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Abstract

When pricing the convexity effect in irregular interest rate deriva-
tives such as, e.g., Libor-in-arrears or CMS, one often ignores the
volatility smile, which is quite pronounced in the interest rate options
market. This note solves the problem of convexity by replicating the
irregular interest flow or option with liquidly traded options with dif-
ferent strikes thereby taking into account the volatility smile. This
idea is known among practitioners for pricing CMS caps. We ap-
proach the problem on a more general scale and apply the result to
various examples.
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1 Introduction

Pricing irregular interest cash flows such as Libor-in-arrears or CMS requires
a convexity correction on the corresponding forward rate. This convexity
correction involves the volatility of the underlying rate as traded in the
cap/floor or swaption market. In the same spirit, an option on an irregular
rate, such as an in-arrears cap or a CMS cap, is often valued by applying a
Black & Scholes model with a convexity adjusted forward rate and a convex-
ity adjusted volatility, see e.g. [1], [3], [5], [6]. However, to a large extent,
this approach ignores the volatility smile, which is quite pronounced in the
cap/floor market. This note solves this problem by replicating the irregular
interest flow or option with liquidly traded options with different strikes. This
approach is well-known among practitioners for pricing CMS caps. There is
a certain overlap of the present paper with a recent paper by Hagan, [4].
However, we approach the problem from a different and more generic point
of view and apply the result to various examples related to interest rates.

We illustrate the approach by numerical examples based on market data
for the volatility smile in the interest rate derivatives market. Comparing
the results of the “smile convexity” with the results from a more simplistic
approach based solely on adjusted forward rates (which is still frequently
used in practice) we show that the smile effect on the convexity is by no
means just an additional tiny quantity and cannot be ignored in practice.

Another important consequence of the replication approach is that one
obtains immediately the respective simultaneous delta and vega hedges in
terms of liquidly traded options.

2 Setup of the problem

Consider a financial underlying with price Y > 0 at time T . Suppose there is
a liquid market for plain vanilla options on this underlying with all possible
strikes K. Somewhat more general, we suppose that for all K ≥ 0 the price
P (K) today of the “plain vanilla” derivative with payoff

g(Y ) max(Y −K, 0)

at time T is known. Here g is a certain function with g(y) > 0 whose role
will become clear in the examples below. In the simplest case g ≡ 1 and the
liquidly traded options are just calls on the underlying Y .

Our goal is to price an exotic contingent claim with payoff

f(Y ),
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at time T , where f : (0,∞) → (−∞,∞).
The idea is to replicate the exotic payoff f(Y ) by a portfolio of traded

derivatives g(Y ) max(Y −K, 0) with different strikes K. If this is possible,
then the replication is the key to incorporating the volatility smile of the
liquid options into the pricing of the exotic derivative.

So we are looking for a representation

f(Y ) = C +

∫
[0,∞)

g(Y ) max(Y −K, 0)dµ(K) (1)

with some locally finite signed measure µ on [0,∞) and some constant C. If
such a representation exists, then by no-arbitrage the fair price P (f(Y )) of
the contingent claim f(Y ) is given by

P (f(Y )) = C ·B(0, T ) +

∫
[0,∞)

P (K)dµ(K), (2)

where B(0, T ) denotes the price of a zero bond with maturity T , and provided
the integral on the right hand side is well-defined.

Remark. The importance of the formula (2) goes beyond the issue of just
pricing a derivative with payoff f(Y ), since, at the same time, it provides
us with an explicit strategy for a simultaneous delta and vega hedge of the
derivative f(Y ) in terms of liquidly traded products g(Y ) max(Y −K, 0). In
practice one would discretize the integral appropriately to get an (approxi-
mate) hedging strategy in a finite set of products g(Y ) max(Y −Ki, 0) with
different strikes Ki, i = 1, . . .

3 Target applications related to irregular in-

terest rate derivatives

The examples that we have in mind and that we are trying to approach with
the above idea are irregular interest rate cash flows or options on such rates.
We denote by B(t, T ) the price at time t of a zero bond with maturity T .

Example 1:
Let Y = L(T1, T2) be the money market rate (Libor) for the interest period
[T1, T2],

L(T1, T2) =

1
B(T1,T2)

− 1

∆
,

with period length ∆ according to the given day count convention. In the
interest derivatives market, caplets, i.e., call options on this underlying with
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payoff ∆ max(L(T1, T2)−K, 0), are quite liquid for (more or less) any strike
rate K. By default, the caplet pays in arrears, i.e., at time T2. If we are look-
ing for an “exotic” derivative such as, for example, Libor-in-arrears, which is
the payment of

∆ L(T1, T2) at time T1,

or an in-arrears caplet,

∆ max(L(T1, T2)− K̄, 0) paid at time T1,

we have to take care of convexity effects caused by the fact that the payment
occurs at the non-standard point in time T1. These effects are well-known and
there exist valuation formulae that yield exact or sufficiently precise results
in the framework of the standard lognormal interest rate model, see e.g. [3],
[1], [6]. However these approaches do not take into account the volatility
smile in the cap market.

The standard caplet paying at time T2 is equivalent to a product that
pays the amount

∆

1 + ∆L(T1, T2)
max(L(T1, T2)−K, 0)

at time T1. So the market gives us prices for the time T1 payout

g(L(T1, T2)) max(L(T1, T2)−K, 0) where g(y) =
∆

1 + ∆y

for any strike K. Our goal is to price an “exotic” payoff

f(L(T1, T2))

at time T1, where, for example, f(y) = ∆ y in case of a Libor-in-arrears, or,
f(y) = ∆ max(y − K̄, 0) in the case of an in-arrears caplet.

Assuming a linear Libor rate model as in [1], Section 3.1, we can even
handle the somewhat more general case of the payment of f(L(T1, T2)) at
some arbitrary time p ≥ T1. In the linear rate model it is assumed that

B(T1, p)

B(T1, T2)
= 1 + βpL(T1, T2), p ≥ T1,

where

βp =

B(0,p)
B(0,T2)

− 1

L0(T1, T2)
(3)
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and where the forward rate L0(T1, T2) is given by

L0(T1, T2) =

B(0,T1)
B(0,T2)

− 1

∆
.

In case of p = T1 we get βp = ∆ and the assumption of the linear rate model
is no restriction in this case.

Then, under the assumption of the linear rate model the payment of
f(L(T1, T2)) at time p is equivalent to the payment of

1 + βpL(T1, T2)

1 + ∆L(T1, T2)
f (L(T1, T2)) (4)

at time T1,

The next two examples are related to interest rate derivatives whose payoff
is linked to a swap rate, so-called CMS1 products.

Let Y = C(T0, Tn) denote the fair swap rate at time T0 for a swap with
reference dates T0 < T1 < · · · < Tn,

C(T0, Tn) =
1−B(T0, Tn)∑n
i=1 ∆iB(T0, Ti)

,

with ∆i denoting the length of the interval [Ti−1, Ti].
A swaption is an option to enter at time T0 into a swap with given fixed

rate K. The payoff of a cash-settled payer swaption at time T0 is(
n∑

i=1

∆i

(1 + C(T0, Tn))Ti−T0

)
max(C(T0, Tn)−K, 0). (5)

For a physically-settled payer swaption the payoff at time T0 is(
n∑

i=1

∆iB(T0, Ti)

)
max(C(T0, Tn)−K, 0). (6)

The sum in front of the max in both payoffs (5), (6) is the so-called present
(or dollar) value of one basis point factor, DV01. For a cash-settled swaption,
by convention, this present value factor is calculated as if the yield curve was
flat. Swaptions are quite liquid for “all” strikes. The market does not make
a significant difference in pricing a cash- or physically-settled swaption, and
both are priced under a lognormal Black model.

1Constant maturity swap.
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Example 2:
The payoff of a cash-settled swaption is again of the form
g(C(T0, Tn)) max(C(T0, Tn)−K, 0) where

g(y) = DV01(y) =
n∑

i=1

∆i

(1 + y)Ti−T0
. (7)

The exotic payoffs f(C(T0, Tn)) of interest are, for example, the payment of

f(C(T0, Tn)) = C(T0, Tn), (8)

paid at time T0. This is like a cash flow in a CMS swap, but paid in advance.
Another example of interest is a CMS caplet,

f(C(T0, Tn)) = max(C(T0, Tn)− K̄, 0) (9)

to be paid at time T0.
In case the payoff is scheduled for time p ≥ T0, we can approximately

think of a derivative with payoff

f(C(T0, Tn)) =
C(T0, Tn)

(1 + C(T0, Tn))p−T0
for a CMS swap (10)

f(C(T0, Tn)) =
max(C(T0, Tn)− K̄, 0)

(1 + C(T0, Tn))p−T0
for a CMS caplet. (11)

Example 3:
This example is closely related to Example 2 but gives a more general result
under the additional assumption of a linear swap rate model as investigated
in [5], [6], [1]. Also the replication argument is no longer based on cash-settled
swaptions but on physically-settled swaptions. The market prices swaptions
based on a lognormal model for the swap rate C(T0, Tn) under the so-called
swap measure QSwap, which is the equivalent martingale measure referring to
the numeraire

Nt =
n∑

i=1

∆iB(t, Ti).

The payoff of a standard swaption at time T0 is

n∑
i=1

∆iB(T0, Ti) max(C(T0, Tn)−K, 0) = NT0 max(C(T0, Tn)−K, 0),

and its price is given by

P (K) = N0 EQSwap
max(C(T0, Tn)−K, 0). (12)
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An exotic derivative paying f(C(T0, Tn)) at some time p ≥ T0 is equiv-
alent to a product that pays B(T0, p)f(C(T0, Tn)) at time T0. Under the
assumption of a linear swap rate model (see e.g. [5], [1], Section 3.2) we have

B(T0, p)

NT0

= α + βpC(T0, Tn),

and the price of f(C(T0, Tn)) to be paid at time p is given by

N0 EQSwap
(α + βpC(T0, Tn))f(C(T0, Tn)). (13)

Here α and β are defined by

α =
1∑n

i=1 ∆i

, (14)

βp =

B(0,p)Pn
i=1 ∆iB(0,Ti)

− α

C0(T0, Tn)
, (15)

with forward swap rate C0(T0, Tn) given by

C0(T0, Tn) =
B(0, T0)−B(0, Tn)∑n

i=1 ∆iB(0, Ti)
. (16)

In view of equations (12) and (13), in our replication approach we are there-
fore looking for a representation (1) of the form

(α + βpY )f(Y ) = C +

∫
[0,∞)

max(Y −K, 0)dµ(K). (17)

4 The result

Proposition 1 The exotic payoff f(Y ) allows for a replication (1) with some
locally finite signed measure µ on [0,∞) and some constant C if and only if
(i) limx↓0 f(x) = C, and,
(ii) the function f−C

g
, extended to the domain of definition [0,∞) by setting

f(0)−C
g(0)

= 0, is a difference of convex functions on [0,∞).
The measure µ is then generated by the following right continuous generalized
distribution function (function of locally bounded variation)

dµ(y) = dD+

(
f(y)− C

g(y)

)
,

with D+ denoting the right hand derivative and defining D+

(
f−C

g

)
(0−) = 0.
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Proof. We identify the signed measure µ with its generalized right continu-
ous distribution function, µ(0−) = 0. Integrating by parts the representation
(1) is equivalent to

f(y)− C

g(y)
=

∫
[0,∞)

max(y −K, 0)dµ(K)

=

∫
[0,y]

(y −K)dµ(K)

= y[µ(y)− µ(0−)]−
∫

(0,y]

Kdµ(K)

= y µ(y)− y µ(y) +

∫ y

0

µ(K)dK

=

∫ y

0

µ(K)dK.

The assertion now follows. �

Remark. It is well known that from a universe of prices of call options2,

P (K) = E max(Y −K, 0),

for all strikes K > 0 one can extract the implied risk-neutral distribution
FY (x) = P(Y ≤ x) of the underlying asset Y at maturity by taking the
derivative of the call prices w.r.t. the strike,

FY (x) = P(Y ≤ x) = 1 + D+P (x),

see e.g. [2]. Then, by no-arbitrage the price of any hedgeable contingent claim
can be calculated as the expectation w.r.t. this distribution. In particular,
for a derivative with payoff f(Y ) the price is

P (f(Y )) = E(f(Y )) =

∫ ∞

0

f(x)dFY (x) =

∫ ∞

0

f(x)dD+P (x).

We will now analyze how this well-known result relates to our replication
idea. Assume that the payoff function f is a difference of convex functions,

f(x) = C +

∫ x

0

µ(z)dz,

where µ is a function of locally bounded variation on [0,∞). Then under
appropriate integrability conditions on f by applying integration by parts

2We assume for simplicity that risk-less interest rates are zero.
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twice one gets

P (f(Y )) =

∫ ∞

0

f(x)dD+P (x) = C +

∫
[0,∞)

P (K)dµ(K),

clarifying the link between the two approaches.

5 Application to the examples

Let us apply the above result to our examples. As we shall see in these
examples the measure µ normally possesses a jump and the constant C often
vanishes.

Example 1:
We investigate the general case of a payoff f(L(T1, T2)) at time p ≥ T1 and
assume a linear rate model, which is no restriction in case that p = T1.

For the Libor payoff f(L(T1, T2)) = ∆L(T1, T2) paid at some arbitrary
time p ≥ T1 as in (4) the generalized distribution function µ, which gives us
the replication of the price in terms of caplet prices, is obtained from

f(y)(1 + βpy)

g(y)(1 + ∆y)
= y(1 + βpy)

µ(y) = 1 + 2βpy, y ≥ 0,

µ(0−) = 0,

with βp given by (3). This yields the following formula for the price of a
Libor expressed in terms of caplet prices P (K) with different strikes K,

P (∆L(T1, T2) paid at time p) (18)

= P (0) +

∫ ∞

0

P (K)2βpdK.

Observe that P (0)/∆ is the forward rate L0(T1, T2) discounted from time T2 .

For the caplet f(L(T1, T2)) = ∆ max(L(T1, T2)−K̄, 0) paid at time p ≥ T1

the corresponding distribution function µ is calculated as

f(y)(1 + βpy)

g(y)(1 + ∆y)
= max(y − K̄, 0)(1 + βpy)

µ(y) =

{
0 if y < K̄,
1− βpK̄ + 2βpy if y ≥ K̄,
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and the resulting pricing equation is

P (∆ max(L(T1, T2)− K̄, 0) paid at time p) (19)

= P (K̄)(1 + βpK̄) +

∫ ∞

K̄

P (K)2βpdK.

Remark. In case the cap market quotes no smile, the Libor L(T1, T2) follows
a standard Black model with volatility σ under the time T2-forward measure,
i.e.,

L(T1, T2) = L0(T1, T2) exp(σWT1 − σ2T1/2)

L0(T1, T2) =

(
B(0, T1)

B(0, T2)
− 1

)
/∆,

with some Wiener process W . In this case, interchanging the order of the
dK integral with the expectation that leads to the prices P (K) in formula
(18), the result reduces to the well-known convexity adjustment formula for
Libor-in-arrears,

P (L(T1, T2) paid at time T1) (20)

= B(0, T1) L0(T1, T2)

(
1 +

∆L0(T1, T2)(exp(σ2T1)− 1)

1 + ∆L0(T1, T2)

)
,

see, e.g. [1], Formula (14). The expression after the discount factor B(0, T1)
on the right hand side of (20) is the so-called convexity adjusted forward
Libor.

Example 2:
Let us start with the payment of a swap rate C(T0, Tn) at time p ≥ T0, see
(10). In this case

f(y)

g(y)
=

y

DV01(y)
,

where

DV01(y) =
n∑

i=1

∆i

(1 + y)Ti−p
. (21)

The generalized distribution function µ is then

µ(y) =
DV01(y)− y DV01′(y)

DV012(y)
, y ≥ 0

µ(0−) = 0.

In view of dµ(0) = 1
DV01(0)

= 1Pn
i=1 ∆i

we obtain the valuation formula
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P (C(T0, Tn)) (22)

=
1∑n

i=1 ∆i

P (0) +

∫ ∞

0

P (K)

(
DV01(K)−K DV01′(K)

DV012(K)

)′
dK.

For the exotic option with payoff given by Equation (11) consisting of a
call option on the swap rate C(T0, Tn), which pays off at time p ≥ T0, the
replication by plain-vanilla swaptions is derived as

f(y)

g(y)
=

max(y − K̄, 0)

DV01(y)

µ(y) =

{
0 if y < K̄,
DV01(y)−(y−K̄)DV01′(y)

DV012(y)
if y ≥ K̄,

and we end up with the valuation formula

P (max(C(T0, Tn)− K̄, 0)) =
P (K̄)

DV01(K̄)
+

∫ ∞

K̄

h(K)P (K)dK, (23)

where

h(K) =
{

(K − K̄)

[
2
(DV01′(K))2

DV013(K)
− DV01′′(K)

DV012(K)

]
− 2

DV01′(K)

DV012(K)

}
.

Here DV01(y) is again defined by (21).
Formula (23) is widely used by sophisticated practitioners to value CMS

caps.

Example 3:
First consider a CMS rate C(T0, Tn) to be paid at some date p ≥ T0. We
assume now a linear swap rate model. In this case, in view of (17) the
distribution function µ is given by

µ(y) = α + 2βpy, y ≥ 0,

with α and βp given by (14) and (15), respectively. The pricing equation is
therefore

P (C(T0, Tn) paid at time p) = P (0)α +

∫ ∞

0

P (K)2βpdK. (24)

For a CMS caplet max(C(T0, Tn)−K̄, 0) paid at time p ≥ T0 the distribution
µ is

µ(y) =

{
0 if y < K̄,
(α− K̄βp) + 2βpy if y ≥ K̄,

12



and we end up with the valuation formula

P (max(C(T0, Tn)− K̄, 0) paid at time p) (25)

= P (K̄)(α + βpK̄) +

∫ ∞

K̄

P (K)2βpdK.

6 Numerical examples

In this section we illustrate the smile effect on the convexity by some numer-
ical examples. The examples are based on the EUR interest rate curve as of
November 1, 2005. The market rates have been converted to continuously
compounded zero rates on an act/365 basis:

1W 2.099% 2Y 2.750%
2W 2.109% 3Y 2.879%
1M 2.130% 4Y 2.988%
2M 2.225% 5Y 3.088%
3M 2.259% 6Y 3.171%
6M 2.364% 7Y 3.255%
9M 2.457% 8Y 3.337%
12M 2.534% 9Y 3.419%
18M 2.641% 10Y 3.486%

12Y 3.605%
15Y 3.741%
20Y 3.879%

6.1 Libor-in-arrears swaps and in-arrears caps

We investigate Libor-in-arrears swaps and in-arrears caps as discussed in
Example 1 above. The cap market quotes prices in terms of an implied
flat3 volatility for all strike levels. As is standard in practice from these flat
volatilities one can extract the implied volatilities for each individual caplet
and each strike level. Here is the caplet volatility surface as of November 1,
2005 which is the primary input for obtaining the price P (K) of an individual
caplet with strike K:

3This means that when pricing a cap, all caplets of the cap are priced using one and
the same volatility in the market Black 76 valuation formula.
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caplet start/strike 1.50% 1.75% 2.00% 2.25% 2.50% 3.00%
6M 32.00% 28.50% 23.20% 20.10% 19.00% 19.20%

1Y6M 31.14% 27.93% 24.65% 22.91% 22.25% 21.78%
2Y6M 31.25% 28.18% 25.08% 23.70% 23.11% 21.85%
3Y6M 29.40% 27.10% 24.17% 22.79% 22.25% 21.22%
4Y6M 28.83% 25.91% 24.12% 22.38% 22.02% 20.49%
5Y6M 27.39% 26.00% 23.83% 22.73% 22.04% 20.78%
6Y6M 27.58% 24.79% 23.14% 22.02% 21.39% 19.80%
7Y6M 25.95% 24.20% 22.17% 21.98% 21.34% 19.60%
8Y6M 24.61% 23.48% 21.79% 20.92% 20.22% 19.17%
9Y6M 25.32% 21.88% 21.19% 20.77% 20.09% 18.80%
10Y6M 23.71% 23.18% 21.18% 19.79% 20.19% 18.40%
11Y6M 23.06% 21.98% 20.51% 19.44% 19.74% 17.99%
12Y6M 23.74% 21.43% 20.47% 19.70% 18.46% 17.20%
13Y6M 22.64% 20.70% 19.84% 19.06% 18.21% 16.78%
14Y6M 22.09% 20.02% 19.39% 18.70% 17.63% 16.26%
15Y6M 22.60% 21.23% 19.85% 19.01% 18.53% 17.12%
16Y6M 21.86% 20.35% 19.29% 18.53% 17.85% 16.43%
17Y6M 21.42% 20.04% 18.98% 18.24% 17.61% 16.19%
18Y6M 20.89% 19.57% 18.60% 17.90% 17.24% 15.81%
19Y6M 20.24% 19.02% 18.14% 17.48% 16.83% 15.40%

caplet start/strike 3.50% 4.00% 5.00% 6.00% 7.00% 8.00%
6M 22.00% 23.90% 27.50% 31.30% 33.70% 34.60%

1Y6M 21.64% 21.16% 21.75% 24.27% 27.21% 28.51%
2Y6M 22.00% 22.52% 23.84% 24.79% 25.64% 26.52%
3Y6M 20.59% 20.84% 21.76% 23.17% 24.29% 25.14%
4Y6M 20.10% 20.11% 20.86% 21.59% 22.65% 23.39%
5Y6M 19.82% 19.67% 19.69% 20.76% 21.66% 22.54%
6Y6M 19.22% 18.40% 19.07% 19.85% 20.99% 21.49%
7Y6M 18.67% 18.25% 17.96% 18.69% 19.38% 20.26%
8Y6M 17.29% 17.36% 17.61% 18.15% 18.78% 19.07%
9Y6M 17.68% 16.66% 16.56% 16.97% 17.44% 18.29%
10Y6M 17.83% 17.31% 16.89% 17.02% 17.61% 17.91%
11Y6M 17.26% 16.48% 15.98% 16.04% 16.54% 16.95%
12Y6M 16.07% 15.90% 15.53% 15.98% 16.47% 17.11%
13Y6M 15.70% 15.36% 14.85% 15.14% 15.60% 16.20%
14Y6M 15.09% 14.83% 14.26% 14.58% 15.02% 15.65%
15Y6M 16.37% 15.59% 15.29% 15.47% 16.09% 16.60%
16Y6M 15.54% 14.89% 14.47% 14.68% 15.27% 15.84%
17Y6M 15.35% 14.61% 14.21% 14.39% 15.01% 15.58%
18Y6M 14.95% 14.20% 13.77% 13.94% 14.58% 15.16%
19Y6M 14.56% 13.77% 13.34% 13.49% 14.15% 14.76%
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Now applying4 the replication formulae (18), (19) to a Libor-in-arrears
swap or an in-arrears cap the questions arises what would be a reasonable
benchmark for comparing the results? We compare the results from our
replication with the results of a somewhat naive but quite popular approach
in practice. There, one uses just a convexity adjusted forward rate to take
care of the in-arrears effect. The convexity adjusted forward rate is calculated
as in (20) with σ set to the at-the-money volatility. For an in-arrears caplet
then, in addition to the adjusted forward rate, the volatility for the caplet
is taken from the smile according to the strike rate of the caplet. Of course,
from the modeling point of view this seems to be a rather inconsistent way of
taking care of the in-arrears and the smile effect simultaneously. In the table
below the corresponding results are labeled “adj Fwd”. A second benchmark
is based on a convexity adjusted forward as above, but the original volatility
σ for the respective strike is also adjusted for the in-arrears effect to a new
volatility σ∗ by the formula

(σ∗)2 = σ2 + ln

[
(1 + ∆L0(T1, T2))(1 + ∆L0(T1, T2) exp(2σ2T1))

(1 + ∆L0(T1, T2) exp(σ2T1))2

]
/T1,

cf. [1], Section 4.1. This is labeled “adj Fwd & Vol”.

Here are the results for a 10 years in-arrears cap with semi-annual periods5

for different strikes. The first row shows the sum of all caplets with individual
caplet prices in the rows below. The case of strike K̄ = 0% corresponds to
the floating leg of a Libor-in-arrears swap.

4We use Gauss Legendre quadrature and integrate over strikes from 0% to 20%.
5The caps consist of 19 caplets, with the first one starting in 6 months.
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strike K̄ = 0% strike K̄ = 2%
Replication adj Fwd adj Fwd & Vol Replication adj Fwd adj Fwd & Vol

29.072% 29.047% 29.047% 13.553% 13.528% 13.538%
1.414% 1.414% 1.414% 0.427% 0.427% 0.427%
1.476% 1.476% 1.476% 0.522% 0.522% 0.522%
1.527% 1.527% 1.527% 0.570% 0.570% 0.570%
1.473% 1.473% 1.473% 0.561% 0.561% 0.561%
1.532% 1.532% 1.532% 0.634% 0.634% 0.634%
1.508% 1.507% 1.507% 0.631% 0.630% 0.630%
1.570% 1.569% 1.569% 0.703% 0.702% 0.703%
1.527% 1.526% 1.526% 0.691% 0.690% 0.691%
1.569% 1.568% 1.568% 0.737% 0.735% 0.736%
1.517% 1.516% 1.516% 0.718% 0.717% 0.718%
1.588% 1.586% 1.586% 0.788% 0.786% 0.787%
1.542% 1.540% 1.540% 0.769% 0.767% 0.768%
1.612% 1.610% 1.610% 0.834% 0.832% 0.833%
1.523% 1.521% 1.521% 0.789% 0.788% 0.789%
1.609% 1.607% 1.607% 0.864% 0.862% 0.863%
1.551% 1.549% 1.549% 0.836% 0.834% 0.835%
1.524% 1.522% 1.522% 0.825% 0.823% 0.824%
1.494% 1.492% 1.492% 0.811% 0.809% 0.810%
1.513% 1.511% 1.511% 0.840% 0.838% 0.839%

strike K̄ = 4% strike K̄ = 6%
Replication adj Fwd adj Fwd & Vol Replication adj Fwd adj Fwd & Vol

3.968% 3.939% 3.951% 1.420% 1.394% 1.405%
0.010% 0.010% 0.010% 0.001% 0.001% 0.001%
0.033% 0.033% 0.033% 0.002% 0.002% 0.002%
0.064% 0.064% 0.064% 0.009% 0.008% 0.008%
0.085% 0.085% 0.085% 0.016% 0.016% 0.016%
0.123% 0.122% 0.122% 0.029% 0.028% 0.029%
0.129% 0.129% 0.129% 0.034% 0.033% 0.034%
0.173% 0.171% 0.172% 0.050% 0.049% 0.049%
0.179% 0.177% 0.178% 0.053% 0.052% 0.052%
0.211% 0.209% 0.210% 0.067% 0.066% 0.066%
0.214% 0.212% 0.213% 0.071% 0.069% 0.070%
0.254% 0.252% 0.253% 0.093% 0.091% 0.091%
0.249% 0.247% 0.248% 0.094% 0.092% 0.093%
0.297% 0.295% 0.296% 0.114% 0.112% 0.113%
0.289% 0.288% 0.288% 0.109% 0.107% 0.108%
0.335% 0.333% 0.334% 0.135% 0.133% 0.134%
0.325% 0.323% 0.324% 0.135% 0.133% 0.134%
0.323% 0.321% 0.322% 0.133% 0.130% 0.131%
0.319% 0.317% 0.318% 0.128% 0.126% 0.127%
0.353% 0.351% 0.352% 0.148% 0.145% 0.147%
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strike K̄ = 8% strike K̄ = 10%
Replication adj Fwd adj Fwd & Vol Replication adj Fwd adj Fwd & Vol

0.694% 0.674% 0.684% 0.400% 0.386% 0.395%
0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
0.001% 0.001% 0.001% 0.000% 0.000% 0.000%
0.002% 0.002% 0.002% 0.001% 0.001% 0.001%
0.004% 0.004% 0.004% 0.002% 0.002% 0.002%
0.010% 0.009% 0.009% 0.004% 0.004% 0.004%
0.013% 0.013% 0.013% 0.006% 0.006% 0.006%
0.020% 0.020% 0.020% 0.011% 0.010% 0.010%
0.022% 0.022% 0.022% 0.012% 0.012% 0.012%
0.030% 0.030% 0.030% 0.017% 0.016% 0.017%
0.034% 0.033% 0.033% 0.019% 0.019% 0.019%
0.046% 0.044% 0.045% 0.027% 0.026% 0.026%
0.047% 0.046% 0.047% 0.028% 0.027% 0.027%
0.059% 0.057% 0.058% 0.034% 0.033% 0.033%
0.056% 0.055% 0.056% 0.032% 0.030% 0.031%
0.069% 0.067% 0.068% 0.040% 0.039% 0.039%
0.066% 0.065% 0.066% 0.039% 0.038% 0.039%
0.068% 0.066% 0.067% 0.040% 0.039% 0.039%
0.068% 0.066% 0.067% 0.040% 0.039% 0.040%
0.078% 0.076% 0.077% 0.049% 0.047% 0.048%

Overall, the results are quite close and the two naive approaches (adjusted
forward rates without and with additional adjusted volatilities) yield results
whose differences to the correct one from replication are negligible in practice.
In general the results from adjusted forwards and adjusted volatilities are
somewhat closer to the correct ones.

These are good news for practitioners indicating that naive approaches
are fairly sufficient for in-arrears caps and swaps.
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6.2 Constant maturity swaps and CMS caps

In this section we investigate CMS swaps and CMS caps as discussed in
Examples 2 and 3 above. The swaption market quotes at-the-money implied
volatilities for a variety of swaption maturities and tenors for the underlying
swap. Our numerical examples are based on the following at-the-money
swaption volatilities as of November 1, 2005.

opt / swap 1Y 2Y 3Y 4Y 5Y
1M 18.50% 21.80% 21.60% 21.10% 20.40%
2M 19.60% 22.00% 21.70% 21.20% 20.50%
3M 20.80% 22.00% 21.70% 21.10% 20.40%
6M 20.90% 21.50% 21.10% 20.40% 19.90%
9M 22.00% 21.30% 20.70% 20.10% 19.50%
1Y 22.20% 21.50% 20.70% 20.00% 19.30%

18M 21.80% 21.00% 20.20% 19.50% 18.90%
2Y 21.60% 20.70% 19.80% 19.20% 18.60%
3Y 20.80% 20.00% 19.20% 18.50% 18.00%
4Y 20.00% 19.30% 18.50% 17.80% 17.30%
5Y 19.20% 18.40% 17.70% 17.20% 16.80%
7Y 17.60% 16.80% 16.20% 15.90% 15.70%
10Y 16.10% 15.40% 15.00% 14.80% 14.70%

opt / swap 6Y 7Y 8Y 9Y 10Y
1M 19.70% 18.90% 18.20% 17.60% 17.00%
2M 19.80% 19.00% 18.30% 17.70% 17.10%
3M 19.70% 18.90% 18.20% 17.60% 17.10%
6M 19.20% 18.50% 18.00% 17.50% 17.00%
9M 18.90% 18.30% 17.80% 17.30% 16.90%
1Y 18.70% 18.20% 17.70% 17.30% 16.90%

18M 18.40% 17.90% 17.40% 17.00% 16.70%
2Y 18.10% 17.60% 17.20% 16.90% 16.60%
3Y 17.50% 17.10% 16.80% 16.50% 16.30%
4Y 17.00% 16.70% 16.40% 16.20% 16.10%
5Y 16.50% 16.30% 16.10% 15.90% 15.80%
7Y 15.60% 15.40% 15.30% 15.20% 15.10%
10Y 14.60% 14.50% 14.50% 14.50% 14.50%

The swaption smile is rarely quoted on publicly available data sources.
Our analysis below is based on a swaption smile surface that is constructed by
adding certain volatility shifts to the quoted at the money volatility. The shift
to apply depends on the respective strike offset relative to the corresponding
at-the-money strike rate. The smile table below refers to options to enter
into a 10Y swap.
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opt/offset -100.00% -50.00% -30.00% 30.00% 50.00% 100.00% 125.00%
1M 45.61% 6.74% 2.05% 0.06% 0.16% 1.85% 6.99%
3M 45.88% 6.78% 2.06% 0.06% 0.16% 1.86% 7.03%
6M 45.61% 6.74% 2.05% 0.06% 0.16% 1.85% 6.99%
12M 45.34% 6.71% 2.04% 0.06% 0.16% 1.83% 6.95%
2Y 44.53% 6.59% 2.00% 0.06% 0.16% 1.80% 6.83%
3Y 43.73% 6.47% 1.96% 0.06% 0.16% 1.77% 6.70%
5Y 42.39% 6.27% 1.90% 0.05% 0.15% 1.72% 6.50%
10Y 38.90% 5.75% 1.75% 0.05% 0.14% 1.57% 5.96%
20Y 35.41% 5.24% 1.59% 0.05% 0.13% 1.43% 5.43%

To give an example on how to understand the smile table consider a 2Y
into 10Y swaption struck at 150% of the at-the money rate. The volatility
for this swaption is then the 2Y into 10Y at-the-money volatility of 16.60%
plus 0.16%.

Now, applying6 the replication formulae (23), (25) to a CMS cap we
compare the results again to the results from naive approaches based on
convexity adjusted forward CMS rates and adjusted volatilities. Of course,
the volatility for the cap strike is always taken by interpolation from the
swaption volatility surface. The convexity adjusted forward swap rate is
calculated from the forward swap rate C0(T0, Tn) (cf. (16)) by

C0(T0, Tn)

[
1 +

(
1− B(0, T0)−B(0, Tn)

C0(T0, Tn)B(0, p)
∑n

i=1 ∆i

)
(exp(σ2

atmT0)− 1)

]

using the at-the-money volatility σatm, cf. [1], formula (28). Below the results
of this approach are labeled “adj Fwd”. Results labeled as “adj Fwd & Vol”
refer to the situation where, in addition to the adjustment of the forward
rate, also the volatility σ for the respective strike is adjusted for the CMS
effect to a new volatility σ∗ calculated by (see [1], Section 4.1)

(σ∗)2 = σ2 + ln

[
(α + βpC0(T0, Tn))(α + βpC0(T0, Tn) exp(2σ2T0))

(α + βpC0(T0, Tn) exp(σ2T0))2

]
/T0,

where α, βp are defined in (14), (15).

Here are the results for a 10 years CMS cap with semi-annual periods for
different strikes. The tenor of the CMS rate is 10Y. The first row shows the
sum of all caplets with individual caplet prices in the rows below. The case
of strike K̄ = 0% corresponds to the floating leg of a CMS swap.

6Again we use Gauss Legendre quadrature.
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strike K̄ = 0%
Replication (25) Replication (23) adj Fwd adj Fwd & Vol

33.791% 33.835% 33.561% 33.561%
1.797% 1.790% 1.797% 1.797%
1.785% 1.779% 1.785% 1.785%
1.846% 1.842% 1.845% 1.845%
1.812% 1.808% 1.811% 1.811%
1.817% 1.814% 1.815% 1.815%
1.821% 1.818% 1.818% 1.818%
1.830% 1.829% 1.826% 1.826%
1.809% 1.809% 1.803% 1.803%
1.833% 1.834% 1.825% 1.825%
1.797% 1.799% 1.787% 1.787%
1.817% 1.820% 1.805% 1.805%
1.787% 1.792% 1.773% 1.773%
1.810% 1.815% 1.793% 1.793%
1.728% 1.734% 1.709% 1.709%
1.765% 1.773% 1.744% 1.744%
1.717% 1.726% 1.693% 1.693%
1.694% 1.704% 1.668% 1.668%
1.670% 1.681% 1.642% 1.642%
1.656% 1.668% 1.625% 1.625%

strike K̄ = 2%
Replication (25) Replication (23) adj Fwd adj Fwd & Vol

17.878% 17.922% 17.679% 17.719%
0.800% 0.793% 0.800% 0.800%
0.819% 0.813% 0.819% 0.819%
0.869% 0.865% 0.869% 0.869%
0.873% 0.869% 0.872% 0.872%
0.894% 0.891% 0.893% 0.893%
0.916% 0.913% 0.913% 0.913%
0.938% 0.937% 0.934% 0.935%
0.944% 0.944% 0.939% 0.940%
0.972% 0.973% 0.965% 0.966%
0.968% 0.969% 0.959% 0.961%
0.992% 0.994% 0.981% 0.983%
0.988% 0.992% 0.976% 0.978%
1.011% 1.016% 0.997% 1.000%
0.975% 0.982% 0.959% 0.962%
1.006% 1.013% 0.987% 0.991%
0.987% 0.996% 0.966% 0.970%
0.981% 0.991% 0.958% 0.962%
0.974% 0.984% 0.949% 0.954%
0.972% 0.984% 0.945% 0.950%
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strike K̄ = 4%
Replication (25) Replication (23) adj Fwd adj Fwd & Vol

5.161% 5.189% 4.956% 5.000%
0.023% 0.015% 0.023% 0.023%
0.065% 0.057% 0.064% 0.065%
0.105% 0.100% 0.105% 0.105%
0.139% 0.134% 0.138% 0.139%
0.172% 0.167% 0.170% 0.171%
0.203% 0.200% 0.201% 0.202%
0.233% 0.231% 0.229% 0.231%
0.258% 0.257% 0.253% 0.255%
0.286% 0.286% 0.279% 0.281%
0.303% 0.304% 0.294% 0.297%
0.327% 0.329% 0.316% 0.319%
0.342% 0.345% 0.329% 0.332%
0.363% 0.367% 0.348% 0.351%
0.362% 0.368% 0.345% 0.349%
0.385% 0.392% 0.366% 0.369%
0.389% 0.397% 0.368% 0.371%
0.395% 0.406% 0.372% 0.376%
0.401% 0.411% 0.376% 0.380%
0.408% 0.420% 0.381% 0.385%

strike K̄ = 6%
Replication (25) Replication (23) adj Fwd adj Fwd & Vol

1.415% 1.449% 1.213% 1.251%
0.000% 0.000% 0.000% 0.000%
0.000% 0.000% 0.000% 0.000%
0.002% 0.002% 0.002% 0.002%
0.007% 0.007% 0.006% 0.006%
0.014% 0.014% 0.013% 0.013%
0.023% 0.018% 0.021% 0.022%
0.035% 0.030% 0.032% 0.032%
0.047% 0.044% 0.042% 0.044%
0.061% 0.059% 0.054% 0.055%
0.073% 0.072% 0.064% 0.066%
0.086% 0.086% 0.076% 0.078%
0.098% 0.100% 0.085% 0.088%
0.111% 0.114% 0.096% 0.099%
0.117% 0.122% 0.101% 0.104%
0.132% 0.138% 0.112% 0.116%
0.140% 0.147% 0.118% 0.122%
0.148% 0.158% 0.124% 0.129%
0.156% 0.165% 0.130% 0.135%
0.165% 0.175% 0.136% 0.141%

For all strikes K̄ we see significant differences between the prices obtained
from replication compared to the prices from naive adjustment approaches.
In case of a CMS swap (i.e., K̄ = 0%), the effect from the swaption smile
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leads to a difference of about 2.8 basis points in case of replication (25) or
3.4 basis points for a replication based on (23) in the fair fixed rate relative
to the naive valuation. Clearly, this cannot be ignored7.

The naive approaches, although taking into account the smile by taking
the caplet volatility from the swaption smile, show a significant mispricing
relative to the correct valuations based on the replication (23), (25). Observe
that the results are sensitive to the significance of the swaption smile.

Comparing the results of the two replication approaches (23), (25), it
turns out that the replication based on the idea of cash-settled swaptions
consistently leads to slightly higher CMS caplet prices. It is not clear which
approach is superior, since both rely on assumptions that are hard to compare
and value against each other.

The following figure shows the weights that the signed measure µ assigns
to swaptions with different strikes during the replication of a CMS caplet8

according to the two alternative replications (23), (25).

CMS Caplet Replication Measure (Strike = 5%)

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

5,0% 5,5% 6,5% 7,5% 8,5% 9,5% 10,5% 11,5% 12,5% 13,5% 14,5% 15,5% 16,5% 17,5% 18,5% 19,5% 20,5%
strike

w
ei

gh
t

Formula (23)
Formula (25)

7There is a recent discussion between market participants about differences in the
valuation of CMS swaps between the results of standard (naive) convexity adjustment
valuations and quotes by brokers. It seems that these differences can be attributed to the
swaption smile.

8This is the caplet starting in 9.5 years on a 10Y CMS rate. The replication integral
was discretized in 1% steps.
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7 Conclusions

We have shown how to evaluate quite popular exotic interest rate derivatives
such as Libor-in-arrears caps or CMS caps incorporating the volatility smile
present in the cap and swaption market. It turns out that the volatility smile
has a significant impact, which, in particular, cannot be ignored when pricing
CMS swaps or caps. For Libor-in-arrears derivatives, the smile effect is al-
ready relatively accurately captured by naive approaches based on convexity
adjustments.
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