Wystup, Uwe

Working Paper

Foreign exchange quanto options

CPQF Working Paper Series, No. 10

Provided in Cooperation with:
Frankfurt School of Finance and Management

Suggested Citation: Wystup, Uwe (2008) : Foreign exchange quanto options, CPQF Working Paper Series, No. 10, Frankfurt School of Finance & Management, Centre for Practical Quantitative Finance (CPQF), Frankfurt a. M.

This Version is available at:
http://hdl.handle.net/10419/40194

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
No. 10

Foreign Exchange Quanto Options

Uwe Wystup

June 2008

Author: Prof. Dr. Uwe Wystup
Frankfurt School of Finance & Management
Frankfurt/Main
u.wystup@frankfurt-school.de

Publisher: Frankfurt School of Finance & Management
Phone: +49 (0) 69 154 008-0 • Fax: +49 (0) 69 154 008-728
Sonnemannstr. 9-11 • D-60314 Frankfurt/M. • Germany
Abstract

A quanto option can be any cash-settled option, whose payoff is converted into a third currency at maturity at a pre-specified rate, called the quanto factor. There can be quanto plain vanilla, quanto barriers, quanto forward starts, quanto corridors, etc. The valuation theory is covered for example in [3] and [1].

Contents

1 FX Quanto Drift Adjustment 2
2 Quanto Plain Vanilla 5
3 Quanto Forward 5
4 Quanto Digital 6
5 Hedging of Quanto Options 6
 5.1 Vega Positions of Quanto Plain Vanilla Options 6
 5.2 Vega Hedging Quanto Plain Vanilla Options 7
 5.3 Example 7
6 Application: Performance Linked Deposits 8
 6.1 Product Description 9
 6.2 Example 9
 6.3 Composition 9
 6.4 Variations 10

1 FX Quanto Drift Adjustment

We take the example of a Gold contract with underlying XAU/USD in XAU-USD quotation that is quantoed into EUR. Since the payoff is in EUR, we let EUR be the numeraire or domestic or base currency and consider a Black-Scholes model

\[
\begin{align*}
\text{XAU-EUR: } dS_t^{(3)} &= (r_{EUR} - r_{XAU})S_t^{(3)} dt + \sigma_3 S_t^{(3)} dW_t^{(3)}, \\
\text{USD-EUR: } dS_t^{(2)} &= (r_{EUR} - r_{USD})S_t^{(2)} dt + \sigma_2 S_t^{(2)} dW_t^{(2)}, \\
\quad dW_t^{(3)} dW_t^{(2)} &= -\rho_{23} dt,
\end{align*}
\]

where we use a minus sign in front of the correlation, because both \(S^{(3)} \) and \(S^{(2)} \) have the same base currency (DOM), which is EUR in this case. The scenario is displayed in
Figure 1: XAU-USD-EUR FX Quanto Triangle. The arrows point in the direction of the respective base currencies. The length of the edges represents the volatility. The cosine of the angles $\cos \phi_{ij} = \rho_{ij}$ represents the correlation of the currency pairs $S^{(i)}$ and $S^{(j)}$, if the base currency (DOM) of $S^{(i)}$ is the underlying currency (FOR) of $S^{(j)}$. If both $S^{(i)}$ and $S^{(j)}$ have the same base currency (DOM), then the correlation is denoted by $-\rho_{ij} = \cos(\pi - \phi_{ij})$.

Figure 1. The actual underlying is then

$$XAU-USD: S_t^{(1)} = \frac{S_t^{(3)}}{S_t^{(2)}}. \quad (4)$$

Using Itô’s formula, we first obtain
\[
d\frac{1}{S_t^{(2)}} = -\frac{1}{(S_t^{(2)})^2} dS_t^{(2)} + \frac{1}{2} \cdot \frac{1}{(S_t^{(2)})^3} (dS_t^{(2)})^2
\]
\[
= (r_{USD} - r_{EUR} + \sigma_2^2) \frac{1}{S_t^{(2)}} dt - \sigma_2 \frac{1}{S_t^{(2)}} dW_t^{(2)},
\]
and hence
\[
dS_t^{(1)} = \frac{1}{S_t^{(2)}} dS_t^{(3)} + S_t^{(3)} \frac{1}{S_t^{(2)}} dS_t^{(3)} + \frac{1}{S_t^{(2)}} d\frac{1}{S_t^{(2)}}
\]
\[
= \frac{S_t^{(3)}}{S_t^{(2)}} (r_{EUR} - r_{XAU}) dt + \frac{S_t^{(3)}}{S_t^{(2)}} \sigma_3 dW_t^{(3)}
\]
\[
+ \frac{S_t^{(3)}}{S_t^{(2)}} (r_{USD} - r_{EUR} + \sigma_2^2) dt - \frac{S_t^{(3)}}{S_t^{(2)}} \sigma_2 dW_t^{(2)} + \frac{S_t^{(3)}}{S_t^{(2)}} \rho_{23} \sigma_2 \sigma_3 dt
\]
\[
= (r_{USD} - r_{XAU} + \sigma_2^2 + \rho_{23} \sigma_2 \sigma_3) S_t^{(1)} dt + S_t^{(1)} (\sigma_3 dW_t^{(3)} - \sigma_2 dW_t^{(2)}).
\]

Since \(S_t^{(1)}\) is a geometric Brownian motion with volatility \(\sigma_1\), we introduce a new Brownian motion \(W_t^{(1)}\) and find
\[
dS_t^{(1)} = (r_{USD} - r_{XAU} + \sigma_2^2 + \rho_{23} \sigma_2 \sigma_3) S_t^{(1)} dt + \sigma_1 S_t^{(1)} dW_t^{(1)}.
\]

Now Figure 1 and the law of cosine imply
\[
\sigma_2^2 = \sigma_1^2 + \sigma_2^2 - 2\rho_{12} \sigma_1 \sigma_2,
\]
\[
\sigma_1^2 = \sigma_2^2 + \sigma_3^2 + 2\rho_{23} \sigma_2 \sigma_3,
\]
which yields
\[
\sigma_2^2 + \rho_{23} \sigma_2 \sigma_3 = \rho_{12} \sigma_1 \sigma_2.
\]

As explained in the currency triangle in Figure 1, \(\rho_{12}\) is the correlation between XAU-USD and USD-EUR, whence \(\rho \triangleq -\rho_{12}\) is the correlation between XAU-USD and EUR-USD. Inserting this into Equation (6), we obtain the usual formula for the drift adjustment
\[
dS_t^{(1)} = (r_{USD} - r_{XAU} - \rho \sigma_1 \sigma_2) S_t^{(1)} dt + \sigma_1 S_t^{(1)} dW_t^{(1)}.
\]

This is the risk-neutral process that can be used for the valuation of any derivative depending on \(S_t^{(1)}\) which is quantoed into EUR.
2 Quanto Plain Vanilla

With these preparations we can easily determine the value of a quanto plain vanilla paying

\[Q[\phi(S_T - K)]^+, \]

(11)

where \(K \) denotes the strike, \(T \) the expiration time, \(\phi \) the usual put-call indicator taking the value +1 for a call and −1 for a put, \(S \) the underlying in FOR-DOM quotation and \(Q \) the quanto factor from the domestic currency into the quanto currency. We let

\[\tilde{\mu} \triangleq r_d - r_f - \rho \sigma \hat{\sigma}, \]

(12)

be the adjusted drift, where \(r_d \) and \(r_f \) denote the risk free rates of the domestic and foreign underlying currency pair respectively, \(\sigma = \sigma_1 \) the volatility of this currency pair, \(\hat{\sigma} = \sigma_2 \) the volatility of the currency pair DOM-QUANTO and

\[\rho = \frac{\sigma_3^2 - \sigma_2^2 - \hat{\sigma}^2}{2\sigma \hat{\sigma}} \]

(13)

the correlation between the currency pairs FOR-DOM and DOM-QUANTO in this quotation. Furthermore we let \(r_Q \) be the risk free rate of the quanto currency. Then the formula for the value can be written as

\[v = Qe^{-r_Q T} \phi[S_0e^{\tilde{\mu} T} \mathcal{N}(\phi d_+) - K \mathcal{N}(\phi d_-)], \]

(14)

\[d_\pm = \frac{\ln S_0}{\sigma \sqrt{T}} + \left(\mu \pm \frac{1}{2} \sigma^2 \right) T, \]

(15)

where \(\mathcal{N} \) denotes the cumulative standard normal distribution function and \(n \) its density.

3 Quanto Forward

Similarly, we can easily determine the value of a quanto forward paying

\[Q[\phi(S_T - K)], \]

(16)

where \(K \) denotes the strike, \(T \) the expiration time, \(\phi \) the usual long-short indicator, \(S \) the underlying in FOR-DOM quotation and \(Q \) the quanto factor from the domestic currency into the quanto currency. Then the formula for the value can be written as

\[v = Qe^{-r_Q T} \phi[S_0e^{\tilde{\mu} T} - K]. \]

(17)

This follows from the vanilla quanto value formula by taking both the normal probabilities to be one. These normal probabilities are exercise probabilities under some measure. Since a forward contract is always exercised, both these probabilities must be equal to one.
4 Quanto Digital

The valuation of European style quanto digitals follows the same principle as in the quanto plain vanilla option case. The value is

\[v = Q e^{-r_Q T} N(\phi d_{-}) . \]

(18)

We provide an example of European style digital put in USD/JPY quanto into EUR in Table 1.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100,000 EUR</td>
</tr>
<tr>
<td>Notional</td>
<td></td>
</tr>
<tr>
<td>Maturity</td>
<td>3 months (92 days)</td>
</tr>
<tr>
<td>European style Barrier</td>
<td>108.65 USD-JPY</td>
</tr>
<tr>
<td>Theoretical value</td>
<td>71,555 EUR</td>
</tr>
<tr>
<td>Fixing source</td>
<td>ECB</td>
</tr>
</tbody>
</table>

Table 1: Example of a quanto digital put. The buyer receives 100,000 EUR if at maturity, the ECB fixing for USD-JPY (computed via EUR-JPY and EUR-USD) is below 108.65. Terms were created on Jan 12 2004 with the following market data: USD-JPY spot ref 106.60, USD-JPY ATM vol 8.55%, EUR-JPY ATM vol 6.69%, EUR-USD ATM vol 10.99% (corresponding to a correlation of -27.89% for USD-JPY against JPY-EUR), USD rate 2.5%, JPY rate 0.1%, EUR rate 4%.

5 Hedging of Quanto Options

Hedging of quanto options can be done by running a multi-currency options book. All the usual Greeks can be hedged. An exception is the correlation risk, which can only be hedged with other derivatives depending on the same correlation. This is normally not possible. In FX the correlation risk can be translated into a vega position as shown in [4] or in [2]. We illustrate this approach for quanto plain vanilla options now.

5.1 Vega Positions of Quanto Plain Vanilla Options

Starting from Equation (14), we obtain the sensitivities
\[
\frac{\partial v}{\partial \sigma} = QS_0e^{(\tilde{\mu}-r)T}n(d_+)\sqrt{T} - \frac{\phi\mathcal{N}(\phi d_+)}{\sigma T}, \\
\frac{\partial v}{\partial \tilde{\sigma}} = -QS_0e^{(\tilde{\mu}-r)T}\phi\mathcal{N}(\phi d_+), \\
\frac{\partial v}{\partial \rho} = -QS_0e^{(\tilde{\mu}-r)T}\phi\mathcal{N}(\phi d_+), \\
\frac{\partial v}{\partial \sigma_3} = \frac{\partial v}{\partial \rho} \frac{\partial \sigma}{\partial \sigma_3} = \frac{\partial v}{\partial \sigma_3} \tilde{\sigma} = -QS_0e^{(\tilde{\mu}-r)T}\phi\mathcal{N}(\phi d_+)\phi T \frac{\sigma_3}{\tilde{\sigma}}, \\
= -QS_0e^{(\tilde{\mu}-r)T}\phi\mathcal{N}(\phi d_+)\phi T \frac{\sigma_3}{\tilde{\sigma}}, \\
= -QS_0e^{(\tilde{\mu}-r)T}\phi\mathcal{N}(\phi d_+)\sqrt{\sigma^2 + \tilde{\sigma}^2 + 2\rho\sigma\tilde{\sigma}T}.
\]

Note that the computation is standard calculus and repeatedly using the identity

\[S_0e^{\tilde{\mu}T}n(\phi d_+) = Kn(\phi d_-).\]

5.2 Vega Hedging Quanto Plain Vanilla Options

This shows exactly how the three vega positions can be hedged with plain vanilla options in all three legs, provided there is a liquid vanilla options market in all three legs. In the example with XAU-USD-EUR the currency pairs XAU-USD and EUR-USD are traded, however, there is no liquid vanilla market in XAU-EUR. Therefore, the correlation risk remains unhedgeable. Similar statements would apply for quantoed stocks or stock indices. However, in FX, there are situations with all legs being hedgeable, for instance EUR-USD-JPY.

The signs of the vega positions are not uniquely determined in all legs. The FOR-DOM vega is smaller than the corresponding vanilla vega in case of a call and positive correlation or put and negative correlation, larger in case of a put and positive correlation or call and negative correlation. The DOM-Q vega takes the sign of the correlation in case of a call and its opposite sign in case of a put. The FOR-Q vega takes the opposite sign of the put-call indicator \(\phi\).

5.3 Example

We provide an example of pricing and vega hedging scenario in Table 2, where we notice, that dominating vega risk comes from the FOR-DOM pair, whence most of the risk can be hedged.
8

<table>
<thead>
<tr>
<th>FX pair</th>
<th>data set 1</th>
<th>data set 2</th>
<th>data set 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>spot</td>
<td>FOR-DOM</td>
<td>XAU-USD</td>
<td>XAU-USD</td>
</tr>
<tr>
<td>strike</td>
<td>FOR-DOM</td>
<td>810.00</td>
<td>810.00</td>
</tr>
<tr>
<td>quanto</td>
<td>DOM-Q</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>volatility</td>
<td>FOR-DOM</td>
<td>10.00%</td>
<td>10.00%</td>
</tr>
<tr>
<td>quanto volatility</td>
<td>DOM-Q</td>
<td>12.00%</td>
<td>12.00%</td>
</tr>
<tr>
<td>correlation</td>
<td>FOR-DOM – DOM-Q</td>
<td>25.00%</td>
<td>25.00%</td>
</tr>
<tr>
<td>domestic interest rate</td>
<td>DOM</td>
<td>2.0000%</td>
<td>2.0000%</td>
</tr>
<tr>
<td>foreign interest rate</td>
<td>FOR</td>
<td>0.5000%</td>
<td>0.5000%</td>
</tr>
<tr>
<td>quanto currency rate</td>
<td>Q</td>
<td>4.0000%</td>
<td>4.0000%</td>
</tr>
<tr>
<td>time in years</td>
<td>T</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1=call -1=put</td>
<td>FOR</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>quanto vanilla option value</td>
<td></td>
<td>30.81329</td>
<td>31.28625</td>
</tr>
<tr>
<td>quanto vanilla option vega FOR-DOM</td>
<td></td>
<td>298.14188</td>
<td>321.49308</td>
</tr>
<tr>
<td>quanto vanilla option vega DOM-Q</td>
<td></td>
<td>-10.07056</td>
<td>9.38877</td>
</tr>
<tr>
<td>quanto vanilla option vega FOR-Q</td>
<td></td>
<td>-70.23447</td>
<td>65.47953</td>
</tr>
<tr>
<td>quanto vanilla option correlation risk</td>
<td></td>
<td>-4.83387</td>
<td>4.50661</td>
</tr>
<tr>
<td>quanto vanilla option vol FOR-Q</td>
<td></td>
<td>17.4356%</td>
<td>17.4356%</td>
</tr>
<tr>
<td>vanilla option value</td>
<td></td>
<td>32.6657</td>
<td>30.7635</td>
</tr>
<tr>
<td>vanilla option vega</td>
<td></td>
<td>316.6994</td>
<td>316.6994</td>
</tr>
</tbody>
</table>

Table 2: Example of a quanto plain vanilla.

6 Application: Performance Linked Deposits

The standard application are performance linked deposit or performance notes as in [5]. Any time the performance of an underlying asset needs to be converted into the notional currency invested, and the exchange rate risk is with the seller, we need a quanto product.
Naturally, an underlying like gold, which is quoted in USD, would be a default candidate for a quanto product, when the investment is in a currency other than USD.

6.1 Product Description

A performance linked deposit is a deposit with a participation in an underlying market. The standard is that a GBP investor waives her coupon that the money market would pay and instead buys a EUR-GBP call with the same maturity date as the coupon, strike K and notional N in EUR. These parameters have to be chosen in such a way that the offer price of the EUR call equals the money market interest rate plus the sales margin. The strike is often chosen to be the current spot. The notional is often a percentage p of the deposit amount A, such as 50% or 25%. The annual coupon paid to the investor is then a pre-defined minimum coupon plus the participation

$$p \cdot \frac{\max[S_T - S_0, 0]}{S_0},$$

which is the return of the exchange rate viewed as an asset, where the investor is protected against negative returns. So, obviously, the investor buys a EUR call GBP put with strike $K = S_0$ and notional $N = pA$ GBP or $N = pA/S_0$ EUR. Thus, if the EUR goes up by 10% against the GBP, the investor gets a coupon of $p \cdot 10\%$ p.a. in addition to the minimum coupon.

6.2 Example

We consider the example shown in Table 3. In this case, if the EUR-GBP spot fixing is 0.7200, the additional coupon would be 0.8571% p.a. The break-even point is at 0.7467, so this product is advisable for a very strong EUR bullish view. For a weakly bullish view an alternative would be to buy an up-and-out call with barrier at 0.7400 and 75% participation, where we would find the best case to be 0.7399 with an additional coupon of 4.275% p.a., which would lead to a total coupon of 6.275% p.a.

6.3 Composition

- From the money market we get 49,863.01 GBP at the maturity date.
- The investor buys a EUR call GBP put with strike 0.7000 and with notional 1.5 Million GBP.
- The offer price of the call is 26,220.73 GBP, assuming a volatility of 8.0% and a EUR rate of 2.50%.
- The deferred premium is 24,677.11 GBP.
Table 3: Example of a performance linked deposit, where the investor is paid 30% of the EUR-GBP return. Note that in GBP the daycount convention in the money market is act/365 rather than act/360.

- The investor receives a minimum payment of 24,931.51 GBP.
- Subtracting the deferred premium and the minimum payment from the money market leaves a sales margin of 254.40 GBP (awfully poor I admit).
- Note that the option the investor is buying must be cash-settled.

6.4 Variations

There are many variations of the performance linked notes. Of course, one can think of European style knock-out calls or window-barrier calls. For a participation in a downward trend, the investor can buy puts. One of the frequent issues in Foreign Exchange, however, is the deposit currency being different from the domestic currency of the exchange rate, which is quoted in FOR-DOM (foreign-domestic), meaning how many units of domestic currency are required to buy one unit of foreign currency. So if we have a EUR investor who wishes to participate in a EUR-USD movement, we have a problem, the usual quanto confusion that can drive anybody up the wall in FX at various occasions. What is the problem? The payoff of the EUR call USD put

\[[S_T - K]^+ \] (21)

is in domestic currency (USD). Of course, this payoff can be converted into the foreign currency (EUR) at maturity, but at what rate? If we convert at rate \(S_T \), which is what
we could do in the spot market at no cost, then the investor buys a vanilla EUR call. But here, the investor receives a coupon given by

\[p \cdot \frac{\text{max}[S_T - S_0, 0]}{S_T}. \]

(22)

If the investor wishes to have performance of Equation (20) rather than Equation (22), then the payoff at maturity is converted at a rate of 1.0000 into EUR, and this rate is set at the beginning of the trade. This is the \textit{quanto factor}, and the vanilla is actually a \textit{self-quanto} vanilla, i.e., a EUR call USD put, cash-settled in EUR, where the payoff in USD is converted into EUR at a rate of 1.0000. This self quanto plain vanilla can be valued by inverting the exchange rate, i.e., looking at USD-EUR. This way the valuation can incorporate the smile of EUR-USD.

Similar considerations need to be taken into account if the currency pair to participate in does not contain the deposit currency at all. A typical situation is a EUR investor, who wishes to participate in the gold price, which is measured in USD, so the investor needs to buy a XAU call USD put quantoed into EUR. So the investor is promised a coupon as in Equation (20) for a XAU-USD underlying, where the coupon is paid in EUR, this implicitly means that we must use a quanto plain vanilla with a quanto factor of 1.0000.

\textbf{References}

Index

correlation, FX, 5
currency triangle, 4

law of cosine, 4

performance linked deposit, 8

quanto digital, 6
quanto drift adjustment, 2
quanto factor, 2
quanto forward, 5
quanto options, 2
quanto plain vanilla, 5, 8

self-quanto, 11

vega, quanto plain vanilla, 6
FRANKFURT SCHOOL / HFB – WORKING PAPER SERIES

<table>
<thead>
<tr>
<th>No.</th>
<th>Author/Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.</td>
<td>Almer, Thomas / Heidorn, Thomas / Schmaltz, Christian The Dynamics of Short- and Long-Term CDS-spreads of Banks</td>
<td>2008</td>
</tr>
<tr>
<td>92.</td>
<td>Burger, Andreas Produktivität und Effizienz in Banken – Terminologie, Methoden und Status quo</td>
<td>2008</td>
</tr>
<tr>
<td>91.</td>
<td>Löchel, Horst / Pecher, Florian The Strategic Value of Investments in Chinese Banks by Foreign Financial Institutions</td>
<td>2008</td>
</tr>
<tr>
<td>89.</td>
<td>Schalast, Christoph / Stralkowski, Ingo 10 Jahre deutsche Buyouts</td>
<td>2008</td>
</tr>
<tr>
<td>86.</td>
<td>Hölscher, Luise / Rosenthal, Johannes Leistungsmessung der Internen Revision</td>
<td>2007</td>
</tr>
<tr>
<td>85.</td>
<td>Bannier, Christina / Hansel, Dennis Determinants of banks' engagement in loan securitization</td>
<td>2007</td>
</tr>
<tr>
<td>84.</td>
<td>Bannier, Christina “Smoothing” versus “Timeliness” - Wann sind stabile Ratings optimal und welche Anforderungen sind an optimale Berichtsregeln zu stellen?</td>
<td>2007</td>
</tr>
<tr>
<td>83.</td>
<td>Bannier, Christina Heterogeneous Multiple Bank Financing: Does it Reduce Inexistant Credit-Renegotiation Incidences?</td>
<td>2007</td>
</tr>
<tr>
<td>82.</td>
<td>Cremers, Heinz / Lohr, Andreas Deskription und Bewertung strukturierter Produkte unter besonderer Berücksichtigung verschiedener Marktszenarien</td>
<td>2007</td>
</tr>
<tr>
<td>80.</td>
<td>Cremers, Heinz / Walzner, Jens Risikosteuerung mit Kreditderivaten unter besonderer Berücksichtigung von Credit Default Swaps</td>
<td>2007</td>
</tr>
<tr>
<td>78.</td>
<td>Gerdesmeier, Dieter / Roffia, Barbara Monetary Analysis: A VAR Perspective</td>
<td>2007</td>
</tr>
<tr>
<td>77.</td>
<td>Heidorn, Thomas / Kaiser, Dieter G. / Muschiol, Andrea Portfoliooptimierung mit Hedgefonds unter Berücksichtigung höherer Momente der Verteilung</td>
<td>2007</td>
</tr>
<tr>
<td>75.</td>
<td>Abrar, Kamyar Fusionskontrolle in dynamischen Netzsektoren am Beispiel des Breitbandkabelsektors</td>
<td>2006</td>
</tr>
<tr>
<td>74.</td>
<td>Schalast, Christoph / Schanz, Kai-Michael Wertpapierprospekte: Markteinflussungspublizität nach EU-Prospektverordnung und Wertpapierprospektgesetz 2005</td>
<td>2006</td>
</tr>
</tbody>
</table>
46. Hess, Dieter
Determinants of the relative price impact of unanticipated Information in
U.S. macroeconomic releases
2003
45. Cremers, Heinz / Klüß, Norbert / König, Markus
Incentive Fees. Erfolgsabhängige Vergütungsmodelle deutscher Publikumsfonds
2003
44. Heidorn, Thomas / König, Lars
Investitionen in Collateralized Debt Obligations
2003
43. Kahlert, Holger / Seeger, Norbert
Bilanierung von Unternehmenszusammenschlüssen nach US-GAAP
2003
42. Beiträge von Studierenden des Studiengangs BBA 012 unter Begleitung von Prof. Dr. Norbert Seeger
Rechnungslegung im Umbruch - HGB-Bilanierung im Wettbewerb mit den internationalen
Standards nach IAS und US-GAAP
2003
41. Overbeck, Ludger / Schmidt, Wolfgang
Modeling Default Dependence with Threshold Models
2003
40. Balthasar, Daniel / Cremers, Heinz / Schmidt, Michael
Portfoliooptimierung mit Hedge Fonds unter besonderer Berücksichtigung der Risikokomponente
2002
39. Heidorn, Thomas / Kantwill, Jens
Eine empirische Analyse der Spreadunterschiede von Festsatzanleihen zu Floatern im Euroraum
und deren Zusammenhang zum Preis eines Credit Default Swaps
2002
38. Böttcher, Henner / Seeger, Norbert
Bilanierung von Finanzderivaten nach HGB, EstG, IAS und US-GAAP
2003
37. Moormann, Jürgen
Terminologie und Glossar der Bankinformatik
2002
36. Heidorn, Thomas
Bewertung von Kreditprodukten und Credit Default Swaps
2001
35. Heidorn, Thomas / Weier, Sven
Einführung in die fundamentale Aktienanalyse
2001
34. Seeger, Norbert
International Accounting Standards (IAS)
2001
33. Moormann, Jürgen / Stehling, Frank
Strategic Positioning of E-Commerce Business Models in the Portfolio of Corporate Banking
2001
32. Sokolovsky, Zbynek / Strohhecker, Jürgen
Fit für den Euro, Simulationsbasierte Euro-Maßnahmenplanung für Dresdner-Bank-Geschäftsstellen
2001
31. Roßbach, Peter
Behavioral Finance - Eine Alternative zur vorherrschenden Kapitalmarkttorie?
2001
30. Heidorn, Thomas / Jaster, Oliver / Willeitner, Ulrich
Event Risk Covenants
2001
29. Biswas, Rita / Löchel, Horst
Recent Trends in U.S. and German Banking: Convergence or Divergence?
2001
28. Eberle, Günter Georg / Löchel, Horst
Die Auswirkungen des Übergangs zum Kapitaldeckungsverfahren in der Rentenversicherung auf die Kapitalmärkte
2001
27. Heidorn, Thomas / Klein, Hans-Dieter / Siebrecht, Frank
Economic Value Added zur Prognose der Performance europäischer Aktien
2000
26. Cremers, Heinz
Konvergenz der binomialen Optionspreismodelle gegen das Modell von Black/Scholes/Merton
2000
25. Löchel, Horst
Die ökonomischen Dimensionen der 'New Economy'
2000
24. Frank, Axel / Moormann, Jürgen
Grenzen des Outsourcing: Eine Exploration am Beispiel von Direktbanken
2000
23. Heidorn, Thomas / Schmidt, Peter / Seiler, Stefan
Neue Möglichkeiten durch die Namensaktie
2000
22. Böger, Andreas / Heidorn, Thomas / Graf Waldstein, Philipp
Hybrides Kernkapital für Kreditinstitute
2000
21. Heidorn, Thomas
Entscheidungsorientierte Mindestmargenkalkulation
2000
20. Wolf, Birgit
Die Eigenmittelkonzeption des § 10 KWG
2000
19. Cremers, Heinz / Robé, Sophie / Thiele, Dirk
Beta als Risikomaß - Eine Untersuchung am europäischen Aktienmarkt 2000
18. Cremers, Heinz
Optionspreisbestimmung 1999
17. Cremers, Heinz
Value at Risk-Konzepte für Marktrisiken 1999
Gründung einer deutschen Strombörse für Elektrizitätsderivate 1999
15. Deister, Daniel / Ehrlicher, Sven / Heidorn, Thomas
CatBonds 1999
14. Jochum, Eduard
Hoshin Kanri / Management by Policy (MbP) 1999
13. Heidorn, Thomas
Kreditderivate 1999
12. Heidorn, Thomas
Kreditrisiko (CreditMetrics) 1999
11. Moormann, Jürgen
Terminologie und Glossar der Bankinformatik 1999
10. Löchel, Horst
The EMU and the Theory of Optimum Currency Areas 1998
09. Löchel, Horst
Die Geldpolitik im Währungsraum des Euro 1998
08. Heidorn, Thomas / Hund, Jürgen
Die Umstellung auf die Stückaktie für deutsche Aktiengesellschaften 1998
07. Moormann, Jürgen
Stand und Perspektiven der Informationsverarbeitung in Banken 1998
06. Heidorn, Thomas / Schmidt, Wolfgang
LIBOR in Arrears 1998
04. Ecker, Thomas / Moormann, Jürgen
Die Bank als Betreiberin einer elektronischen Shopping-Mall 1997
03. Jahresbericht 1996 1997
02. Cremers, Heinz / Schwarz, Willi
Interpolation of Discount Factors 1996
01. Moormann, Jürgen
Lean Reporting und Führungsinformationssysteme bei deutschen Finanzdienstleistern 1995

FRANKFURT SCHOOL / HfB – WORKING PAPER SERIES
CENTRE FOR PRACTICAL QUANTITATIVE FINANCE

No. Author/Title Year
09. Wystup, Uwe
Foreign Exchange Symmetries 2008
08. Becker, Christoph / Wystup, Uwe
Was kostet eine Garantie? Ein statistischer Vergleich der Rendite von langfristigen Anlagen 2008
07. Schmidt, Wolfgang
Default Swaps and Hedging Credit Baskets 2007
06. Kilin, Fiodor
Accelerating the Calibration of Stochastic Volatility Models 2007
05. Griebsch, Susanne / Kühn, Christoph / Wystup, Uwe
Instalment Options: A Closed-Form Solution and the Limiting Case 2007
04. Boenkost, Wolfram / Schmidt, Wolfgang M.
Interest Rate Convexity and the Volatility Smile 2006
<table>
<thead>
<tr>
<th>No.</th>
<th>Author/Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.</td>
<td>Becker, Christoph/ Wystup, Uwe</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td>On the Cost of Delayed Currency Fixing</td>
<td></td>
</tr>
<tr>
<td>02.</td>
<td>Boenkost, Wolfram / Schmidt, Wolfgang M.</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td>Cross currency swap valuation</td>
<td></td>
</tr>
<tr>
<td>01.</td>
<td>Wallner, Christian / Wystup, Uwe</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td>Efficient Computation of Option Price Sensitivities for Options of American Style</td>
<td></td>
</tr>
</tbody>
</table>

HfB – SONDERARBEITSBERICHTE DER HfB - BUSINESS SCHOOL OF FINANCE & MANAGEMENT

<table>
<thead>
<tr>
<th>No.</th>
<th>Author/Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.</td>
<td>Nicole Kahmer / Jürgen Moormann</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td>Studie zur Ausrichtung von Banken an Kundenprozessen am Beispiel des Internet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Preis: € 120,--)</td>
<td></td>
</tr>
</tbody>
</table>

Printed edition: € 25.00 + € 2.50 shipping

Download: http://www.frankfurt-school.de/content/de/research/Publications/list_of_publication

Order address / contact

Frankfurt School of Finance & Management
Sonnemannstr. 9–11
D–60314 Frankfurt/M.
Germany
Phone: +49(0)69154008–734
Fax: +49(0)69154008–728
eMail: m.biemer@frankfurt-school.de

Further information about Frankfurt School of Finance & Management may be obtained at: http://www.frankfurt-school.de