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Abstract

We study the problem of intervention effects generating various types of outliers in a linear count time series

model. This model belongs to the class of observation drivenmodels and extends the class of Gaussian

linear time series models within the exponential family framework. Studies about effects of covariates and

interventions for count time series models have largely fallen behind due to the fact that the underlying

process, whose behavior determines the dynamics of the observed process, is not observed. We suggest a

computationally feasible approach to these problems, focusing especially on the detection and estimation of

sudden shifts and outliers. To identify successfully such unusual events we employ the maximum of score

tests, whose critical values in finite samples are determined by parametric bootstrap. The usefulness of the

proposed methods is illustrated using simulated and real data examples.

Keywords. parametric bootstrap; generalized linear models; observation driven models; level shifts; transient

shifts; outliers.
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1. INTRODUCTION

This paper investigates the problem of modeling unusual events in integer-valued GARCH (INGARCH)

models, introduced by Ferland et al. (2006) and studied further by Fokianos et al. (2008). An advantage of

these models for modeling count time series is the inclusionof a feedback mechanism which yields parsimony–

a similar idea to the GARCH model; Bollerslev (1986). In addition, stationarity and geometric ergodicity is

guaranteed by simple conditions on the parameters and conditional maximum likelihood model fitting is im-

plemented in a straightforward manner. We will show that techniques for estimation and detection of different

types of changes (intervention effects) can be developed within the framework of INGARCH models. In the

context of Gaussian linear time series, these questions have been investigated by several authors including Fox

(1972), Box and Tiao (1975), Tsay (1986), Chang et al. (1988), Chen and Liu (1993) and Justel, Peña and Tsay

(2001), among others. However, to the best of our knowledge,such studies for integer valued dependent data

are missing, although their development is important for inference and diagnostics.

Figure 1 motivates much of the subsequent discussion. It shows the number of cases of campylobacterosis

infections from January 1990 to the end of October 2000 in thenorth of the Province of Québec, Canada. These

data were recorded every 28 days for a total number of 13 timesper year. Ferland et al. (2006) model the time-

varying level and variability of these count data by an INGARCH process model. Apparently, the plot illustrates

that both the variation and the level of the data increase at the end of the time series. Additionally, there are

two possibly outlying values about the time pointt = 100. It is natural to ask whether these fluctuations can

be explained by the INGARCH model or whether the model fit can be improved substantially by the inclusion

of such singular effects. In the latter case it can be examined whether the extra variability can be explained

by singular real phenomena. the possible causes of the extravariability can be examined. Hence, a method

which allows detection of interventions and estimation of their size is needed so that structural changes can be

identified successfully. Important steps to achieve this goal are the following, see Chen and Liu (1993):

1. A suitable model for accommodating interventions in count time series data,

2. derivation of test procedures for their successful detection,

3. implementation of joint maximum likelihood estimation of model parameters and outlier sizes

4. and correction of the observed series for the detected interventions.

We address all these issues and give possible directions forfurther developments of the methodology.

Models for time series of counts have been considered by several authors–see MacDonald and Zucchini

(1997) and Kedem and Fokianos (2002, Ch. 4), for instance. Denote by{Yt, t = 1, 2, . . . , n} a count time

series. It is usually assumed that the responseYt, given the information up to timet, is conditionally Poisson

distributed with meanλt and many of the existing modeling approaches are based upon regressinglog λt–

the so-called canonical link parameter–on past values of the response and/or covariates. These models are

called observation driven models following Cox (1981). Fokianos and Kedem (2004) show that these models

fall within the broad class of time series following generalized linear models and their analysis is based on

likelihood inference, see also Zeger and Qaqish (1988), Li (1994), Davis et al. (2003) and Jung et al. (2006),

among other authors. However, methods for outlier identification in count time series are missing and the notion
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Figure 1: Number of cases of campylobacterosis infections from January 1990 to the end of October 2000.

of intervention (Box and Tiao (1975))) has been only vaguelyaddressed, see Kedem and Fokianos (2002, Sec.

4.5.2), for instance. A fundamental problem with these models is that the observed process is governed by an

underlying hidden process which causes outlier (or any other) modeling to be challenging. We argue that it is

reasonable to introduce intervention effects by means of the unobserved (hidden) process.

To develop the theory, we follow Ferland et al. (2006) and focus on the integer-valued GARCH class of

models, though our approach can be generalized to other settings. An integer-valued GARCH process{Yt} of

ordersp andq, abbreviated by INGARCH(p, q), is defined through the following relationships

Yt|FY
t−1 ∼ Poisson(λt),

λt = β0 +

q
∑

i=1

βiYt−i +

p
∑

j=1

αjλt−j , (1)

for t ≥ 1 and an interceptβ0 > 0, regression parametersβi > 0, i = 1, . . . , q, andαj > 0, j = 1, . . . , p.

The dynamics of the process are modeled via the conditional meanλt = E(Yt|FY
t−1) of Yt, which is a function

of the whole informationFY
t−1 up to timet − 1 and of the unknown regression parameters. HereFY

t stands

for the σ–field generated by{Y1−q, . . . , Yt, λ1−p, . . . , λ0}. A stationary solution of (1) with meanβ0/(1 −
∑p

i=1 αi−
∑q

j=1 βj) exists provided that
∑p

i=1 αi+
∑q

j=1 βj < 1. Similar models, in which{λt} is regressed

on past values of the observed process and past values of{λt} itself, have been studied before by Rydberg

and Shephard (2000) and Streett (2000) and more recently by Fokianos et al. (2008). Apparently model (1)

has a close resemblance to the GARCH(p, q)-process popularized by Bollerslev (1986) since the mean ofthe
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Poisson distribution equals its variance. Our focus is on the INGARCH(1,1) model since like in the case

of GARCH models it is the simplest interesting variant and yet sufficiently flexible for approximating many

realistic dependence structures.

Since INGARCH models are closely related to the common GARCHmodels it is natural to consider in-

tervention modelling within the GARCH framework. The effects of outliers within the context of GARCH

models have been investigated by Van Dijk et al. (1999) and Carnero et al. (2006) among other authors. Since

a GARCH model can be represented as an ARMA model, it is tempting to introduce different outlier effects

directly to the observations{Yt} following the linear time series methodology, see Charles and Darnè (2005),

for instance. Adding a constant to a Gaussian variable yields a shifted random variable which is again Gaus-

sian, but the same is not anymore true for a Poisson distributed random variable. In fact, the resulting random

variable is not even integer valued if the shift is not an integer. We resolve these problems by introducing

intervention effects through the unobserved process{λt}.

In the following, the problem of detection and estimation ofintervention effects is discussed within the class

of INGARCH(1, 1) models. Section 2 proposes definitions for different typesof interventions in INGARCH

processes. It is argued that it is more sensible to introduceintervention effects through the unobserved process

{λt}. The proposed approach is quite general and can be employed in other settings dealing with integer valued

dependent data. Section 3 develops joint estimation of regression parameters and intervention effects within

the framework of maximum likelihood. Section 4 suggests score tests for the detection and identification of

changes at known time points and investigates their power. Section 5 modifies the approach to detect changes at

unknown time points by employing a parametric bootstrap procedure. Section 6 outlines an iterative procedure

for detection of multiple interventions and applies it to real and simulated data. The work concludes with some

comments on further research in this area.

2. INTERVENTION EFFECTS

In general, different types of intervention effects on timeseries data are classified according to whether

their influence is concentrated on a single or a few data points, or whether they affect the whole process from

some specific timet = τ on. In classical linear time series methodology an intervention effect is included in

the observation equation by employing a sequence of deterministic covariates{Xt} of the form

Xt = ξ(B)It(τ) (2)

for t ≥ 1, whereξ(B) is a polynomial operator to be defined below,B is the shift operator such thatBiXt =

Xt−i andIt(τ) is an indicator function, withIt(τ) = 1 if t = τ , andIt(τ) = 0 if t 6= τ . The choice of the

operatorξ(B) determines the kind of intervention effect: additive outlier (A0), transient shift (TS), level shift

(LS) and innovational outlier (IO). Since INGARCH models are not defined in terms of innovations, we focus

on the first three types of interventions. By setting

ξ(B) = (1 − δB)
−1

, δ ∈ [0, 1], (3)
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AO and LS type of interventions correspond toδ = 0 andδ = 1, respectively. For a TS, the value ofδ is

typically chosen as a predefined constantδ ∈ {0.7, 0.8, 0.9}. In the context of linear time series, the afore-

mentioned specification allows for easily interpretable results because the outlier process enters the observation

equation as a covariate, see Tsay (1986, eq. 1.2) and Chen andLiu (1993, eq.2).

For models like (1), whose behavior is determined by a latentprocess, a formal linear structure as in the

case of Gaussian linear time series model does not hold any more and interpretation of interventions is a more

delicate issue. We argue that detectable and meaningful intervention effects in the context of model (1) can be

defined by

Zt|Ft−1 ∼ Poisson(κt),

κt = β0 +

q
∑

i=1

βiZt−i +

p
∑

j=1

αjκt−j + νXt, (4)

for t ≥ 1, whereν is the size of the intervention effect,{Xt} is defined in (2) andFt is theσ–field generated

by {Z1−q, . . . , Zt, κ1−p, . . . , κ0}. In other words, the mean process{λt} of (1) is transformed to another

mean process, called{κt}, by adding a single intervention effect starting at timeτ . The idea of introducing

such effects via the underlying hidden process is quite general and can be employed in the context of other

models for time series of counts, like log–linear autoregressive models. However, there is need for some model

dependent adjustments regarding interpretation of interventions.

The main idea that model (4) brings forward is that instead ofthe ”clean” INGARCH process{Yt} we

observe the contaminated process{Zt}, which includes the effect of an intervention at timeτ . In case ofν = 0

and equal starting values for{λt} and{κt} as well as for{Yt} and{Zt}, model (4) reduces to (1), because

{λt} and{κt} are derived from the same recursions with identical initialization. Forν > 0, the observed

process{Zt} can be thought as the sum of two independent processes: an intervention free time series{Yt}
that follows (1) and a sequence{Ct} of Poisson random variables with mean depending on bothν and the

choice ofξ(B) . In other words

Zt = Yt + Ct . (5)

For any value ofν, model (4) implies that at timet = τ + h the intercept of the regression equation

for the process{κt} becomesβ0 + νξh instead ofβ0, whereξh is the coefficient of the termBh in ξ(B).

Restrictingν > −β0 in (4) implies that the contaminated process{κt} does not become negative because (3)

shows that none of the coefficients ofξ(B) takes values larger than one. This restriction is not severesince

we can only speak of negative (or better downward) changes ifβ0 has a large positive value. In this case

the mean of the observed process{Yt} stays away from zero. For small values ofβ0 we can hardly call any

value a downward outlier since every small non negative integer occurs with substantial probability unless
∑p

i=1 αi +
∑q

j=1 βj ≈ 1.

A few illuminating calculations for the INGARCH(1,1) modelshow the consequences of introducing in-

tervention effects by means of the unobserved process. First recall model (1) and notice that by successive

substitutions we obtain that

λt = β0
1 − αt

1

1 − α1
+ αt

1λ0 + β1

t−1
∑

i=0

αi
1Yt−(i+1).
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Similarly,

κt = β0
1 − αt

1

1 − α1
+ αt

1λ0 + β1

t−1
∑

i=0

αi
1Zt−(i+1) + ν

t
∑

i=0

αi
1Xt−i,

or equivalently

κt = λt +

t−1
∑

i=0

αi
1Ct−(i+1) + ν

t
∑

i=0

αi
1Xt−i, (6)

assuming thatκ0 = λ0 and using (5). Whenν = 0, κt = λt for all t. A transient shift, see (3), yields the

contaminated latent process

κt =

{

λt, t < τ ,

λt +
∑t−1

i=0 αi
1Ct−(i+1) + ν

∑t

j=0 αj
1δ

t−j−τ , t ≥ τ .
(7)

whereδ ∈ (0, 1). Note that a transient shift withδ ∈ (0, 1) implies the presence of a decaying shift whose effect

becomes gradually smaller as time grows since
∑t

j=0 αj
1δ

t−j−τ = δt−τ 1 − (α1/δ)t+1

1 − α1/δ
= δ−τ δt+1 − αt+1

1
δ − α1

.

The size of the effect decreases faster for smaller values ofδ andα1. Figure 2(b) illustrates this point. In the

case ofδ = 0, we obtain that

κt =

{

λt, t < τ ,

λt +
∑t−1

i=0 αi
1Ct−(i+1) + ναt−τ

1 , t ≥ τ .
(8)

Figure 2(a) illustrates this situation and it should be noted that this form of intervention effect still influences

the process from timeτ on, but to a rapidly decaying extent provided thatα1 is not close to unity. Accordingly,

we call this a spiky outlier, and abbreviate it by SO. On the other extreme, forδ = 1 a level shift type of

intervention is observed, corresponding to a permanent change in the mean (and the variance) of the process;

see Figure 2(c). Equation (6) becomes

κt =







λt, t < τ ,

λt +
∑t−1

i=0 αi
1Ct−(i+1) + ν

1 − αt−τ+1
1

1 − α1
, t ≥ τ .

(9)

As a further remark, note that any INGARCH(1,1) model has identical second order properties as the

following ARMA(1,1) model

Yt − µ − (β1 + α1)(Yt−1 − µ) = et − α1et−1,

where{et} is a white noise sequence withµ = β0/(1 − β1 − α1) andσ2 = µ, see Ferland et al. (2006,

Cor. 2). Hence it is tempting to define outliers by the corresponding ARMA representation, along the lines

of Chen and Liu (1993). Notice that these authors introduce outlier effects to the process{Yt} by simple

addition, while we modify the model for the underlying (conditional) mean process{λt}. In case of a Gaussian

process, both approaches are equivalent. Thus, our proposal indeed means an extension of the model of Chen

and Liu (1993) to Poisson time series. The other kind of extension, in which the outliers are added directly to

the observations, has been considered in the context of GARCH models by Charles and Darnè (2005), among

others, who employ the ARMA(1,1) representation of a GARCH(1,1) model to define additive and innovative
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Figure 2: Effects of different types of outliers of sizeν = 8 at time pointτ = 100 on a realization of an

INGARCH(1,1) model generated withβ0 = 1, β1 = α1 = 0.3 andn = 200. The black line shows the

observed time series{Zt} and the grey line the underlying mean process{κt}. (a) Spiky outlier. (b) Transient

shift with δ = 0.8. (c) Level shift.

outliers. Transferring this idea to the INGARCH model meansthat instead of the outlier free process{Yt}, the

observations are generated by

Zt = Yt + νXt.

Such a definition leads to some complications for the case of count data. All types of outliers requireν to be

an integer. In case of a level shift, the observations{Zt} are no longer Poisson distributed fort ≥ τ , but follow

a shifted Poisson distribution instead. For the TS case, further modifications are needed for the observations to

take integer values. Therefore, it seems more natural to define outliers in count time series via the conditional

mean evolution of model (4). The main assumption here is thatabrupt changes or interventions directly influ-

ence the conditional mean, and the result in turn affects theobserved series{Zt}. Since the INGARCH model

is not defined in terms of innovations, we do not distinguish between additive and innovational outliers. Indeed,

spiky outliers (the above case ofδ = 0) influence the future of the time series according to the dynamics of the

process, and hence bear some analogy to the innovational outliers in classical ARMA modeling.
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3. MAXIMUM LIKELIHOOD ESTIMATION

Maximum likelihood inference for model (1) has been discussed by Ferland et al. (2006) and Fokianos

et al. (2008). Along these lines, joint estimation of model parameters and outlier effects can be carried out by

viewing (4) as a regression model that includes the time dependent covariate process defined by (2).

Accordingly, the conditional likelihood function of the observed dataz1, . . . , zn given z0, . . . , z1−q and

κ0, . . . , κ1−p for model (4) is given by

L(θ) =

n
∏

t=1

κt(θ)
zte−κt(θ)

zt!
,

whereθ = (β0, β1, . . . , βq, α1, . . . , αp, ν)′ is the vector of unknown model parameters andκt(θ) is given by

equation (4). Therefore, the log-likelihood function is equal to

ℓ(θ) =

n
∑

t=1

(zt lnκt(θ) − κt(θ)) =

n
∑

t=1

ℓt(θ),

up to a constant. Differentiation shows that the score function is given by the(p + q + 2)–dimensional vector

Snτ (θ) =
∂ℓ(θ)

∂θ
=

n
∑

t=1

∂ℓt(θ)

∂θ
=

n
∑

t=1

(

zt

κt(θ)
− 1

)

∂κt(θ)

∂θ
, (10)

where

∂κt(θ)

∂β0
= 1 +

p
∑

j=1

αj

∂κt−j(θ)

∂β0

∂κt(θ)

∂βi

= zt−i +

p
∑

j=1

αj

∂κt−j(θ)

∂βi

, i = 1, . . . , q,

∂κt(θ)

∂αi

= κt−i(θ) +

p
∑

j=1

αj

∂κt−j(θ)

∂αi

, i = 1, . . . , p,

∂κt(θ)

∂ν
=

p
∑

j=1

αj

∂κt−j(θ)

∂ν
+ ξ(B)It(τ)

by using (2). The notationSnτ (θ) is used to indicate that the score depends uponτ – the time that an interven-

tion has taken effect. The solution of the equationsSnτ (θ) = 0, provided that it exists, yields the conditional

maximum likelihood estimatêθ of θ. In addition, the conditional information matrix forθ is given by

Gnτ (θ) =

n
∑

t=1

Cov

[

∂ℓt(θ)

∂θ

∣

∣

∣
Ft−1

]

=

n
∑

t=1

1

κt(θ)

(

∂κt(θ)

∂θ

) (

∂κt(θ)

∂θ

)
′

. (11)

Note that we assume the intervention timeτ to be known here. The common case in whichτ is not known

a-priori can be treated by testing for interventions at all time points and choosing the value ofτ maximizing

the standardized test statistic, see Section 5.

In case of the INGARCH(1,1) model, we obtain thatθ is a four dimensional vector of unknown parameters

and the score function is given by (10) by modifying accordingly the quantities∂κt/∂θ. Large sample proper-

ties of θ̂ are studied by proving joint ergodicity of the process{(Zt, κt)} and finiteness of its moments. This
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is the kind of conditions needed to obtain asymptotic normality for the parameter estimates. More specifically,

it is required that the score function is asymptotically normally distributed and the Hessian matrix converges

in probability to a non random limit. In addition, the third derivatives of the likelihood function have to be

uniformly bounded, Fokianos et al. (2008). Figure 3 supports the claim of asymptotic normality of̂θ if a TS

type of outlier is included in model (4). Note that the distribution of the estimator of the intercept is moderately

skewed– a phenomenon occurred in the GARCH(1,1) model as well.

Figure 3: QQ-plots of (a)̂β0, (b) α̂1, (c) β̂1 and (d)ν̂ estimated from a realization of an INGARCH(1,1) model

with a TS generated by (4). The parameter values areβ0 = 1, β1 = 0.3, α1 = 0.5, ν = 5 andn = 200. The

time of intervention isτ = 120 andδ = 0.8, see (3). The plots are based on 500 simulations.
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Calculation of the maximum likelihood estimators is carried out by numerical optimization of the log–

likelihood function. The optimization is accomplished by employing a quasi–Newton method–the so called

BFGS method–implemented in the functionconstrOptim of the R statistical language, R Development

Core Team (2004). For the basic case of the INGARCH(1,1) model, initial estimates for the optimization are

obtained by conditional least squares using the ARMA(1,1) representation.

4. TESTING FOR AN INTERVENTION EFFECT AT A KNOWN POINT IN TIME

We consider testing for the presence of an intervention effect within the INGARCH model in the case that

the type and the time of the outlier are known. In the next section we extend our approach to the situation in

which both the type and the time of the outlier are unknown. Weutilize the score test because its application

requires model fitting only under the null hypothesis of no intervention. This allows us to perform individ-

ual tests for each type of intervention effect at each time point simultaneously, fitting the model only once.

9



Alternatively, Wald tests or likelihood ratio tests could also be employed, but their implementation in the situ-

ation of unknown type and time of intervention requires separate model fitting for each type of intervention at

each time point. Therefore, both Wald type tests and likelihood ratio tests increase the computational burden

substantially, especially for long time series.

Consider a certain type of intervention at a specific time point τ and test the hypothesis H(τ)
0 : ν = 0 against

the alternative H(τ)
1 : ν 6= 0 in model (4). The corresponding score test statistic is given by

Tn(τ) = S
′

nτ (β̃0, . . . , α̃p, 0)G−1
nτ (β̃0, . . . , α̃p, 0)Snτ (β̃0, . . . , α̃p, 0), (12)

whereSnτ (β̃0, . . . , α̃p, 0) andGnτ (β̃0, . . . , α̃p, 0) are the score function (10) and the conditional information

matrix (11), respectively, evaluated at(β̃0, . . . , α̃p, 0)
′

–the maximum likelihood estimators computed under

model (1). Then we have the following result, which follows directly from Basawa (1991).

Lemma 1 Suppose that model (4) holds and letθ0 denote the vector of the true parameter values. Assume the

following two conditions:

1)

1

n
Gnτ (θ0) → G(θ0)

in probability, asn → ∞, whereG(θ0) is a(p + q + 2) × (p + q + 2) positive definite matrix.

2)

1√
n

Snτ (θ0) → Np+q+2

(

0, G−1(θ0)
)

in distribution, asn → ∞, whereNd denotes ad-variate normal distribution.

Then, under the null hypothesis H(τ)
0 : ν = 0

Tn(τ) → χ2
1,

in distribution, asn → ∞, whereχ2
1 is the chi-square distribution with one degree of freedom.

The form of the score test (12) depends upon the type of the outlier considered–see (3). For the general

INGARCH(p, q) the first two conditions of Lemma 1 are assumed to hold since the region of ergodicity for

such processes is still unknown. For the INGARCH(1,1) case,Fokianos et al. (2008) show that the condition

0 < α1 + β1 < 1 implies consistency and asymptotic normality of the maximum likelihood estimators.

Recall that under H(τ)
0 : ν = 0 model (4) reduces to model (1). Therefore we have the following result for

the special case of the INGARCH(1,1) model. Its proof is based on the Lemmas 3.1 and 3.2 of Fokianos et al.

(2008) and on Basawa (1991). Note thatδ is fixed, for exampleδ = 0.8, when testing for a TS since otherwise

this parameter is not identifiable under the null hypothesis.

Lemma 2 If model (4) is true with0 < α1 + β1 < 1, then under the null hypothesis H(τ)
0 : ν = 0 it holds

Tn(τ) → χ2
1.

10



Lemma 2 allows derivation of critical values for an asymptotic test of the null hypothesis of no interven-

tion against the specific alternative H(τ)
1 of an intervention of a given type at a fixed timeτ : we reject the

null hypothesis at a given significance levelα, if the value ofTn(τ) is larger than the(1 − α)-quantile of the

χ2
1-distribution. Table 1 shows a few simulation results for examining the adequacy of the chi–square approx-

imation. We compare the output with the corresponding90%-, 95%- and99%-percentiles of the chi–square

distribution with one degree of freedom. In all cases the results indicate a close agreement between the achieved

and nominal significance levels.

Table 1: Achieved significance levels (in percent) of the score test statisticTn(τ) for different sample sizes

and different time of interventions. The data have been generated by an INGARCH(1,1) model withβ0 = 0.8,

α1 = 0.5 andβ1 = 0.3. For the TS type statisticδ = 0.8. The results are based on 1000 simulations each.

τ = 0.25n τ = 0.50n τ = 0.75n

Type 1 5 10 1 5 10 1 5 10 n

SO 1 5.2 10.2 1 5.6 9.8 1.2 4.9 9

TS 1.4 5.4 9.9 1.3 4.7 9.6 0.5 4.9 9.6 200

LS 0.7 4.2 8.5 1 3.1 8.2 1.1 3.3 8.1

SO 0.8 4.9 10.1 0.9 5.2 10.3 0.8 3.6 8.2

TS 1.4 4.6 9.2 1.1 4.5 8.5 1.4 4.6 8.3 500

LS 0.6 3.4 7 1.1 4.5 9 0.7 3.9 8.3

SO 0.8 4 8.8 0.6 3.8 8.6 1.3 4.6 9.5

TS 0.7 4.1 9.1 0.8 5.2 10.7 1.7 6.0 10.6 1000

LS 0.9 3.9 8.5 0.8 5.6 11.3 0.4 4.8 9.4

Figure 4 illustrates the power of the tests as a function of the size and the time of the intervention, for

different types of interventions. It is clear that the powerof the tests increases rapidly along with the size. The

power of the tests for SO and TS is somewhat affected by the time of occurrence of the outlier. LS types of

interventions are more difficult to be detected especially if they occur either at the beginning or at the end of

the series. In such a case, we lack information on the time before or after the shift.

We also examine the sensitivity of the tests against misspecification of the type of intervention, because,

occasionally, there is information about the time point of aspecial event, but not about its effect. While it

appears that a LS is rarely detected in case of an SO or TS, the test for SO is often significant in case of a TS

and vice versa. Nevertheless, the test for the correct type of intervention seems to take typically more significant

values so that we can classify the type of the outlier according to the magnitude of the p-values of the tests.

Note that an LS at the end of the series can be confused with a TSif we do not know the type of the outlier.

In general the tests are somewhat oversized. As a rough guideline we state that testing for any type of outlier

at a given time point by performing the tests for the different types at an 1% level of significance each yields

roughly to a total 5% level. These results have been confirmedby simulations for other parameter settings.
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Figure 4: Detection rates for the different types of interventions as a function of the size (left) and the time

(right) of the intervention: SO (top), TS (center) and LS (bottom). Detection rates of the test for SO (dotted),

for TS (dashed) and for LS (solid) at 5% (thin) and at 1% significance level (bold line). Each curve is based on

500 simulation runs from an INGARCH(1,1) model withβ0 = 5, β1 = α1 = 0.3.
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5. TESTING FOR AN INTERVENTION EFFECT AT AN UNKNOWN POINT IN TIME

To detect an intervention of a certain type at any time point,we maximize the test statistic (12) with respect

to τ and reject the hypothesis H0 : ν = 0 if

T̃n = max
τ

Tn(τ) (13)

is large. We performed extensive simulations to derive critical values for the maximum score test statisticT̃n

under different parameter settings. However, it turned outthat the empirical percentiles of̃Tn varied substan-

tially for different parameter configurations, even in the case of long series consisting ofn = 500 observations.

In other words, suitable critical values depend upon the unknown underlying parameter. A solution to this prob-

lem could have been a grid search over the parameter space to derive maximum percentiles as critical values.

Besides the large computational costs of this approach, a further drawback would be a substantial loss of power

for a broad range of parameter values. Moreover, we found thepercentiles to depend on the type of outlier–a

fact that can be explained by the different degree of dependence among the test statistics for the individual time

points. Therefore, we apply a simple parametric bootstrap for deriving critical values of (13).

Towards this goal, we fit an INGARCH model to the observed timeseries assuming that there are no

outliers. Then we generate a large number of, say,B = 500 bootstrap replicates from the fitted INGARCH

model with the same parameters as those estimated for the observed real data. The maximum test statistics (13)

are calculated both for the real and the bootstrapped data: if the real data do not contain outliers, we expect the

corresponding value of̃Tn to be comparable to those for the bootstrap series.

We present a few exemplary simulation results to check whether the number of bootstrap test statistics

which are larger than the value ofT̃n for the real data can be viewed as a random draw from a discreteuniform

distribution on0, 1, . . . , B. ’Real’ time series of lengthn = 200 have been generated from an INGARCH(1,1)

model with parameters(β0, α1, β1) = (5, 0.3, 0.3) and the parameters are estimated assuming that there are

no outliers. Then we generateB = 500 bootstrap replicates from an INGARCH(1,1) with the estimated

parameters. The maximum test statisticsT̃n are calculated for the original and for theB bootstrap series.

From this we obtain the numberN of bootstrap replicates for which̃Tn is larger than for the original data.

This is repeated 100 times and the resulting counts are depicted in Figure 5. These histograms show adequate

approximation to the uniform distribution, and therefore we can transformN to a p-value, dividing it byB +1.

Next we generate time series of lengthn = 200 with a level shift of increasing sizeν = 0, 1, . . . , 5 at

time τ = 100 from the same INGARCH(1,1) model as before. Figure 6 depictsboxplots of the numberN of

bootstrap replicates for which̃Tn is larger than for the original data, as a function of the shift size. Apparently,

the distribution ofN is only slightly affected by the shift in case of SO and TS, while it rapidly concentrates

almost all of the mass on very small values when testing for anLS. Thus, we expect to obtain good power of

the test and also reliable classification results based on a comparison of the p-values for the different types of

outliers.

This is confirmed in Figure 7, which illustrates the power of the tests for different types of interventions.

The type of the intervention is classified according to the minimal p-value, with preference being given to

interventions with larger value ofδ in case of equality. The reason for this preference is the tendency of the

test for SO to be also significant when testing for either LS orTS, and of the test for TS if there is an LS,
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Figure 5: Histograms of the number of bootstrap replicates (out ofB = 500) for which T̃n takes a larger value

than for the original data, obtained from 100 repetitions: SO (left), TS (middle) and LS (right).
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Figure 6: Boxplots of the number of bootstrap replicates (out of B = 500) for which T̃n takes a larger value

than for the original data in case of an LS of increasing size,obtained from 30 repetitions each: test for SO

(left), TS (middle) and LS (right).
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while the reverse applies less frequently. Apparently the power of the test for LS increases to 1 with increasing

size of the shift, and there is some confusion with TS or SO only if the shift is small. We also illustrate the

results for another more challenging situation of time series with lengthn = 100 from an INGARCH(1,1)

model with a smaller marginal mean. For this example the parameters of the INGARCH model are given by

(β0, α1, β1) = (2, 0.3, 0.3) and the data contains an intervention atτ = 50. Observe that the power of all tests

for the correct type of intervention approaches 1, except for SO as it is occasionally mistaken as a TS. This is in

part due to the above preference ordering. A remedy might be to increase the numberB of bootstrap replicates

to improve the classification.
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6. ITERATIVE DETECTION OF INTERVENTION EFFECTS

Since there can be more than one intervention in a time series, procedures for iterative detection of mul-

tiple outliers and data cleaning have been suggested by Tsay(1986) and Chen and Liu (1993), among others.

Based on the previous findings, we suggest the following approach for stepwise detection, classification and

elimination of multiple intervention effects, settingZ⋆
t = Zt, t = 1, . . . , n, for initialization:

1. Fit an INGARCH(p, q) model (1) to the data{Z⋆
t }.

2. Test for a single intervention of any type at any time pointby employing (4) and using the maximum of

the score test statistics as described in Section 5.

3. If there is no significant result, then stop; the dataZ⋆
1 , . . . , Z⋆

n are considered as clean. Otherwise:

(a) Fit a contaminated INGARCH(p, q) model (4) by choosingξ(B) according to the type of interven-

tion identified in the previous step. Letν̂ be the estimated size of the intervention effect andτ its

point in time.

(b) Estimate the effect of the intervention on the observationZ⋆
t by the rounded value

Ĉt =

[

µ̂t

κ̂t

Zt

]

whereκ̂t is obtained from equation (4) by plugging in the estimates ofthe model parameters and

µ̂t =

q
∑

i=1

β̂iĈt−i +

p
∑

j=1

α̂j µ̂t−j + ν̂Xt , t = τ, τ + 1, . . . ,

with Ĉt = µ̂t = 0 for t < τ .

(c) Correct the time series for the estimated intervention effects,

Z⋆
t = Z⋆

t − Ĉt, t ≥ τ,

and return to step 1.

The iterative procedure is continued until no further interventions are detected in step 2.

It is not possible to exactly eliminate intervention effects from the series sincêν is the effect to the un-

observed mean process at the timet = τ of its occurrence. We argue that the correction in step 3 (c) is

adequate if we have identified the correct type of intervention and point in timeτ . Let {Yt} be an uncontam-

inated INGARCH(p, q) process generated from model (1), and let{Ct} be a contaminating process which is

independent from{Yt} with,

Ct|FC
t−1 ∼ Poisson(µt),

µt =

q
∑

i=1

βiCt−i +

p
∑

j=1

αjµt−j + νXt, (14)
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for t ≥ τ , with µ1 = . . . = µτ−1 = 0 andFC
t the σ-field generated from{C1−q, . . . , Ct, µ1−p, . . . , µ0}.

DenotingF (Y,C)
t = FY

t ∨ FC
t , theσ-field generated fromFY

t andFC
t and assuming independence between

{Yt} and{Ct}, we get forZt = Yt + Ct that

Zt|F (Y,C)
t−1 ∼ Poi(κt)

κt = λt + µt =

q
∑

i=1

βiZt−i +

p
∑

j=1

αj(λt−j + µt−j) + νXt .

Note thatZt depends on the past only viaZ1−q, . . . , Zt−1, λ1−p, . . . , λ0, i.e. it is conditionally independent

from F (Y,C)
t−1 given these variables. Thus, it possesses the same stochastic properties as the contaminated pro-

cess{Zt} generated from (4). Accordingly, we clean the observed timeseries{Zt} by subtracting a prediction

Ĉt of Ct from Zt. We use the conditional expectation ofCt givenF (Y,C)
t−1 andZt for this, which is

E
(

Ct|Zt = z,F (Y,C)
t−1

)

=

z
∑

i=0

iP
(

Ct = i|Zt = z,F (Y,C)
t−1

)

=

z
∑

i=0

i
P

(

Ct = i, Yt = z − i|F (Y,C)
t−1

)

P
(

Zt = z|F (Y,C)
t−1

)

=

z
∑

i=0

i
(µi

te
−µt/i!) · λz−i

t e−λt/(z − i)!

κz
t e

−κt/z!
=

z
∑

i=0

i

(

z

i

) (

µt

κt

)i (

λt

κt

)z−i

=
µt

κt

z .

Into the resulting formulaE
(

Ct|Zt,F (Y,C)
t−1

)

= µtZt/κt we plug in the estimates ofµt andκt, obtained from

the recursions (14) and (4), respectively, and using the parameter estimateŝβ0, . . . , β̂q, α̂1, . . . , α̂p.

We demonstrate this methodology by analyzing two data examples: a simulated one where we can compare

our findings to the ground truth, and the real data described in the introduction.

As a first example we consider a simulated time series of lengthn = 200 generated from an INGARCH(1,1)-

model with parametersβ0 = 0.5, α1 = 0.3 andβ1 = 0.5, see Figure 8. To check the sensitivity of the results

concerning misspecification of the parameterδ regarding transient shifts, we generate data with two transient

shifts of the same sizeν = 10 at timesτ1 = 50 andτ2 = 150, usingδ = 0.7 andδ = 0.9, respectively. We test

the existence of an SO, LS or TS withδ = 0.8 at any time point.

When we fit model (1) to the data assuming that there are no interventions, we obtain the conditional

maximum likelihood estimates(β̃0, α̃1, β̃1) = (0.522, 0.295, 0.602). Then we calculate the test statistics for

SO, TS and LS at all time points, see Figure 8. The test statistic for TS assumes significant values both at

time t = 50 (with a value of 62.5) and att = 150 (with a value of 44.1). However, the test statistics for SO

are also significant at the same instances, namely 100.8 and 31.4, respectively. The corresponding bootstrap

p-values equal zero except for the SO at timet = 150, for which it is 0.006. The test statistics for LS are

not significant with a maximum of 7.1 (p-value 0.36). According to the proposed classification rule, we might

identify correctly a TS at timeτ = 150. However, here we want to investigate the effects of a misclassification

and decide incorrectly in favor of a SO at timeτ1 = 50, and estimate its size as 12.783 by joint conditional

maximum likelihood, see Section 3.

Iterating the algorithm further, always correcting the data according to step 3(c) of the iterative algorithm,

we conclude the analysis by detecting a TS of size 8.122 at time τ2 = 150 (p-value 0, while the p-values are

large for SO and LS). After correcting the data for its effects there are no further significant test statistics in the
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third iteration. The final parameter estimates(β̂0, α̂1, β̂1) = (0.515, 0.310, 0.529) are quite close to the true

values. The classification of transient shifts TS works quite reliably here in spite of the misspecified value ofδ,

even though there is some risk of misclassifying a TS for an SO, particularly if a too large value ofδ is used in

the testing.

Finally we investigate whether there are intervention effects in the time series of campylobacterosis infec-

tion cases illustrated in Figure 1. Notice that for the analysis of these data, Ferland et al. (2006) suggest a kind

of seasonal model which includesYt−1 andλt−13 as regressors in the equation forλt, see (1). We follow this

approach and start by fitting the same seasonal model.

Table 2: Iterative parameter estimates and intervention effects for the campylobacterosis data.

Iteration Parameter Estimates Outlier

β̃0 α̃1 β̃1 Type τ Size

1 2.439 0.196 0.591 LS 84 7.64

(0.654) (0.077) (0.058)

2 3.681 0.150 0.409 SO 100 22.55

(1.207) (0.159) (0.081)

3 2.300 0.387 0.323 –

(1.005) (0.162) (0.090)

After fitting the seasonal INGARCH model we test for the different types of interventions using the boot-

strap versions of the maximum score tests described in Section 5. In the first iteration, the bootstrap p-values

equal zero for spiky (SO) and transient shift (TS) types of outliers at timet = 100 (recall thatδ is set to 0.8)

and also for a level shift (LS) at timet = 84. According to the above classification rule we decide in favor

of the LS, estimate its size as 7.64 and eliminate its effect from the time series. The top right plot of Figure 9

shows the corrected series.

The we fit the seasonal model to the cleaned data and test for the presence of further intervention effects.

Now we detect an SO of size 22.55 at time 100 with a p-value of 0 (the test statistic for SO is 38.66 and thus

much larger than the one for TS here, which is 25.82 and would also have been significant). After cleaning

the data from the effects of an SO at time 100 and refitting the seasonal model to the cleaned data all p-values

become large. Therefore we conclude the analysis with the two mentioned interventions identified.

Table 2 summarizes the results of the iterations. Fitting the full model with the two interventions to the

original data, we conclude with the following enlarged INGARCH(1,1) model for the numbers of campylobac-

terosis infections:

Zt | Ft−1 ∼ Poisson(κt)

κt = 3.584(.761) + 0.230(.081)κt−13 + 0.352(.054)Zt−1

+2.930(.887)I(t ≥ 84) + 41.645(7.302)I(t = 100), (15)

for t ≥ 1, where in parentheses are the corresponding standard errors of the regression coefficients. Based
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on model (15) and settinĝκt = κt(θ̂), both predictions and data are plotted in Figure 9, illustrating that the

method successfully accomodates unusual observations andfits the data quite well. As a closing remark, the

mean square error of the residuals for a model which does not include intervention effects is equal to 2.309.

The corresponding value for (15) equals 1.313 which clearlyindicates the improved fit.

Alternatively, we could have decided in favor of an SO at time100 in the first step since the value of

its test statistic is the largest among all score tests, namely 91.0 versus 82.1 for a TS and 33.2 for a LS.

These differences appear to be large as compared to the differences between the test statistics for the bootstrap

replicates, since the 95% percentiles of these are 16.1 (SO), 14.6 (TS) and 12.5 (LS) while the maxima are

22.9 (SO), 22.1 (TS) and 25.3 (LS), respectively. Then we would have estimated the size of the SO as 36.34.

Refitting the INGARCH model and testing for the presence of further interventions, we would have identified

another SO at time 125 in the second step, with an estimated size of 15.01 (p-value 0.006, which is smaller than

those for an TS at time 111 and an LS at time 83, namely 0.014 and0.028). In the third iteration a TS of size

14.75 would have been identified atτ3 = 111 (p-value 0.00, while the one for an SO at time 111 is 0.010). The

possible LS at time 83 would have lost its significance then (test statistic 9.25, p-value 0.237), i.e. we would

have detected several intervention effects with the same direction instead of an LS.

7. DISCUSSION

This work analyzes a model for estimation and detection of intervention effects in count time series by

both theory and simulation. A model for the data is necessaryin this context since otherwise it is not clear how

distant an observation needs to be from the rest of the data tobe called an outlier, see Davies and Gather (1993).

The results indicate that the suggested modeling approach is reasonable. In particular, the proposed score test

statistics have been proven useful to detect different types of interventions, although the tests for a certain

intervention at a given point in time seem to be oversized. Masking and swamping effects due to multiple

outliers apparently pose less difficulties than they do in the case of linear time series models like ARMA (see

Peña (2000)). This can be explained by the estimation of themean underlying the INGARCH process except

for the estimates of the model parameters depending only on the past of timet. Gather et al. (2002) suggest a

similar approach to reduce masking and swamping effects in outlier detection for ARMA models.

We feel that model (4) suggests more problems and further research into different directions. For instance,

as a generalization withm intervention effects we fit the model

Zt|Ft−1 ∼ Poisson(κt), t ≥ 1

κt = β0 +

q
∑

i=1

βiZt−i +

p
∑

j=1

αjκt−j +

m
∑

k=1

νkξk(B)It(τk),

for joint estimation of intervention effects and model parameters. Some caution though should be exercised

since the properties of such processes are not known. To develop inference based on this model, we have

proposed an iterative strategy along the lines of Chen and Liu (1993). Discrimination between the different

interventions merits further investigation. Based on our results we conjecture that the bootstrap approach

presented here works well at least for moderately large intervention effects which are not very close to the start
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or the end of the series. Otherwise, tests for different interventions can take similarly small p-values. The

behavior of the extreme tails of the test statistics in finitesamples thus deserves further investigation.

We have provided computationally tractable solutions for intervention effects influencing the future of the

process according to its dynamics. The case of a single additive outlier due to e.g. a measurement artifact has

been neglected here since joint parameter estimation is notstraightforward within our framework and since

count time series arising e.g. in epidemiology are controlled well, rendering the occurrence of AOs unlikely.

The investigation of such outliers is a topic for further research.

The approach taken in this work is quite general and can be used as a guidance for other dependent count

data or more general time series following generalized linear models. For instance, a model which has been

often used in the literature for the analysis of count time series is the so called log–linear model, see Zeger

and Qaqish (1988), for instance. The proposed method can be reformulated to accommodate such models after

suitable modifications.
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Figure 7: Power of the bootstrap tests with classification based on the minimal p-value for intervention effects of

increasing size: level shift atτ = 100 in a series of lengthn = 200 with parameters(β0, α1, β1) = (5, 0.3, 0.3)

(top left), level shift atτ = 50 in a series of lengthn = 100 with parameters(β0, α1, β1) = (2, 0.3, 0.3) (top

right), transient shift atτ = 50 in a series of lengthn = 100 with parameters(β0, α1, β1) = (2, 0.3, 0.3)

(bottom left) and spiky outlier atτ = 50 in a series of lengthn = 100 with parameters(β0, α1, β1) =

(2, 0.3, 0.3) (bottom left). Test for SO (dotted), TS (dashed) and LS (solid).
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Figure 8: Simulated time series with two transient outliersat timesτ1 = 50 andτ2 = 150 (dots) as well as the

test statistics for SO (dotted line), TS (dashed line) and LS(solid line), all divided by 2 for illustration.
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Figure 9: Iterations for correcting the campylobacterosisdata: time series (dashed line), SO (light grey line),

TS (dark grey line), and LS test statistics (bold black line): first (top left), second (top right) and third iteration

(bottom left) and fitted model (bottom right, model with interventions black, model without interventions grey).
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