefore whether microstructure

effects prevalent at high sampling frequencies affect the information share estimates in

a similar way as they affect the realized variance estimate.

3.2 Simulation evidence

In order to address this issue we simulate the true price discovery process in home and

foreign market using a parameterized version of the ECM in (1) and then distort the true

prices ph
t and pf

t by adding independent microstructure effects. Observed log prices p̃h
t

and p̃f
t are then given by p̃h

t = ph
t +ηh

t and p̃f
t = pf

t +ηf
t . The microstructure components

ηh
t and ηf

t are drawn from independent zero mean normal distributions with variances

σ2
ηh and σ2

ηf , respectively. The basic experimental design assumes symmetry of home

and foreign market which implies identical Hasbrouck information shares ISh = ISf =

0.5. Parameter values are chosen to match typical numbers found in our sample. The

innovations uh
t and uf

t are normally distributed with zero mean and identical standard

deviation σu = 0.0002 and contemporaneously uncorrelated.3 Along with the reference

case, in which no microstructure effects are present, we consider seven scenarios in

which we vary the variance of the microstructure effects, σ2
ηh and σ2

ηf . In the first three

scenarios, microstructure effects are prevalent only in the foreign market. In the other

four scenarios, microstructure effects are present in both markets. In scenarios 5, 6 and

7, the foreign market microstructure variance exceeds that of the home market (a setup

suggested by Figure 2).

3 Setting σu = 0.0002 implies an annualized log return standard deviation of 20% when the sampling
frequency is 10 seconds. With 265 trading days per year, 10 trading hours per day and sampling at
10 seconds we have

√
265 × 10 × 60 × 6×0.0002≈ 0.2.
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<Insert Table 1 about here>

Table 1 reports the simulation results. The conclusive evidence is that microstructure

effects can severely bias information share estimates. In detail, the information share

attributed to the market in which microstructure effects are more prevalent is under-

estimated. Consider scenario 3, in which the home market is free of microstructure

effects, but the foreign market microstructure component’s standard deviation is two

times that of the fundamental innovation’s standard deviation. The estimated foreign

market information share amounts to 20%, less than half of its true value. When mi-

crostructure effects are present in both markets, biased information shares result when

the variances of the microstructure components differ between markets. In scenario 6,

in which the foreign market microstructure variance is four times that of the home mar-

ket, the downward bias of the foreign market information share is most pronounced.

The estimated foreign market information share is less than one quarter of its true

value. Besides, Table 1 shows that different microstructure effects in home and foreign

markets also affect adjustment coefficient ratios (3) and long-run impact coefficients

(2).

These findings are confirmed in two alternative experimental setups. The asymmetric

design assumes a 30:70 distribution of home and foreign market information share. The

monopolistic setup implies that 100% of price discovery takes place in the foreign mar-

ket. The results for these alternative experimental designs are reported in the appendix

Tables A-1 and A-2.

Estimating information shares of interlisted stocks using high frequency data therefore

can lead to wrong conclusions if microstructure effects are more prevalent in one of

the markets. Given the different designs of international stock markets, such a sce-

nario seems to be the rule rather than the exception. Within the context of Canadian

interlisted stocks, Figure 2 evinces that microstructure effects are more prominent at

the NYSE than at the TSX. According to the results of our simulation study, this

suggests that standard Hasbrouck information shares estimated at high frequencies un-

derestimate the importance of the NYSE for the price discovery process. Moving to a

lower sampling frequency, however, is not an option. Estimation at lower frequencies

yields inaccurate results, as the bounds for the Hasbrouck information shares diverge

considerably.4 The next section proposes a solution to this dilemma.

4 Without formally addressing the problems associated with microstructure effects, previous studies
concerned with international price discovery have avoided modelling at very high sampling frequencies.
Hupperets and Menkveld (2002), for instance, sample their data at five minutes intervals, Phylaktis
and Korczak (2007) use a one minute frequency, Eun and Sabherwal (2003) use ten minutes intervals.
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4 Modified Hasbrouck information shares

4.1 Unique information shares based on distributional assumptions

In the following, we advocate an alternative approach that yields unique informa-

tion shares and consequently is applicable to data sampled at lower frequencies. The

methodology is based on a recent contribution by Lanne and Lütkepohl (2005). They

propose to identify structural shocks in a cointegrated system based on distributional

assumptions. This is of major interest for the present problem since these assump-

tions are particularly plausible in our application. In detail, we propose to model the

contemporaneously correlated ECM innovations ut in (1) as a linear combination of

uncorrelated innovations which follow a mixture normal distribution,

ut = Wwt, (5)

where W denotes a non-singular parameter matrix. Idiosyncratic, i.e. contempora-

neously uncorrelated innovations, wt = (wh
t , w

f
t )′, are generated as a mixture of two

Gaussian random vectors,

wt =







e1t ∼ N (0, I2) with probability γ

e2t ∼ N (0,Ψ) with probability 1 − γ,
(6)

where 0 < γ < 1 is referred to as the mixture probability, and Ψ is a diagonal matrix

with positive elements ψh and ψf . The variance covariance matrix of wt is a diagonal

matrix given by

Σw =

(

Var(wh
t ) 0

0 Var(wf
t )

)

=

(

γ + (1 − γ)ψh 0

0 γ + (1 − γ)ψf

)

. (7)

If ψh = 1, the innovations in the home market price series would follow a normal dis-

tribution. With ψh = ψf = 1, innovations in both price series are normally distributed

and the ECM in (1) with Gaussian innovations emerges as a special case. As a matter

of fact, the use of mixture of normal distributions is particularly appealing since it

captures the excess kurtosis found in financial return data (see e.g. Mittnik et al., 2004;

Tsay, 2005, chap. 1).

The key advantage is that the mixture assumption offers the possibility to identify

unique Hasbrouck-type information shares such that one can dispense with the Cholesky-

based measures. The matrix B, which relates composite to idiosyncratic innovations

via ut = Bεt, can be identified and estimated if the data support the mixture nor-

mal assumption. Lanne and Lütkepohl (2005) show that the elements of B are locally
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identified by the distributional assumptions concerning wt if and only if all diagonal

elements of Ψ are distinct, which in the present case requires that ψh 6= ψf .

When estimates of the mixture parameters W,γ,Ψ are available (we will address to

estimation issues below), we can exploit the relation that ut = Bεt = Wwt, such that

Σu = BB′ = WΣwW
′. (8)

It follows that B = WΣ0.5
w and εt = Σ−0.5

w wt. Information shares in the spirit of

Hasbrouck (1995) that result from the decomposition of the variance of the efficient

price innovations vt = ξ′Bεt, can then be computed as

ISMh =

[

ξ′WΣ0.5
w

]2

[1]

ξ′WΣwW ′ξ
and ISMf =

[

ξ′WΣ0.5
w

]2

[2]

ξ′WΣwW ′ξ
, (9)

with ξ = (ξh, ξf )′ defined as in (2). We refer to ISMh and ISMf as modified Hasbrouck

information shares. The logic behind the decomposition can be seen by writing the

variance of the efficient price innovations in detail as

Var(vt) = ξ′BB′ξ = ξ′WΣwW
′ξ (10)

=
{

(ξh)2w2
11 + 2ξhξfw11w21 + (ξf )2w2

21

}

× Var(wh
t )

+
{

ξf )2w2
22 + 2ξhξfw12w22 + (ξh)2w2

12

}

× Var(wf
t ),

where wij denotes the ith row, jth column element of W . Equation (10) illustrates

that the variance of the efficient price innovation can be written as the weighted sum

of idiosyncratic home and foreign innovation variances which are, as can be seen in (7),

a function of the mixture parameters. The modified information shares in (9) are thus

a function of all structural parameters.

Lanne and Lütkepohl (2005) point out that the matrix W is identified up to a mul-

tiplication by any of its columns by minus one. This does not change the modified

information shares since the terms in (10) are robust to a change in the signs of the

elements of a column in W . We provide an illustration of identification of information

shares by the mixture assumption in Appendix A.

4.2 Parameter estimation

Estimation of a cointegrated system with mixture normal innovations is intricate, as

it requires nonlinear optimization techniques. Maximum likelihood estimation can be

performed as outlined by Lanne and Lütkepohl (2005). They propose to estimate the

cointegrating vector in an initial step or fix it to its theoretical value (β = (1,−1)′ in

9



our case). Since the joint density of the mixture normal variates wt is given by

f(wt) = γ(2π)−1 exp

{

−
1

2
wtw

′
t

}

+ (1 − γ)2π det(Ψ)−
1

2 exp

{

−
1

2
w′

tΨ
−1wt

}

,

the joint density of log price changes at time t, conditioned on time t− 1 information,

can be written as

ft−1(pt) = γ det(W )−1

× exp

{

−
1

2
(A(L)pt)

′(WW ′)−1(A(L)pt)

}

+ (1 − γ) det(Ψ)−
1

2 det(W )−1

× exp

{

−
1

2
(A(L)pt)

′(WΨW ′)−1A(L)pt

}

,

where A(L) = 1−L−αβ′L−Γ1∆L− . . .−Γq−1∆L
q−1. The conditional log likelihood

L (θ) =

T
∑

t=1

log ft−1(pt), (11)

where θ collects the model parameters, has to be maximized by nonlinear optimization

algorithms.

While the simultaneous estimation of ECM parameters (α, Γj- matrices) and mixture

parameters (W,γ,Ψ) is feasible, maximization over the large parameter space, in com-

bination with a lag length selection procedure, is computationally quite intensive. We

therefore recommend a two-step estimation strategy. When the cointegrating vector is

fixed to its theoretical value, β = (1,−1)′, equation by equation OLS of (1) delivers

consistent first step estimates of the ECM parameters. The second estimation step

entails maximization of the log-likelihood (11) in which the ECM parameters are re-

placed by their first step estimates. Nonlinear optimization is then performed for the

mixture model parameters only. Standard errors of parameter estimates and modified

information shares estimates resulting from this two-step procedure can be conveniently

delivered by a parametric bootstrap along the lines of MacKinnon (2002). Details of

the bootstrap procedure are provided in Appendix B.

5 Data and sampling

Our data include bid and ask quotes for 69 Canadian stocks. Initially we identify 83

Canadian stocks which were traded on the TSX and cross-listed on the NYSE between

January 1st 2004 and 31st of March 2004, which is the period for which we have data

available. 18 stocks have been excluded from the sample. In detail, we drop extremely

10



infrequently quoted stocks. We thereby apply two criteria: we require our sample stocks

to be quoted on each of the 62 trading days (considering the first two hours of trading)

and the traded volume over the whole sampling period has to exceed 1 Mio. CAD on the

TSX and NYSE, respectively. By the first criterion the stocks CNI, EXEA, BEI, ITN,

LAF, MWI, RBA, TRA, and VTS are excluded and by the second we drop BR, CJR,

CWG, and OPY (NYSE ticker symbols). Further we exclude BGM, since we were not

able to identify and match the TSX midquote with the corresponding NYSE midquote.

The number of stocks is comparable to the sample used by Eun and Sabherwal (2003)

who consider 62 US cross-listed Canadian stocks (of which 41 were traded on NYSE

and 21 on NASDAQ). Table A-3 in the appendix contains the stock tickers as well

as the full company names. The NYSE data are taken from the Trade and Quote

(TAQ) DVDs supplied by the New York Stock Exchange. Toronto quote data were

obtained from the Equity Trades and Quotes data set provided by the TSX. CAN/US$

exchange rate Reuters quotes come from Olsen Associates. The foreign market price

(pf
t ) is computed as the log midquote of NYSE bid and ask price which is converted into

Canadian dollars using the midpoint of the Reuters quotes for the intra-daily exchange

rate. The home market price (ph
t ) is the log midpoint of the TSX bid and ask quote.

Although the continuous trading hours of the TSX and the NYSE overlap (9.30 am to

16.30 pm EST), we focus on data for the two hours of continuous trading (9.30 am to

11.30 am). Focusing on the first two trading hours retains more than 3000 observations

per stock, enough to deliver precise results. Overnight log price changes are excluded

from the analysis.

<Insert Table 2 about here>

Table 2 displays cross-sectional descriptives. Detailed stock-specific information can

be found in Tables A-3 and A-4 in the appendix. It can be seen that the sample

includes a range of stocks varying with respect to size and trading value. We choose

a two minutes sampling frequency. As pointed out before, the sampling interval has

to balance the potential bias by microstructure effects at high frequencies and, when

Hasbrouck information shares are computed, the widening of upper and lower bounds.

The two minutes frequency is suggested by volatility signature plots like the one in

Figure 2 which indicate that microstructure effects are mitigated to a large extent at

this sampling frequency. As a more formal selection criterion, we also compute stock

specific optimal sampling frequencies along the lines of Bandi and Russell (2008). The

cross-sectional distribution of the Bandi/Russell optimal sampling frequency reported

in Table 2 indicates that a two minutes sampling interval is an appropriate choice.
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6 Results and discussion

6.1 Specification test results

The computation of modified Hasbrouck information shares requires that log returns

exhibit the leptokurtosis that justifies the mixture of normal assumption. In order

to examine the distribution of log price changes we therefore apply the Jarque-Bera

normality test to the two minutes return data. Table 2 reports the cross-sectional dis-

tribution of the p-value of the Jarque-Bera statistic. For all our sample stocks the null

of normally distributed returns is rejected at any common level of significance. Table

2 also shows that the excess kurtosis of the return distributions supports the mixture

normal assumption.

Parameter estimation follows the two-step procedure outlined in Section 4. The first

step entails a standard cointegration analysis which involves testing the number of coin-

tegrating relations and lag length selection for the equilibrium correction model (ECM)

in Equation (1). We summarize the results in Table 3. Johansen’s (1988) trace and

max. eigenvalue statistics indicate the presence of one cointegrating relation, and hence

one common stochastic trend. The normalized cointegrating vectors, estimated by re-

duced rank regressions (see Johansen, 1991), are close and not significantly different

from β = (1,−1) for all stocks. Hence, we fix the cointegrating vector to its theoretical

value and estimate the ECM parameters by OLS. Results change only marginally when

the analysis is based on estimated cointegrating vectors. The lag length in the ECM

selected by the Schwarz information criterion (SIC) ranges from one to six.

<Insert Table 3 about here>

In the second step, we maximize the log likelihood function (11) conditioning on the

first step estimates in order to obtain estimates for the mixture parameters γ, Ψ, and

W . Table 4 displays the distribution of parameter estimates across the 69 sample stocks

along with their standard errors averaged across stocks. Stock-specific results can be

found in Appendix Table A-5. Estimates of the short run parameter matrices Γj are

omitted for the sake of brevity.

<Insert Table 4 about here>

As discussed above, local identification of the mixture model parameters requires the

diagonal elements of the matrix Ψ to be different. We therefore conduct a Wald test of

the null hypothesis that ψh = ψf . Table 3 shows that the null is rejected for 67 of the 69

sample stocks at the 1% significance level. For two of the stocks, CLS and NT, the null

cannot be rejected. These stocks will not be included in the subsequent cross-sectional
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analyses. The small parameter standard errors of the mixture parameters indicate

estimation precision, which, combined with Wald and Jarque-Bera test results, support

the identification of information shares by the mixture distribution assumption.

6.2 Discussion

First and second step estimates are combined to compute modified Hasbrouck informa-

tion shares as outlined in Section 4.1. Their distribution across the sample stocks along

with their average standard errors is reported in Table 5. Stock-specific results can be

found in the Appendix Table A-6. The table also reports adjustment coefficient ratio

estimates and standard errors. Adjustment coefficient ratios serve as a benchmark,

since they have been used by Eun and Sabherwal (2003) to assess the importance of

the US market for Canadian interlisted stocks. Recall from the discussion in Section

2.1 that a large foreign market adjustment coefficient ratio Adjf = |αf |
αh+|αf |

and a small

home market ratio Adjh = αh

αh+|αf |
imply that the NYSE price corrects more strongly

to deviations from the law of one price than the TSX price. Equivalently, this means

that the common factor weight of the NYSE (TSX) price in the Gonzalo/Granger de-

composition is relatively low (high). Large Adjf and small Adjh thus indicate a minor

(major) role of the NYSE (TSX) in the price discovery of Canadian interlisted stocks.

<Insert Table 5 about here>

Whilst the sample average of the TSX adjustment coefficient ratio (Adjh) amounts to

29%, that of the NYSE (Adjf ) is equal to 71%. The 42% difference in the contribu-

tions to price discovery indicates a clear leadership of the TSX. These findings update

the results reported by Eun and Sabherwal (2003). Using 1997 data, they estimate

an average TSX (US market) adjustment coefficient ratio of 38% (62%), i.e. the TSX

contribution to price discovery exceeds that of the US markets by 24%. Although some

parameters of the empirical analysis differ (10 min. vs. 2 min. sampling frequency, dif-

ferent set of stocks, NYSE/NASDAQ vs. NYSE only), this suggests that the TSX has

extended its lead in terms of contributions to price discovery from 1997 to 2004. Is the

concern that the importance of Canadian and other regional exchanges will deteriorate,

and US exchange will take over the price discovery in the long run groundless? The

results reported in Table 5 show that it is too early to jump to this conclusion. When

contributions to price discovery are measured using the approach proposed in this pa-

per, the picture changes: The modified Hasbrouck NYSE information share averaged

across stocks amounts to 45%, that of the TSX is equal to 55%. Although the TSX

still emerges as the leading market in terms of price discovery, its 10% winning mar-

gin appears small compared to the 42% lead reflected in the difference of adjustment
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coefficient ratios. The competitive edge of the TSX is much less pronounced.

<Insert Table 6 about here>

These divergent conclusions are attributable to the different methodologies. As outlined

in Section 2.2, the focus on adjustment coefficient ratios ignores the variances of price

innovations in the markets and their contemporaneous correlations.

Hasbrouck’s (1995) methodology takes standard deviations and correlations of price in-

novations into account. However, the Cholesky decomposition imposes an informational

hierarchy of markets that is hardly justifiable, and the permutation of the ordering is

often a dissatisfying solution due to the wide information share bounds. This is the

case in the present application. The average midpoint of standard Hasbrouck TSX in-

formation shares amounts to 61% and that of the NYSE is equal to 39%, indicating the

leadership of the TSX in the price discovery process. However, the evidence is weakend

by the wide upper and lower bounds, which on average differ by 65%.

Another interesting result lies in the variation of estimated information shares among

the sample stocks. Tables 5 and 6 show that the cross-sectional standard deviation of

the adjustment coefficient ratios amounts to 24% and that of the standard information

share midpoints is equal to 13%. By contrast, the cross-sectional standard deviation of

the market modified information share amounts to only 4 %. Percentiles, inter-quartile

ranges, and the kernel density plots in Figure 3 tell the same story. The kernel estimates

show the symmetric thin-tailed distribution of the modified information shares, which is

much more concentrated than the distributions of standard information share midpoints

and the adjustment coefficient ratios. The latter is especially widely dispersed.

<Insert Figure 3 about here>

This result is of paramount interest when considering the determinants of a market’s

contribution to the price discovery process. To date, cross-sectional analysis focused on

stock-specific explanatory variables such as market capitalization, ownership structure,

industry et cetera to explain the considerable cross stock variation of foreign market

price discovery contributions. Yet, given the small cross-sectional variation of the modi-

fied information shares among the sample stocks, our results indicate that stock-specific

factors actually play a minor role within the price discovery process.

This conclusion is confirmed by the cross section regression results reported in Table

7. The regression explains the cross-sectional variation of modified Hasbrouck NYSE

information shares using the set of covariates proposed by Eun and Sabherwal (2003).

The results show that only the regressors directly related to the trading process - ratio

of NYSE and TSX effective spread, and NYSE share of the total number of trades -
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are statistically significant. A higher share of medium sized trades at the NYSE is not

associated with a higher NYSE information share.5 On the other hand, stock specific

variables - firm size, measured as the log of the TSX market capitalization, and the

years listed at the NYSE - have no explanatory power. Moreover, the dummy variables

indicating the industry of the stocks are (as in Eun and Sabherwal 2003) not jointly

significant. Interestingly, the puzzling result of a significantly higher price discovery

contribution of the NYSE for small Canadian stocks reported by Eun and Sabherwal

(2003) is not present when using the modified Hasbrouck information shares.

<Insert Table 7 about here>

The conclusion that it is the design of a market itself which determines its information

share means good and bad news for national and regional exchange operators sensing

the threat of the US exchanges. On the one hand, they cannot claim that factors out

of their control (like firm size or foreign ownership) determine the importance of the

foreign market. On the other hand, the competition between exchanges to achieve

leadership in terms of price discovery works through parameters that they themselves

control, namely those which generate a trading environment that fosters the process

through which prices incorporate new information.

7 Concluding remarks

This paper examines the price discovery process of Canadian interlisted stocks and

proposes a modification of the Hasbrouck (1995) approach. The main drawback of the

standard Hasbrouck information shares is their non-uniqueness: they are derived as

midpoint of lower and upper bounds, which tend to become extremely wide at lower

sampling frequencies. At high frequencies, however, estimated information shares can

be biased by microstructure effects. We offer a solution to this dilemma. Based on

distributional assumptions as an alternative method for identification, our approach

yields unique Hasbrouck-type information shares. As a result, the methodology can be

applied to data sampled at lower frequencies, at which the dominance of the market

microstructure effects component in the price series is alleviated.

We apply our modified approach to Canadian stocks which interlist on the NYSE. Our

results suggest that the contribution of the NYSE to the price discovery process of

Canadian interlisted stocks is severely underestimated by standard methods. We re-

veal that the home market leadership found by previous studies is less pronounced and

5 Medium sized trades are considered informative. An exchange with a higher share in medium sized
trades is hypothesized to contribute more to price discovery due to the informational content in those
trades. Eun and Sabherwal (2003) reported results that supported this argument. However they also
argued that the finding is not robust across different definitions of medium sized trades.
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actually price discovery is more evenly divided between TSX and NYSE. Moreover,

we find that the variation of information shares across stocks is much smaller than

indicated by standard methods. In contrast to recent studies, which focus on stock

specific factors as the determinants of a market’s contribution to international price

discovery, we argue for market design as the major factor. In the light of the present

development towards a small number of very large international exchanges, this result

is of paramount interest for national stocks exchanges, since it implies that by improv-

ing their trading protocol, and providing a more efficient trading environment, stock

exchanges may be able to maintain or even increase their share in the price discovery

process of interlisted stocks.

Albeit modified information share estimation is computationally more intricate, since it

involves nonlinear optimisation, its applicability is not limited to internationally cross-

listed stocks. Figuerola-Ferrett and Gonzalo (2007) measure price discovery in com-

modity markets, Chakravarty et al. (2004) examine the relative contribution to price

discovery of stock and options markets, and Blanco et al. (2005) use Hasbrouck informa-

tion shares to document a lead for credit default swap (CDS) prices over credit spreads

in the price discovery process. These analyses also suffer from the non-uniqueness of

the standard information shares and are prone to microstructure effects. Our modified

approach that identifies unique information shares and alleviates the bias by microstruc-

ture effects presents an appealing alternative.
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APPENDIX

A Illustrating identification by the mixture normal as-

sumption

In order to illustrate the identification method of our modified approach consider the

following numerical example. The left panel of Figure 4 depicts time series of contem-

poraneously correlated price innovations uh
t and uf

t .

<Insert Figure 4 about here>

The stochastic process which generated the data is a parameterized bivariate mixture

model with γ = 0.9, ψh = 1, ψf = 10 and

W =

(

0.0001 0.00003

0.00003 0.0001

)

.

Using (8), this implies corr(uh
t , u

f
t ) = 0.57. Recall from Section 2.1 that the stan-

dardized idiosyncratic market innovations we are seeking to identify are serially and

contemporaneously uncorrelated εt ∼ (0, I2) random variables. They relate to the

non-standardized idiosyncratic innovations wt generated by (6) via εt = Σ−0.5
w wt. The

time series of idiosyncratic innovations wh
t and wf

t , which generate the sequences of

composite innovations (ut = Wwt) are depicted in the right panel of Figure 4.

The estimation procedure has to solve the inverse problem to back out the unknown

structural parameters from the observed sequence of composite innovations. What are

the properties the data must exhibit to enable us to estimate the structural parameters

and modified information shares? To answer this question, it is helpful to take a closer

look at the time series depicted in Figure 4. The left panel shows that at certain points

in time, most prominently at t = 60, the foreign market composite innovation uf
t is deep

in the tails of the empirical distribution. From our knowledge of the data generating

process, and by looking at the right panel series of Figure 4, we can see that a large

negative idiosyncratic foreign price innovation occurred at time t = 60. It resulted

from a large negative draw from a normal distribution with variance ψf = 10. The

small positive home market idiosyncratic innovation wh
60 resulted from a draw from a

normal distribution with unit variance (ψh = 1). Due to the structure of the matrix W ,

the large negative price innovation in the foreign market spills over contemporaneously

to the home market. As a consequence, the composite home market innovation uh
60

becomes negative.
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The occurrence of outliers like the one at t = 60 enables us to identify and estimate the

structural parameters W , ψh, ψf and γ. Put simply, what the maximization of the log

likelihood (11) does is to match the empirical variances of the composite innovations and

their correlations by choosing appropriate values for W . Occasional large absolute price

shocks in one market, but not in the other, induce the maximum likelihood procedure

to assign a non-zero value to the mixture probability γ and to choose state variances

ψf and ψh which may considerably differ. The requirement on the data is thus that

they contain, at certain points in time, price innovations in home and foreign market

which are, despite their relatively strong correlation, of quite different sizes.

If the state variances ψh and ψf were identical, it would not be possible to identify the

mixture model parameters and compute modified information shares. We would then

not observe those identifying outliers. Some may occur by chance, which would imply

that the mixture parameters would be very imprecisely estimated.

We recommend checking the standard errors of the mixture parameter estimates and

testing the null that ψf = ψh before modified Hasbrouck information shares are com-

puted. Taking a look at the kurtosis of log price changes and testing for non-normality

via a Jarque-Bera test are further checks that should be employed to assess whether the

identification of modified information shares by distributional assumptions is supported

by the data. This is ultimately an empirical question. If identification by distributional

assumptions is supported, the method offers the opportunity to allocate unique home

and foreign market contributions to price discovery within the framework proposed by

Hasbrouck (1995). The dilemma outlined in Section 2 is resolved as there is no need to

move to high frequencies in order to narrow the information share bounds.
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B Parametric bootstrap procedure

We conduct a parametric bootstrap to compute standard errors and confidence intervals

for parameter and information share estimates resulting from the two-step estimation

procedure outlined in Section 4.2. The procedure works as follows. We first draw an iid

sequence of random variables from a normal mixture distribution. This distribution is

generated using the mixture parameters which are estimated in the second (maximum

likelihood) step of the estimation procedure. Next, we simulate price series according

to the ECM (1) using observations from the original price series as starting values, the

cointegrating vector β = (1,−1)′, first step OLS estimates of the ECM parameters, and

simulated mixture residuals. The number of lags in the ECM corresponds to the optimal

lag length as chosen by the Schwarz criterion. The length of the simulated series equals

the number of observations in the original data set plus 100. We discard the first 100

simulated data points in order to reduce the dependence on the starting values. The

two-step estimation procedure described in Section 4.2 is then applied to the simulated

data. We store the resulting parameter estimates and compute standard Hasbrouck

information shares, adjustment coefficient ratios and modified Hasbrouck information

shares. This procedure is repeated B = 399 times, as suggested by Davidson and

MacKinnon (2000).6 Standard errors for parameter and information share estimates

are computed from the empirical distribution of the bootstrap estimates.

C Additional Tables

<Insert Table A-1 about here>

<Insert Table A-2 about here>

<Insert Table A-3 about here>

<Insert Table A-4 about here>

<Insert Table A-5 about here>

<Insert Table A-6 about here>

<Insert Table A-7 about here>

6 Davidson and MacKinnon (2000) recommend choosing the number of bootstrap replications B such
that α(B + 1) is an integer. Testing one-sided at 5% significance, B = 399 implies that the 20th
largest bootstrap estimate is the critical value at α = 0.05.
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Figure 1: Information share estimates at different frequencies.
The graph shows the dependence of Hasbrouck information shares on the sampling frequency. It displays
the upper and lower bound (solid lines) of the NYSE information share as well as the associated midpoint
(dotted line) for the Canadian NYSE interlisted stock Abitibi Consolidated Inc. (ABY), estimated at
different frequencies (details on the data can be found in Section 5). The estimates are calculated over
the 62 days (January first 2004 to March 31st 2004) using the first two hours of trading. As depicted
by the graph, the bounds diverge considerably as the sampling frequency decreases. At low sampling
frequencies the average over the bounds converges to 0.5, i.e., to the point, where price discovery is
divided evenly between the markets.
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Figure 2: Volatility signature plot of TSX and NYSE log returns.
The graph shows the realized variance estimate for home and foreign market log returns of our sample
stock (ABY) calculated over a range of sampling frequencies. The estimates are calculated for each
day and averaged over the 62 days (January 1st 2004 to March 31st 2004) using the first two hours of
trading. The graph depicts the increasing bias in the variance estimate at fine sampling frequencies:
at frequencies higher than two minutes, the realized variance estimate rises sharply, indicating the
increasing prevalence of microstructure effects in the price series.
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Figure 3: Kernel density estimates NYSE contribution to price discovery.
The graph illustrates the cross sectional distribution of the modified NYSE information share ISMf

(thick solid line), midpoint of Hasbrouck NYSE information share ISf (thin solid line) and the TSX
adjustment coefficient Adjh (dashed line) by means of a kernel density estimation. To account for the
bounded support of the data (the measures of contributions to price discovery are defined between
zero and one) the beta kernel proposed by Chen (1999) is used. We use a bandwidth as suggested by
Silverman (1986), adjusted for variable kernels.
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Figure 4: Composite and idiosyncratic mixture normal innovations.
The panels show time series that result from 100 iid draws from a bivariate mixture distribution where

γ = 0.9, ψh = 1, ψf = 10 and W =

„

0.0001 0.00003
0.00003 0.0001

«

. The right hand side panel depicts the

contemporaneously uncorrelated innovations wf
t (solid line) and wh

t (dashed line). The left hand side
panel shows the composite innovations uf

t (solid line) and uh
t (dashed line).
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Table 1: Microstructure effects and information share estimates. Symmetric design.
We simulate home and foreign market log prices ph

t and pf
t from a bivariate error correction model

 

∆ph
t

∆pf
t

!

=

 

αh

αf

!

(ph
t−1 − pf

t−1) + Γ1

 

∆ph
t−1

∆pf
t−1

!

+ Γ2

 

∆ph
t−2

∆pf
t−2

!

+

 

uh
t

uf
t

!

.

Symmetry of home and foreign market is imposed by setting αf = −αh = 0.2, Γ1 =

 

−0.05 0.1

0.1 −0.05

!

and Γ2 =

 

−0.05 0.05

0.05 −0.05

!

. The innovations uh and uf are contemporaneously and serially uncorre-

lated mean zero normally distributed random variables with standard deviation σu = σf
u = σh

u = 0.0002.

According to Equation (2.1), the true long run impact of home and foreign market innovations is

ξh = ξf = 0.53 and the true information share of the foreign market (ISf ) is 50 %. The simulated true

prices are disturbed by additive independent microstructure effects, p̃h
t = ph

t +ηh
t and p̃h

t = ph
t +ηh

t . The

microstructure effects ηh
t and ηf

t are mean zero uncorrelated random variables with standard deviations

σηh and σηf . The second row shows how the microstructure effects standard deviations σηh and σηf are

varied as multiples of the fundamental innovation standard deviation σu. The simulation is replicated

500 times with n = 100, 000. In each replication the model parameters are estimated based on the true

and noised price series. Foreign market information shares (ISf ), long run price impacts ξh and ξf ,

and foreign market adjustment coefficient ratio Adjf = αf

αf +|αh|
are computed as outlined in Equations

(3) and (4). The table reports mean and standard deviation (in parentheses) of the estimates computed

over the 500 Monte Carlo replications. ISf denotes the average of the upper and lower bound of the

foreign market information share which result from permuting the order of home and foreign market

in the Cholesky decomposition.

scenario base 1 2 3 4 5 6 7

σηh/σηf 0/0 0/0.5σu 0/σu 0/2σu σu/σu σu/2σu σu/4σu 2σu/4σu

ISf (%) 50.0 45.7 36.3 19.9 50.0 30.4 12.0 23.7

(0.91) (0.86) (0.75) (0.51) (0.76) (0.53) (0.32) (0.41)

Adjf (%) 50.0 55.9 66.9 83.3 50.0 71.1 89.2 77.1

(0.44) (0.43) (0.39) (0.27) (0.41) (0.31) (0.20) (0.25)

ξh 0.53 0.53 0.57 0.66 0.34 0.45 0.55 0.42

(0.005) (0.005) (0.004) (0.004) (0.003) (0.002) (0.002) (0.002)

ξf 0.53 0.42 0.28 0.13 0.34 0.18 0.07 0.12

(0.005) (0.004) (0.003) (0.002) (0.003) (0.002) (0.001) (0.001)
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Table 2: Summary statistics of sample stocks.
The table shows summary statistics on our sample stocks. The first line gives statistics on the number

of observations used for information share estimation and inference (i.e., the first two hours of trading

sampled at a two minute frequency). The spread, relative spread, trading value, and midpoint are

calculated using the first two trading hours. Further the table shows the optimal trading frequency

according to by Bandi and Russell’s (2008) rule of thumb. The last four lines report summary statistics

on the return distribution, including the kurtosis of two minute returns and the associated p-value of

the Jarque-Bera normality test.

Mean Std.dev 5th Perc. 25th Perc. Median 75th Perc. 95th Perc.

Observations 3661 65 3548 3614 3672 3708 3748

Spread (CAD)

TSX 0.08 0.09 0.02 0.04 0.06 0.09 0.18

NYSE 0.07 0.08 0.03 0.04 0.06 0.09 0.14

Rel. spread (%)

TSX 0.24 0.15 0.08 0.13 0.22 0.28 0.47

NYSE 0.23 0.14 0.09 0.13 0.17 0.28 0.51

Trading value (Mio. CAD)

TSX 733.09 1157.86 36.52 157.52 367.95 863.83 2107.16

NYSE 332.19 903.84 5.36 30.75 85.81 243.95 1204.26

Midpoint (CAD)

TSX 38.92 30.76 9.15 21.19 34.03 49.30 73.67

NYSE 38.92 30.76 9.15 21.21 34.04 49.29 73.65

Bandi/Russell sampling frequency (min)

TSX 1.75 0.53 1.13 1.41 1.73 1.98 2.77

NYSE 2.39 1.35 1.24 1.68 2.19 2.69 4.08

Kurtosis returns

TSX 29.32 55.36 3.30 7.55 13.97 28.28 94.76

NYSE 59.42 248.00 3.45 5.92 13.31 21.33 163.18

P-val. Jarque-Bera

TSX 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NYSE 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 3: Specification test results.
The table shows summary statistics on specification test results. It includes Johansen’s (1988) trace
and maximum eigenvalue statistics to determine the number of cointegration relations. Using the trace
statistic we test the null hypothesis of no cointegrating relation, with the maximum eigenvalue statistic
we test the null of one cointegrating relation. The critical values for α = 0.01 are 16.31 (trace) and 6.51
(max. eigenvalue) respectively. The table also reports the p-values of a Wald test of the null hypothesis
ψh 6= ψf . The last column shows the number of stocks for which the null is rejected at α = 0.01. The
last row gives information on the number of lags included in the ECM (1) according to the Schwarz
information criterion (SIC).

# stocks

Mean Median Min Max H0 rejected

(α = 1%)

Trace stat. 1194.0 966.4 145.1 6756.8 69

H0: no coint. rel.

Max. eigenv. stat. 2.0 0.9 0.00 13.9 5

H0: one coint. rel.

P-val. Wald test 0.00 0.00 0.00 0.03 69

H0: ψ
f = ψh

ECM lags (q) by SIC 1.7 1 1 6 -

30



Table 4: Cross-sectional distribution of parameter estimates.
The table shows the distribution of the parameters estimates shares across the 69 sample stocks. ψh

and ψf denote the diagonal elements of matrix Ψ, γ gives the mixture probability. αh and αf are
adjustment coefficients of home and foreign market return series and ξh and ξf denote the permanent
impact of shocks on the home market and foreign market returns series, respectively. Avg.Std.Er. gives
the standard error of the respective estimate averaged across the sample stocks. Standard errors are
obtained by the parametric bootstrap procedure described in Appendix B.

ψh ψf γ αh αf ξh ξf

5th Perc. 0.00 0.07 0.12 -0.45 0.05 0.26 -0.02

25th Perc. 0.01 0.16 0.27 -0.24 0.24 0.54 0.09

Median 0.03 0.23 0.34 -0.09 0.35 0.85 0.29

Mean 0.04 0.24 0.36 -0.16 0.35 0.79 0.35

Avg.Std.Er. (0.003) (0.015) (0.012) (0.026) (0.028) (0.034) (0.032)

75th Perc. 0.06 0.31 0.47 -0.04 0.46 1.04 0.56

95th Perc. 0.14 0.44 0.57 0.01 0.68 1.21 0.84
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Table 5: Cross-sectional distribution of modified Hasbrouck information shares and
adjustment coefficient ratios.
The first two columns of the table show the distribution of the modified Hasbrouck information shares
across sample stocks. The last two columns display the distribution of the adjustment coefficient ratios

computed as Adjh = αh

αh+|αf |
(TSX) and Adjf = |αf |

αh+|αf |
(NYSE). If the adjustment coefficient ratio

is high then its contribution to price discovery is small. Ratios and information shares are reported as
percentages. Avg.Std.Er. gives the standard error of the respective estimate averaged across the sample
stocks. Standard errors are obtained by the parametric bootstrap procedure described in Appendix B.

Modified Hasbrouck Adjustment

Information Shares Coeff. Ratios

ISMh ISMf Adjf Adjh

(TSX) (NYSE) (NYSE) (TSX)

5th Perc. 50.0 40.5 31.2 2.2

25th Perc. 52.7 42.6 51.0 8.0

Median 55.1 44.9 77.5 22.5

Mean 54.9 45.1 71.1 28.9

Avg.Std.Er. (0.8) (0.8) (5.1) (5.1)

Std. Dev. 3.5 3.5 24.2 24.2

75th Perc. 57.4 47.3 92.0 49.3

95th Perc. 59.5 50.0 97.8 68.8
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Table 6: Cross-sectional distribution of Hasbrouck information shares.
The table shows the distribution of the of the lower and upper bounds of standard Hasbrouck informa-
tion shares as well as the associated midpoints across the sample stocks. Ratios and information shares
are reported in percent. Avg.Std.Er. gives the standard error of the respective estimate averaged across
the sample stocks. Standard errors are obtained by the parametric bootstrap procedure described in
Appendix B.

ISh (TSX) ISf (NYSE)

Low. Upp. Low. Upp.

Bound Bound Midpoint Bound Bound Midpoint

5th Perc. 4.2 67.5 37.6 0.0 40.9 20.5

25th Perc. 11.4 89.8 50.9 0.5 56.2 28.4

Median 26.9 98.1 61.5 1.9 73.1 38.5

Mean 28.4 93.2 60.8 6.8 71.6 39.2

Avg.Std.Er. (2.4) (2.4)

Std. Dev. 19.5 9.9 13.4 9.9 19.5 13.4

75th Perc. 43.8 99.5 71.6 10.2 88.6 49.1

95th Perc. 59.1 100.0 79.5 32.5 95.8 62.4
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Table 7: Regression results.
The table reports cross-sectional OLS estimates with standard errors in parentheses. The dependent

variable is the logistic transformation of the modified NYSE information share, ln
“

ISMf

1−ISMf

”

. The

logistic transformation insures that the predicted regression values lie between 0 and 1. LogMktCap is
the log market capitalization as reported on 31 Dec. 2003 in the TSX Factbook. USVol gives the share
of NYSE traded shares in the number of total shares traded in both markets. SpreadRatio denotes the
ratio of effective spreads on the NYSE and TSX. MediumTrades is the ratio of the proportion of shares
traded in medium sized lots on the TSX and the NYSE, where medium size refers to trades of 2,501 to
10,000 shares. YearsListed denotes the number of years a company has been listed on the NYSE (as
indicated by the NYSE webpage). Manufacturing, Finance/Realestate, Retail and Utility/Transport,
and Mining are sector dummies. The benchmark sector is services. ***, **, and * indicate statistical
significance at α = 0.01, 0.05, and 0.10, respectively.

(1) (2) (3)

Constant -0.215*** -0.356*** -0.454***

(0.039) (0.132) (0.145)

USVol 0.342*** 0.312***

(0.090) (0.068)

SpreadRatio -0.121*** -0.090**

(0.032) (0.041)

MediumTrades 0.012*** 0.007

(0.003) (0.005)

LogMktCap 0.018 0.023

(0.016) (0.014)

YearsListed 0.001 0.001

(0.001) (0.001)

Manufacturing - 0.007

(0.045)

Finance/Realestate 0.067

(0.046)

Retail -0.038

(0.078)

Utility/Transport 0.019

(0.055)

Mining 0.080*

(0.046)

Observations 67 67 67

Adjusted R-squared (%) 39.5 1.7 45.8
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Table A-1: Microstructure effects and information share estimates. Asymmetric design.

We simulate home and foreign market log prices ph
t and pf

t from a bivariate error correction model

 

∆ph
t

∆pf
t

!

=

 

αh

αf

!

(ph
t−1 − pf

t−1) + Γ1

 

∆ph
t−1

∆pf
t−1

!

+ Γ2

 

∆ph
t−2

∆pf
t−2

!

+

 

uh
t

uf
t

!

.

A true information share of 70 % of foreign and 30% of home market is imposed by setting αh = −0.3

and αf = 0.2, Γ1 =

 

−0.05 0.1

0.1 −0.05

!

and Γ2 =

 

−0.05 0.05

0.05 −0.05.

!

The innovations uh and uf are

contemporaneously and serially uncorrelated mean zero normally distributed random variables with

standard deviation σu = σf
u = σh

u = 0.0002. According to Equation (2.1), the true long run impact of

home and foreign market innovations is ξh = ξf = 0.53 and the true information share of the foreign

market (ISf ) is 50 %. The simulated true prices are disturbed by additive independent microstructure

effects, p̃h
t = ph

t + ηh
t and p̃h

t = ph
t + ηh

t . The microstructure effects components ηh
t and ηf

t are mean

zero uncorrelated random variables with standard deviations σηh and σηf . The second row shows how

the microstructure effects standard deviations σηh and σηf are varied as multiples of the fundamental

innovation standard deviation σu. The simulation is replicated 500 times with n = 100, 000. In each

replication the model parameters are estimated based on the true and noised price series. Foreign

market information shares (ISf ), long run price impacts ξh and ξf , and foreign market adjustment

coefficient ratio Adjf = αf

αf +|αh|
are computed as outlined in Equations (3) and (4). The table reports

mean and standard deviation (in parentheses) of the estimates computed over the 500 Monte Carlo

replications. ISf denotes the average of the upper and lower bound of the foreign market information

share which result from permuting the order of home and foreign market in the Cholesky decomposition.

scenario base 1 2 3 4 5 6 7

σηh/σηf 0/0 0/0.5σu 0/σu 0/2σu σu/σu σu/2σu σu/4σu 2σu/4σu

ISf (%) 69.2 63.7 51.2 28.3 63.4 38.9 15.3 26.9

(0.76) (0.76) (0.73) (0.54) (0.71) (0.55) (0.36) (0.43)

Adjf (%) 40.0 46.1 58.8 79.1 42.4 66.6 87.6 75.5

(0.41) (0.40) (0.38) (0.27) (0.39) (0.31) (0.20) (0.25)

ξh 0.42 0.43 0.49 0.61 0.29 0.41 0.53 0.41

(0.005) (0.004) (0.004) (0.003) (0.003) (0.002) (0.002) (0.002)

ξf 0.63 0.51 0.34 0.16 0.39 0.21 0.08 0.13

(0.005) (0.004) (0.003) (0.002) (0.003) (0.002) (0.001) (0.001)
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Table A-2: Microstructure effects and information share estimates. Monopolistic de-
sign.
We simulate home and foreign market log prices ph

t and pf
t from a bivariate error correction model

 

∆ph
t

∆pf
t

!

=

 

αh

αf

!

(ph
t−1 − pf

t−1) + Γ1

 

∆ph
t−1

∆pf
t−1

!

+ Γ2

 

∆ph
t−2

∆pf
t−2

!

+

 

uh
t

uf
t

!

.

A 100 % information share of the foreign market is imposed by setting αh = −0.2 and αf = 0,

Γ1 =

 

−0 0.1

0 −0.05

!

and Γ2 =

 

0 0.05

0 −0.05.

!

The innovations uh and uf are contemporaneously

and serially uncorrelated mean zero normally distributed random variables with standard deviation
σu = σf

u = σh
u = 0.0002. According to Equation (2.1), the true long run impact of home and foreign

market innovations is ξh = ξf = 0.53 and the true information share of the foreign market (ISf )
is 50 %. The simulated true prices are disturbed by additive independent microstructure effects,
p̃h

t = ph
t + ηh

t and p̃h
t = ph

t + ηh
t . The microstructure effects components ηh

t and ηf
t are mean zero

uncorrelated random variables with standard deviations σηh and σηf . The second row shows how
the microstructure effects standard deviations σηh and σηf are varied as multiples of the fundamental
innovation standard deviation σu. The simulation is replicated 500 times with n = 100, 000. In each
replication the model parameters are estimated based on the true and noised price series. Foreign
market information shares (ISf ), long run price impacts ξh and ξf , and foreign market adjustment

coefficient ratio Adjf = αf

αf +|αh|
are computed as outlined in Equations (3) and (4). The table reports

mean and standard deviation (in parentheses) of the estimates computed over the 500 Monte Carlo
replications. ISf denotes the average of the upper and lower bound of the foreign market information
share which result from permuting the order of home and foreign market in the Cholesky decomposition
of the residual variance covariance matrix.

scenario base 1 2 3 4 5 6 7

σηh/σηf 0/0 0/0.5σu 0/σu 0/2σu σu/σu σu/2σu σu/4σu 2σu/4σu

ISf (%) 100.0 99.7 96.5 74.6 97.7 78.4 38.5 45.4

(0.01) (0.11) (0.37) (0.76) (0.31) (0.69) (0.66) (0.62)

Adjf (%) 0.7 3.6 19.4 57.2 10.5 43.7 78.4 66.5

(0.49) (0.93) (0.88) (0.51) (0.68) (0.52) (0.27) (0.31)

ξh 0.00 0.03 0.15 0.46 0.07 0.28 0.51 0.37

(0.009) (0.008) (0.007) (0.006) (0.005) (0.004) (0.003) (0.002)

ξf 1.05 0.87 0.63 0.34 0.62 0.36 0.14 0.19

(0.009) (0.008) (0.006) (0.004) (0.005) (0.003) (0.002) (0.002)
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Table A-3: Sample stocks.
The table shows the stock ticker symbols of the 69 Canadian sample stocks together with the full
company name and its industry.

Ticker Company Name Industry

ABX Barrick Gold Gold Mining
ABY Abitibi Consolidated Inc. Paper
AEM Agnico Eagle Mines Ltd. Gold Mining
AGU Agrium Inc. Chemicals (Speciality)
AL Alcan Inc. Metals and Mining
BCE BCE Inc. Foreign Telecom.
BCM Canadian Imp. Bank of Commerce Bank
BMO Bank of Montreal Bank
BNN Brascan Corp. Real Estate Holding
BNS Bank of Nova Scotia Bank
BPO Brookfield Properties Corporation Real Estate Holding
BVF Biovail Corp. Pharmaceuticals
CCJ Cameco Corp. Nonferrous Metals
CGT CAE Inc. Aerospace
CLS Celestica Inc. Electronics
CNQ Canadian Natural Ressources Petroleum (Producing)
COT Cott Corp. Soft Drinks
CP Canadian Pacific Railway Railroad
DTC Domtar Corp. Paper
ECA EnCana Corp. Energy
ENB Enbridge Inc. Gas Distribution
ERF Enerplus Resource Fund Exploration and Production
FDG Fording Canadian Coal Trust Mining (Other Mines)
FFH Fairfax Financial Holdings Ltd. Property and Casualty Insurance
FHR Fairmont Hotels Resorts Inc. Hotels
FS Four Seasons Hotels Inc. Hotels
GG Goldcorp Inc. Gold Mining
GIB CGI Group Inc. Computer Services
GIL Gildan Activewear Inc. Clothing and Accessories
GLG Glamis Golds Ltd. Gold Mining
HBG Hub International Ltd. Insurance
IDR Intrawest Corp.. Hotels
IPS IPSCO Inc. Metals and Mining
IQW Quebecor World Publishing
ITP ntertape Polymer Group Inc. Containers and Packaging
KFS Kingsway Financial Services Inc. Insurance
KGC Kinross Gold Corp. Gold Mining
MDG Meridian Gold Inc. Gold Mining
MDZ MDS Inc. Medical Equipment
MFC Manulife Financial Corp. Insurance
MGA Magna International Inc. Auto Parts
MHM Masonite International Corp. Building Products
MIM MI Developments Inc. Gambling
N Inco Ltd. Metals and Mining

continued on next page
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Table A-3: continued

Ticker Company Name Industry

NCX Nova Chemicals Corp. Commodity Chemicals
NRD Noranda Inc. Metals and Mining
NT Nortel Networks Foreign Telecom.
NXY Nexen Inc. Energy
PCZ Petro-Canadian Com. Integrated Oil and Gas
PDG Placer Dome Precious Metals
PDS Precision Drilling Corp Oil Equipment and Services
PGH Pengrowth Energy Exploration and Production
PKZ PetroKazakhstan Inc. Petroleum
POT Potash Corp. Chemical
PWI Primewest Energy Trust Energy
RCN Radiant Communications Telecommunications
RG Rogers Publishing Limited Publishing
RY Royal Bank of Canada Bank
RYG Royal Group Technologies Ltd. Building Products
SLF Sun Life Financial Serv. Insurance
SU Suncor Engery Petroleum
TAC TransAlta Corp. Conventional Electricity
TD Toronto-Dominion Bank
TEU CP Ships Ltd. Maritime
TLM Talisman Energy Energy
TOC Thomson Corp. Information Services
TRP TransCanada Corp. Energy
TU Telus Corp. Telecommunications
ZL Zarlink Semiconductor Inc. Semiconductors
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Table A-4: Descriptives.
The first two columns show the average TSX and NYSE midquotes denoted in local currency. Column
three gives the exchange rate adjusted NYSE midquote. Columns four and five contain the average
relative TSX and NYSE spread and columns six and seven display the average spread denoted in CAD.
The last two columns give the trading value of the stocks on the TSX and NYSE in million CAD. All
statistics are calculated over our sample period (the first two trading hours from January 1st to 31st
of March 2004). For full company names see Table A-3.

Midquote Rel. Spread Spread Trading Value

TSX NYSE NYSE TSX NYSE TSX NYSE TSX NYSE
conv.

ABX 27.94 21.20 27.95 0.12 0.10 0.03 0.03 1,378.91 1,386.92
ABY 10.17 7.72 10.18 0.21 0.26 0.02 0.03 508.56 53.36
AEM 17.76 13.46 17.75 0.28 0.16 0.05 0.03 216.70 286.03
AGU 19.82 15.04 19.83 0.27 0.15 0.05 0.03 238.04 130.64
AL 59.69 45.26 59.68 0.09 0.07 0.05 0.04 2,058.46 2,323.31
BCE 28.94 21.96 28.95 0.08 0.10 0.02 0.03 1,792.65 179.02
BCM 67.47 51.16 67.45 0.09 0.12 0.06 0.08 2,439.12 61.44
BMO 55.34 41.97 55.34 0.09 0.13 0.05 0.07 1,754.94 54.63
BNN 45.95 34.83 45.91 0.20 0.23 0.09 0.10 433.75 33.39
BNS 68.32 51.81 68.30 0.07 0.13 0.05 0.09 1,730.60 17.61
BPO 39.38 29.85 39.36 0.22 0.15 0.09 0.06 59.50 51.92
BVF 26.97 20.47 26.99 0.20 0.15 0.05 0.04 456.16 691.41
CCJ 64.09 48.65 64.15 0.22 0.18 0.14 0.12 578.40 181.71
CGT 6.06 4.60 6.06 0.28 0.63 0.02 0.04 257.74 3.88
CLS 23.14 17.55 23.14 0.16 0.14 0.04 0.03 778.07 794.73
CNQ 69.94 53.04 69.93 0.14 0.15 0.10 0.11 878.40 136.69
COT 37.80 28.66 37.62 0.23 0.13 0.09 0.05 93.24 63.00
CP 33.59 25.49 33.61 0.17 0.16 0.06 0.05 533.67 64.89
DTC 15.59 11.83 15.60 0.26 0.27 0.04 0.04 380.26 16.01
ECA 54.92 41.65 54.92 0.09 0.09 0.05 0.05 1,956.17 465.06
ENB 52.70 39.98 52.71 0.15 0.21 0.08 0.11 460.52 10.71
ERF 38.83 29.46 38.84 0.27 0.23 0.10 0.09 191.99 218.33
FDG 49.55 37.56 49.53 0.39 0.34 0.19 0.17 246.70 208.64
FFH 216.9 164.56 216.94 0.35 0.29 0.76 0.63 123.97 134.43
FHR 34.03 25.82 34.04 0.22 0.12 0.08 0.04 80.63 169.86
FS 70.16 53.19 70.12 0.26 0.12 0.18 0.08 36.55 235.11
GG 18.38 13.95 18.38 0.19 0.14 0.04 0.03 389.38 577.94
GIB 8.58 6.51 8.58 0.36 0.52 0.03 0.04 13.43 6.53
GIL 41.77 31.68 41.77 0.44 0.35 0.18 0.14 36.51 11.42
GLG 21.43 16.25 21.43 0.28 0.17 0.06 0.04 266.04 303.72
HBG 22.71 17.23 22.71 0.81 0.30 0.18 0.07 2.97 44.67
IDR 23.6 17.91 23.61 0.40 0.27 0.09 0.06 33.68 37.31
IPS 23.09 17.51 23.08 0.59 0.59 0.14 0.14 94.31 4.57
IQW 25.78 19.56 25.78 0.28 0.30 0.07 0.08 190.81 8.95
ITP 14.42 10.95 14.43 0.69 0.44 0.10 0.06 27.80 11.53
KFS 14.64 11.10 14.64 0.26 0.38 0.04 0.05 109.06 18.01
KGC 9.44 7.17 9.45 0.22 0.22 0.02 0.02 552.81 317.89

continued on next page
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Table A-4: continued

Midquote Rel. Spread Spread Trading Value

TSX NYSE NYSE TSX NYSE TSX NYSE TSX NYSE
conv.

MDG 17.12 12.99 17.15 0.31 0.17 0.05 0.03 115.76 211.57
MDZ 21.02 15.93 21.00 0.34 0.51 0.07 0.11 157.52 1.55
MFC 46.59 35.31 46.55 0.09 0.07 0.04 0.03 1,764.05 576.41
MGA 105.27 79.85 105.27 0.13 0.08 0.14 0.09 448.25 471.28
MHM 35.36 26.81 35.35 0.41 0.39 0.14 0.14 174.50 9.51
MIM 36.60 27.75 36.59 0.42 0.28 0.15 0.10 75.02 87.03
N 48.18 36.56 47.98 0.13 0.09 0.06 0.04 1,608.12 1,787.86
NCX 34.88 26.46 34.88 0.20 0.14 0.07 0.05 189.60 52.26
NRD 21.19 16.07 21.19 0.19 0.26 0.04 0.06 718.36 43.47
NT 8.95 6.78 8.94 0.13 0.20 0.01 0.02 8,364.08 6,954.78
NXY 49.30 37.38 49.35 0.19 0.21 0.09 0.10 863.80 69.16
PCZ 60.89 46.22 60.94 0.11 0.14 0.06 0.09 1,622.88 89.30
PDG 22.32 16.94 22.33 0.15 0.11 0.03 0.03 1,163.05 930.26
PDS 62.37 47.29 62.35 0.14 0.09 0.09 0.06 367.95 235.54
PGH 18.74 14.23 18.76 0.25 0.27 0.05 0.05 194.08 249.79
PKZ 34.11 25.86 34.09 0.34 0.26 0.11 0.09 262.23 338.03
POT 109.07 82.75 109.09 0.18 0.10 0.20 0.11 158.14 243.95
PWI 25.76 19.56 25.79 0.27 0.25 0.07 0.07 169.84 168.48
RCN 34.06 25.83 34.30 0.47 0.44 0.16 0.15 42.22 11.07
RG 24.83 18.82 24.82 0.26 0.27 0.07 0.07 383.90 14.53
RY 62.91 47.70 62.89 0.07 0.10 0.05 0.07 2,993.09 85.81
RYG 13.77 10.44 13.76 0.46 0.46 0.06 0.06 105.47 15.11
SLF 35.07 26.59 35.05 0.14 0.15 0.05 0.05 921.92 67.78
SU 34.73 26.34 34.72 0.12 0.11 0.04 0.04 1,180.70 374.66
TAC 18.14 13.77 18.15 0.19 0.36 0.03 0.07 186.22 3.73
TD 44.98 34.11 44.97 0.08 0.13 0.04 0.06 2,139.64 48.18
TEU 24.34 18.47 24.35 0.22 0.22 0.05 0.05 297.70 82.46
TLM 76.01 57.64 76.00 0.13 0.11 0.10 0.08 726.57 189.37
TOC 43.08 32.69 43.10 0.13 0.14 0.06 0.06 451.59 40.50
TRP 27.84 21.12 27.95 0.10 0.14 0.03 0.04 863.83 114.10
TU 24.03 18.23 24.04 0.26 0.36 0.06 0.09 215.17 7.51
ZL 5.15 3.91 5.16 0.47 0.65 0.02 0.03 156.15 30.75
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Table A-5: Detailed parameter estimates.
The table reports the parameter estimates for the 69 sample stocks. ψh and ψf denote the diagonal
elements of matrix Ψ, γ denotes the mixture probability. αh and αf give the adjustment coefficients of
the home and foreign market return series, ξh and ξf denote the permanent impact of shocks on the
home market and foreign market returns series, respectively. The numbers in parentheses are standard
errors obtained by the parametric bootstrap procedure described in Appendix B. For full company
names see Table A-3.

ψh ψf γ ξh ξf αh αf

ABX 0.15 0.45 0.43 0.67 0.29 -0.21 0.48
(0.010) (0.033) (0.030) (0.040) (0.035) (0.042) (0.046)

ABY 0.02 0.30 0.47 0.93 0.16 -0.08 0.49
(0.001) (0.018) (0.011) (0.018) (0.020) (0.019) (0.023)

AEM 0.08 0.36 0.48 0.57 0.58 -0.32 0.31
(0.005) (0.025) (0.018) (0.028) (0.033) (0.033) (0.037)

AGU 0.03 0.27 0.40 0.51 0.53 -0.22 0.21
(0.001) (0.016) (0.012) (0.025) (0.027) (0.021) (0.020)

AL 0.18 0.33 0.22 0.57 0.60 -0.39 0.37
(0.013) (0.026) (0.023) (0.032) (0.036) (0.047) (0.049)

BCE 0.05 0.47 0.48 1.09 0.14 -0.05 0.38
(0.003) (0.034) (0.015) (0.038) (0.033) (0.021) (0.024)

BCM 0.03 0.37 0.58 1.07 0.05 -0.03 0.67
(0.002) (0.023) (0.014) (0.029) (0.030) (0.036) (0.038)

BMO 0.08 0.17 0.22 1.04 0.08 -0.04 0.55
(0.005) (0.011) (0.012) (0.019) (0.020) (0.026) (0.027)

BNN 0.00 0.16 0.50 0.91 0.03 -0.01 0.42
(0.000) (0.008) (0.010) (0.026) (0.026) (0.023) (0.025)

BNS 0.01 0.36 0.59 0.97 0.11 -0.08 0.71
(0.001) (0.023) (0.010) (0.022) (0.024) (0.030) (0.031)

BPO 0.02 0.33 0.31 0.57 0.38 -0.14 0.20
(0.001) (0.020) (0.009) (0.031) (0.027) (0.018) (0.022)

BVF 0.09 0.20 0.27 0.74 0.56 -0.30 0.40
(0.005) (0.013) (0.014) (0.028) (0.031) (0.040) (0.040)

CCJ 0.03 0.19 0.35 1.05 0.69 -0.23 0.35
(0.002) (0.011) (0.011) (0.042) (0.037) (0.034) (0.035)

CGT 0.00 0.30 0.58 1.09 0.08 -0.02 0.32
(0.001) (0.016) (0.010) (0.037) (0.036) (0.023) (0.023)

CLS 0.11 0.08 0.12 0.91 0.44 -0.23 0.49
(0.009) (0.007) (0.008) (0.027) (0.028) (0.034) (0.036)

CNQ 0.04 0.28 0.43 1.11 0.20 -0.12 0.66
(0.002) (0.018) (0.013) (0.046) (0.041) (0.046) (0.047)

COT 0.04 0.28 0.27 0.31 0.69 -0.42 0.19
(0.003) (0.017) (0.012) (0.019) (0.017) (0.019) (0.018)

CP 0.02 0.30 0.47 1.01 0.09 -0.05 0.53
(0.001) (0.017) (0.011) (0.022) (0.025) (0.024) (0.025)

DTC 0.01 0.30 0.48 0.94 0.13 -0.05 0.32
(0.001) (0.018) (0.010) (0.029) (0.027) (0.019) (0.020)

ECA 0.10 0.39 0.33 0.85 0.41 -0.18 0.37
(0.006) (0.026) (0.018) (0.064) (0.042) (0.043) (0.044)

ENB 0.01 0.22 0.40 1.01 0.07 -0.06 0.88
(0.000) (0.011) (0.009) (0.019) (0.017) (0.019) (0.025)

ERF 0.04 0.15 0.20 0.44 0.84 -0.39 0.20
(0.003) (0.010) (0.009) (0.046) (0.037) (0.033) (0.038)
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Table A-5: continued

ψh ψf γ ξh ξf αh αf

FDG 0.02 0.09 0.34 0.54 0.62 -0.31 0.27
(0.001) (0.005) (0.010) (0.030) (0.031) (0.029) (0.030)

FFH 0.02 0.12 0.29 0.47 0.51 -0.27 0.24
(0.001) (0.007) (0.009) (0.024) (0.025) (0.021) (0.022)

FHR 0.04 0.26 0.30 0.43 0.59 -0.29 0.22
(0.002) (0.017) (0.011) (0.028) (0.028) (0.025) (0.027)

FS 0.02 0.29 0.47 0.03 0.94 -0.70 0.03
(0.001) (0.018) (0.012) (0.031) (0.028) (0.036) (0.032)

GG 0.13 0.49 0.39 0.53 0.56 -0.36 0.34
(0.008) (0.037) (0.025) (0.039) (0.033) (0.040) (0.045)

GIB 0.00 0.30 0.50 0.96 0.06 -0.02 0.36
(0.000) (0.000) (0.000) (0.024) (0.023) (0.015) (0.017)

GIL 0.01 0.20 0.32 0.78 0.27 -0.06 0.16
(0.000) (0.011) (0.009) (0.041) (0.037) (0.015) (0.015)

GLG 0.06 0.39 0.45 0.48 0.71 -0.42 0.28
(0.003) (0.024) (0.017) (0.032) (0.033) (0.038) (0.039)

HBG 0.01 0.05 0.21 0.22 0.84 -0.08 0.02
(0.001) (0.003) (0.007) (0.038) (0.043) (0.007) (0.005)

IDR 0.03 0.12 0.21 0.32 0.67 -0.32 0.16
(0.002) (0.007) (0.009) (0.017) (0.017) (0.020) (0.019)

IPS 0.00 0.15 0.34 0.79 0.15 -0.06 0.29
(0.000) (0.008) (0.009) (0.029) (0.029) (0.018) (0.017)

IQW 0.01 0.23 0.39 1.10 0.12 -0.04 0.35
(0.001) (0.013) (0.010) (0.034) (0.032) (0.022) (0.023)

ITP 0.01 0.12 0.33 0.63 0.34 -0.09 0.16
(0.001) (0.007) (0.009) (0.028) (0.032) (0.015) (0.016)

KFS 0.00 0.23 0.51 1.04 0.09 -0.02 0.27
(0.000) (0.012) (0.009) (0.020) (0.021) (0.012) (0.016)

KGC 0.15 0.35 0.31 0.63 0.51 -0.30 0.38
(0.010) (0.024) (0.024) (0.021) (0.023) (0.028) (0.030)

MDG 0.08 0.32 0.30 0.41 0.62 -0.46 0.31
(0.005) (0.022) (0.016) (0.041) (0.035) (0.039) (0.042)

MDZ 0.00 0.21 0.46 1.02 0.04 -0.01 0.32
(0.000) (0.011) (0.009) (0.033) (0.031) (0.021) (0.022)

MFC 0.07 0.31 0.36 0.66 0.49 -0.09 0.13
(0.004) (0.019) (0.016) (0.062) (0.049) (0.018) (0.020)

MGA 0.05 0.24 0.24 0.59 0.55 -0.23 0.25
(0.003) (0.015) (0.011) (0.035) (0.034) (0.030) (0.029)

MHM 0.00 0.21 0.33 0.85 0.12 -0.04 0.28
(0.000) (0.012) (0.008) (0.025) (0.027) (0.017) (0.018)

MIM 0.03 0.12 0.18 0.12 0.79 -0.48 0.07
(0.002) (0.007) (0.007) (0.025) (0.023) (0.023) (0.021)

N 0.12 0.22 0.19 1.02 0.18 -0.13 0.77
(0.008) (0.016) (0.013) (0.031) (0.028) (0.041) (0.042)

NCX 0.02 0.23 0.29 0.71 0.34 -0.16 0.33
(0.001) (0.014) (0.010) (0.021) (0.025) (0.023) (0.022)

NRD 0.03 0.17 0.56 1.16 0.07 -0.03 0.46
(0.002) (0.010) (0.013) (0.026) (0.026) (0.022) (0.021)

NT 0.10 0.12 0.12 0.55 0.64 -0.37 0.32
(0.007) (0.009) (0.009) (0.053) (0.050) (0.056) (0.055)

NXY 0.02 0.13 0.46 1.21 -0.04 0.01 0.47
(0.001) (0.007) (0.011) (0.024) (0.025) (0.021) (0.022)
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Table A-5: continued

ψh ψf γ ξh ξf αh αf

PCZ 0.05 0.20 0.26 1.21 0.03 -0.02 0.69
(0.003) (0.012) (0.011) (0.032) (0.031) (0.033) (0.034)

PDG 0.16 0.31 0.26 0.76 0.22 -0.15 0.50
(0.011) (0.022) (0.022) (0.041) (0.036) (0.040) (0.045)

PDS 0.05 0.27 0.39 0.81 0.42 -0.16 0.31
(0.003) (0.017) (0.014) (0.043) (0.039) (0.030) (0.031)

PGH 0.02 0.04 0.10 1.20 0.68 -0.13 0.23
(0.002) (0.003) (0.006) (0.032) (0.040) (0.014) (0.015)

PKZ 0.05 0.10 0.16 0.95 0.55 -0.24 0.41
(0.003) (0.007) (0.009) (0.043) (0.041) (0.036) (0.039)

POT 0.08 0.23 0.26 0.47 0.72 -0.44 0.29
(0.005) (0.015) (0.013) (0.024) (0.030) (0.029) (0.028)

PWI 0.03 0.07 0.12 0.76 0.38 -0.21 0.43
(0.002) (0.005) (0.007) (0.046) (0.036) (0.035) (0.041)

RCN 0.01 0.13 0.27 0.54 0.54 -0.13 0.13
(0.001) (0.007) (0.008) (0.040) (0.039) (0.019) (0.019)

RG 0.00 0.31 0.45 1.25 -0.04 0.02 0.51
(0.000) (0.017) (0.008) (0.044) (0.039) (0.028) (0.029)

RY 0.02 0.38 0.60 1.08 -0.02 0.01 0.60
(0.002) (0.026) (0.012) (0.032) (0.030) (0.031) (0.032)

RYG 0.00 0.20 0.44 0.91 0.12 -0.05 0.37
(0.000) (0.011) (0.009) (0.030) (0.031) (0.023) (0.024)

SLF 0.06 0.35 0.40 1.01 -0.02 0.01 0.41
(0.003) (0.022) (0.015) (0.061) (0.052) (0.033) (0.036)

SU 0.07 0.21 0.30 1.08 0.17 -0.07 0.45
(0.004) (0.013) (0.013) (0.025) (0.029) (0.028) (0.026)

TAC 0.00 0.31 0.55 0.91 0.08 -0.03 0.37
(0.000) (0.016) (0.009) (0.027) (0.025) (0.017) (0.018)

TD 0.04 0.47 0.50 1.10 0.01 0.00 0.45
(0.003) (0.033) (0.014) (0.039) (0.035) (0.027) (0.026)

TEU 0.03 0.19 0.32 0.82 0.21 -0.09 0.34
(0.002) (0.011) (0.010) (0.107) (0.079) (0.027) (0.028)

TLM 0.02 0.44 0.50 1.01 0.29 -0.13 0.45
(0.002) (0.029) (0.013) (0.049) (0.041) (0.042) (0.043)

TOC 0.01 0.35 0.47 1.45 -0.08 0.03 0.53
(0.001) (0.020) (0.010) (0.041) (0.039) (0.031) (0.032)

TRP 0.05 0.02 0.03 1.24 0.03 -0.01 0.48
(0.007) (0.003) (0.003) (0.022) (0.017) (0.016) (0.023)

TU 0.00 0.10 0.50 1.18 -0.11 0.05 0.58
(0.000) (0.005) (0.009) (0.022) (0.020) (0.018) (0.023)

ZL 0.05 0.16 0.28 0.93 0.19 -0.08 0.38
(0.003) (0.010) (0.011) (0.020) (0.022) (0.019) (0.020)
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Table A-6: Modified Hasbrouck information shares and adjustment coefficient ratios.
The first two columns of the table report the estimated modified Hasbrouck information shares. The

last two columns report the estimated adjustment coefficient ratios computed as Adjh = αh

αh+|αf |
(TSX)

and Adjf = |αf |

αh+|αf |
(NYSE). If the adjustment coefficient ratio is high then its contribution to price

discovery is small. Ratios and information shares are multiplied by 100 to obtain percentages. The
numbers in parentheses are standard errors of the respective estimates obtained by the parametric
bootstrap procedure described in Appendix B. For full company names see Table A-3.

Modified Hasbrouck Adjustment
Information Shares Coeff. Ratios

ISMh ISMf Adjf Adjh

(TSX) (NYSE) (NYSE) (TSX)

ABX 49.8 50.2 69.5 30.5
(0.34) (0.34) (7.24) (7.24)

ABY 55.8 44.2 85.6 14.4
(0.82) (0.82) (3.73) (3.73)

AEM 49.5 50.5 49.6 50.4
(0.35) (0.35) (5.77) (5.77)

AGU 54.9 45.1 49.3 50.7
(0.57) (0.57) (5.11) (5.11)

AL 50.0 50.0 48.7 51.3
(0.28) (0.28) (6.41) (6.41)

BCE 58.8 41.2 88.3 11.7
(1.01) (1.01) (4.47) (4.47)

BCM 53.3 46.7 95.7 4.3
(0.40) (0.40) (3.81) (3.81)

BMO 56.6 43.4 93.2 6.8
(0.78) (0.78) (3.51) (3.51)

BNN 59.6 40.4 97.3 2.7
(1.30) (1.30) (2.91) (2.91)

BNS 53.6 46.4 90.0 10.0
(0.54) (0.54) (3.28) (3.28)

BPO 50.0 50.0 59.7 40.3
(0.74) (0.74) (5.82) (5.82)

BVF 51.9 48.1 57.1 42.9
(0.33) (0.33) (5.23) (5.23)

CCJ 54.1 45.9 60.4 39.6
(0.47) (0.47) (6.08) (6.08)

CGT 57.1 42.9 93.5 6.5
(0.81) (0.81) (5.29) (5.29)

CLS 54.6 45.4 67.6 32.4
(3.69) (3.69) (4.60) (4.60)

CNQ 52.1 47.9 84.8 15.2
(0.36) (0.36) (6.20) (6.20)

COT 54.9 45.1 30.7 69.3
(0.60) (0.60) (3.45) (3.45)

CP 55.5 44.5 91.8 8.2
(0.65) (0.65) (4.46) (4.46)

DTC 58.8 41.2 87.5 (12.496)
(1.10) (1.10) (5.20) (5.20)

ECA 53.7 46.3 67.4 32.6
(0.37) (0.37) (8.28) (8.28)
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Table A-6: continued

ISMh ISMf Adjf Adjh

(TSX) (NYSE) (NYSE) (TSX)

ENB 57.6 42.4 93.6 6.4
(1.54) (1.54) (3.24) (3.24)

ERF 50.4 49.6 34.1 65.9
(0.53) (0.53) (7.52) (7.52)

FDG 51.6 48.4 46.2 53.8
(0.41) (0.41) (5.66) (5.66)

FFH 53.8 46.2 47.9 52.1
(0.61) (0.61) (4.99) (4.99)

FHR 52.4 47.6 42.3 57.7
(0.49) (0.49) (5.51) (5.51)

FS 55.3 44.7 3.5 96.5
(0.26) (0.26) (5.58) (5.58)

GG 50.0 50.0 48.5 51.5
(0.36) (0.36) (6.51) (6.51)

GIB 58.4 41.6 94.6 5.4
(0.91) (0.91) (2.41) (2.41)

GIL 62.9 37.1 74.3 25.7
(1.67) (1.67) (7.21) (7.21)

GLG 51.0 49.0 40.3 59.7
(0.33) (0.33) (6.01) (6.01)

HBG 59.3 40.7 20.6 79.4
(1.70) (1.70) (7.22) (7.22)

IDR 56.7 43.3 32.4 67.6
(0.74) (0.74) (3.41) (3.41)

IPS 58.1 41.9 83.8 16.2
(0.83) (0.83) (5.69) (5.69)

IQW 58.2 41.8 90.2 9.8
(0.96) (0.96) (5.01) (5.01)

ITP 54.2 45.8 65.0 35.0
(0.96) (0.96) (6.34) (6.34)

KFS 58.6 41.4 92.2 7.8
(1.35) (1.35) (3.90) (3.90)

KGC 53.0 47.0 55.5 44.5
(0.64) (0.64) (4.26) (4.26)

MDG 50.2 49.8 39.8 60.2
(0.39) (0.39) (6.86) (6.86)

MDZ 58.6 41.4 96.3 3.7
(0.89) (0.89) (5.13) (5.13)

MFC 54.1 45.9 57.6 42.4
(0.92) (0.92) (10.05) (10.05)

MGA 53.8 46.2 51.8 48.2
(0.46) (0.46) (6.29) (6.29)

MHM 57.7 42.3 87.6 12.4
(0.80) (0.80) (5.44) (5.44)

MIM 55.8 44.2 12.9 87.1
(0.61) (0.61) (5.15) (5.15)

N 50.8 49.2 85.1 14.9
(0.39) (0.39) (5.39) (5.39)

NCX 57.2 42.8 67.5 32.5
(0.80) (0.80) (4.85) (4.85)
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Table A-6: continued

ISMh ISMf Adjf Adjh

(TSX) (NYSE) (NYSE) (TSX)

NRD 59.5 40.5 94.1 5.9
(0.97) (0.97) (2.83) (2.83)

NT 11.2 88.8 46.3 53.7
(19.52) (19.52) (8.31) (8.31)

NXY 58.3 41.7 97.1 2.9
(0.85) (0.85) (2.47) (2.47)

PCZ 55.1 44.9 97.2 2.8
(0.48) (0.48) (2.70) (2.70)

PDG 51.2 48.8 77.4 22.6
(0.53) (0.53) (6.90) (6.90)

PDS 53.1 46.9 65.7 34.3
(0.54) (0.54) (7.15) (7.15)

PGH 42.0 58.0 63.8 36.2
(3.02) (3.02) (4.01) (4.01)

PKZ 52.7 47.3 63.4 36.6
(0.44) (0.44) (5.92) (5.92)

POT 52.7 47.3 39.6 60.4
(0.48) (0.48) (5.19) (5.19)

PWI 52.3 47.7 66.8 33.2
(0.95) (0.95) (6.50) (6.50)

RCN 55.5 44.5 50.2 49.8
(0.69) (0.69) (7.55) (7.55)

RG 54.8 45.2 96.9 3.1
(0.59) (0.59) (4.10) (4.10)

RY 56.0 44.0 98.4 1.6
(0.67) (0.67) (3.28) (3.28)

RYG 57.1 42.9 88.5 11.5
(0.63) (0.63) (5.51) (5.51)

SLF 55.6 44.4 98.5 1.5
(0.86) (0.86) (4.53) (4.53)

SU 57.5 42.5 86.2 13.8
(0.52) (0.52) (4.73) (4.73)

TAC 58.5 41.5 91.5 8.5
(1.10) (1.10) (5.01) (5.01)

TD 57.0 43.0 99.4 0.6
(0.83) (0.83) (3.35) (3.35)

TEU 54.6 45.4 80.0 20.0
(1.82) (1.82) (3.19) (3.19)

TLM 52.7 47.3 77.5 22.5
(0.38) (0.38) (7.50) (7.50)

TOC 55.9 44.1 95.0 5.0
(0.68) (0.68) (4.06) (4.06)

TRP 55.7 44.3 98.0 2.0
(6.12) (6.12) (2.85) (2.85)

TU 57.1 42.9 91.4 8.6
(1.11) (1.11) (2.53) (2.53)

ZL 61.1 38.9 82.7 17.3
(0.93) (0.93) (3.89) (3.89)
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Table A-7: Hasbrouck information shares.
The table reports lower and upper bounds of standard Hasbrouck information shares as well as the
associated midpoints. Ratios and information shares are multiplied by 100 to obtain percentages. The
numbers in parentheses give the standard error of the midpoint estimate obtained by the parametric
bootstrap procedure described in Appendix B.

ISh (TSX) ISf (NYSE)
Low. Upp. Low. Upp.

Bound Bound Midpoint Bound Bound Midpoint

ABX 11.5 97.3 54.4 2.7 88.5 45.6
(1.87) (1.87)

ABY 43.7 98.3 71.0 1.7 56.3 29.0
(2.12) (2.12)

AEM 6.3 91.8 49.0 8.2 93.7 51.0
(1.69) (1.69)

AGU 13.1 86.4 49.8 13.6 86.9 50.2
(2.69) (2.69)

AL 4.2 94.9 49.6 5.1 95.8 50.4
(1.19) (1.19)

BCE 45.7 99.0 72.4 1.0 54.3 27.6
(2.70) (2.70)

BCM 26.9 99.9 63.4 0.1 73.1 36.6
(1.52) (1.52)

BMO 42.2 99.7 71.0 0.3 57.8 29.0
(1.65) (1.65)

BNN 59.8 99.9 79.9 0.1 40.2 20.1
(2.43) (2.43)

BNS 32.3 99.5 65.9 0.5 67.7 34.1
(1.62) (1.62)

BPO 18.1 88.1 53.1 11.9 81.9 46.9
(3.56) (3.56)

BVF 8.3 95.0 51.6 5.0 91.7 48.4
(1.37) (1.37)

CCJ 15.1 93.7 54.4 6.3 84.9 45.6
(2.44) (2.44)

CGT 43.9 99.8 71.8 0.2 56.1 28.2
(2.78) (2.78)

CLS 15.3 96.4 55.8 3.6 84.7 44.2
(1.50) (1.50)

CNQ 18.2 99.4 58.8 0.6 81.8 41.2
(1.74) (1.74)

COT 6.5 68.5 37.5 31.5 93.5 62.5
(2.37) (2.37)

CP 41.6 99.6 70.6 0.4 58.4 29.4
(2.14) (2.14)

DTC 52.5 98.8 75.6 1.2 47.5 24.4
(3.07) (3.07)

ECA 13.6 96.9 55.3 3.1 86.4 44.7
(2.45) (2.45)

ENB 57.3 99.5 78.4 0.5 42.7 21.6
(2.48) (2.48)

ERF 3.8 82.0 42.9 18.0 96.2 57.1
(2.80) (2.80)
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Table A-7: continued

ISh (TSX) ISf (NYSE)
Low. Upp. Low. Upp.

Bound Bound Midpoint Bound Bound Midpoint

FDG 7.1 89.4 48.3 10.6 92.9 51.7
(1.99) (1.99)

FFH 10.5 86.5 48.5 13.5 89.5 51.5
(2.38) (2.38)

FHR 7.6 84.5 46.1 15.5 92.4 53.9
(2.47) (2.47)

FS 0.1 64.3 32.2 35.7 99.9 67.8
(1.36) (1.36)

GG 6.1 91.7 48.9 8.3 93.9 51.1
(1.86) (1.86)

GIB 56.6 99.8 78.2 0.2 43.4 21.8
(2.07) (2.07)

GIL 34.6 95.6 65.1 4.4 65.4 34.9
(4.15) (4.15)

GLG 4.2 89.6 46.9 10.4 95.8 53.1
(1.67) (1.67)

HBG 6.4 53.6 30.0 46.4 93.6 70.0
(6.96) (6.96)

IDR 8.5 67.1 37.8 32.9 91.5 62.2
(2.64) (2.64)

IPS 39.7 98.6 69.1 1.4 60.3 30.9
(2.75) (2.75)

IQW 47.8 99.4 73.6 0.6 52.2 26.4
(2.78) (2.78)

ITP 23.3 91.6 57.5 8.4 76.7 42.5
(3.68) (3.68)

KFS 63.1 99.3 81.2 0.7 36.9 18.8
(2.68) (2.68)

KGC 14.3 89.7 52.0 10.3 85.7 48.0
(2.08) (2.08)

MDG 4.4 88.1 46.2 11.9 95.6 53.8
(2.12) (2.12)

MDZ 51.0 99.9 75.4 0.1 49.0 24.6
(2.69) (2.69)

MFC 17.1 90.0 53.5 10.0 82.9 46.5
(5.21) (5.21)

MGA 11.4 90.8 51.1 9.2 88.6 48.9
(2.59) (2.59)

MHM 42.9 99.1 71.0 0.9 57.1 29.0
(2.72) (2.72)

MIM 0.9 64.9 32.9 35.1 99.1 67.1
(2.54) (2.54)

N 15.6 99.5 57.6 0.5 84.4 42.4
(1.19) (1.19)

NCX 29.6 93.5 61.5 6.5 70.4 38.5
(2.67) (2.67)

NRD 54.0 99.8 76.9 0.2 46.0 23.1
(1.92) (1.92)
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Table A-7: continued

ISh (TSX) ISf (NYSE)
Low. Upp. Low. Upp.

Bound Bound Midpoint Bound Bound Midpoint

NT 4.8 94.1 49.5 5.9 95.2 50.5
(1.67) (1.67)

NXY 56.9 99.9 78.4 0.1 43.1 21.6
(1.87) (1.87)

PCZ 31.8 100.0 65.9 0.0 68.2 34.1
(1.51) (1.51)

PDG 15.5 98.4 56.9 1.6 84.5 43.1
(1.89) (1.89)

PDS 17.8 94.8 56.3 5.2 82.2 43.7
(2.95) (2.95)

PGH 37.6 86.2 61.9 13.8 62.4 38.1
(3.43) (3.43)

PKZ 13.4 95.3 54.3 4.7 86.6 45.7
(2.02) (2.02)

POT 6.4 84.6 45.5 15.4 93.6 54.5
(2.14) (2.14)

PWI 19.4 93.3 56.3 6.7 80.6 43.7
(3.29) (3.29)

RCN 14.7 86.9 50.8 13.1 85.3 49.2
(3.84) (3.84)

RG 38.2 100.0 69.1 0.0 61.8 30.9
(2.23) (2.23)

RY 44.6 100.0 72.3 0.0 55.4 27.7
(1.90) (1.90)

RYG 35.1 99.4 67.3 0.6 64.9 32.7
(2.23) (2.23)

SLF 39.2 100.0 69.6 0.0 60.8 30.4
(2.87) (2.87)

SU 32.9 99.3 66.1 0.7 67.1 33.9
(1.77) (1.77)

TAC 55.8 99.4 77.6 0.6 44.2 22.4
(2.96) (2.96)

TD 45.2 100.0 72.6 0.0 54.8 27.4
(2.33) (2.33)

TEU 27.8 98.1 62.9 1.9 72.2 37.1
(1.52) (1.52)

TLM 17.3 98.5 57.9 1.5 82.7 42.1
(2.17) (2.17)

TOC 42.8 99.9 71.3 0.1 57.2 28.7
(1.80) (1.80)

TRP 71.6 99.9 85.7 0.1 28.4 14.3
(2.84) (2.84)

TU 69.1 99.0 84.0 1.0 30.9 16.0
(1.51) (1.51)

ZL 45.4 98.1 71.8 1.9 54.6 28.2
(2.16) (2.16)
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