
Nietert, Bernhard; Wilhelm, Jochen

Working Paper

Some economic remarks on arbitrage theory

Passauer Diskussionspapiere - Betriebswirtschaftliche Reihe, No. 7

Provided in Cooperation with:
University of Passau, Faculty of Business and Economics

Suggested Citation: Nietert, Bernhard; Wilhelm, Jochen (2001) : Some economic remarks on arbitrage
theory, Passauer Diskussionspapiere - Betriebswirtschaftliche Reihe, No. 7, Universität Passau,
Wirtschaftswissenschaftliche Fakultät, Passau

This Version is available at:
https://hdl.handle.net/10419/41043

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/41043
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Editors:
Department of Business Administration
Faculty of Business Administration and Economics
Passau University
Germany

Some Economic Remarks

on Arbitrage Theory

Bernhard Nietert and Jochen Wilhelm

Discussion paper no. B–7–01

Series in Business Administration

ISSN 1435-3539

Current version: January 2001 JEL: G 10, G12

Address:

Dr. Bernhard Nietert
Chair of Finance
Faculty of Business Administration and
Economics
Passau University
D-94030 Passau
Germany
Phone: +49–851/509–2513
Fax: +49–851/509–2512
Email: nietert@uni–passau.de

Professor Dr. Jochen Wilhelm
Chair of Finance
Faculty of Business Administration and
Economics
Passau University
D-94030 Passau
Germany
Phone: +49–851/509–2510
Fax: +49–851/509–2512
Email: jochen.wilhelm@uni–passau.de

Disclaimer:
The editors are not responsible of the content of the discussion papers. For suggestions or critique, please
contact the respective author(s)



Some Economic Remarks on Arbitrage Theory

Bernhard Nietert and Jochen Wilhelm∗ ∗∗

Abstract:

Today’s primarily mathematically oriented arbitrage theory does not address some eco-
nomically important aspects of pricing. These are, first, the implicit conjecture that there
is “the” price of a portfolio, second, the exact formulation of no–arbitrage, price reproduc-
tion, and positivity of the pricing rule under short selling constraints, third, the explicit
assumption of a nonnegative riskless interest rate, and fourth, the connection between ar-
bitrage theory (that is almost universal pricing theory) and special pricing theories. Our
article proposes the following answers to the above issues: The first problem can be solved
by introducing the notion of “physical” no–arbitrage, the second one by formulating the
concept of “actively” traded portfolios (that is non–dominated portfolios) and by requir-
ing that there is a minimum price for actively traded portfolios and therefore for every
admissible portfolio, and the third one by combining the “invisible” asset “cash” with the
idea of actively traded portfolios – a riskless asset with a rate of return less than zero can
never be actively traded in the presence of cash. Finally, the connection between arbitrage
theory and special pricing theories (“law–of–one–price–oriented” and “utility–oriented”
pricing) consists in the fact that special pricing theories merely concretize arbitrage theory
using different assumptions.

∗Bernhard Nietert is Assistant Professor, Jochen Wilhelm Full Professor at Passau University, De-
partment of Business Administration and Economics, Chair of Finance, Innstraße 27, 94032 Passau,
Germany; e-mail: nietert@uni-passau.de and jochen.wilhelm@uni-passau.de
∗∗The authors gratefully acknowledge the helpful comments and suggestions given by Wolfgang Bühler

on an earlier version of the paper.



Some Economic Remarks on Arbitrage Theory

1 Preliminaries

1.1 Introduction to the problem

Financial assets, especially derivatives (options, swaps, futures et cetera), are used in
numerous economic transactions. To successfully manage these transactions, we need to
know the relationship between prices of these assets and their influencing factors. On a
theoretical basis, pricing theory claims to deliver exactly these “fair” prices.

However, today’s pricing literature is pretty heterogeneous and has a primarily mathe-
matical focus. The reason for this situation is that, starting from the crucial paper Ross
(1978), the main research effort of arbitrage theory has been laid on the mathematically
exact formulation of no–arbitrage conditions: Harrison/Kreps (1979) and Harrison/Pliska
(1981) discover the relationship between no–arbitrage and martingale measures thereby
working out the qualifications no–arbitrage imposes on trading strategies in continuous
time, Kreps (1981) adapts the notion of no–arbitrage to an infinite number of assets, and
Delbaen (1992) as well as Delbaen/Schachermayer (1994) apply Kreps’s results to derive
sophisticated existence conditions for martingale measures1.

Arguing in a mathematically exact way and specifying no–arbitrage conditions with the
help of (equivalent) martingale measures undoubtedly is deserving because it has made
economists aware of possible technical problems and has made accessible to them the
numerous tools of mathematical stochastics. But, it also entails substantial costs: It does
not discuss implied economic assumptions and obscures basic economic relations, which,
in our mind, leads to the following four problems:

1. Existence of “the” price of an asset:

Have a look at the following market:

states of the world

asset price state 1 state 2

A0 100 100 100

Ai 75 110 90

Aj 75 80 120

Table 1: payoffs and prices on market I
1A more extensive overview over the development of the mathematical literature can be found in

Musiela/Rutkowski (1997), p. 246-247.
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We are given three assets, two states of the world and one price for each asset. To
be more precise, we have one price for each asset irrespective of the transactions’ cir-
cumstances, for example, whether the asset is listed on several exchanges, or whether
we buy high or low quantities and so on.

However, the assumption of “the” price may incorrectly specify investors’ oppor-
tunity sets in that it contains the (implicit) no–arbitrage condition that those cir-
cumstances are irrelevant. The fundamental texts of arbitrage theory (Ross (1978),
Harrison/Kreps (1979), and Harrison/Pliska (1981)) only embody hints at scenar-
ios where transactions’ circumstances do not matter, but no systematic analysis:
First, when Ross (1978)2 states, that the multiple of a payoff must coincide with
the multiple of its price. Second, when Harrison/Pliska (1981)3 define a linear price
functional thus assuming that the number of units bought and sold have no price
influence. However, both statements are not sufficiently precise because they merely
cover a small amount of possible circumstances.

Therefore, we have to ask: “What are the exact conditions under which “the” price
of an asset exists irrespective of the transactions’ circumstances?

2. Formulation of no–arbitrage, price reproduction, and positivity of the pricing rule
under short selling constraints:

Accept for a while that there is “the” price of an asset. Nevertheless there is another
problem with market I, which is reflected in the pricing rule as given by state prices φ
of this market segment. To see this, recall that, for a linear pricing rules, the price of
each asset k should equal its discounted payoff, which reads when applied to market
I: Pk = Zk(S1)φ(S1) + Zk(S2)φ(S2) (with k = 0, i, j). Since we have three assets, we
get an equation system with three equations and two unknown state prices resulting
in the following potential solutions:

Combination of yields

A0 and Ai φS1 = −3
4 and φS2 = 7

4

A0 and Aj φS1 = −1
8 and φS2 = 9

8

Ai and Aj φS1 = 3
8 and φS2 = 3

8

Table 2: state prices on market I

As can be seen easily, state prices neither reproduce the prices of all assets nor are
they positive, indicating that the market is not free of arbitrage according to the first

2See Ross (1978), p. 457.
3See Harrison/Pliska (1981), p. 226.
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fundamental theorem of asset pricing4. This is obvious because there is a difference

arbitrage in the market: Choose Ni = −2
3
N0 and Nj = −1

3
N0 to obtain −25 ·N0 > 0

at t = 0 without having to pay anything at t = 1 (the payoffs in state 1 as well as
state 2 equal zero).

Now assume that A0 is subject to short selling constraints. This institutional restric-
tion prevents us from effectively carrying out the above arbitrage and the market
will be in fact free of arbitrage. For this reason, no–arbitrage under short selling
constraints might be thought of as absence of a difference arbitrage combined with
an additional test of binding short selling constraints. According to Wilhelm (1987)
and Jouini/Kallal (1995a) we know that this adapted no–arbitrage criterion yields a
positive and sublinear5 price functional.

The literature so far can only rule out non–positive price functionals. It does not,
however, provide an answer to the question, whether the positive state prices derived
from Ai and Aj constitute a price functional valid for the market as a whole and how
to deal with A0, an asset definitely not priced by this price functional.

Therefore, we have to ask: ”How can we find a positive price functional on markets
subject to short selling constraints that nevertheless contains price information for
all assets in the market?”

3. Endogenous justification of a nonnegative riskless rate:

Imagine a market II quite similar to market I:

states of the world

asset price state 1 state 2

Aa 1111
9 100 100

Ai 1088
9 110 90

Aj 1155
9 80 120

Table 3: payoffs and prices on market II

Contrary to market I, market II has unique and positive state prices φS1 =
4
9

and

φS2 =
2
3

. According to the first fundamental theorem of asset pricing it is free of
4According to Dybvig/Ross (1992), p. 44, the phrase “first fundamental theorem of asset pricing”

describes the fact that no–arbitrage and the existence of a positive linear price functional are equivalent
statements.

5“Sublinear” means subadditive, that is φ(Z∗ + Ẑ) ≤ φ(Z∗) + φ(Ẑ) , and positive homogeneous of
degree one, that is φ(αZ∗) = αφ(Z∗) for α > 0. Moreover, a functional φ is called “positive” if φ(Z) ≥ 0
holds as long as Z ≥ 0 is true.
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arbitrage and the problem of market I seems to be gone. – Yet, a look at the riskless

rate implied by this market reveals that it is negative: r =
1

φS1 + φS2

− 1 = −10%.

The existing arbitrage theory and especially the first fundamental theorem of asset
pricing obviously is unable to guarantee a nonnegative riskless rate because it de-
rives merely statements about the position of the riskless rate (or more general: of
the numéraire) relative to other asset prices, but not with respect to an absolute
lower bound. The literature acknowledges that such an outcome is economically not
reasonable and mostly6 assumes a positive riskless rate explicitly.

Therefore, something seems to be missing in market II and we have to ask: “How
can we endogenously assure that the riskless rate is nonnegative?”

4. Relationship between arbitrage theory and special pricing theories:

Mathematical finance regards arbitrage theory as an autonomous area of research.
As applied to our examples this means, mathematical finance claims and proves the
existence of a price functional, but does not discuss the economic forces behind it; this
task is fulfilled by special pricing theories. The only exception are Musiela/Rutkowski
(1997)7, who derive the Black/Scholes option pricing formula from martingale consid-
erations, thereby connecting martingales, that is state price densities, with the pref-
erence free hedging–methodology of Black/Scholes. – On the other hand, economists
have done a more elaborate job in relating their special pricing results to arbitrage
theory. Thanks to Schöbel (1995) we know that the numerous variants of special
pricing theories are all derived from two basic forms: law–of–one–price– and utility–
oriented pricing. Cox/Ross/Rubinstein (1979)8 calculated state prices in the binomial
option pricing model with the help of the duplication portfolio, thus examining one
special case of law–of–one–price–based valuation. Duffie (1996)9 proved that utility-
based pricing specifies indeed the state prices of arbitrage theory.

However, the analysis of general connections between law–of–one–price–based pric-
ing and arbitrage theory as well as between law–of–one–price– and utility–oriented
pricing is still missing.

Therefore, we have to ask: “Is there a generally valid relation between arbitrage
theory and the two basic versions of special pricing theories?”

1.2 Introduction to the solution technique

The above problems demonstrate that the existing arbitrage theory is not as economically
founded as it should be. For that reason, in our paper we strive to improve both the
economic foundation and interpretation of arbitrage theory by solving these four problems.

6See for example Harrison/Pliska (1981), p. 216.
7See Musiela/Rutkowski (1997), p. 113.
8See Cox/Ross/Rubinstein (1979), p. 240.
9See Duffie (1996), pp. 7-8.
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To achieve this goal we take, methodologically, a point of view complementary to that
of mathematical finance: The latter uses a crude economic framework to obtain mathe-
matically sophisticated no–arbitrage conditions. We, on the opposite, argue within a
mathematically crude one–period model, yet we do not impose further restrictions on the
economic environment.

Based thereon, we provide the following answers to the four questions raised above:

1. As a solution to the assumption of “the” price of an asset we will introduce the con-
cept of physical no–arbitrage:

Physical no–arbitrage focuses on the price of each assets and, thus, relates to physical
securities. It gives an exact description of the facts and the implications making the
circumstances of a transaction (numbers purchased or sold, numbers of exchanges the
asset is listed at et cetera) irrelevant. It does not assume that there is, for instance,
just one exchange thereby ignoring buying and selling assets at different exchanges
and hence an integral part of investors’ trading possibilities. Physical no–arbitrage
consequently does not impose artificial restrictions on investors’ opportunity sets.

2. As a solution to the formulation of no–arbitrage, price reproduction, and positivity
of the price functional under short selling constraints we will impose a more precise
notion of economical no–arbitrage:

As opposed to physical no–arbitrage, economical no–arbitrage connects assets’ pay-
offs to their prices (payoff orientation). Economical no–arbitrage under short selling
constraints means that it should not be feasible to acquire actively traded port-
folios and hence any admissible portfolios at an arbitrary low price. This form of a
no–arbitrage condition relies first on the notion of arbitration of exchange. Ar-
bitration of exchange10 rests on the economic principle and describes nothing else
than the desire of getting a given payoff at the minimum price possible. Second, it
uses the concept of, what we will call, actively traded portfolios. The term “ac-
tively traded” builds on dominance relations between assets: Purchasing an asset at
a higher price, whose payoff is dominated by another asset’s payoff, cannot be a rea-
sonable choice. Thus, there is no demand for the dominated asset, it is not actively
traded. Economical no–arbitrage now means that the price of a dominated payoff
must always be below the price of the dominating payoff (actively traded portfolio),
which yields a lower price bound for any admissible portfolio.

From the above characterization of no–arbitrage it follows the existence of a price
functional that determines for all (attainable) payoffs a lower price bound. This
price functional reproduces the price for actively portfolios, for portfolios not ac-
tively traded it defines a lower price bound. However, under short selling constraints
this price functional is not necessarily linear, which means it cannot be interpreted

10To clarify the phrase “arbitration of exchange”, we go back to the institutionally based literature.
According to Munn (1983), p. 54 “arbitration of exchange” means “a calculation based on rates of
exchange to determine the difference in value of a given currency in three different places or markets,
particularly when made with a view of determining the cheapest way of making a remittance between
two countries”.
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as given by state prices. A linear price functional and thus state prices only apply to
portfolios not subject to short selling constraints irrespective of whether these con-
straints are binding or not.

3. As a solution to the endogenous justification of a nonnegative riskless rate we will
“reactivate” the “invisible”, but nevertheless permanently present, asset cash:

Cash is an “asset” that is always available. Every amount of money that is neither
consumed nor invested (in the strict sense) today is automatically transferred to
tomorrow in cash. Due to this automatism cash seems to be invisible, but nevertheless
belongs always to investors’ investment opportunity set.

Using this correct description of investors’ investment opportunity set, we infer that
a positive riskless rate dominates cash and, hence, cash will not be actively traded.
A negative riskless rate, however, is dominated by the zero “interest” rate of cash.
As a consequence, a riskless asset with a negative riskless rate is not actively traded.
From both arguments it follows that the riskless rate has to be nonnegative.

4. As an answer to the question of how arbitrage theory and special pricing theories
are related, we will demonstrates that under the absence of short selling constraints
special pricing theories specify the state prices (price functional) of arbitrage theory:

By constituting the structure of fair asset prices, arbitrage theory undoubtedly is
a pricing theory albeit a quite universal one. Arbitrage theory, however, does not
compute the price functional by specifying, for example, state prices; this task is
carried out by special pricing theories like “law–of–one–price–oriented” and “utility–
oriented” pricing. Yet, law–of–one–price–oriented and utility based pricing do not
conflict with each other, but simply rely on different sets of assumptions: Law–of–
one–price–oriented pricing rests on the spanning assumption, whereas utility–oriented
pricing is based on the expected utility principle. Moreover, whenever spanning of a
payoff is possible, law–of–one–price– and utility–oriented pricing must and will result
in the same pricing rule.

The objective of our paper – to lay out the economical foundation and interpretation
of arbitrage theory – calls for the following structure of our considerations: In chapter
2 we will develop the framework of our model in a rather non-technical way and define
no–arbitrage (under short selling constraints). Chapter 3 will develop the solutions to our
four problems posed above. The paper will end with some concluding remarks (chapter
4) and a technical appendix.
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2 No-arbitrage under short selling constraints

From our introduction it has become clear that the existing arbitrage theory cannot
satisfactorily answer at least four economically important questions. Therefore, it is quite
natural to analyze arbitrage theory and its core, the no–arbitrage condition, a bit more
thoroughly.

2.1 Model’s framework

To this end, we go into details of our notion of a market segment; we will concentrate – as
already mentioned in the introduction – on one–period financial markets with additional
characteristics:

• There are (including cash) n + 1 physically different assets, which are arbitrarily
divisible and fungible. Their rights are proportional to the numbers of units held; we
are only interested in the rights to obtain the payoff Zi per unit of asset i (Zi is a
random variable). Cash is the asset indexed by zero.

• There may be different “circumstances” u ∈ {u0, u1, . . . } under which tradable ob-
jects N are in fact traded at transaction price Pu(N). “Circumstances” mean, for
example, whether the asset is listed on several exchanges, or whether one buys high
or low quantities, or whether one has different trading partners et cetera.

• Trade objects are portfolios (mathematically represented as n+1–dimensional column
vectors) N with NT = (N0 . . . Nn) and Ni denoting the number of asset i’s units
involved in the transaction (the superscript T indicates transposition of vectors and
matrices). For instance, trading just one unit of asset number one signifies NT =
(0 1 0 . . . 0), making individual assets “special” portfolios.

• For every (in an institutional sense) admissible portfolio N the portfolio z ·N will
be admissible whenever z ∈ R+ holds. Moreover, short selling of a portfolio N will
be admissible whenever −N is admissible. For every pair of admissible portfolios Ni

and Nj,N = Ni + Nj is admissible11.

2.2 Definition of no–arbitrage under short selling constraints

Based on the above characterization of a financial market, we define no–arbitrage (under
short selling constraints) as follows:

A market segment will be called free of arbitrage if there are
neither physical nor economical arbitrage opportunities.

To put this definition to work, we have to examine and explain its components.
11Technically speaking, the set of admissible portfolios forms a convex cone with vertex 0.
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2.2.1 Physical no–arbitrage

Physical no–arbitrage focuses on the price of each asset, and is thus related to physical
securities (stock of company A, bond of company B et cetera), which means:

Under no circumstances it is worth thinking of
bundling or unbundling positions, that is for all
all possible circumstances u ∈ {u0, u1, . . . } we have

Pu(0) = 0 (2.1)
and
Pu0(Nu0) = Pu1(Nu1) + Pu2(Nu2) + . . .

whenever
Nu0 = Nu1 + Nu2 + . . .

is true.

To give an example: Consider buying the portfolio NT
u0

= (20 20 20) all together at
one exchange (circumstance u0) or using two transactions at different exchanges NT

u1
=

(15 5 15) and NT
u2

= (5 15 5). Owing to physical no–arbitrage, we have to pay the
same price for the direct purchase as in sum for the split purchases, that is

Pu0

20
20
20

 = Pu1

15
5
15

+ Pu2

 5
15
5

 must hold.

Physical no–arbitrage obviously allows us to skip the circumstances u, under which trans-
actions take place, and write P (N) as the price of the portfolio N.

Moreover, from our definition of physical no–arbitrage we obtain the following implica-
tions12:

I 1: Every asset i only has one price Pi per unit. This signifies, there is no advantage
from trades using prices of the same asset at different stock exchanges.

I 2: The price PPf of the portfolio N equals the sum of the prices of the single assets

weighted with their numbers

(
n∑
i=1

NiPi = PPf

)
, that is there is no “volume charge

or discount”.

I 3: From the price Pmult of the multiple Ni of asset i we can unequivocally derive the

price of one unit of asset i: Pi =
Pmult

Ni

.

12The proof that (I 1) to (I 3) are in fact a consequence of physical no–arbitrage can be found in the
appendix.
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To better assess the notion of physical no–arbitrage and its three consequences (I 1)
to (I 3), look at the existing literature: Black/Scholes (1973)13 briefly touch I 1 when
they assume an unique option price as solution to their fundamental pricing equation.
Wilhelm (1981)14 formulates I 1, however without recognizing the underlying general case
of physical no–arbitrage. I 2 is only partly reflected, when Ross (1978)15 states that
the multiple of a payoff must coincide with the multiple of its price, or Harrison/Pliska
(1981)16 define a linear price functional on asset returns. Yet, Harrison/Pliska (1981) put
the cart before the horse because they present the consequence of no–arbitrage (existence
of a linear connection between payoff and price) before its definition. Again, Wilhelm
(1981) contains I 2, but once more he does not recur to physical no–arbitrage. I 3 is
implicit in models using the so–called “riskless hedge” methodology17. This methodology
equates the return of the riskless asset and the return of a portfolio that consists of a
combined option and stock investment. To derive from this statement of equal prices on
the portfolio level the price of one unit of the option, one has to divide by the portfolio
weights of the option. Exactly at this point the resort to I 3 becomes obvious. – To sum
up, neither does the literature find all implications nor does it identify their common root:
physical no–arbitrage.

Finally, we want to emphasize that increasing the number of trade objects is not a sub-
stitute for physical no–arbitrage. To illustrate this argument look at I 1. One can argue
that there are several exchanges, at which an asset can be bought or sold. Yet, instead
of demanding the buying and selling prices on all exchanges to coincide – this would be
I 1 – one simply regards every purchase/sale combination at several exchanges as a trade
object of its own, independent of other trade objects. – This reasoning is not convincing:
First, it would be inseparable from an argumentation that considers buying or selling
different quantities of the same asset as different trade objects. However, this view would
be devastating for arbitrage theory in that it would cause the (sub)linearity of the price
functional to collapse. Second, the split–up is a mathematical crutch without economical
substance. For, it hides real economic features behind an abstract model setup18.

By the way, the argumentation does not apply to different prices of buying and selling
assets (bid–ask–spread). As buying and selling in such a case are mutually exclusive, pur-
chase and sale are two different trade objects and physical no–arbitrage cannot substitute
for this non–artificial split–up.

13See Black/Scholes (1973), p. 643.
14See Wilhelm (1981), p. 894.
15See Ross (1978), p. 457.
16See Harrison/Pliska (1981), p. 226.
17See, for example, Ingersoll (1987), p. 313 for an overview.
18Although it is correct with respect to the no–arbitrage result as can be seen from the following

example: Consider buying and selling one type of asset at two stock exchanges. This yields four “newly
created” assets: purchase at exchange 1, sale at exchange 1, purchase at exchange 1, sale at exchange
2, purchase at exchange 2, sale at exchange 1, and purchase at exchange 2, sale at exchange 2. A
“purchasing” arbitrage will immediately be possible if an investor decides to sell at exchange 1 and the
purchasing prices at exchange 1 and 2 diverge. The same is true for a purchase at exchange 1 and a
sale at exchange 1 or 2 (“selling” arbitrage). Finally, to avoid the “classical” arbitrage of simultaneously
buying and selling one asset at different prices, purchasing and sale price have to coincide. This means,
due to no–arbitrage the prices of all four assets must be the same.
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2.2.2 Economical no–arbitrage

Contrary to physical no–arbitrage, economical no–arbitrage connects payoffs to prices19

rather than securities to prices and thus is payoff-oriented:

Economical no–arbitrage means according to the literature the absence of a difference ar-
bitrage. A difference arbitrage (in the most general sense) is a portfolio strategy (possibly
combined with cash), that produces (with positive probability) at some time a cash inflow
without requiring, at any time, a compensating cash outflow. Formally:

n∑
i=0

ZiNi ≥ 0 and
n∑
i=0

PiNi ≤ 0 imply
n∑
i=0

ZiNi = 0 and
n∑
i=0

PiNi = 020 (2.2)

Of course, condition (2.2) restricted to admissible portfolios should hold in arbitrage-
free markets, but it is not a sufficient one in the presence of short sale constraints. For
example, a market can in fact be free of arbitrage, while violating (2.2) by means of an
inadmissible portfolio composition (see market I). The implications of (2.2) are to weak
in such an environment.

Putting these arguments together, we will propose a new definition of economical no–
arbitrage. To prepare for the definition, we introduce the concept of actively traded
portfolios first21:

An admissible portfolio N is said to be “actively traded” if there does not exist an

admissible portfolio N∗ with N∗TZ ≥ NTZ and N∗TP < NTP.

The phrase “actively traded” rests on dominance relations between portfolios: Purchasing
portfolios dominated by another one cannot be reasonable. Hence, rational non–satiated
decision22 makers will at best supply, but not demand such dominated portfolios. Domi-
nated portfolios are therefore not actively traded.

19Which means that economical no–arbitrage implicitly assumes physical no–arbitrage to be given.
20First, recognize that statements like

n∑
i=0

ZiNi ≥ 0 are throughout meant to hold almost surely. Then,

the formalization of the no–difference–arbitrage condition will become clear if we recall that
n∑
i=0

ZiNi > 0

together with
n∑
i=0

PiNi = 0 contains a “free” cash inflow in some states at t = 1,
n∑
i=0

ZiNi = 0 together

with
n∑
i=0

PiNi < 0 a “free” cash inflow at t = 0, and
n∑
i=0

ZiNi > 0 together with
n∑
i=0

PiNi < 0 a “free”

cash inflow both at t = 0 and in some states at t = 1.
21To simplify notation, we switch to vector notation: Z denotes an (n + 1) × 1 vector of (risky) cash

flows, P the corresponding vector of prices.
22See Merton (1973), p. 143.
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Equipped with this concept, we can define economical no–arbitrage:

It is impossible to obtain payoffs of actively traded portfolios
and therefore of any admissible portfolio

at an arbitrary low price.

which reads, technically, as:

The portfolio N∗ = 0 is actively traded. (2.3a)

To any admissible portfolio N there is an actively traded portfolio (2.3b)
N∗ such that NTZ ≥ N∗TZ holds.

Let N be an admissible and N∗ be an actively traded portfolio. If N (2.3c)
offers higher payoffs in some states and never less than N∗ in all
other states, then NTP > N∗TP must be true.

The interpretation of these technical conditions can be given by a thought–experiment:
Look at (2.3a); if N∗ = 0 were not actively traded, then there would be an actively
traded portfolio N dominating N∗ by NTP < 0 and NTZ ≥ 0 because payoff and price of
N∗ = 0 equal zero. Enlarging the quantities held of N by z ·N(z →∞) will almost surely
make the investor arbitrarily rich. Condition (2.3c) rules out that dominated payoffs have
equal or higher prices than dominating payoffs. Since portfolio N offers a higher payoff,
its price has also to be higher to keep portfolio N∗ actively traded. Otherwise, every non–
satiated investor would exploit this dominance relationship. Finally, analyze the reverse
scenario, that is imagine (2.3b) is not true (the admissible portfolio N offers less payoff
than N∗) and that the price of portfolio N is equal or higher than the one of portfolio
N∗. N∗ obviously dominates N. For that reason, N will be in supply, but not in demand
as the price charged for it is “too high”. Either will the portfolios be withdrawn from
the market as a tradable object or the supplier will lower the price as he learned from
market’s reaction that the price was “too high”. Therefore, the assumed price relation
demands (2.3b).

To illustrate our no–arbitrage condition beyond clarifying the technical conditions, begin
with the phrase “at a low price”. This phrase incorporates the ideas of arbitration
of exchange. Arbitration of exchange stems from the traditional institutionally based
literature. It rests on the economic principle and describes nothing else than the desire
of getting a given payoff at the minimum price23 possible.

Modern financial theory has not discussed explicitly this form of an arbitrage because
in perfect markets (markets without short selling constraints) the difference arbitrage is
the more general concept. Not only does it aim at a given payoff, but also can cover
arbitrary payoffs. However, two scenarios can make arbitration of exchange the superior
concept: The first one is the concept of an infinite number of assets. Due to the more

23For a formalization, see Wilhelm (1987), p. 1163.
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complex topological structure in infinite dimensional spaces asset, absence of a difference
arbitrage has to be replaced by absence of a free lunch as Kreps (1981)24 points out. Since
a free lunch is the possibility of getting arbitrary close to a consumption bundle that is
regarded as good at an arbitrarily small cost, free lunches come very near to arbitration
of exchange owing to their focus on a given payoff. The second scenario is the presence
of market frictions. Under market frictions not replication, but super–replication, that
is the idea that no investor will pay more for the financial position than the price of a
portfolio that generates at minimum cost at least the same payoff, proved to be optimal.
Of course, this super–replication price is nothing else than arbitration of exchange25.

The other integral part of our economical no–arbitrage condition is the phrase “actively
traded”. We now know that dominated portfolios are not actively traded. The notion
of an actively traded portfolio, however, neither means that there can only be one single
actively traded portfolio in the market – every not dominated portfolio is an actively
traded portfolio – nor that an actively traded portfolio has to exist at all. For, difference
arbitrage means that buying multiples of the cheap asset and selling multiples of the
expensive asset has a higher payoff than the assets themselves, which makes both the
assets and finite multiples of them not actively traded. Only an additional no–arbitrage
condition can assure the existence of actively traded portfolios. And this additional no–
arbitrage requirement can be found in the phrase: “not at an arbitrarily low price”.

The literature has not yet introduced the concept of actively traded portfolios; we just
find some vague hints: Detemple/Murthy (1997)26 and Schaefer (1982)27 observe that
there may be dominated portfolios although the market is free of arbitrage (due to short
selling constraints). However, they do not translate their observation into a fully–fledged
no–arbitrage condition.

To prevent misunderstandings with respect to physical and economical no–arbitrage and
especially referring to actively traded portfolios, we finally should clarify four more as-
pects: First, we have to differentiate actively traded portfolios from so–called non–traded
assets. Non–traded assets are not acquired for investment purposes28. For example com-
panies purchase raw material to use it in their production process and not to speculate
with it. Second, it does make a difference whether an asset is not actively traded or
simply non–existent. An asset not actively traded can become an actively traded one
after an adequate price adaptation and can exert price influence on other assets due to
this opportunity. That feed–back yet will be excluded from the outset if the asset does
not exist in the market at all. Third, not actively traded portfolios, that is no investor
demands that portfolio under any circumstances, should not be mixed up with a situa-
tion, where some investors with a specific desired payoff do not demand an actively traded
portfolio. Nevertheless, such an actively traded portfolio principally is worth investing in

24See Kreps (1981), pp. 22.
25Although even the most recent papers of mathematical finance, see for example Koehl/Pham (2000),

p. 343, are not aware of the fact that arguing with the super–replication price in fact means relying on
the traditional notion of arbitration of exchange.

26See Detemple/Murthy (1997), p. 1157.
27See Schaefer (1982), p. 172.
28See Hull (1997), p. 288.
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and can be held in positive numbers by another investor. Fourth, we have to elucidate
whether we are allowed to separate the analysis of physical from the one of economical
no–arbitrage. Since economical no–arbitrage works with “the” price of a portfolio and
thus relies on physical no–arbitrage, a separation might turn out to be wrong. However,
both concepts focus on different aspects of “the” asset price: Physical no–arbitrage deals
with assets that are identical from a legal point of view and economical no–arbitrage fo-
cuses on economically identical assets. Therefore, both notions of no–arbitrage are indeed
separable29.

3 Solutions to the problems originally posed

Equipped with this new definition of no–arbitrage, we are ready to solve the problems
initially posed.

3.1 Solution to problem I: the assumption of ”the” price of an
asset

We know that physical no–arbitrage (2.2) gives an exact description of the facts and the
implications making the circumstances of a transaction (numbers purchased or sold, num-
bers of exchanges the asset is listed et cetera) irrelevant without misspecifying investors’
opportunity set.

With this answer to the question of what the exact conditions are under which “the” price
of an asset exists irrespective of the transactions’ circumstances, we reconsider our market
I: The single price of each asset does not restrict the possibility of trading at different
exchanges since the prices at all exchanges must coincide due to physical no–arbitrage.
For that reason, using “the” price of assets specifies investors’ opportunity sets fully and
correctly.

3.2 Solution to problem II: formulation of no–arbitrage, price
reproduction, and positivity of the pricing rule under short
selling constraints

According to Wilhelm (1987)30 and Jouini/Kallal (1995a)31 we know that

• under short selling there exists a positive and sublinear functional φ defined on all
payoffs attainable by portfolios such that φ(NTZ) ≤ NTP holds for any portfolio N.

29For the same reason it does not make sense to introduce the notion of actively traded portfolios
together with physical no–arbitrage.

30See Wilhelm (1987), p. 1163.
31See Jouini/Kallal (1995a), p. 203.
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We therefore do not need to repeat this proof in the text. Instead, we want to point out
that our no–arbitrage definition (2.2) and (2.3), although it significantly deviates from
the conditions found in the literature, is able to reproduces this result32.

However, our no–arbitrage condition is capable of doing more than simply to offer an
economic foundation of the above result. To see this, we formulate the following advanced
consequences of no–arbitrage33:

• Under (binding or not) short selling there exists a positive and sublinear functional
φ defined on all payoffs attainable by portfolios34 such that φ(NTZ) ≤ NTP. This
functional delivers

+ for any not actively traded portfolio a lower price bound, that is φ(NTZ) < NTP.

+ for any actively traded portfolio its price, that is φ(NTZ) = NTP. For those
portfolios the functional φ has the feature of positivity, and price reproduction,
but is not necessarily linear and therefore cannot be interpreted as be given by
state prices.

• In discrete state space35 for all portfolios not subject to short selling the functional

+ is linear implying φ(−NTZ) = −φ(NTZ). For those portfolios, φ has the feature
of positivity, linearity, and price reproduction and can therefore be interpreted
as given by (not necessarily unique) state prices.

+ defines a price that is not above the price under (binding or not) short selling
constraints.

The intuition behind these statements is as follows: Whenever a portfolio is actively
traded, its payoff–price–relation must be fair. Investors seeking to obtain the payoff of an
actively traded portfolio at the minimum price possible therefore can do no better than to
buy the portfolio itself. Since the price functional is defined as the super–replication price
of a given payoff (see arbitration of exchange), we get exactly this price out of the price
functional and the price functional reproduces the price of actively traded portfolios. On
the other hand, not actively traded portfolios are distinguished by an unfair payoff–price–
relation, their price must be too high. The price functional thus determines a lower price
bound from which the not actively traded portfolio switches its status from not actively
traded to actively traded.

Although the price functional must be positive – a positive payoff cannot have a negative
price or a price of zero on arbitrage-free markets – it is not necessarily linear due to
(binding or not) short selling constraints. To see this, we illustrate first that the price
of a portfolio without short selling constraints, must not lie above the price of the same

32See the appendix for a proof.
33A formal proof can be found in the appendix.
34A technical definition of “attainability by portfolios” can be found in the appendix.
35For infinitely dimensional state spaces, it would be necessary to recur to a condition like the absence

of “free lunches”; see Kreps (1981), pp. 22.
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portfolio subject to (binding or not) short selling constraints: Bear in mind that short
selling produces a cash inflow and that this cash inflow lowers the cost of obtaining
the desired payoff. Prohibiting short selling excludes this price reducing possibility. As
an extreme example consider market I as portrayed in table 1: Without short selling
constraints for asset 0 there would be an arbitrage in the market yielding an infinite
gain at t = 0, that is an infinite negative price. Based on this price relation between
portfolios with (binding or not) and without short selling constraints and the fact two
individual portfolios N∗ and N̂ may contain inadmissible quantities (for example short
selling positions within portfolio N̂), which may disappear by combining N∗ + N̂ (for
example because positive quantities in N∗ compensate the negative quantities in N̂), the
sublinearity of the price functional becomes clear: Under (binding or not) short selling
constraints the sum of the prices of two portfolios N∗ and N̂ when traded separately must
be higher than the price of the portfolio N∗+ N̂, that is φ(Z∗+ Ẑ) ≤ φ(Z∗) +φ(Ẑ) holds.

What still remains to do, is to illustrate why there is a linear price functional for portfolios
not subject to short selling constraints. Take into account that any portfolio not subject
to short selling constraints is actively traded and its payoff–price–relation must be fair.
To see this, assume N,−N are admissible and suppose that N is not actively traded.
Then, by definition, there must exists a portfolio N∗ which dominates N. The portfolio
N∗−N, on the other hand, makes N = 0 not actively traded, which is in contradiction to
(2.3a). Since for those portfolios buying a negative number and selling the portfolio are
identical “trades” and are admissible, both transactions must have the same price, from
what a linear price functional follows.

Finally, we want to emphasize that under (binding or not) short selling constraints an
universally valid interpretation of the price functional with the help of state prices becomes
impossible. Since the definition of a state price demands that the price of a portfolio
equals the present value of future payoffs, only a positive linear price functional can be
interpreted as state prices. Therefore, the state price interpretation solely is valid for
portfolios not subject to (binding or not) short selling constraints.

To offer further insights into our advanced consequences of no–arbitrage, contrast them
with the literature: Garman/Ohlson (1981), Wilhelm (1987), who transfers Garman/
Ohlson’s (1981) results to an infinite–dimensional state space, and Jouini/Kallal (1995a)
are merely able to derive a concrete price of a given payoff by solving explicitly for the
super–replication price. Even that part of the literature, that derives price bounds for
assets which can be (super)replicated under short selling constraints36, does not improve
our knowledge with respect to the core of the problem: It focuses on an additional asset
in the market, but does not offer more pricing information with respect to the original
assets in the market. We, on the other hand, are able to propose more precise pricing
information without having to solve for super–replication prices. For, we are able to iden-
tify a subset of portfolios – not actively traded portfolios – that never, that is independent
of investors’ payoff preferences, will be priced by the price functional. Moreover, we ex-
tend Jouini/Kallal (1995a) to partially imperfect markets, that is markets where some,

36See Jouini/Kallal (1995a), pp. 204-205, Koehl/Pham (2000), p. 347 for a general no–arbitrage
framework and for investors with logarithmic utility function, Detemple/Murthy (1997), p. 1157.
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but not all portfolios are subject to short selling constraints, by demonstrating that the
outcomes of frictionless markets37 apply to the subset of portfolios not subject to short
selling constraints.

With this answer to the formulation of no–arbitrage, price reproduction, and positivity of
the price functional under short selling constraints, we reconsider our market I: A portfolio
made of 11

3 units of asset Aj dominates asset 038; due to its short selling constraint asset
A0 is not actively traded. Asset Ai and Aj do not dominate each other and there is no
arbitrage in the market. Since both assets are not subject to (binding or not) short selling
constraints and therefore actively traded, we know that a linear price functional φ prices
both assets exactly. Using asset Ai and asset Aj to calculate the price functional, we

obtain φS1 =
3
8

and φS2 =
3
8

. As this price functional is positive, linear, and has the
feature of reproducing the prices of all actively traded portfolios in the market, it can be
interpreted as state prices. This price functional in addition allows us to derive the lower
price bound for the not actively traded asset A0: The price, at which it switches its status
from “not actively traded” to “actively traded”, is 75.

We want to close this subsection with two final remarks. First, we have seen that mistakes
in the course of determining the price functional can happen quite easily, namely when one
calculates the price functional out of portfolios subject to (binding or not) short selling
constraints. That is exactly what happened in our problem II: The not actively traded
asset A0 was falsely used to compute the price functional and even state prices. Therefore,
the status “subject to short selling constraints or not” is an additional information, one
needs besides portfolios’ prices and payoffs to compute a generally valid price functional.
Second, a positive linear price functional does not necessarily imply that all state prices
have to be positive. It just demands that a positive payoff must have a positive price. We
will return to this point when we will discuss the CAPM in subsection 3.4.2.

3.3 Solution to problem III: the endogenous justification of a
nonnegative riskless rate

In section 3.1 we found that working with “the” price of an asset solely depicts investors’
opportunity sets correctly when we recur to the idea of physical no–arbitrage. Justifying
endogenously a nonnegative riskless rate again ends up in an examination of investors’
opportunity sets.

The mainstream literature assumes that investors are able to invest in a riskless and several
risky assets. Yet, this is an incorrect description of their opportunity sets because one asset
is missing: cash. Cash is an “asset” that is always available. Every amount of money that
is neither consumed nor invested (in the strict sense) today is automatically transferred to
tomorrow. Due to this automatism, cash seems to be invisible, but nevertheless belongs

37See for example Dybvig/Ross (1992).
38This portfolio offers at the same price of 100 a payoff of 106 2

3 in the first and 160 in the second state.
Alternatively, one can argue asset i and j synthesize a riskless asset, whose rate of 33 1

3% dominates asset
A0’s rate of 0%.
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to investors’ investment opportunity sets.

Using this more adequate description of investors’ investment opportunity sets, we know
that a positive riskless rate dominates cash and cash hence will not be actively traded.
A negative riskless rate, however, is dominated by the zero “interest” rate of cash. As a
consequence, a riskless asset with a negative riskless rate is not actively traded.

To be more precise, look at the following formalization of the above intuition: If there is
an actively traded riskless asset Aa with rate r, its price is equal to its discounted payoff,
by definition and by no–arbitrage:

Pa = φ(1) =
1

1 + r
(3.1a)

Since cash offers a payoff of Z0 = 1 for an investment of I0 = 1 , a positive riskless rate
r > 0 dominates cash and makes it not actively traded. Therefore, we arrive at a lower
price bound for cash:

1
1 + r

= φ(1) ≤ 1 = I0 (3.2a)

On the other hand, a negative riskless rate r < 0 would result in cash to be actively
traded and asset Aa with investment Ia not actively traded with consequences

P0 = φ(1) = 1 (3.1b)

and a lower price boundary Ia for the investment in Aa

φ(1) = 1 ≤ 1
1 + r

= Ia (3.2b)

Or to put it differently: We now know that the “reactivation” of the “invisible” asset
cash in combination with the notion of actively traded portfolios offers a endogenous
justification39 of a nonnegative riskless rate.

Although cash is a quite common asset, the literature has ignored its consequences on
asset pricing. We are only aware of one source, a textbook for students, that introduced
cash in form of an example40 into arbitrage theory. But a systematic integration into
arbitrage theory is of course beyond the scope of a textbook like that.

With the knowledge of this section, reconsider our market II thereby tackling the prob-
lem of an endogenous justification of a nonnegative riskless rate: Market II is not been
correctly specified because it ignores cash. Cash dominates Aa and a portfolio composed
of 1.7 units cash and –0.75 units Aj dominate Ai. Both Aa and Ai hence are not actively
traded. In fact, market II is not even free of arbitrage. To guarantee no–arbitrage, we
have to impose short selling constraints on Aa and Ai.

39We do not claim, however, to give a justification of why cash or other assets exist at all; their existence
is exogenous in our model. Only the consequences from their existence are topic of our analysis.

40See Schäfer/Kruschwitz/Schwake (1998), p. 131.
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The riskless rate implied by this market can now be found by determining the super–
replication price of a payoff x in both state, where x denotes an arbitrary positive number.

The solution to this problem on market II reads φ

Z(S1) = x

Z(S2) = x

 = x. Therefore, the

riskless rate is nonnegative (r = 0).

Moreover, we are ready to comment on the assertion that it is possible to assure a positive
riskless rate by working with several riskless assets since one asset with a positive rate
automatically forces the other riskless rates to be positive. Our example first clarifies
where more than one riskless assets should come from; we have one explicit (Aa) and one
implicit riskless asset (constructed out ofAi andAj). Second, it shows that, although there
are two riskless investment opportunities, we nevertheless can have a negative riskless
rate. Therefore, arguing with several riskless assets is a complicated and not necessarily
successful way to assure a nonnegative riskless rate. We definitely need cash.

Closely related to the question of a nonnegative riskless rate is another problem: the
position of the borrowing rate.

In addition to the riskless asset Aa with rate r consider a borrowing opportunity As at

rate rs with payoff Zs = 1 and initial cash inflow Is =
1

1 + rs
. Lending and borrowing are

subject to short selling constraints in that lending is only allowed in positive, borrowing in
negative quantities (emission of assets!). If lending and borrowing are to be both actively
traded, no–arbitrage will demand (for 1 unit lending and –1 unit borrowing)

φ(1) =
1

1 + r
and φ(−1) = − 1

1 + rs
(3.3)

Due to the feature of sublinearity of the price functional, we get

φ(0) = φ
(

1 + (−1)
)
≤ φ(1) + φ(−1) (3.4)

and hence

φ(0) = 0 ≤ 1
1 + r

+
(
− 1

1 + rs

)
(3.5)

that is rs ≥ r: The borrowing rate cannot lie below the lending rate, which in turn has
to be nonnegative41.

41A generalization of this problem, namely that the purchasing price cannot be located below the selling
price of an asset, can be found in Jouini/Kallal (1995b), p. 179. However, since they do not focus on
interest rates, they do not derive the nonnegativity condition on both interest rates, which was our goal.
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3.4 Solution to problem IV: the connection between arbitrage
theory and special pricing theories

For the rest of the paper we concentrate on these cases where short selling constraints
are absent, every portfolio is, hence, actively traded, and there is only a finite number of
states42. By constituting the structure of fair asset prices for those portfolios,

Pi =
∑
s∈S

φsZis (3.6)

S set of possible states
s single state from S

arbitrage theory undoubtedly is a pricing theory albeit a quite universal one. Arbitrage
theory, however, does not compute state prices because it does not solve equation (3.6)
for φs; this task is fulfilled by special pricing theories: law–of–one–price–oriented and
utility–based pricing43, which thereby discuss the economic forces behind the state prices.

3.4.1 Law–of–one–price–oriented pricing of derivatives

3.4.1.1 A brief digression on the law of one price 44

The law of one price – it was originally due to Jevons (1871) and rediscovered by Ross
(1978) for financial markets – describes an important fact: Economically identical goods
must have identical prices independent of investors’ preferences. To be more precise,
we can distinguish between two variants45: The first variant demands two portfolios N
and N∗, whose payoff coincide in all states at t = 1, to have the same price at t = 0.
The second variant focuses on special portfolios, so–called arbitrage portfolios. Arbitrage
portfolios offer in every state at t = 1 a payoff of zero and must have a price of zero. Both
variants are equivalent in the absence of short selling constraints: That the first variant
implies the second one is obvious because the second one studies not an arbitrary payoff,
but a payoff of zero. The reverse implication results as follows: Forming the difference
between the payoffs of economically identical goods yields a total payoff of zero. This
payoff must have a price of zero proving that the second variant can be derived from the
first one.

42As we do not consider continuous trading, this assumption is necessary to be able to span payoffs
even in a one–period model.

43The identification of these basic forms of the numerous variants of special pricing theories is the merit
of Schöbel (1995).

44For related issues on the law of one price, consult Oh/Ross/Shanken (1998)
45See Ingersoll (1987), p. 59.
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3.4.1.2 Translation of the law of one price into pricing

The typical application of law–of–one–price–oriented pricing constructs portfolios com-
posed of the underlying (stock) of the derivative (A1, . . . , An−1), the riskless asset (Aa),
and the derivative (An)46 so that the portfolios’ payoffs coincide at t = 1 in all states.
Hence, (law of one price!) at t = 0 all portfolios must have the same price, enabling a
preference–free computation of the desired price of the derivative.

Analyzing the huge economic literature on derivative pricing, we can extract three basic
principles of law–of–one–price–oriented pricing to construct portfolios and therefore three
different types of portfolios: duplication portfolio, hedge portfolio, and arbitrage portfolio:

1. Duplication portfolio:

This form of the law–of–one–price–oriented pricing searches for the quantities of
stocks and the riskless asset which synthesize exactly (duplicate) the payoff of the
derivative in all states s ∈ S at t− 1, that is

Zns = Na +
n−1∑

i=1, i6=a

Ni · Zis for all s ∈ S (3.7)

2. Hedge portfolio:

The hedge portfolio combines stocks and derivative that way that a riskless payoff
results in all states s ∈ S at t = 1, that is

−Na =
n−1∑

i=1, i6=a

Ni · Zis − Zns for all s ∈ S (3.8)

or rather

1 = −
n−1∑

i=1, i 6=a

Ni

Na

· Zis +
Zns
Na

for all s ∈ S (3.9)

3. Arbitrage portfolio:

Based on Merton (1973), the arbitrage portfolio puts together stocks, riskless asset,
and derivative in such a manner that there is at t = 1 with certainty, that is in all
states s ∈ S, a riskless payoff of zero.

0 = Na +
n−1∑

i=1, i6=a

Ni · Zis − Zns for all s ∈ S (3.10)

46For simplicity, we assume that there is just one derivative. Generalizations are of course possible,
but do not deliver any further results.
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The above systems all have as many equations as there are states in the economy. If an
arbitrary derivative shall be priced, obviously the number of assets has to be at least as
large as the number of states. This fact that the payoff of a derivative can be written as
a linear combination of payoffs of stocks and riskless asset is called spanning property.
Spanning thus implies – expressed with the help of equation (3.6) – the possibility of
depicting the state prices necessary for pricing by real assets.

Law–of–one–price–oriented pricing directly recurs to the implications (duplication port-
folio)

Zns = Na +
n−1∑

i=1, i 6=a

Ni · Zis for all s ∈ S ⇒ Pn =
Na

1 + r
+

n−1∑
i=1, i 6=a

Ni · Pi (3.11)

or rather equivalent formulations like (hedge portfolio)

1 = −
n−1∑

i=1, i 6=a

Ni

Na

· Zis +
Zns
Na

for all s ∈ S ⇒ 1
1 + r

= −
n−1∑

i=1, i 6=a

Ni

Na

· Pi +
Pn
Na

(3.12)

or (arbitrage portfolio)

0 = Na +
n−1∑

i=1, i 6=a

Ni · Zis − Zns for all s ∈ S ⇒ 0 =
Na

1 + r
+

n−1∑
i=1, i6=a

Ni · Pi − Pn (3.13)

By directly using the payoff/price equivalence of two portfolios in the form “identical
payoff ⇒ identical price” in equation (3.7) and (3.11) or rather (3.8) and (3.12) (first
variant of the law of one price) or rather “payoff of zero ⇒ price of zero” in (3.10) and
(3.13) (second variant of the law of one price), the name “law–of–one–price–oriented”
pricing becomes clear. However, with respect to equation (3.12) one remark is in order:

Hedge portfolios do not calculate the price of the derivative, but
Pn
Na

. The notion of

physical no–arbitrage thus is needed to draw conclusions on the price per unit of the
derivative similar to the other forms of law–of–one–price–oriented pricing47.

To show the connection between arbitrage theory and law–of–one–price–oriented pricing,
observe that the law–of–one–price–oriented pricing works without explicit knowledge of
φ although it can calculate φ from prices48. Should spanning of the derivative payoff
fail however, every derivative price would be compatible with the law of one price (al-
though not with the no–arbitrage conditions (2.2) or rather (2.3)) and the unambiguous
price determination fails. Therefore, law–of–one–price–oriented pricing merely has the
feature of price reproduction and linearity for a subset of portfolios. Proving that the

47That the law of one price indeed is unable to care of this aspect can easily be demonstrated with
the help of market I: With a price of assets Ai and Ak of 75, we have as fair price of 10 units of asset
Aj 750. Should, however, the price of one unit of asset Aj be unequal to 750

10 , the physical no–arbitrage
condition (2.2) is violated.

48See equations (3.11) to (3.13).
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state prices from law–of–one–price–oriented-pricing at least specify the price functional
of arbitrage theory for this subset, we have to check positivity: Since under missing short
selling constraints all portfolios are actively traded on arbitrage–free markets, there can-
not be a dominating payoff, especially no positive payoff with a negative price. This
argument in turn keeps the price functional positive. For illustrative purposes consider
the Cox/Ingersoll/Ross (1979) binomial model: To have both the stock and the risk-
less asset to be actively traded, implies a positive price of the stock and u > r > d
for the stock’s return, that it exactly the conditions Cox/Ingersoll/Ross (1979) employ49

to guarantee positive state prices. As the price functional calculated by means of the
law–of–one–price–oriented–pricing reproduces asset prices and is linear as well as pos-
itive, law–of–one–price–oriented-pricing indeed specifies the price functional (3.6) (and
the state prices) of arbitrage theory.

That way, we generalize Cox/Ross/Rubinstein (1979), who show this connection between
law–of–one–price–oriented pricing and arbitrage theory just for the binomial model.

In closing this section – for concrete details on law–of–one–price–oriented pricing, we refer
to the well–known literature –, we want to address a semantic problem. The literature
sometimes50 uses the somewhat misleading phrase “arbitrage–oriented pricing” instead
of “law–of-one–price–oriented pricing”. This concept formation stems form the consid-
eration that two portfolios with identical payoffs must have – due to arbitrage reasons -
an identical price independent of investors’ preferences. Our exposition in the foregoing
section yet identified this reasoning as law-of-one-price and thus just a part of arbitrage
theory. Since utility-based pricing of section 3.4.2 also relies on arbitrage theory, we prefer
a formulation that exactly names the aspect of arbitrage theory used, namely law–of–one–
price–oriented pricing.

3.4.1.3 Law of one price versus completeness of markets

Crucial for law–of–one–price–oriented pricing was the spanning property, which must not
get mixed up with completeness of markets. Completeness means that all state prices
of the market can be portrayed with the help of real assets and consequently results in
a price functional for all asset in the market independent of investors’ preferences. This
connection, which is stated in a technical way as the equivalence of an unique martingale
measure and completeness of markets51, is called second fundamental theorem of
asset pricing. Spanning and completeness imply insofar different ideas on the universal
validity of their pricing statements. Whereas spanning aims at one concrete derivative,
completeness prices all assets in the market. Law–of–one–price–oriented pricing, however,
just needs spanning to determine prices of derivatives and definitely not unique state prices
and hence the second fundamental theorem of asset pricing.

To be able to illustrate the difference between spanning and completeness, we focus on
an extended version of a market I – cash is a not actively traded asset and therefore can

49See Cox/Ingersoll/Ross (1979), p. 240.
50See for example Schöbel (1995).
51See Harrison/Pliska (1983), p. 314.

22



be skipped without restricting investors’ opportunity set:

states of the world

asset price state 1 state 2 state 3 state 4

Aa 100 110 110 110 110

Ai 100 110 90 110 140

Aj 100 120 80 80 120

ACO (call ? 10 0 0 10
option on Aj

Table 4: payoffs and prices on an extended market I

The unknown price of the option can be obtained from spanning its payoff by means of a
portfolio constructed of Aj and the riskless asset Aa, that is we have:

state 1: 120 ·Nj + 110 ·Na = 10

state 2: 80 ·Nj + 110 ·Na = 0

state 3: 80 ·Nj + 110 ·Na = 0

state 4: 120 ·Nj + 110 ·Na = 10

The duplications portfolio reads Nj =
1
4

as well as Na = − 2
11

leading, according the law

of one price, to an option price of PCO =
1
4
· 100 − 2

11
· 100 = 6

9
11

. Completeness on
the other hand, is not primarily interested in the option price, but calls for unique state

prices. Since in our example φS1 = −φS4 +
15
22
, φS2 =

3
2
· φS4 , and φS3 = −3

2
· φS4 +

5
22

hold, the prices of states 1 to 3 just can be expressed as a function of the fourth state
price and are therefore not unique. The market is incomplete52.

3.4.2 Utility-oriented pricing

3.4.2.1 Basics

Starting point of utility-based pricing are optimum portfolio decisions of an investor re-
flecting his individual market price of risk. With the help of this market price of risk, the
payoff at t = 1 of the derivative can be priced. If the investor concerned is an individual
decision maker, the derivative price will be a subjective indifference price; if the investor

52And, to reemphasize this point, not actively traded portfolios like cash cannot make it complete.
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is representative of a market in equilibrium, we will obtain equilibrium based derivative
prices.

Examine a bit closer the underlying decision problem of the investor: A decision maker
has initial wealth W0, that can be invested in stocks (A1, . . . , An−1), the riskless asset
(Aa), and the derivative (An). The risky terminal wealth W̃ of this strategy (random
variable with realization Ws in state s) reads as follows:

W̃ =
n−1∑
i=1

[
Zi − (1 + r)Pi

]
Ni +

[
Zn − (1 + r)Pn

]
Nn + (1 + r)W0 (3.14)

The decision makers aims to maximize the expected utility U [·] of terminal wealth by
optimally selecting the number of units of stocks (N1, . . . , Nn−1) and the derivative (Nn).
Formally:

Max
N

E{U [W̃ ]} (3.15)

Denoting the expected utility of terminal wealth as Φ, the necessary conditions for the
optimum numbers read

∂Φ
∂Ni

= 0 = E

{
∂U [W̃ ]
∂W̃

· ∂W̃
∂Ni

}
= E

{
U ′
[
W̃
][
Zi − (1 + r)Pi

]}
for i = 2, 3 (3.16)

The desired derivative price Pn is immediately obtained from (3.16) for i = n by solving
this equation with respect to Pn (with E

{
U ′
[
W̃
]}
6= 0 required):

Pn = E

{
1

1 + r
· U ′[W̃ ]
E{U ′[W̃ ]}

· Zn

}
=
∑
s∈S

φs Zns (3.17)

Two remarks are in order: First, no–arbitrage guarantees that problem (3.15) has indeed
a solution, that is that the price system is viable53. Second, equation (3.17) contains
two possible cases. If the derivative is in zero–net supply, the price of risk calculated
from the stocks will be passed on to the derivative. If the derivative, however, is held in
non–zero numbers, the price of risk stems from the optimum terminal wealth and cannot
be computed just from one asset class. Moreover, in both cases, the type of the utility
function and the variety of available stocks obviously exert influence on the price of risk.
This means that the introduction of a new stock usually leads to new derivative prices54.

To show the connection between arbitrage theory and utility–oriented pricing, we have to
prove that the term from equation (3.17)

φs = µs
1

1 + r
· U ′[W̃ ]
E{U ′[W̃ ]}

for all s ∈ S (3.18)

µs probability of state s
53See Harrison/Kreps (1979), p. 386.
54For a more intense discussion of issues like this, see Ingersoll (1987), chapter 2.
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indeed is a state price. Obviously, φ prices all actively traded portfolios of the market
segment (price reproduction and linearity). Since in addition φs in equation (3.18) turns

out to be positive because we assumed strictly positive marginal utility, and
∑
s∈S

φs =
1

1 + r

holds, φs in equation (3.18) must be a specification of the price functional (3.6) of arbitrage
theory (universal pricing theory).

So far, we not only reproduced the result of Duffie (1996)55, but also showed how the var-
ious variants of utility–oriented pricing fit into this scheme. Now we are ready to analyze
connections between law–of–one–price–oriented and utility–oriented pricing. Although
utility-oriented pricing seems to deliver completely different prices at first sight, both
pricing approaches will coincide if the spanning property with respect to the derivative
holds. Formally, due to (3.17) in connection with (3.18) we immediately have congruence
of utility–oriented (3.17) with law–of–one–price–oriented (3.11) derivative pricing. Eco-
nomically, both approaches coincide because a derivative, that can be duplicated, offers
independent of investors’ utility functions the same utility as the duplication portfolio.
Insofar, law–of–one–price–oriented and utility–oriented pricing do not conflict with each
other, but simply rely on different restrictive assumptions: Law–of–one–price–oriented
pricing rests on the spanning assumption, whereas utility-oriented pricing is founded on
the expected utility principle.

This means, we finally found an answer to our problem IV, namely of how arbitrage
theory, law–of–one–price–, and utility–oriented pricing are related.

3.4.2.2 CAPM

To close this section, we want to mention a special case of the equilibrium–based variant
of utility–oriented pricing: the Capital Asset Pricing Model (CAPM). It is a special case
because it relies on restrictive assumptions: On the one hand, it may be based on a
quadratic utility function. However, in a world with free disposal, that is the possibility
of “throwing away” money at no cost, quadratic utility on the payoffs cannot be rational
since negative marginal utility can be avoided at no cost. Quadratic utility hence is not
a good device for basing the CAPM on and we will not discuss this line of the CAPM
derivation further. On the other hand, the CAPM is often grounded on the assumption of
normally distributed payoffs. Normality, however, implies that there is never a portfolio
payoff that is positive in every state besides an exclusive investment in the riskless asset.
In such a case the positivity of the pricing rule no longer is equivalent to positive state
prices. To see this, transform according to Wilhelm (1983)56 the CAPM price equation

55See Duffie (1996), pp. 7-8.
56See Wilhelm (1983), p. 16.
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and apply it to derivative pricing as follows:

Pn = E

{
1

1 + r

[
1− E{WM} − (1 + r)WM0

var{WM}
(
WM − E{WM}

)]
· Zn

}
(3.19)

WM wealth of the market portfolio at t = 1
WM0 wealth of the market portfolio at t = 0

with state prices57:

φs = µs ·
1

1 + r

[
1− E{WM} − (1 + r)WM0

var{WM}
(
WM − E{WM}

)]
(3.20)

Owing to equation (3.20), a wealth interval based on the normal distribution can easily
lie far above the expected wealth level leading to a negative state price, a point that was
originally observed by Dybvig/Ingersoll (1982)58. Nevertheless, we know that a positive
payoff must have a positive price because in the absence of short selling constraints every
portfolio is actively traded on arbitrage–free markets. Therefore, the price functional
must be positive (as long it is applied to linear combinations of the primary assets in the
market). And it is exactly this result that goes beyond Dybvig/Ingersoll (1982).

4 Conclusion

We started from the observation that today’s mathematical finance does not discuss im-
portant economic aspects of pricing. This became evident in four cases: First, the as-
sumption of “the” price of assets and consequences to investors’ opportunity set, second,
the formulation of no–arbitrage, price reproduction, and positivity of pricing rules un-
der short selling constraints, third, the explicit assumption of a positive riskless rate,
and fourth, the missing integration of special pricing theories into arbitrage theory (=
universal pricing theory). Our paper has found the following solutions to these problems:

“The” price of an asset will only give an exact description of investors’ opportunity sets
when the concept of physical no–arbitrage is introduced. The second problem can be
solved by relying on a more precise form of an economical no–arbitrage condition. Eco-
nomical no–arbitrage under short selling constraints means that it is impossible to acquire
actively traded and therefore every admissible portfolios at an arbitrary low price. From
the above definition of no–arbitrage it follows a price functional that determines for all
payoffs a lower price bound. This price functional determines exactly the price of actively
portfolios, for not actively traded portfolios it defines a lower price bound. However, un-
der (binding or not) short selling constraints this price functional is not necessarily linear,
which means it cannot be interpreted as given by state prices. A linear price functional

57Since a normal distribution has an infinite number of states, we have to discretize its state space by
defining wealth intervals as states, for example wealth is between 1000 and 1002.

58See Dybvig/Ingersoll (1982), p. 238.
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and thus state prices only apply to portfolios not subject to short selling constraints.
The notion of actively traded portfolios also helped to tackle the third problem. Recall
that in every economy there is an “invisible” asset cash, which is always available. Every
riskless asset with a negative interest rate is dominated by cash and is therefore not ac-
tively traded, an reasoning offering an endogenous justification of a nonnegative riskless
rate. Finally, we have been able to show that special pricing theories (law–of–one–price–
oriented and utility–oriented pricing) just concretize the relationship between asset prices
and their payoffs given by arbitrage theory (= almost universal pricing theory), using
different restrictive assumptions: Law–of–one–price–based pricing rests on the spanning
assumption, whereas utility–oriented pricing is founded on the expected utility principle.

With these three amendments and the discovery of the connection between arbitrage
theory and special pricing theories, we brought back some economic intuition into math-
ematical finance. What remains to do, however, is to transfer our findings to a multi
period, maybe continuous time, framework.

Appendix

• Proof that implications (I 1) to (I 3) are indeed consequences of physical no–arbitrage:

The proof will carried out in several steps:

Proposition 1: For every portfolio N, that can be sold short, under all circumstance u
Pu(−N) = −Pu(N) holds.

Proof: This feature follows immediately from the obvious equality 0 = Pu(0) in
connection with Pu(0) = Pu0(N−N) = Pu1(N) + Pu2(−N).

Proposition 2: For every natural number z and every portfolio N, Pu(z ·N) = z ·Pu(N)
holds under all circumstances u.

Proof: This is obvious since z = 1+1+ . . .+1 and hence z ·N = N+N+ . . .+N
is true.

Corollary 1: If portfolio N can be sold short, proposition 2 also holds for negative
integers.

Proposition 3: For every positive rational number j/k Pu

(
j

k
N
)

=
j

k
Pu(N) holds un-

der all circumstances u.

Proof: Owing to proposition 2, it suffices to demonstrate this feature for j = 1.

Assume N̂ =
1
k

N. Then, we have N = k · N̂, thus Pu(N) = Pu(k · N̂) =

k Pu(N̂), and hence Pu

(
1
k

N
)

= Pu(N̂) =
1
k
Pu(N).
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Corollary 2: If portfolio N can be sold short, proposition 3 also holds for negative
rational numbers.

Proposition 4: For every positive real number x, Pu(x ·N) = x · Pu(N) holds under all
circumstances u.

Proof: Consider a sequence of rational monotonously increasing positive num-
bers {a1, a2, . . . } converging to x. Construct the following sequence of
rational numbers: y1 = a1, y2 = a2 − a1, y3 = a3 − a2, . . . . Then,
due to proposition 3 and the required additivity of quantities Nu0 =
Nu1 + Nu2 + . . . , it follows:

Pu0(x ·Nu0) = Pu0(y1Nu1 + y2Nu2 + . . . ) =
∑
i

yiPui(Nui) = xPu0(Nu0)

Corollary 3: If portfolio N can be sold short, proposition 4 also holds for negative real
numbers.

Summing up, from proposition 1 to 4 we obtain that the price of a portfolio must be
equal to the weighted sum of its components, that is (I 2). This case includes a special
portfolio, namely buying or selling just one unit of an asset and hence (I 1). Moreover,
from proposition 4, (I 3) can be directly obtained.

• Proof that our no–arbitrage definition indeed yields a sublinear price functional:

+ Preliminary work:

We call a payoff Z∗ “attainable” if there exists an admissible portfolio N ∈ X such that
Z∗ ≤ NTZ holds. Such payoffs may be “attained” by buying N and “throwing away” the
quantities NTZ− Z∗ ≥ 0 since there is free disposal.

Proposition 5: The set M(X) of all attainable payoffs is a convex cone with vertex 0.

Proof: Assume Z∗ ≤ N∗TN and Ẑ ≤ N̂TZ with N∗, N̂ ∈ X. According to our
proofs so far, for α, β ∈ R+ αN∗ + βN̂ ∈ X holds, that is X is a convex
cone. But it is clear that αZ∗+βẐ ≤ αN∗TZ+βN̂TZ =

(
αN∗T +βN̂T

)
Z

holds, which proves our assertion.

+ Core of the proof:

Proposition 6: There exists a positive and sublinear functional φ on M(X) such that
φ(NTZ) ≤ NTP holds for any portfolio N.
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Proof: The proof will be carried out in several steps:

1. There is a well–defined price functional φ:

According to the notion of arbitration of exchange, φ is defined to assign
to every attainable payoff at t = 1 the price of a portfolio that generates
at minimum cost at least the same payoff (super–replication price), that
is

φ(Z∗) := inf
{
NTP

∣∣N ∈ X, NTZ ≥ Z∗
}

The existence of φ immediately follows from (2.3b).

2. Homogeneity of degree 1 of the price functional φ:

Begin with φ(0) = 0. This feature follows from assumption (2.3a),
namely the fact that portfolio N = 0 (doing nothing) is actively traded
and thus not dominated by another alternative.
For the case α > 0, we just recall that Xnew = α ·Xold holds.

3. Subadditivity of the price functional φ:

To prove subadditivity φ(Z∗ + Ẑ) ≤ φ(Z∗) + φ(Ẑ), it suffices to remem-
ber that the individual portfolios N∗ and N̂ may contain inadmissible
quantities (for example short selling within portfolio N̂), which may dis-
appear by combining N∗+ N̂ (for example because positive quantities in
N∗ compensate the negative quantities in N̂ ).

4. Positivity of the price functional φ:

Because of (2.3a) the price of doing nothing equals zero. In addition, φ is
(strictly) monotone with respect to payoffs of (actively traded) portfolios
(see (2.3c)). Now the positivity of φ immediately follows from φ(0) = 0.

5. The remaining properties of φ, as claimed in the proposition, directly

follow from its construction.

• Some more features of the price functional:

Proposition 7: There exists a positive and sublinear functional φ on M(X) such that
φ(NTZ) = NTP holds for any actively traded portfolio N∗.

Proof: To see this, recall that φ
(
NTZ

)
= NTP is true, by construction, for every

actively traded portfolio.

Corollary 4: If z,−z ∈ M(X) holds (that is the portfolio under consideration can be
sold short), then −φ(z) = φ(−z).
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Proof: Let be z = NTZ, −z =
(
−NT

)
Z, then φ(−z) = NTP = −

(
−NTP

)
=

−φ(z) holds from proposition 7 and the fact that portfolios without short
selling constraints are actively traded.

For the rest our propositions we assume a finite state space, the number of possible states
will be denoted by K, so that M(X) ⊂ RK holds.

Proposition 8: There exists a positive linear functional ϕ on RK such that ϕ(z) ≤ φ(z)
holds for any portfolio payoff z ∈ M(X) . In addition, if z,−z ∈ M(X)
holds, that is the portfolio may be sold short, then ϕ(z) = φ(z) is true59.

Proof: The proof uses a standard separating hyperplane argument60: We define
two convex sets in RK+1 by Y =

{
(z, x)

∣∣z ∈ M(X), φ(z) ≤ x
}

and
Y =

{
(z, 0)

∣∣z ∈ RK , 0 < z
}

. Y, Y are in fact convex and obviously
disjoint. The hyperplane which separates Y and Y generates a linear
functional with the desired properties.

The following corollary is an easy consequence of proposition 8.

Corollary 5: If M(X) ⊂ RK is a subspace, that is all (actively traded) portfolios may
be sold short, then the pricing functional φ is a linear functional.

59For their no–arbitrage definition Jouini/Kallal (1995a), p. 205 derive a similar result.
60See Franklin (1980), p. 49, theorem 3.
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Jouini, Elyés/Kallal, Hédi (1995b), Martingales and Arbitrage in Securities Markets
with Transaction Costs, in: Journal of Economic Theory, Vol. 66, pp. 178–197.

Koehl, Pierre-F./Pham, Huyên (2000), Sublinear Price Functionals under Portfolio
Constraints, in: Journal of Mathematical Economics, Vol. 33, pp. 339–351.

Kreps, David M. (1981), Arbitrage and Equilibrium in Economies with Indefinitely
Many Commodities, in: Journal of Mathematical Economics, Vol. 8, pp. 15–35.

Merton, Robert C. (1973), Theory of Rational Option Pricing, in: Bell Journal of
Economics and Management Science, Vol. 4, pp. 141–183.

Munn, Glenn G. (1983), Encyclopedia of Banking and Finance, 8th edition.

Musiela, Marek/Rutkowski, Marek (1997), Martingale Methods in Financial Mod-
elling.

Oh, Gyutaeg/Ross, Stephen A./Shanken, Jay (1998), The Absence of Arbitrage:
Some New Results, Working Paper (current revision: September 1998), University
of Rochester.

Ross, Stephen A. (1978), A Simple Approach to the Valuation of Risky Streams, in:
The Journal of Business, Vol. 51, pp. 453–475.
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