A Service of

ECOMNZTOR pr

Make Your Publications Visible.

Leibniz-Informationszentrum
Wirtschaft

Leibniz Information Centre
for Economics

Fokianos, Konstantions; Fried, Roland

Working Paper

Interventions in ingarch processes

Technical Report, No. 2009,11

Provided in Cooperation with:

Collaborative Research Center 'Reduction of Complexity in Multivariate Data Structures' (SFB 475),

University of Dortmund

Suggested Citation: Fokianos, Konstantions; Fried, Roland (2009) : Interventions in ingarch processes,
Technical Report, No. 2009,11, Technische Universitat Dortmund, Sonderforschungsbereich 475 -
Komplexitatsreduktion in Multivariaten Datenstrukturen, Dortmund

This Version is available at:
https://hdl.handle.net/10419/41051

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/41051
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Technical Report

11/2009

Interventions in ingarch processes

Konstantinos Fokianos, Roland Fried

Universitat
Dortmund

SFB 475

Komplexitatsreduktion in
multivariaten Datenstrukturen

Sonderforschungsbereich 475
Universitat Dortmund
44221 Dortmund
Germany



INTERVENTIONS IN INGARCH PROCESSES

BY KONSTANTINOS FOKIANOS AND ROLAND FRIED
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Abstract

We study the problem of intervention effects generatingouertypes of outliers in a linear count time series
model. This model belongs to the class of observation drivedels and extends the class of Gaussian
linear time series models within the exponential familynfeavork. Studies about effects of covariates and
interventions for count time series models have largellefiabehind due to the fact that the underlying
process, whose behavior determines the dynamics of thevalosprocess, is not observed. We suggest a
computationally feasible approach to these problems siaguespecially on the detection and estimation of
sudden shifts and outliers. To identify successfully suchsual events we employ the maximum of score
tests, whose critical values in finite samples are detemniiyeparametric bootstrap. The usefulness of the
proposed methods is illustrated using simulated and realed@mples.

Keywords. parametric bootstrap; generalized linear models; observdriven models; level shifts; transient
shifts; outliers.



1. INTRODUCTION

This paper investigates the problem of modeling unusuaitevia integer-valued GARCH (INGARCH)
models, introduced by Ferland et al. (2006) and studiedhéurby Fokianos et al. (2008). An advantage of
these models for modeling count time series is the inclusi@feedback mechanism which yields parsimony—
a similar idea to the GARCH model; Bollerslev (1986). In duidi, stationarity and geometric ergodicity is
guaranteed by simple conditions on the parameters and tammalimaximum likelihood model fitting is im-
plemented in a straightforward manner. We will show thaltégues for estimation and detection of different
types of changes (intervention effects) can be developddmithe framework of INGARCH models. In the
context of Gaussian linear time series, these questiorestieen investigated by several authors including Fox
(1972), Box and Tiao (1975), Tsay (1986), Chang et al. (198B¥n and Liu (1993) and Justel, Pefia and Tsay
(2001), among others. However, to the best of our knowlesigeh studies for integer valued dependent data
are missing, although their development is important fégrence and diagnostics.

Figure 1 motivates much of the subsequent discussion. Wskite number of cases of campylobacterosis
infections from January 1990 to the end of October 2000 imtrth of the Province of Québec, Canada. These
data were recorded every 28 days for a total number of 13 freegear. Ferland et al. (2006) model the time-
varying level and variability of these count data by an ING2{Rprocess model. Apparently, the plotillustrates
that both the variation and the level of the data increaskeathd of the time series. Additionally, there are
two possibly outlying values about the time point 100. It is natural to ask whether these fluctuations can
be explained by the INGARCH model or whether the model fit caimiproved substantially by the inclusion
of such singular effects. In the latter case it can be exasnivigether the extra variability can be explained
by singular real phenomena. the possible causes of the edigbility can be examined. Hence, a method
which allows detection of interventions and estimationh@it size is needed so that structural changes can be
identified successfully. Important steps to achieve tha goe the following, see Chen and Liu (1993):

1. A suitable model for accommodating interventions in ddume series data,

2. derivation of test procedures for their successful dietec

3. implementation of joint maximum likelihood estimatiohrmodel parameters and outlier sizes
4. and correction of the observed series for the detectedvieritions.

We address all these issues and give possible directiofigrtber developments of the methodology.

Models for time series of counts have been considered byaeaethors—see MacDonald and Zucchini
(1997) and Kedem and Fokianos (2002, Ch. 4), for instancenof®eby{Y;,¢t = 1,2,...,n} a count time
series. Itis usually assumed that the respdnsegiven the information up to timg is conditionally Poisson
distributed with meamn\; and many of the existing modeling approaches are based @goessindog \;—
the so-called canonical link parameter—on past valuesefdalsponse and/or covariates. These models are
called observation driven models following Cox (1981). lamlos and Kedem (2004) show that these models
fall within the broad class of time series following generadl linear models and their analysis is based on
likelihood inference, see also Zeger and Qagqish (1988)1294), Davis et al. (2003) and Jung et al. (2006),
among other authors. However, methods for outlier ideatifox in count time series are missing and the notion
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Figure 1: Number of cases of campylobacterosis infecticoma flanuary 1990 to the end of October 2000.

of intervention (Box and Tiao (1975))) has been only vageelgiressed, see Kedem and Fokianos (2002, Sec.
4.5.2), for instance. A fundamental problem with these ni®idethat the observed process is governed by an
underlying hidden process which causes outlier (or anyrpthedeling to be challenging. We argue that it is
reasonable to introduce intervention effects by meansenfittobserved (hidden) process.

To develop the theory, we follow Ferland et al. (2006) andufoon the integer-valued GARCH class of
models, though our approach can be generalized to otherggetAn integer-valued GARCH proce§s; } of
ordersp andgq, abbreviated by INGARCHY, ¢), is defined through the following relationships

Yi|FY, ~ Poissofi)\;),

q p
Moo= o+ BYii+ > ajh 1)
i=1 j=1
for ¢t > 1 and an intercept, > 0, regression parametefs > 0,¢ = 1,...,¢, ande; > 0,5 = 1,...,p.

The dynamics of the process are modeled via the conditiosahy = E(Y;|FY ;) of Y;, which is a function

of the whole informationF} ; up to timet — 1 and of the unknown regression parameters. HeYestands
for the o—field generated byYi_,, ..., Y, Ai—p, ..., Ao}. A stationary solution of (1) with mea#, /(1 —
doryi—4_, ;) exists provided thaY 77, a; +>-7_, B; < 1. Similar models, in whic )\, } is regressed
on past values of the observed process and past valugks piitself, have been studied before by Rydberg
and Shephard (2000) and Streett (2000) and more recentlpkipos et al. (2008). Apparently model (1)
has a close resemblance to the GAR@H )-process popularized by Bollerslev (1986) since the meaheof



Poisson distribution equals its variance. Our focus is enIMGARCH(1,1) model since like in the case
of GARCH models it is the simplest interesting variant ant sedficiently flexible for approximating many
realistic dependence structures.

Since INGARCH models are closely related to the common GAR@4lels it is natural to consider in-
tervention modelling within the GARCH framework. The effeof outliers within the context of GARCH
models have been investigated by Van Dijk et al. (1999) and&Za et al. (2006) among other authors. Since
a GARCH model can be represented as an ARMA model, it is temgpd introduce different outlier effects
directly to the observationgl; } following the linear time series methodology, see Chartes@arne (2005),
for instance. Adding a constant to a Gaussian variable yielghifted random variable which is again Gaus-
sian, but the same is not anymore true for a Poisson distd@indom variable. In fact, the resulting random
variable is not even integer valued if the shift is not andete We resolve these problems by introducing
intervention effects through the unobserved pro¢ess.

In the following, the problem of detection and estimatiomdérvention effects is discussed within the class
of INGARCH(1, 1) models. Section 2 proposes definitions for different typieimterventions in INGARCH
processes. Itis argued that it is more sensible to introthieevention effects through the unobserved process
{A+}. The proposed approach is quite general and can be emplopéukr settings dealing with integer valued
dependent data. Section 3 develops joint estimation okEssgwn parameters and intervention effects within
the framework of maximum likelihood. Section 4 suggestgedtests for the detection and identification of
changes at known time points and investigates their povestic@ 5 modifies the approach to detect changes at
unknown time points by employing a parametric bootstrag@dore. Section 6 outlines an iterative procedure
for detection of multiple interventions and applies it talrand simulated data. The work concludes with some
comments on further research in this area.

2.INTERVENTION EFFECTS

In general, different types of intervention effects on tisegies data are classified according to whether
their influence is concentrated on a single or a few data poimtwhether they affect the whole process from
some specific timé = 7 on. In classical linear time series methodology an intetivareffect is included in
the observation equation by employing a sequence of detestigicovariateg X, } of the form

Xy = &(B)I(T) (2)

fort > 1, where¢(B) is a polynomial operator to be defined beld#is the shift operator such th& X, =
X;—; andI;(7) is an indicator function, witl;(7) = 1if ¢t = 7, andl;(7) = 0if t # 7 . The choice of the
operatort (B) determines the kind of intervention effect: additive @nti{A0), transient shift (TS), level shift
(LS) and innovational outlier (10). Since INGARCH modelg awot defined in terms of innovations, we focus
on the first three types of interventions. By setting

EB)= (1-6B)7", 6€0,1], (3)



AO and LS type of interventions corresponddto= 0 andd = 1, respectively. For a TS, the value &fis
typically chosen as a predefined constar¢ {0.7,0.8,0.9}. In the context of linear time series, the afore-
mentioned specification allows for easily interpretabtes because the outlier process enters the observation
equation as a covariate, see Tsay (1986, eq. 1.2) and Chetiafid93, eq.2).

For models like (1), whose behavior is determined by a lgbentess, a formal linear structure as in the
case of Gaussian linear time series model does not hold arg amal interpretation of interventions is a more
delicate issue. We argue that detectable and meaningéuantion effects in the context of model (1) can be
defined by

Zy|Fi—1 ~ Poissolfs:),

q p
ke = fo+ Z BiZi—i + Z ajki—j +vXy, (4)
i=1 j=1

fort > 1, wherev is the size of the intervention effedtX,} is defined in (2) and; is theo—field generated
by {Zi—q,....Z¢,Ki—p,...,Ko}. In other words, the mean proce§s,} of (1) is transformed to another
mean process, callek;}, by adding a single intervention effect starting at timeThe idea of introducing
such effects via the underlying hidden process is quite ga@d can be employed in the context of other
models for time series of counts, like log—linear autoregikee models. However, there is need for some model
dependent adjustments regarding interpretation of inteigns.

The main idea that model (4) brings forward is that insteathef’clean” INGARCH proces$Y; } we
observe the contaminated proc€gs }, which includes the effect of an intervention at timeln case ofr = 0
and equal starting values fén,} and{x;} as well as fo{Y;} and{Z,}, model (4) reduces to (1), because
{\} and{x.} are derived from the same recursions with identical in#té&lon. Forv > 0, the observed
process{ Z;} can be thought as the sum of two independent processes:emmention free time seriegY; }
that follows (1) and a sequend€’;} of Poisson random variables with mean depending on baihd the
choice of¢(B) . In other words

Zy = Y +Cy. 5)

For any value ofy, model (4) implies that at timé = 7 + h the intercept of the regression equation
for the procesqx;} becomes3, + v¢, instead of3,, where¢;, is the coefficient of the ternB” in ¢(13).
Restrictingr > — [ in (4) implies that the contaminated procdss} does not become negative because (3)
shows that none of the coefficients gf3) takes values larger than one. This restriction is not sesieee
we can only speak of negative (or better downward) changgs ifas a large positive value. In this case
the mean of the observed procdds} stays away from zero. For small values/fwe can hardly call any
value a downward outlier since every small non negativegerteccurs with substantial probability unless
i1 i+ 25 B~ L

A few illuminating calculations for the INGARCH(1,1) modsthow the consequences of introducing in-
tervention effects by means of the unobserved processt reirall model (1) and notice that by successive
substitutions we obtain that

t t—1

«a i

ai +alXo+ B Y alYi ().
1=0

At = Bo

1 —
1—



Similarly,

t—1 t

t
N ) _
KRt :ﬁol al —i—ai)\o +ﬂ120{212t,(i+1) +VZCK,L1Xt_i7
ot i=0 i=0
or equivalently
t—1 t
Rt = )\t + Z Oéict,(i+1) + Z/Z OéZiXt_z‘, (6)

1=0 1=0
assuming thaty = Ay and using (5). Whew = 0, x; = A; for all t. A transient shift, see (3), yields the
contaminated latent process

)\,57 t<T,
e = 1 t istejor (7)
)\t -+ Zi=0 alCt_(i_H) -+ I/ijo 0415 J , t Z T.

whered € (0,1). Note that a transient shift withe (0, 1) implies the presence of a decaying shift whose effect
1— (a /5)t+1 6t+1 _ Ozt+1
1 — 577 1 .
1—a1/d 0 — oy
The size of the effect decreases faster for smaller valuésaofla;. Figure 2(b) illustrates this point. In the

case ofy = 0, we obtain that

>\t; t< T,
Rt = t—1 ot (8)
A+ im0 i Ci_(ip1y Fvay T, t>T.

becomes gradually smaller as time grows sih¢le ; af 6'—/=" = 57

Figure 2(a) illustrates this situation and it should be ddtet this form of intervention effect still influences
the process from time on, but to a rapidly decaying extent provided thatis not close to unity. Accordingly,
we call this a spiky outlier, and abbreviate it by SO. On theeotextreme, fod = 1 a level shift type of
intervention is observed, corresponding to a permanemgsh the mean (and the variance) of the process;
see Figure 2(c). Equation (6) becomes

>\t; t< T,
Ky = N (9)

1 1
At + Zfzé Oézlct—(i+1) + Vﬁ, t>T.

As a further remark, note that any INGARCH(1,1) model hasidal second order properties as the
following ARMA(1,1) model

Yi—p—(Br+o)(Yio1 —p) = e —areq,

where{e;} is a white noise sequence with= 3,/(1 — 81 — a;) ando? = p, see Ferland et al. (2006,
Cor. 2). Hence it is tempting to define outliers by the coroegting ARMA representation, along the lines
of Chen and Liu (1993). Notice that these authors introdugéen effects to the procesgy;} by simple
addition, while we modify the model for the underlying (catimhal) mean procesg\: }. In case of a Gaussian
process, both approaches are equivalent. Thus, our pidpdead means an extension of the model of Chen
and Liu (1993) to Poisson time series. The other kind of esitem) in which the outliers are added directly to
the observations, has been considered in the context of GARGdels by Charles and Darné (2005), among
others, who employ the ARMA(1,1) representation of a GARCH) model to define additive and innovative
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Figure 2: Effects of different types of outliers of size= 8 at time pointr = 100 on a realization of an
INGARCH(1,1) model generated withy = 1, 51 = a3 = 0.3 andn = 200. The black line shows the
observed time serigsZ; } and the grey line the underlying mean procéss}. (a) Spiky outlier. (b) Transient
shift with 6 = 0.8. (c) Level shift.

outliers. Transferring this idea to the INGARCH model metad instead of the outlier free process }, the
observations are generated by

Zt :Y;g-f-VXt.

Such a definition leads to some complications for the casewdfitcdata. All types of outliers requireto be

an integer. In case of a level shift, the observatipfig} are no longer Poisson distributed for 7, but follow

a shifted Poisson distribution instead. For the TS casthdumodifications are needed for the observations to
take integer values. Therefore, it seems more natural toelefitliers in count time series via the conditional
mean evolution of model (4). The main assumption here isahaipt changes or interventions directly influ-
ence the conditional mean, and the result in turn affectsliserved serie§Z, }. Since the INGARCH model

is not defined in terms of innovations, we do not distinguistween additive and innovational outliers. Indeed,
spiky outliers (the above case ®f 0) influence the future of the time series according to the dyios of the
process, and hence bear some analogy to the innovatiotiaksin classical ARMA modeling.



3. MAXIMUM LIKELIHOOD ESTIMATION

Maximum likelihood inference for model (1) has been disedsby Ferland et al. (2006) and Fokianos
et al. (2008). Along these lines, joint estimation of modalgmeters and outlier effects can be carried out by
viewing (4) as a regression model that includes the time nléget covariate process defined by (2).

Accordingly, the conditional likelihood function of the sérved data, ..., z, givenz,..., 21—, and
Ko, - - ., K1—p fOr model (4) is given by
n Kt 2t o=t (0)
t=1
wheref = (0o, b1, .., 04, 1, ..,ap, ) is the vector of unknown model parameters an(p) is given by

equation (4). Therefore, the log-likelihood function isiafto

n

6(9) = Z(Zt IDKt —Kt Zét

t=1

up to a constant. Differentiation shows that the score fands given by thep + ¢ + 2)—dimensional vector

o0 ae - Ok
5ur0) = 00 5 O 7 () 2 (10
t=1 t=1
where
8/%(9) P 5‘/{t,j (9)
= 1+ AN
9o ; Y00,
8/%(9) - P 5‘/{t,] (9) -
aﬁz — th’b+;aj aﬂt 9 Z*]-a y 4,
Or(0) _ N Om(0)
9a, = nt,Z(H)Jr]Z::la]iaai , i=1,...,p,

20~ 3020 ey

by using (2). The notatiof,, (¢) is used to indicate that the score depends uperthe time that an interven-
tion has taken effect. The solution of the equatidns(d) = 0, provided that it exists, yields the conditional
maximum likelihood estimaté of 6. In addition, the conditional information matrix féris given by

SOl S 1€ SIC SR

Note that we assume the intervention timéo be known here. The common case in whicks not known
a-priori can be treated by testing for interventions atiallet points and choosing the value ofmaximizing
the standardized test statistic, see Section 5.

In case of the INGARCH(1,1) model, we obtain tidas a four dimensional vector of unknown parameters
and the score function is given by (10) by modifying accogtiirthe quantitie®r./06. Large sample proper-
ties of are studied by proving joint ergodicity of the procd$;, x;)} and finiteness of its moments. This




is the kind of conditions needed to obtain asymptotic noity&dr the parameter estimates. More specifically,
it is required that the score function is asymptoticallymally distributed and the Hessian matrix converges
in probability to a non random limit. In addition, the thirérivatives of the likelihood function have to be
uniformly bounded, Fokianos et al. (2008). Figure 3 sugpthté claim of asymptotic normality ¢fif a TS
type of outlier is included in model (4). Note that the distiion of the estimator of the intercept is moderately
skewed— a phenomenon occurred in the GARCH(1,1) model ds wel

Figure 3: QQ-plots of (ag)?o, (b) &1, (c) 31 and (d)> estimated from a realization of an INGARCH(1,1) model
with a TS generated by (4). The parameter valuessare 1, 51 = 0.3, a; = 0.5, v = 5 andn = 200. The
time of intervention is- = 120 andé = 0.8, see (3). The plots are based on 500 simulations.

@ (b)

() (d)

00 01 02 03 04 05

Calculation of the maximum likelihood estimators is cadrimut by numerical optimization of the log—
likelihood function. The optimization is accomplished by@oying a quasi—-Newton method—the so called
BFGS method—-implemented in the functionnst r Opt i mof the R statistical language, R Development
Core Team (2004). For the basic case of the INGARCH(1,1) madgal estimates for the optimization are
obtained by conditional least squares using the ARMA(lepyesentation.

4. TESTING FOR AN INTERVENTION EFFECT AT A KNOWN POINT IN TIME

We consider testing for the presence of an interventiorcedfithin the INGARCH model in the case that
the type and the time of the outlier are known. In the nextigeate extend our approach to the situation in
which both the type and the time of the outlier are unknown.ilize the score test because its application
requires model fitting only under the null hypothesis of nteimention. This allows us to perform individ-
ual tests for each type of intervention effect at each timiatpgimultaneously, fitting the model only once.



Alternatively, Wald tests or likelihood ratio tests could@abe employed, but their implementation in the situ-
ation of unknown type and time of intervention requires safgamodel fitting for each type of intervention at
each time point. Therefore, both Wald type tests and likelthratio tests increase the computational burden
substantially, especially for long time series.

Consider a certain type of intervention at a specific tima&poand test the hypothesis‘oﬁ : v = ( against
the alternative I‘lf) : v # 0in model (4). The corresponding score test statistic isrgbse

Tn(T> = S’:LT(BO) ) &pa O)G;} (B()a ey &pv O>Sn7'([30; ) dpa 0)7 (12)
whereSm(Bo, sy 0, 0) andGm(Bo, ..., 0y, 0) are the score function (10) and the conditional information
matrix (11), respectively, evaluated (ai), . .,&p,o)'—the maximum likelihood estimators computed under

model (1). Then we have the following result, which followeedtly from Basawa (1991).

Lemmal Suppose that model (4) holds anddgtdenote the vector of the true parameter values. Assume the
following two conditions:
1)

1
EGTLT (90) - G(HO)

in probability, asr — oo, whereG(6y) isa(p + ¢ + 2) x (p + ¢ + 2) positive definite matrix.

2)
1
7

in distribution, as» — oo, whereN; denotes al-variate normal distribution.

Snr(00) = Nptqt2 (0, Gil(GO))

Then, under the null hypothesi§lr)l v=0
T’VL(T) - X%a
in distribution, as» — oo, wherey? is the chi-square distribution with one degree of freedom.

The form of the score test (12) depends upon the type of tHeeoabnsidered—see (3). For the general
INGARCH(p, ¢) the first two conditions of Lemma 1 are assumed to hold sihee¢gion of ergodicity for
such processes is still unknown. For the INGARCH(1,1) cBs&janos et al. (2008) show that the condition
0 < a1 + B1 < 1 implies consistency and asymptotic normality of the maximikelihood estimators.

Recall that under %T) : v = 0 model (4) reduces to model (1). Therefore we have the foligwesult for
the special case of the INGARCH(1,1) model. Its proof is Hasethe Lemmas 3.1 and 3.2 of Fokianos et al.
(2008) and on Basawa (1991). Note thas fixed, for exampl@ = 0.8, when testing for a TS since otherwise
this parameter is not identifiable under the null hypothesis

Lemma 2 If model (4) is true withd < o + 31 < 1, then under the null hypothesi{l-)l :v = 0itholds

To(r) — X%

10



Lemma 2 allows derivation of critical values for an asymiattest of the null hypothesis of no interven-
tion against the specific alternativeﬂll of an intervention of a given type at a fixed time we reject the
null hypothesis at a given significance levelif the value ofT;,(7) is larger than thé1 — «)-quantile of the
x3-distribution. Table 1 shows a few simulation results foamining the adequacy of the chi-square approx-
imation. We compare the output with the correspondif@-, 95%- and99%-percentiles of the chi—square
distribution with one degree of freedom. In all cases thelteindicate a close agreement between the achieved
and nominal significance levels.

Table 1: Achieved significance levels (in percent) of theredest statisticl;,(7) for different sample sizes
and different time of interventions. The data have beenggeeé by an INGARCH(1,1) model with, = 0.8,
a1 = 0.5 andB; = 0.3. For the TS type statisti€ = 0.8. The results are based on 1000 simulations each.

7=0.25n 7 =0.50n 7=0.75n
Type| 1 5 10 1 5 10 1 5 10 n
SO| 1 52 102 1 56 98|12 49 9
TS| 14 54 99|13 47 96|05 49 9.6]| 200
LS|{07 42 85| 1 31 82|11 33 81
SO| 08 49 10.1)09 52 103 08 36 8.2
TS| 14 46 92|11 45 85|14 46 8.3| 500
LS| 06 34 7 111 45 9 107 39 83
SO| 08 4 88|06 38 86|13 46 95
TS| 07 41 91|08 52 10.7/1.7 6.0 10.6/ 1000
LS|09 39 85|08 56 11304 48 94

Figure 4 illustrates the power of the tests as a function efdgize and the time of the intervention, for
different types of interventions. It is clear that the poweéthe tests increases rapidly along with the size. The
power of the tests for SO and TS is somewhat affected by the déihoccurrence of the outlier. LS types of
interventions are more difficult to be detected especiéltiigy occur either at the beginning or at the end of
the series. In such a case, we lack information on the timerbefr after the shift.

We also examine the sensitivity of the tests against mistpetton of the type of intervention, because,
occasionally, there is information about the time point afpcial event, but not about its effect. While it
appears that a LS is rarely detected in case of an SO or TSghéot SO is often significant in case ofa TS
and vice versa. Nevertheless, the test for the correct tfipéavvention seems to take typically more significant
values so that we can classify the type of the outlier acogrth the magnitude of the p-values of the tests.
Note that an LS at the end of the series can be confused withitvilé&sdo not know the type of the outlier.
In general the tests are somewhat oversized. As a roughlogidee state that testing for any type of outlier
at a given time point by performing the tests for the differtgpes at an 1% level of significance each yields
roughly to a total 5% level. These results have been confilgesimulations for other parameter settings.

11



Figure 4: Detection rates for the different types of inteti@ns as a function of the size (left) and the time
(right) of the intervention: SO (top), TS (center) and LSttbm). Detection rates of the test for SO (dotted),
for TS (dashed) and for LS (solid) at 5% (thin) and at 1% sigaifice level (bold line). Each curve is based on
500 simulation runs from an INGARCH(1,1) model wjth = 5, 51 = a3 = 0.3.
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5. TESTING FOR AN INTERVENTION EFFECT AT AN UNKNOWN POINT IN TIME

To detect an intervention of a certain type at any time pe@metmaximize the test statistic (12) with respect
to 7 and reject the hypothesigH v = 0 if

T, = max Ty, () (13)

is large. We performed extensive simulations to derivécadivalues for the maximum score test statigtic
under different parameter settings. However, it turnedtoatt the empirical percentiles @f, varied substan-
tially for different parameter configurations, even in tlase of long series consistingof= 500 observations.

In other words, suitable critical values depend upon thenonk underlying parameter. A solution to this prob-
lem could have been a grid search over the parameter spaegite thaximum percentiles as critical values.
Besides the large computational costs of this approachtleeiudrawback would be a substantial loss of power
for a broad range of parameter values. Moreover, we foungeheentiles to depend on the type of outlier—a
fact that can be explained by the different degree of depmelamong the test statistics for the individual time
points. Therefore, we apply a simple parametric bootswagériving critical values of (13).

Towards this goal, we fit an INGARCH model to the observed tsedes assuming that there are no
outliers. Then we generate a large number of, gay- 500 bootstrap replicates from the fitted INGARCH
model with the same parameters as those estimated for teevelgeal data. The maximum test statistics (13)
are calculated both for the real and the bootstrapped ddtee ieal data do not contain outliers, we expect the
corresponding value df,, to be comparable to those for the bootstrap series.

We present a few exemplary simulation results to check vératie number of bootstrap test statistics
which are larger than the value ®f, for the real data can be viewed as a random draw from a disenéferm
distribution on0, 1, . .., B. 'Real time series of length = 200 have been generated from an INGARCH(1,1)
model with parameter§3y, a1, 51) = (5,0.3,0.3) and the parameters are estimated assuming that there are
no outliers. Then we generafé¢ = 500 bootstrap replicates from an INGARCH(1,1) with the estigdat
parameters. The maximum test statistiés are calculated for the original and for tH# bootstrap series.
From this we obtain the numbé¥ of bootstrap replicates for which, is larger than for the original data.
This is repeated 100 times and the resulting counts aretéelpit Figure 5. These histograms show adequate
approximation to the uniform distribution, and thereforeean transforniV to a p-value, dividing it byB + 1.

Next we generate time series of length= 200 with a level shift of increasing size = 0,1,...,5 at
time T = 100 from the same INGARCH(1,1) model as before. Figure 6 depiciglots of the numbel of
bootstrap replicates for which, is larger than for the original data, as a function of thetsife. Apparently,
the distribution ofN is only slightly affected by the shift in case of SO and TS, levfitirapidly concentrates
almost all of the mass on very small values when testing fdt&nThus, we expect to obtain good power of
the test and also reliable classification results based @mgparison of the p-values for the different types of
outliers.

This is confirmed in Figure 7, which illustrates the powerlad tests for different types of interventions.
The type of the intervention is classified according to thaimal p-value, with preference being given to
interventions with larger value af in case of equality. The reason for this preference is thdeecy of the
test for SO to be also significant when testing for either LS 8r and of the test for TS if there is an LS,
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Figure 5: Histograms of the number of bootstrap replicates ¢f B = 500) for which T,, takes a larger value
than for the original data, obtained from 100 repetition®: (&ft), TS (middle) and LS (right).

Histogram for SO test Histogram for TS test Histogram for LS test

10
I
10
I
10
I

Frequency
Frequency
Frequency

5
I
5
I
5
I

:

T T T T T 1 T T T T T 1 T T T T T 1
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

Number of exceeding bootstrap test statistics Number of exceeding bootstrap test statistics Number of exceeding bootstrap test statistics

Figure 6: Boxplots of the number of bootstrap replicates (§u3 = 500) for which 7;, takes a larger value
than for the original data in case of an LS of increasing fb¢ained from 30 repetitions each: test for SO
(left), TS (middle) and LS (right).
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while the reverse applies less frequently. Apparently thegy of the test for LS increases to 1 with increasing
size of the shift, and there is some confusion with TS or SQ drthe shift is small. We also illustrate the
results for another more challenging situation of timeesewith lengthn = 100 from an INGARCH(1,1)
model with a smaller marginal mean. For this example thematers of the INGARCH model are given by
(Bo, 1, 81) = (2,0.3,0.3) and the data contains an interventiorrat 50. Observe that the power of all tests
for the correct type of intervention approaches 1, excapb@® as it is occasionally mistaken as a TS. Thisis in
part due to the above preference ordering. A remedy mighd betease the numbét of bootstrap replicates
to improve the classification.
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6. ITERATIVE DETECTION OF INTERVENTION EFFECTS

Since there can be more than one intervention in a time sgniesedures for iterative detection of mul-
tiple outliers and data cleaning have been suggested by (I88p) and Chen and Liu (1993), among others.
Based on the previous findings, we suggest the following g for stepwise detection, classification and
elimination of multiple intervention effects, settidfy = Z;, ¢ = 1, ..., n, for initialization:

1. Fitan INGARCHYp, ¢) model (1) to the dataZ; }.

2. Test for a single intervention of any type at any time pbinemploying (4) and using the maximum of
the score test statistics as described in Section 5.

3. Ifthere is no significant result, then stop; the défa. . ., Z are considered as clean. Otherwise:

(a) Fita contaminated INGARCH( ¢) model (4) by choosing(B3) according to the type of interven-
tion identified in the previous step. Letbe the estimated size of the intervention effect ants
pointin time.

(b) Estimate the effect of the intervention on the obseoveii; by the rounded value

wherer;, is obtained from equation (4) by plugging in the estimatethefmodel parameters and

q P
fir =) BiCioi+ Y sy +0Xe t=T7+1,...,
i=1 j=1
with Cy = fiy = 0 fort < 7.

(c) Correct the time series for the estimated interventfteces,
Zr =7 —C t >,
and return to step 1.

The iterative procedure is continued until no further imégrtions are detected in step 2.

It is not possible to exactly eliminate intervention efeeftom the series since is the effect to the un-
observed mean process at the tilme= 7 of its occurrence. We argue that the correction in step 39c) i
adequate if we have identified the correct type of intengeméind point in timer. Let {Y;} be an uncontam-
inated INGARCH§p, q) process generated from model (1), and{l€t} be a contaminating process which is
independent from{Y; } with,

Ci|FE, ~ Poissoffy),
q P
pe o= Y BiCii+ > ajuj+vXy, (14)
i=1 j=1
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fort > 7, with uy = ... = pu,_; = 0 andFC the o-field generated froCi—g,...,Ct, pi—p, ..., 1o}
Denoting}"t(y’c) = F) v FF, theo-field generated fronFY and 7 and assuming independence between
{Y;} and{C:}, we get forZ; = Y; + C; that

ZJF P~ Poi(ky)

q p
ke = M+ = Zﬂiztfi‘i’zaj()\tfj+,LLt7j)+VXt~

i=1 =1

Note thatZ; depends on the pastonly via_,..., Z,—1, Ai—p, ..., Ao, i.€. it is conditionally independent
from ]—‘t(f’lc) given these variables. Thus, it possesses the same siogiragterties as the contaminated pro-
cess{Z:} generated from (4). Accordingly, we clean the observed seres{ 7, } by subtracting a prediction

C, of C, from Z,. We use the conditional expectation@f given]-‘t(f’lc) andZ; for this, which is

: : P (Ct =i Y=z z‘|ft(ff>)
B(Clzi=2F"0) = Yip(Ci=ilzi=2F0") =i 7o
i=0 i=0 P (Zt = z|F,2} )
LS it ) () (1) e,
pare Kkje "t /2! i) \ Kt Kt Kt

1=0

Into the resulting formulad (Ct|Zt, ]—‘t(f’lc)) = utZ / K+ we plug in the estimates of, andx;, obtained from
the recursions (14) and (4), respectively, and using tharpater estimatesy, . . . ,Bq, Q.. ., Op.

We demonstrate this methodology by analyzing two data elesnp simulated one where we can compare
our findings to the ground truth, and the real data describdue introduction.

As a first example we consider a simulated time series oflengt 200 generated from an INGARCH(1,1)-
model with parameter§, = 0.5, «; = 0.3 and; = 0.5, see Figure 8. To check the sensitivity of the results
concerning misspecification of the parameteegarding transient shifts, we generate data with two teams
shifts of the same size = 10 at timesr; = 50 andr, = 150, usingd = 0.7 andd = 0.9, respectively. We test
the existence of an SO, LS or TS with= 0.8 at any time point.

When we fit model (1) to the data assuming that there are novaridons, we obtain the conditional
maximum likelihood estimate§3y, a1, 51) = (0.522,0.295,0.602). Then we calculate the test statistics for
SO, TS and LS at all time points, see Figure 8. The test stafmt TS assumes significant values both at
time ¢ = 50 (with a value of 62.5) and dt= 150 (with a value of 44.1). However, the test statistics for SO
are also significant at the same instances, namely 100.8 arAdr@spectively. The corresponding bootstrap
p-values equal zero except for the SO at titne- 150, for which it is 0.006. The test statistics for LS are
not significant with a maximum of 7.1 (p-value 0.36). Accaglio the proposed classification rule, we might
identify correctly a TS at time = 150. However, here we want to investigate the effects of a misdiaation
and decide incorrectly in favor of a SO at timeg = 50, and estimate its size as 12.783 by joint conditional
maximum likelihood, see Section 3.

Iterating the algorithm further, always correcting theadatcording to step 3(c) of the iterative algorithm,
we conclude the analysis by detecting a TS of size 8.122 a&ttim= 150 (p-value 0, while the p-values are
large for SO and LS). After correcting the data for its ef§gtiere are no further significant test statistics in the
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third iteration. The final parameter estima(&,éq,ﬁl) = (0.515,0.310,0.529) are quite close to the true
values. The classification of transient shifts TS worksejratiably here in spite of the misspecified value pf
even though there is some risk of misclassifying a TS for an@@icularly if a too large value a@fis used in
the testing.

Finally we investigate whether there are interventionctffén the time series of campylobacterosis infec-
tion cases illustrated in Figure 1. Notice that for the asialpf these data, Ferland et al. (2006) suggest a kind
of seasonal model which includ&s_; and)\;_13 as regressors in the equation fqr see (1). We follow this
approach and start by fitting the same seasonal model.

Table 2: Iterative parameter estimates and interventifactsffor the campylobacterosis data.

Iteration Parameter Estimates Outlier
Bo a1 B4 Type 7  Size
1 2.439 0.196 0.591 LS 84 7.64
(0.654) (0.077) (0.058)
2 3.681 0.150 0.409 SO 100 22.55
(1.207) (0.159) (0.081)
3 2.300 0.387 0.323 -

(1.005) (0.162) (0.090)

After fitting the seasonal INGARCH model we test for the diffiet types of interventions using the boot-
strap versions of the maximum score tests described ind®e8ti In the first iteration, the bootstrap p-values
equal zero for spiky (SO) and transient shift (TS) types dfiexs at timet = 100 (recall thats is set to 0.8)
and also for a level shift (LS) at time= 84. According to the above classification rule we decide in favo
of the LS, estimate its size as 7.64 and eliminate its effechfthe time series. The top right plot of Figure 9
shows the corrected series.

The we fit the seasonal model to the cleaned data and testf@résence of further intervention effects.
Now we detect an SO of size 22.55 at time 100 with a p-value ¢fi@ test statistic for SO is 38.66 and thus
much larger than the one for TS here, which is 25.82 and wdsfi lzave been significant). After cleaning
the data from the effects of an SO at time 100 and refitting dlas@nal model to the cleaned data all p-values
become large. Therefore we conclude the analysis with tbartentioned interventions identified.

Table 2 summarizes the results of the iterations. Fittirggfthl model with the two interventions to the
original data, we conclude with the following enlarged INBBH(1,1) model for the numbers of campylobac-
terosis infections:

Zy | Fi—1 ~ Poissoffx;)
ke = 3.584(.761) + 0.230(.081)k;_ 13 + 0.352(.054) Z,_,
+2.930(.887)I(t > 84) + 41.645(7.302)1 (¢ = 100), (15)

for t > 1, where in parentheses are the corresponding standard efrtine regression coefficients. Based
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on model (15) and setting; = /{t(é), both predictions and data are plotted in Figure 9, illustgathat the
method successfully accomodates unusual observationftaige data quite well. As a closing remark, the
mean square error of the residuals for a model which doeswhtde intervention effects is equal to 2.309.
The corresponding value for (15) equals 1.313 which claadicates the improved fit.

Alternatively, we could have decided in favor of an SO at tih@® in the first step since the value of
its test statistic is the largest among all score tests, haBk0 versus 82.1 for a TS and 33.2 for a LS.
These differences appear to be large as compared to theedifies between the test statistics for the bootstrap
replicates, since the 95% percentiles of these are 16.1, 83 (TS) and 12.5 (LS) while the maxima are
22.9 (S0), 22.1 (TS) and 25.3 (LS), respectively. Then weltvbave estimated the size of the SO as 36.34.
Refitting the INGARCH model and testing for the presence dhier interventions, we would have identified
another SO at time 125 in the second step, with an estimate@&15.01 (p-value 0.006, which is smaller than
those foran TS attime 111 and an LS at time 83, namely 0.010428). In the third iteration a TS of size
14.75 would have been identified@at= 111 (p-value 0.00, while the one for an SO at time 111 is 0.010g Th
possible LS at time 83 would have lost its significance thest(statistic 9.25, p-value 0.237), i.e. we would
have detected several intervention effects with the saneetitin instead of an LS.

7. DISCUSSION

This work analyzes a model for estimation and detection t&riention effects in count time series by
both theory and simulation. A model for the data is necessahyjis context since otherwise it is not clear how
distant an observation needs to be from the rest of the daedelled an outlier, see Davies and Gather (1993).
The results indicate that the suggested modeling appreaeasonable. In particular, the proposed score test
statistics have been proven useful to detect differentsygfenterventions, although the tests for a certain
intervention at a given point in time seem to be oversized sfegy and swamping effects due to multiple
outliers apparently pose less difficulties than they do éndase of linear time series models like ARMA (see
Pefa (2000)). This can be explained by the estimation offrtb@n underlying the INGARCH process except
for the estimates of the model parameters depending onljepdst of time¢. Gather et al. (2002) suggest a
similar approach to reduce masking and swamping effectatireodetection for ARMA models.

We feel that model (4) suggests more problems and furthearel into different directions. For instance,
as a generalization withy intervention effects we fit the model

Zt|ft,1 ~ POiSSOl@/{t), t Z 1

m

q p
ke o= Bo+ Y BiZii+ Y ojri i+ Y u(B)L(T),
i=1 j=1 k=1
for joint estimation of intervention effects and model paeders. Some caution though should be exercised
since the properties of such processes are not known. Tdogeiwderence based on this model, we have
proposed an iterative strategy along the lines of Chen and1993). Discrimination between the different
interventions merits further investigation. Based on @suits we conjecture that the bootstrap approach
presented here works well at least for moderately largevatgion effects which are not very close to the start
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or the end of the series. Otherwise, tests for differentrisiations can take similarly small p-values. The
behavior of the extreme tails of the test statistics in finémples thus deserves further investigation.

We have provided computationally tractable solutions fidefivention effects influencing the future of the
process according to its dynamics. The case of a singleiaeldiitlier due to e.g. a measurement artifact has
been neglected here since joint parameter estimation istragghtforward within our framework and since
count time series arising e.g. in epidemiology are coregtblell, rendering the occurrence of AOs unlikely.
The investigation of such outliers is a topic for furthere@sh.

The approach taken in this work is quite general and can & asa guidance for other dependent count
data or more general time series following generalizedalimeodels. For instance, a model which has been
often used in the literature for the analysis of count timeesels the so called log—linear model, see Zeger
and Qagqish (1988), for instance. The proposed method casftrenulated to accommodate such models after
suitable modifications.
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Figure 7: Power of the bootstrap tests with classificatiseldan the minimal p-value for intervention effects of
increasing size: level shift at= 100 in a series of length = 200 with parameter§sy, a1, 51) = (5,0.3,0.3)
(top left), level shift at- = 50 in a series of length = 100 with parameter$sy, o1, 81) = (2,0.3,0.3) (top
right), transient shift at = 50 in a series of lengtlh = 100 with parameter$5y, a1, 51) = (2,0.3,0.3)
(bottom left) and spiky outlier at = 50 in a series of lengtm = 100 with parameterggo, a1, 51) =
(2,0.3,0.3) (bottom left). Test for SO (dotted), TS (dashed) and LS ¢§oli
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Figure 8: Simulated time series with two transient outlerimesr; = 50 andm, = 150 (dots) as well as the
test statistics for SO (dotted line), TS (dashed line) anddodd line), all divided by 2 for illustration.
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Figure 9: Iterations for correcting the campylobacterdsig: time series (dashed line), SO (light grey line),
TS (dark grey line), and LS test statistics (bold black liffe¥t (top left), second (top right) and third iteration
(bottom left) and fitted model (bottom right, model with intentions black, model without interventions grey).
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