Boenkost, Wolfram; Schmidt, Wolfgang M.

Working Paper
Cross currency swap valuation

CPQF Working Paper Series, No. 2

Provided in Cooperation with:
Frankfurt School of Finance and Management

This Version is available at:
http://hdl.handle.net/10419/40176

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Cross currency swap valuation

Wolfram Boenkost
Wolfgang M. Schmidt

November 2004

Author: Dr. Wolfram Boenkost
Lucht Probst. Associates GmbH
Frankfurt/Main
Germany
wolfram.boenkost@l-p-a.com

Prof. Dr. Wolfgang M. Schmidt
HfB - Business School of
Finance & Management
Frankfurt/Main
Germany
schmidt@hfb.de

Publisher: HfB - Business School of Finance & Management
Phone: +49 (0) 69 154 008-0 • Fax: +49 (0) 69 154 008-728
Sonnemannstr. 9-11 • D-60314 Frankfurt/M. • Germany
Cross currency swap valuation*

Wolfram Boenkost
Lucht Probst Associates GmbH, 60311 Frankfurt

Wolfgang M. Schmidt
HfB - Business School of Finance & Management,
Centre for Practical Quantitative Finance, 60314 Frankfurt

May 6, 2005

Abstract

Cross currency swaps are powerful instruments to transfer assets or liabilities from one currency into another. The market charges for this a liquidity premium, the cross currency basis spread, which should be taken into account by the valuation methodology. We describe and compare two valuation methods for cross currency swaps which are based upon using two different discounting curves. The first method is very popular in practice but inconsistent with single currency swap valuation methods. The second method is consistent for all swap valuations but leads to mark-to-market values for single currency off market swaps, which can be quite different to standard valuation results.

Key words: interest rate swap, cross currency swap, basis spread

JEL Classification: G13

*This is a corrected version of a paper from November 12, 2004. The authors are grateful to Tim Dun for pointing out some numerical errors in the pervious version of this paper.
Contents

1 Single currency swap valuation 3

2 Cross currency basis swaps 4
 2.1 Valuation based on a modified discount curve 6
 2.2 Valuation based on modified fixed and floating discount curve 7

3 Conclusion 11
1 Single currency swap valuation

Denote by $DF(T)$ the discount factor from the swap curve for a cash flow at time T.

Consider a fixed-floating standard interest rate swap with reference dates $0 = T_0 < T_1 < \cdots < T_n$ on the fixed leg and reference dates $0 = \bar{T}_0 < \bar{T}_1 < \cdots < \bar{T}_m$ for the floating leg, $\bar{T}_n = T_m$. Denote by Δ_i (resp. $\bar{\Delta}_i$) the length (day count fraction) of the period $[\bar{T}_{i-1}, \bar{T}_i]$ (resp. $[T_{i-1}, T_i]$) according to the specified fixed (resp. floating) leg day count convention. For the period $[T_{i-1}, T_i]$ the variable rate (Libor) L_i is set (fixed) in the market at time T_{i-1} and the amount $\Delta_i \cdot L_i$ is paid at time T_i. The forward rate L^0_i for the period $[T_{i-1}, T_i]$ is defined as

$$L^0_i = \frac{DF(T_{i-1})}{DF(T_i)} - 1. \quad (1)$$

One says, the forward rate L^0_i is projected or forecasted from the discount curve. By well-known replication and no-arbitrage arguments the value today of the floating interest rate (Libor) cash flow $\Delta_i \cdot L_i$ for period $[T_{i-1}, T_i]$ is its discounted forward rate

$$\Delta_i \cdot L^0_i \cdot DF(T_i) = DF(T_{i-1}) - DF(T_i). \quad (2)$$

Therefore the value of the whole floating leg is simply

$$DF(T_0) - DF(T_m) = 1 - DF(T_m) = 1 - DF(\bar{T}_n). \quad (3)$$

As a consequence the value of a floating rate bond is always at par

$$1 = \sum_{i=1}^{m} \Delta_i \cdot L^0_i \cdot DF(T_i) + DF(T_m).$$

The value of the fixed leg with fixed rate C is obviously

$$\sum_{i=1}^{n} C \bar{\Delta}_i DF(\bar{T}_i). \quad (4)$$

If C_n is the fair swap rate for maturity \bar{T}_n, i.e., $(3) = (4)$, we get the following equation

$$1 = \sum_{i=1}^{n} C_n \bar{\Delta}_i DF(\bar{T}_i) + DF(\bar{T}_n),$$

i.e., a fixed coupon bond with maturity \bar{T}_n and coupon C_n admits a price of par. This is the basis for the recursive bootstrapping relationship for the
discount factors
\[
DF(T_n) = \frac{1 - C_n \sum_{i=1}^{n-1} \Delta_i DF(T_i)}{1 + \Delta_n C_n}, \quad n = 1, \ldots
\] (5)
from market quoted fair swap rates \(C_n\).

2 Cross currency basis swaps

Cross currency swaps differ from single currency swaps by the fact that the interests rate payments on the two legs are in different currencies. So on one leg interest rate payments are in currency 1 on a notional amount \(N_1\) and on the other leg interest rate payments are in currency 2 calculated on a notional amount \(N_2\) in that currency. At inception of the trade the notional principal amounts in the two currencies are usually set to be fair given the spot foreign exchange rate \(X\), i.e. \(N_1 = X \cdot N_2\), i.e., the current spot foreign exchange rate is used for the relationship of the notional amounts for all future exchanges. Contrary to single currency swaps there is usually an exchange of principals at maturity. So a cross currency swap can be seen as exchange of the payments of two bonds, one in currency 1 with principal \(N_1\), the other in currency 2 with principal \(N_2\).

If a leg is floating the variable reference rate refers to the payment currency of that leg – otherwise this would be a so-called quanto swap.

From the possible types of cross currency swaps: fixed versus fixed, fixed versus floating and floating versus floating, the latter type is particularly important and called a basis swap. Combining a basis swap with a single currency swap the other types can be generated synthetically. It therefore
suffices to investigate basis swaps and this also explains why the market quotes only basis swaps.

A basis swap is basically an exchange of two floating rate bonds. Following the arguments of the previous section the price of a floater is always\(^1\) par. For a cross currency basis swap this means that the two legs should have a value of \(N_1\) and \(N_2\), respectively. Consequently, if the two principal amounts are linked by today’s foreign exchange rate \(X\): \(N_1 = X \cdot N_2\), the basis swap is fair. This is theoretically true, but in practice the market quotes basis swaps to be fair if there is a certain spread, called *cross currency basis spread*, on top of the floating rate of one leg of the basis swap. Theoretically this would imply an arbitrage opportunity. However, cross currency swaps are powerful instruments to transfer assets or liabilities from one currency into another and the market is charging a liquidity premium of one currency over the other. The market quotes cross currency basis spreads usually relative to a liquidity benchmark, e.g. USD or EUR Libor. Here is an example of cross currency basis swap quotes against the liquidity benchmark USD:

| Basis Swaps - All Currencies vs. 3m USD Libor - Also see <ICAB2> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | EUR | GBP | CHF | SEK | JPY |
| 1 Yr | +3.00| -0.12| +0.50| -0.50| -0.25|
| 2 Yr | +3.00| -0.12| +0.50| -0.50| -0.25|
| 3 Yr | +3.00| -0.12| +0.50| -0.50| -0.25|
| 4 Yr | +3.00| -0.12| +0.50| -0.50| -0.25|
| 5 Yr | +3.00| -0.12| +0.50| -0.50| -0.25|
| 6 Yr | +3.00| -0.12| +0.50| -0.50| -0.25|
| 7 Yr | +3.00| -0.12| +0.50| -0.50| -0.25|
| 8 Yr | +3.00| -0.12| +0.50| -0.50| -0.25|
| 9 Yr | +3.00| -0.12| +0.50| -0.50| -0.25|
| 10 Yr | +3.00| -0.12| +0.50| -0.50| -0.25|

For example, a 10 years cross currency basis swap of 3 months USD Libor flat against JPY Libor is fair with a spread if -4.5 basis points if USD Libor is received and with a spread of -7.5 basis points if USD Libor is paid.

Evaluating cross currency swaps requires discounting the cash flows with the discount factors for the respective currency of the flow. But clearly, a valuation of those instruments along the lines of Section 1 would show a profit or loss which is not existent. It is therefore necessary to incorporate the cross currency basis swap quotes against the liquidity benchmark USD:

\(^1\)At the beginning of each interest period.
currency basis spread into the valuation methodology to be consistent with the market.

First of all one has to agree on a liquidity reference currency (benchmark) which is usually chosen to be USD or EUR. Swap cash flows in the liquidity reference currency are valued exactly as described in Section 1 since there is no need for liquidity adjustments there.

For all currencies different from the liquidity benchmark the idea is to use two different discount factor curves depending on whether to forecast or value variable cash flows or to discount cash flows.

Denote by s_m the market quoted fair cross currency basis spread\(^2\) for maturity T_m on top of the floating rate for the given currency relative to the chosen liquidity reference. The fact that s_m is the fair spread is equivalent to saying that a floating rate bond with maturity T_m in the given currency which pays Libor plus spread s_m values to par.

2.1 Valuation based on a modified discount curve

We start by describing a valuation methodology for cross currency swaps which is quite popular among practitioners but unfortunately inconsistent with the standard single currency swap valuation method.

In this approach we use two discount factor curves: one for projecting forward rates according to (1) and the other for finally discounting all cash flows.

From single currency swap quotes the standard curve of discount factors $DF(t)$ is extracted following formula (5). These standard discount factors are solely used to project forward rates according to (1):

$$L^0_i = \frac{DF(T_{i-1}) - 1}{\Delta_i}.$$

Now in order to assure that a floater which pays Libor plus spread s_n is at par one has to introduce another curve of discount factors $DF^*(t)$ to be used exclusively for discounting cash flows. The defining condition for this curve $DF^*(t)$ is then

$$1 = \sum_{i=1}^{m} \Delta_i (L^0_i + s_m) DF^*(T_i) + DF^*(T_m), \quad m = 1, \ldots$$

and we obtain the recursive bootstrapping relation

$$DF^*(T_m) = \frac{1 - \sum_{i=1}^{m-1} \Delta_i (L^0_i + s_m) DF^*(T_i)}{1 + \Delta_m (L^0_m + s_m)}, \quad m = 1, \ldots$$

\(^2\)In practice we would take the mid-market spread from the market quotes.
The discount factors from the curve $DF^*(t)$ are used for discounting any fixed or floating cash flows in a cross currency swap. Cross currency swap valuations are thus consistent with the cross currency swap market quotes.

However, applying the same methodology to single currency swaps obviously leads to a mispricing of those instruments. That is single currency swaps have to be valued differently and according to the standard methodology of Section 1. On one hand, this is clearly unsatisfactory since the valuation methodology for one and the same cash flow should not depend on the type of originating trade for that cash flow. Applying different and non-consistent valuation methodologies to single currency and cross currency swaps implies that there are theoretically opportunities for arbitrage within these products.

On the other hand, since the market charges a different premium for liquidity for single currency and cross currency swaps this can also be seen to justify the use of different discounting curves for the two types of trades.

Here is an illustrating example for the two discount factor curves assuming for simplicity everywhere an annual payment frequency and a 30/360 day count convention, i.e. $\Delta_i = \bar{\Delta}_i = 1$.

<table>
<thead>
<tr>
<th>T_n</th>
<th>C_n</th>
<th>s_n</th>
<th>$DF(T_n)$ from (5)</th>
<th>$DF^*(T_n)$ from (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.00%</td>
<td>-0.10%</td>
<td>0.952381</td>
<td>0.953289</td>
</tr>
<tr>
<td>2</td>
<td>5.10%</td>
<td>-0.12%</td>
<td>0.905260</td>
<td>0.907339</td>
</tr>
<tr>
<td>3</td>
<td>5.20%</td>
<td>-0.14%</td>
<td>0.858748</td>
<td>0.862218</td>
</tr>
<tr>
<td>4</td>
<td>5.30%</td>
<td>-0.16%</td>
<td>0.812945</td>
<td>0.817985</td>
</tr>
<tr>
<td>5</td>
<td>5.40%</td>
<td>-0.18%</td>
<td>0.767947</td>
<td>0.774694</td>
</tr>
<tr>
<td>6</td>
<td>5.50%</td>
<td>-0.20%</td>
<td>0.723838</td>
<td>0.732392</td>
</tr>
<tr>
<td>7</td>
<td>5.60%</td>
<td>-0.22%</td>
<td>0.680698</td>
<td>0.691121</td>
</tr>
<tr>
<td>8</td>
<td>5.70%</td>
<td>-0.24%</td>
<td>0.638596</td>
<td>0.650917</td>
</tr>
<tr>
<td>9</td>
<td>5.80%</td>
<td>-0.26%</td>
<td>0.597595</td>
<td>0.611810</td>
</tr>
<tr>
<td>10</td>
<td>5.90%</td>
<td>-0.28%</td>
<td>0.557750</td>
<td>0.573823</td>
</tr>
</tbody>
</table>

2.2 Valuation based on modified fixed and floating discount curve

We will use two discount factors curves:

(i) the first one, $DF(t)$, will be used to discount all fixed cash flows,

(ii) the second one, $DF^*(t)$, will be applied to completely value floating cash flows, see equation (9) below.
The power of this approach is that both, cross currency swaps and single currency swaps, are valued consistently in one and the same framework.

The two conditions on the two discount factor curves are

- the value of a coupon bond with coupon equal to the swap rate \(C_n \) is identical to the value of a floating rate bond,
- a floating rate bond which pays Libor plus cross currency basis spread \(s_n \) values to par.

Combining these conditions a fixed coupon bond paying the coupon \(C_n \) plus the cross currency basis spread \(s_n \) should have a value of par:

\[
1 = \sum_{i=1}^{n} \bar{\Delta_i} C_n DF(\bar{T}_i) + \sum_{j=1}^{m} \Delta_j s_m DF(T_j) + DF(\bar{T}_n). \tag{7}
\]

From this equation the curve \(DF(t) \) can be extracted. If in particular, the floating and fixed legs admit the same frequency, i.e. \(\bar{T}_i = T_i \), then we have the following simple bootstrapping equation

\[
DF(\bar{T}_n) = \frac{1 - \sum_{i=1}^{n-1} (\bar{\Delta_i} C_n + \Delta_i s_n) DF(\bar{T}_i)}{1 + \Delta_n C_n + \Delta_n s_n}. \tag{8}
\]

Now, in order to determine the second curve of discount factors, analogously to equation (2) we define the value today of the floating interest rate (Libor) cash flow for period \([T_{i-1}, T_i]\) as given by

\[
DF^*(T_{i-1}) - DF^*(T_i). \tag{9}
\]

This also implies the desirable property that the value of a series of subsequent floating rate cash flows over the time interval \([T_0, T_m]\) is just \(DF^*(T_0) - DF^*(T_m) \) and is thus independent of the payment frequency. The second condition above now implies the following requirement

\[
1 = DF^*(T_0) - DF^*(T_m) + \sum_{j=1}^{m} \Delta_j s_m DF(T_j) + DF(T_m).
\]

Setting, \(DF^*(T_0) = 1, T_0 = 0 \), this gives

\[
DF^*(T_m) = DF(T_m) + s_m \sum_{j=1}^{m} \Delta_j DF(T_j). \tag{10}
\]

This defines the second curve of discount factors \(DF^*(t) \).
The principal idea of this approach is closely related to the approach proposed by Fruchard, Zammouri and Williams [1]. Somehow their idea did get not much attraction in practice - one possible reason for that might be that their paper [1] is hard to understand. In their paper [1] Fruchard, Zammouri & Willems use a so-called margin function $F(t)$ to adjust forward rates. First discount factors $DF(t)$ are extracted from (7) and then a floating rate cash flow for period $[T_{i-1}, T_i]$ is evaluated according to the following formula

$$
\left(\frac{DF(T_{i-1})}{DF(T_i)} - 1 \right) \frac{F(T_i) - F(T_{i-1})}{\Delta_i DF(T_i)} \Delta_i DF(T_i).
$$

(11)

Here

$$
L^{i, \text{adj}} = \frac{DF(T_{i-1})}{DF(T_i)} - 1 + \frac{F(T_i) - F(T_{i-1})}{\Delta_i DF(T_i)}
$$

(12)

is an adjusted forward rate consisting of the standard forward rate from the discount curve $DF(t)$ (cf. (1)) plus an adjustment for liquidity defined by the margin function $F(t)$. Simplifying (11) we end up with

$$(11) = DF(T_{i-1}) - DF(T_i) - F(T_{i-1}) + F(T_i)$$

and comparing with (9) the relationship of the margin function $F(t)$ to our discount curve $DF^*(t)$ above is simply

$$F(t) = DF(t) - DF^*(t).$$

Now consider the same example as in the previous approach to illustrate the calculation of the two curves.

<table>
<thead>
<tr>
<th>T_n</th>
<th>C_n</th>
<th>s_n</th>
<th>$DF(T_n)$ from (8)</th>
<th>$DF^*(T_n)$ from (10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.00%</td>
<td>-0.10%</td>
<td>0.953289</td>
<td>0.952336</td>
</tr>
<tr>
<td>2</td>
<td>5.10%</td>
<td>-0.12%</td>
<td>0.907341</td>
<td>0.905108</td>
</tr>
<tr>
<td>3</td>
<td>5.20%</td>
<td>-0.14%</td>
<td>0.862224</td>
<td>0.858412</td>
</tr>
<tr>
<td>4</td>
<td>5.30%</td>
<td>-0.16%</td>
<td>0.818000</td>
<td>0.812335</td>
</tr>
<tr>
<td>5</td>
<td>5.40%</td>
<td>-0.18%</td>
<td>0.774727</td>
<td>0.769959</td>
</tr>
<tr>
<td>6</td>
<td>5.50%</td>
<td>-0.20%</td>
<td>0.732454</td>
<td>0.722358</td>
</tr>
<tr>
<td>7</td>
<td>5.60%</td>
<td>-0.22%</td>
<td>0.691228</td>
<td>0.678601</td>
</tr>
<tr>
<td>8</td>
<td>5.70%</td>
<td>-0.24%</td>
<td>0.651087</td>
<td>0.635750</td>
</tr>
<tr>
<td>9</td>
<td>5.80%</td>
<td>-0.26%</td>
<td>0.612066</td>
<td>0.593860</td>
</tr>
<tr>
<td>10</td>
<td>5.90%</td>
<td>-0.28%</td>
<td>0.574195</td>
<td>0.552980</td>
</tr>
</tbody>
</table>
For easy comparison we also show the standard discount factors form (5), the standard forward rates and the adjusted forward rates from (12).

<table>
<thead>
<tr>
<th>T_n</th>
<th>$\text{DF}(T_n)$ from (5)</th>
<th>L^0_n from (1)</th>
<th>adjusted L^0_n from (12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.952381</td>
<td>5.000%</td>
<td>5.000%</td>
</tr>
<tr>
<td>2</td>
<td>0.905260</td>
<td>5.205%</td>
<td>5.205%</td>
</tr>
<tr>
<td>3</td>
<td>0.858748</td>
<td>5.416%</td>
<td>5.416%</td>
</tr>
<tr>
<td>4</td>
<td>0.812945</td>
<td>5.634%</td>
<td>5.633%</td>
</tr>
<tr>
<td>5</td>
<td>0.767947</td>
<td>5.860%</td>
<td>5.857%</td>
</tr>
<tr>
<td>6</td>
<td>0.723838</td>
<td>6.094%</td>
<td>6.089%</td>
</tr>
<tr>
<td>7</td>
<td>0.680698</td>
<td>6.338%</td>
<td>6.330%</td>
</tr>
<tr>
<td>8</td>
<td>0.638596</td>
<td>6.593%</td>
<td>6.581%</td>
</tr>
<tr>
<td>9</td>
<td>0.597595</td>
<td>6.861%</td>
<td>6.844%</td>
</tr>
<tr>
<td>10</td>
<td>0.557750</td>
<td>7.144%</td>
<td>7.120%</td>
</tr>
</tbody>
</table>

Although the standard forward rates and the adjusted forward rates differ in most cases, fortunately, as already indicated by the example, the forward rate from (1) and the adjusted forward rate (12) for the first period $[T_0, T_1]$ are identical. In fact, let the floating and fixed legs admit the same frequency and day count convention, i.e. $T_i = T_i, \Delta_i = \Delta_i$. Then the standard forward rate L^0_1 for the period $[T_0, T_1]$ (cf (1)) is just $L^0_1 = C_1$. On the other hand, the adjusted forward rate $L^{0,\text{adj}}_1$ is

$$L^{0,\text{adj}}_1 = \frac{\text{DF}^*(T_0) - \text{DF}^*(T_1)}{\Delta_1 \text{DF}(T_1)}$$

with

$$\text{DF}(T_1) = \frac{1}{1 + \Delta_1 C_1 + \Delta_1 s_1} \text{ see (8)}$$

$$\text{DF}^*(T_1) = \text{DF}(T_1)(1 + \Delta_1 s_1) \text{ see (10)}.$$

Substituting we end up again with

$$L^{0,\text{adj}}_1 = C_1.$$

This is important to ensure that projected cash flows turn continuously into their fixings.

So far the current approach seems appropriate since it really captures simultaneously both types of market information, the single currency fair swap rates C_n and the cross currency basis spreads s_n. But what are the drawbacks?
Generally speaking in the current approach also cash flows in standard single currency swaps are discounted differently compared to the standard approach in Section 1. For example, the present value of the upcoming next cash flow on the floating side is \(5\% \cdot \text{DF}(T_1) = 4.76644\% \) in the current approach compared to \(5\% \cdot \text{DF}(T_1) = 4.76190\% \) in the standard valuation.

This gets even more pronounced when it comes to mark-to-market valuation of off market swaps. Consider a 10 years single currency swap with 200 basis points off market fixed rate of \(C = 7.9\% \). In the standard approach of Section 1 its net present value is 1499.15 basis points compared to 1515.32 basis points in the current approach. This difference is equivalent to a fixed rate difference of 2.157 basis points. Clearly, for a swap which is not too far from being fair the differences are much smaller. Obviously this has consequences, for example, on the fair values for unwinding an off market swap position with a counterparty.

3 Conclusion

We describe and discuss two valuation approaches for cross currency swaps. The challenging element of cross currency swap valuation is that the market quotes a certain liquidity premium of one currency over the other which has to be taken care of in the pricing methodology.

The first approach, being widely used in practice yields inconsistencies and thus arbitrage opportunities between single currency and cross currency swaps.

The second approach is able to handle both types of swaps consistently in one and the same framework. The major drawback of this approach is that mark-to-market valuation of single currency swaps can be slightly different from the results of the current standard valuation method, in particular, for off market positions. Future developments have to show if market participants adopt this methodology.

References

Working Paper Series of HfB - Business School of Finance & Management: Centre for Practical Quantitative Finance

Previousley released

<table>
<thead>
<tr>
<th>No.</th>
<th>Author/Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>02.</td>
<td>Boenkost, Wolfram / Schmidt, Wolfgang M.</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td>Cross currency swap valuation</td>
<td></td>
</tr>
<tr>
<td>01.</td>
<td>Wallner, Christian / Wystup, Uwe</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td>Efficient Computation of Option Price Sensitivities for Options of American Style</td>
<td></td>
</tr>
</tbody>
</table>

Printed edition: € 25,-- + € 2,50 shipping

Download: http://www.hfb.de/Navigator/Fakultaet/Publikationen/Arbeitberichte/Show

Working Paper Series of HfB - Business School of Finance & Management

Previousley released

<table>
<thead>
<tr>
<th>No.</th>
<th>Author/Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.</td>
<td>Heimer, Thomas / Köhler, Thomas</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td>Auswirkungen des Basel II Akkords auf österreichische KMU</td>
<td></td>
</tr>
<tr>
<td>57.</td>
<td>Heidorn, Thomas / Meyer, Bernd / Pietrowiak, Alexander</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td>Performanceeffekte nach Directors’ Dealings in Deutschland, Italien und den Niederlanden</td>
<td></td>
</tr>
<tr>
<td>56.</td>
<td>Gerdesmeier, Dieter / Roffia, Barbara</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td>The Relevance of real-time data in estimating reaction functions for the euro area</td>
<td></td>
</tr>
<tr>
<td>55.</td>
<td>Barthel, Erich / Gierig, Rauno / Kühn, Ilmhart-Wolfram</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td>Unterschiedliche Ansätze zur Messung des Humankapitals</td>
<td></td>
</tr>
<tr>
<td>54.</td>
<td>Anders, Dietmar / Binder, Andreas / Hesdahl, Ralf / Schalast, Christoph / Thöne, Thomas</td>
<td>2004</td>
</tr>
<tr>
<td>53.</td>
<td>Polleit, Thorsten</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td>The Slowdown in German Bank Lending - Revisited</td>
<td></td>
</tr>
<tr>
<td>52.</td>
<td>Heidorn, Thomas / Siragusano, Tindaro</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td>Die Anwendbarkeit der Behavioral Finance im Devisenmarkt</td>
<td></td>
</tr>
<tr>
<td>51.</td>
<td>Schütze, Daniel / Schalast, Christoph (Hrsg.)</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td>Wider die Verschleuderung von Unternehmen durch Pfandversteigerung</td>
<td></td>
</tr>
<tr>
<td>50.</td>
<td>Gerhold, Mirko / Heidorn, Thomas</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td>Investitionen und Emissionen von Convertible Bonds (Wandelanleihen)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperaturderivate zur strategischen Absicherung von Beschaffungs- und Absatzrisiken</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internationale Cash Flow-Rechnungen aus Eigner- und Gläubigersicht</td>
<td></td>
</tr>
<tr>
<td>47.</td>
<td>Boenkost, Wolfram / Schmidt, Wolfgang M.</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td>Notes on convexity and quanto adjustments for interest rates and related options</td>
<td></td>
</tr>
<tr>
<td>46.</td>
<td>Hess, Dieter</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td>Determinants of the relative price impact of unanticipated Information in U.S. macroeconomic releases</td>
<td></td>
</tr>
<tr>
<td>45.</td>
<td>Cremers, Heinz / Kluß, Norbert / König, Markus</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td>Incentive Fees. Erfolgsabhängige Vergütungsmodelle deutscher Publikumsfonds</td>
<td></td>
</tr>
<tr>
<td>44.</td>
<td>Heidorn, Thomas / König, Lars</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td>Investitionen in Collateralized Debt Obligations</td>
<td></td>
</tr>
<tr>
<td>43.</td>
<td>Kahlerl, Holger / Seeger, Norbert</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td>Bilanzierung von Unternehmenszusammenschlüssen nach US-GAAP</td>
<td></td>
</tr>
</tbody>
</table>
42. Beiträge von Studierenden des Studiengangs BBA 012 unter Begleitung von Prof. Dr. Norbert Seeger
Rechnungslegung im Umbruch - HGB-Bilanzierung im Wettbewerb mit den internationalen Standards nach IAS und US-GAAP

41. Overbeck, Ludger / Schmidt, Wolfgang
Modeling Default Dependence with Threshold Models

40. Ballhasar, Daniel / Cremers, Heinz / Schmidt, Michael
Portfoliopostoptimierung mit Hedge Fonds unter besonderer Berücksichtigung der Risikokomponente

39. Heidorn, Thomas / Kantwill, Jens
Eine empirische Analyse der Spreadunterschiede von Festzinsanleihen zu Floatern im Euroraum und deren Zusammenhang zum Preis eines Credit Default Swaps

38. Böttcher, Henner / Seeger, Norbert
Bilanzierung von Finanzderivaten nach HGB, EstG, IAS und US-GAAP

37. Moormann, Jürgen
Terminologie und Glossar der Bankinformatik

36. Heidorn, Thomas
Bewertung von Kreditprodukten und Credit Default Swaps

35. Heidorn, Thomas / Weier, Sven
Einführung in die fundamentale Aktienanalyse

34. Seeger, Norbert
International Accounting Standards (IAS)

33. Stehling, Frank / Moormann, Jürgen
Strategic Positioning of E-Commerce Business Models in the Portfolio of Corporate Banking

32. Strohhecker, Jürgen / Sokolovsky, Zbyněk
Fit für den Euro, Simulationsbasierte Euro-Maßnahmenplanung für Dresdner-Bank-Geschäftsstellen

31. Roßbach, Peter
Behavioral Finance - Eine Alternative zur vorherrschenden Kapitalmarktttheorie?

30. Heidorn, Thomas / Jaster, Oliver / Willeitner, Ulrich
Event Risk Covenants

29. Biswas, Rita / Löchel, Horst
Recent Trends in U.S. and German Banking: Convergence or Divergence?

28. Löchel, Horst / Eberle, Günter Georg
Die Auswirkungen des Übergangs zum Kapitaldeckungsverfahren in der Rentenversicherung auf die Kapitalmärkte

27. Heidorn, Thomas / Klein, Hans-Dieter / Siebrecht, Frank
Economic Value Added zur Prognose der Performance europäischer Aktien

26. Cremers, Heinz
Konvergenz der binomialen Optionspreismodelle gegen das Modell von Black/Scholes/Merton

25. Löchel, Horst
Die ökonomischen Dimensionen der 'New Economy'

24. Moormann, Jürgen / Frank, Axel
Grenzen des Outsourcing: Eine Exploration am Beispiel von Direktbanken

23. Heidorn, Thomas / Schmidt, Peter / Seiler, Stefan
Neue Möglichkeiten durch die Namensaktie

22. Böger, Andreas / Heidorn, Thomas / Graf Waldstein, Philipp
Hybrides Kernkapital für Kreditinstitute

21. Heidorn, Thomas
Entscheidungsorientierte Mindestmargenkalkulation

20. Wolf, Birgit
Die Eigenmittelkonzeption des § 10 KWG

19. Thiele, Dirk / Cremers, Heinz / Robé, Sophie
Beta als Risikomaß - Eine Untersuchung am europäischen Aktienmarkt

18. Cremers, Heinz
Optionsspreisbestimmung

17. Cremers, Heinz
Value at Risk-Konzepte für Marktrisiken

Gründung einer deutschen Strombörse für Elektrizitätsderivate

15. Deister, Daniel / Ehrlicher, Sven / Heidorn, Thomas
CatBonds

14. Cremers, Heinz
Optionspreisbestimmung

13. Cremers, Heinz
Value at Risk-Konzepte für Marktrisiken

12. Heidorn, Thomas
Entscheidungsorientierte Mindestmargenkalkulation

11. Wolf, Birgit
Die Eigenmittelkonzeption des § 10 KWG

10. Thiele, Dirk / Cremers, Heinz / Robé, Sophie
Beta als Risikomaß - Eine Untersuchung am europäischen Aktienmarkt

9. Cremers, Heinz
Optionsspreisbestimmung

8. Cremers, Heinz
Value at Risk-Konzepte für Marktrisiken

7. Heidorn, Thomas
Entscheidungsorientierte Mindestmargenkalkulation

6. Wolf, Birgit
Die Eigenmittelkonzeption des § 10 KWG

5. Thiele, Dirk / Cremers, Heinz / Robé, Sophie
Beta als Risikomaß - Eine Untersuchung am europäischen Aktienmarkt

4. Cremers, Heinz
Optionsspreisbestimmung

3. Cremers, Heinz
Value at Risk-Konzepte für Marktrisiken

2. Heidorn, Thomas
Entscheidungsorientierte Mindestmargenkalkulation

1. Wolf, Birgit
Die Eigenmittelkonzeption des § 10 KWG
Special Working Paper Series of HfB - Business School of Finance & Management

Previousley released

<table>
<thead>
<tr>
<th>No.</th>
<th>Author/Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.</td>
<td>Kahmer, Nicole / Moormann, Jürgen</td>
<td>2003</td>
</tr>
</tbody>
</table>

Order address / contact:
HfB • Business School of Finance & Management
Sonnemannstr. 9-11 • D-60314 Frankfurt/M. • Germany
Phone: +49 (0) 69 154 008-734 • Fax: +49 (0) 69 154 008-728
eMail: johannsen@hfb.de

Further informations about HfB • Business School of Finance & Management may be obtained at: http://www.hfb.de

Printed edition: € 25,-- + .€ 2,50 shipping
Download: http://www.hfb.de/Navigator/Fakultaet/Publikationen/Arbeitberichte/Show