Esquivel, Manuel L.; Veiga, Carlos; Wystup, Uwe

Working Paper
Unifying exotic option closed formulas

CPQF Working Paper Series, No. 23

Provided in Cooperation with:
Frankfurt School of Finance and Management

Suggested Citation: Esquivel, Manuel L.; Veiga, Carlos; Wystup, Uwe (2010) : Unifying exotic option closed formulas, CPQF Working Paper Series, No. 23, Frankfurt School of Finance & Management, Frankfurt, M.

This Version is available at:
http://hdl.handle.net/10419/40174

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Unifying Exotic Option Closed Formulas

Manuel L. Esquível, Carlos Veiga and Uwe Wystup

January 2010

Authors:

Carlos Veiga
PhD Student CPQF
Frankfurt School of Finance & Management
Frankfurt/Main
c.m.veiga@frankfurt-school.de

Uwe Wystup
Professor of Quantitative Finance
Frankfurt School of Finance & Management
Frankfurt/Main
u.wystup@frankfurt-school.de

Manuel L. Esquível
Faculty of Science and Technology, Dep. of Mathematics
Universidade Nova de Lisboa
Caparica, Portugal
mle@fct.unl.pt

Publisher:
Frankfurt School of Finance & Management
Phone: +49 (0) 69 154 008-0 • Fax: +49 (0) 69 154 008-728
Sonnemannstr. 9-11 ▪ D-60314 Frankfurt/M. ▪ Germany
Unifying Exotic Option Closed Formulas

Carlos Veiga *

c.m.veiga@frankfurt-school.de
Tel.: +49 (0)69 154008-771
Fax.: +49 (0)69 154008-4771
Frankfurt School of Finance & Management
Centre for Practical Quantitative Finance
Sonnemannstraße 9-11, 60314 Frankfurt am Main, Germany

Uwe Wystup
uwe.wystup@mathfinance.com
Tel.: +49 (0)69 154008-719
Fax.: +49 (0)69 154008-4719
Frankfurt School of Finance & Management
Centre for Practical Quantitative Finance
Sonnemannstraße 9-11, 60314 Frankfurt am Main, Germany

Manuel L. Esquível
mle@fct.unl.pt
Tel.: +351 21 2948388
Fax.: +351 21 2948391
Universidade Nova de Lisboa
Faculty of Science and Technology, Dep. of Mathematics
Quinta da Torre, 2829-516 Caparica, Portugal

Abstract

This paper aims to unify exotic option closed formulas by generalizing a large class of existing formulas and by setting a framework that allows for further generalizations. The formula presented covers options from the plain vanilla to most, if not all, mountain range exotic options and is developed in a multi-asset, multi-currency Black-Scholes model with time dependent parameters. The general formula not only covers existing cases but also enables the combination of diverse features from different types of exotic options. It also creates implicitly a language to describe payoffs that can be used in industrial applications to decouple the functions of payoff definition from

*Corresponding author.
†The author wishes to thank Millennium bcp investimento, S.A. for the financial support being provided during his PhD. studies.
pricing functions. Examples of several exotic options are presented, benchmarking the closed formulas’ performance against Monte Carlo simulations. Results show a consistent over performance of the closed formula reducing calculation time by double digit factors.

Key words: exotic options, mountain range, discrete lookback, closed formula, payoff language, multi-asset multi-currency model
1 Introduction

The pricing of exotic options, defined in most references as every option type apart from the European and American vanilla options, is performed either by using a closed formula or by relying on a numerical method to evaluate the integral the pricing function involves. Whenever available, a closed formula is more precise and requires less computational effort. This is the reasoning behind our search for general closed formulas that unify exotic option pricing.

The closed formulas for pricing exotic options have mainly been developed to price options whose payoffs exhibit one, and only one, very specific feature, and they assume an elementary market setup. However, the industry requirements go well beyond these simplifications. Exotic options underlying assets spread across several currency zones, and exotic options payoff profiles include features from multiple exotic option types.

This need to account for multiple features in a computationally simple process calls for a unification of the existing closed exotic option pricing formulas. Thus, instead of proceeding to develop formulas for specific option types, we propose a general approach that is able to accommodate several of the features seen in most exotics. Hence, we produce a formula for a generic payoff, covering thus all exotic options whose features are included in it. The market setting underlying the formula is also able to accommodate very diverse market setups, covering as many currency zones as needed.

Finally, the general formula allows the development of payoff languages. Payoff languages are extremely useful in industrial pricing applications as they enable the decoupling the payoff definition process from the pricing routines. Thus, as long as the payoff only uses the features covered by this general formula, the development of a new payoff profile does not necessitate the development of a new pricing routine. This means that industry agents can freely combine the desired features, while using the same pricing routines.

This paper is divided into four sections. This first section covers the motivation for the paper and the literature review. The second section develops the model, the payoff of a generic claim and its pricing formula. Section three then discusses the applications, including performance matters, and provides examples and the final section concludes.

1.1 Literature Review

Literature on exotic options is vast and dates back to the late 1970s. It is not our intention to give a complete chronology of the works related to this field but just to refer some landmark contributions for each of the main threads of research. Compilations of exotic options descriptions and pricing formulas may be found in Nelken (1995), Zhang (1997), Haug (1998), and
According to our exotic option definition above, there are three threads of research in exotics, the first of which deals with options on multiple underlyings. The distinctive characteristic of these options is their high sensitivity to correlations. The landmark closed formulas were Margrabe (1978) - exchange options, Stulz (1982) maximum/minimum of two assets and Johnson (1987) for several assets. One other thread deals with path-dependent options, namely lookback and barrier, which this paper only includes in their discrete version. The main contributions on this thread are Rubinstein and Reiner (1991) for barrier options and Goldman et al. (1979) and Conze and Viswanathan (1991) for lookbacks. Further developments on barrier options were due to work by Heynen and Kat (1994), Carr (1995) and Wystup (2003). For a remarkable description of the barrier option problem see Björk (1998) whose general approach covers a wide class of payoffs. The last thread deals with Asian option and basket options. Their distinctive characteristic is the need to handle sums of geometric Brownian motions. Initial contributions for simpler geometric average problems are from Vorst (1992), and a major development for arithmetic average problems is due to Večer (2001). The present paper extends previous work on this subject by Veiga (2004).

2 Formula Development

2.1 Model Description

The model on which we develop a closed formula can be classified as a multivariate Black–Scholes model. It is a multi-asset model in which all assets are tradable including for example stocks, currencies, precious metals and indexes composed by these.

We assume the existence of \(n \) assets \(A_i \), and the respective bank accounts \(B_i \) where asset \(A_i \) may be deposited, with \(i = 1, \ldots, n \). Each of the accounts yields a return, in units of the same asset, at a continuously compounded rate of \(r_i \). Such a rate may be interpreted as an interest rate of a currency or as a repo rate\(^1\) of a stock. Although it is also common also to use this rate to represent dividend payments for individual stocks, we advise against it since dividend payments are typically not payed continuously and are not proportional to the asset price, see [22] for details. Each bank account thus follows the dynamics

\[
\frac{dB_i(t)}{B_i(t)} = r_i(t)dt. \tag{1}
\]

We furthermore assume the existence of one, and only one, price process for each asset \(A_i \) allowing its expression in units of another asset \(A_j \). This structure is usually referred to as a tree structure. Though here the

\(^1\)rate paid on a repurchase agreement or stock lending contract.
definition of the root (asset) of the tree is not critical, any asset can play that role, what is critical is to have one path, and only one path, to express the price of one asset in terms of any other. Such a structure excludes triangular relationships as for example EUR/USD, USD/JPY and EUR/JPY foreign exchange pairs. We exclude these relationships because they impose restrictions on the volatilities and correlations between the assets, see [10] for details.

Hence, we assume the existence of price processes S_{ij}, that is the price of one unit of A_i expressed in units of A_j, with the dynamics following the stochastic differential equation (SDE)

$$dS_{ij}(t)/S_{ij}(t) = \mu_{ij}(t)dt + \sigma_{ij}(t)dW_i(t),$$

where $W_i(t)$ is a Brownian motion under the real world measure P, $\mu_{ij} \in \mathbb{R}$, $\sigma_{ij} \in \mathbb{R}_+$. Furthermore, $W_i(t)$ is correlated with the Brownian motions that drive the other asset prices. Let $W_{kl}(t)$ be one such process, $\rho_{ij,kl}(t)$ its correlation with $W_{ij}(t)$, and $\varsigma_{ij,kl}(t) = \rho_{ij,kl}(t)\sigma_{ij}(t)\sigma_{kl}(t)$ the respective covariance.

Although other setups are also plausible, we choose this one for three reasons: it is general enough to accommodate most exotic options we have encountered, the formulas generated are still manageable, and the volatilities and correlations can be freely specified. Figure 1 illustrates a model setup that would underlie the valuation of a typical structured product that depends on several equity indexes spread across the world.

![Figure 1: Example of market setup. The abbreviations refer to the following: USD to United States dollars, EUR to the euro currency, JPY to the Japanese yen, XAU to the gold ounce, SPX to the S&P500 index, SX5E to the DJ Eurostoxx 50 index, and NKY to the Nikkei index.](image)

It shows a market with seven assets and six prices. It includes the currencies of the three main monetary zones and the most popular indexes of each. The currency pairs S_{21} and S_{13} are the most liquid and are defined according to market standards, EUR/USD and USD/JPY respectively. The prices of the baskets of stocks that compose each of the equity indexes A_5, A_6 and A_7 are naturally expressed in terms of their respective currencies.

It is well known that a market with the same number of random sources driven by (correlated) Brownian motions $W_{ij}(t)$ as of tradable assets A_i is
complete and arbitrage free. See Björk [1] or Shreve [18] for details. Therefore, there exists a unique martingale measure Q_k, equivalent to measure P. In such a measure Q_k, all portfolios expressed in terms of units of the numéraire portfolio $B_k(t)$ are martingales. In this model, the transformation from measure P to Q_k is found by solving a simple system of equations in which the matrix is triangular. This system yields a transformation of the type

$$dW_{ij}(t) = dW_{ij,k}(t) - \frac{1}{\sigma_{ij}(t)} \left(r_i(t) + \mu_{ij}(t) - r_j(t) + \sum_{h=1}^{n} \lambda_{jh} \varsigma_{ij,i_h}(t) \right) dt.$$ \hspace{1cm} (3)

where n is the number of price conversions needed to express the asset in which the price of A_i is expressed, i.e. A_j, to A_k; λ_{jh} accounts for the direction of each of the prices, which may be natural ($\lambda_{jh} = 1$) or inverse ($\lambda_{jh} = -1$). A price expressed in the natural direction, with respect to the price path from A_j to A_k, is one that multiplies the previous quantity to yield the next. Conversely, a price expressed in the inverse direction is one that divides. Finally, i_h are the indexes of the assets that stand between assets A_j and A_k. The indexes are unique as the tree structure implies that there is one, and only one, shortest conversion path connecting the assets.

Applying the transformation to $S_{ij}(t)$ in equation (2) we get the dynamics of $S_{ij}(t)$ under the measure Q_k as

$$dS_{ij}(t)/S_{ij}(t) = \left(r_j(t) - r_i(t) - \sum_{h=1}^{n} \lambda_{jh} \varsigma_{ij,i_h}(t) \right) dt + \sigma_{ij}(t)dW_{ij,k}(t).$$ \hspace{1cm} (4)

In the example above, if the EUR bank account is chosen as numéraire, the dynamics of the index NKY are

$$dS_{73}(t)/S_{73}(t) = (r_3(t) - r_7(t) - (-\varsigma_{73,13}(t) - \varsigma_{73,21}(t))) dt + \sigma_{73}(t)dW_{73,2}(t).$$ \hspace{1cm} (5)

Now that we have all dynamics of all prices S under one arbitrary martingale measure Q_k, the relevant information concerning the location of A_i in the tree structure is condensed in the summation $\sum_{h=1}^{n} \lambda_{jh} \varsigma_{ij,i_h}(t)$. Therefore, we can suppress the letter in the subscript of S, σ, ρ and ς that tracks the asset in which the price is expressed. Thus, ij will be only i from now on. Furthermore, we will also assign the symbol $d_i(t)$ to the drift term function, yielding (4) in a more economic form as

$$dS_i(t)/S_i(t) = d_i(t)dt + \sigma_i(t)dW_{ik}(t),$$ \hspace{1cm} (6)

where we also removed the comma on the diffusion term because, from now on, we shall only need one symbol to refer to an asset.
2.2 Abstract Assets

Apart from the physical assets A_1, we assume the existence of a new set of abstract assets A_i. The conditions these assets need to fulfill are that (i) their price is a function of the prices S_i, and (ii) their price follows, under any given measure Q_k, a dynamic of the type

$$dS_i(t)/S_i(t) = dS_i(t)dt + \sigma_{S_i}(t)dW_{S_i,k}(t).$$

Thus, we define S_i as the most general case we can conceive

$$S_i(t) = \prod_{j=1}^{m} (S_{i_j,t_j}(t))^{\alpha_j},$$

where $S_{i_j,t_j}(t)$ is the process $S_{i_j}(t)$ frozen at time t_j, i.e., $S_{i_j}(t \land t_j)$ and i_j is an index of an asset. Hence, the process $S_{i_j,t_j}(t)$ has zero drift and diffusion after time t_j, and we write its dynamics as

$$dS_{i_j,t_j}(t)/S_{i_j,t_j}(t) = \delta_{i_j}(t)dt + \theta_{i_j}(t)dW_{i_j,k}(t),$$

with $\delta_{i_j}(t) = d_{i_j}(t)$ and $\theta_{i_j}(t) = \sigma_{i_j}(t)$ for $t < t_j$ and both equal to zero otherwise. The covariance is also redefined as $\zeta_{i_j,i_k}(t) = \theta_{i_j}(t)\theta_{i_k}(t)\rho_{i_j,i_k}(t)$. Without loss of generality we assume $t_1 < t_2 < \ldots < t_n$.

This form exploits the geometric nature of the asset prices S_i, and that linear combinations of normally distributed random variables are still normal.

To characterize the asset A_i and its price S_i we need to determine the following quantities: the correlation with any other asset $\zeta_{S_i,k}(t)$, the drift term $dS_i(t)$, the volatility term $\sigma_{S_i}(t)$, and the rate of return of deposits of A_i, i.e., $r_{A_i}(t)$.

Using the Itô formula we obtain the dynamic of S_i as

$$dS_i(t)/S_i(t) = \sum_{j=1}^{m} \alpha_j \left(\delta_{i_j}(t) - \frac{\theta_{i_j}^2(t)}{2} + \sum_{h=1}^{m} \alpha_h \zeta_{i_j,i_h}(t) \right)dt$$

$$+ \sum_{j=1}^{m} \alpha_j \theta_{i_j}(t)dW_{i_j,k}(t).$$

We thus have dS_i and $\sigma_{S_i}^2$ as

$$\sigma_{S_i}^2(t) = \sum_{j=1}^{m} \sum_{h=1}^{m} \alpha_j \alpha_h \zeta_{i_j,i_h}(t) = \sum_{j=1}^{m} \sum_{h=1}^{m} \alpha_j \alpha_h \zeta_{i_j,i_h}(t) \mathbb{1}_{(t < t_j,t < t_h)},$$

$$dS_i(t) = \sum_{j=1}^{m} \alpha_j \left(\delta_{i_j}(t) - \frac{\theta_{i_j}^2(t)}{2} \right) + \frac{\sigma_{S_i}^2(t)}{2},$$

7
with \(\sigma^2_S(t) \) the variance of a sum of correlated normals.

As to the covariance of \(S_i \) with any other price \(S_j \), we make use of the relationship
\[
\zeta_{S_i S_j}(t) dt = \sigma_{S_i}(t) \sigma_{S_j}(t) dW_{S_i k}(t) dW_{S_j k}(t)
\]
and, using \((10) \), conclude that
\[
\zeta_{S_i S_j}(t) = \sum_{a=1}^{m_i} \alpha_a \sum_{b=1}^{m_j} \alpha_b \zeta_{S_i a S_j b}(t) I_{\{t < t_a, t < t_b\}}.
\]
(13)

and, in the special case where one of the abstract assets is equal to an asset price \(S_x \), we also have
\[
\zeta_{S_i S_x}(t) = \sum_{j=1}^{m} \alpha_j \zeta_{S_i j}(t) = \sum_{j=1}^{m} \alpha_j \zeta_{S_j x}(t) I_{\{t < t_j\}}.
\]
(14)

The return rate \(r_{S_i} \) of the bank account \(B_i \) associated with asset \(A_i \) can be easily calculated using the fact that the dynamics of \(B_i \) expressed in terms of \(B_k \), under the measure \(Q_k \), is a martingale. A simple application of the Itô formula yields
\[
d\left(\frac{B_i S_i}{B_k} \right)(t) = \left(\frac{B_i S_i}{B_k} \right)(t) \left((r_{S_i}(t) + d_{S_i}(t) - r_k(t)) dt + \sigma_{S_i}(t) dW_{S_i k}(t) \right).
\]
(15)

Consequently,
\[
r_{S_i}(t) = r_k(t) - d_{S_i}(t).
\]
(16)

We can now even write the SDE of the price process \(S_l \) under the martingale measure associated with \(S_i \), \(Q_{S_i} \), just adding one extra price conversion to the path from \(A_j \) to \(A_k \), described in section 2.1, yielding
\[
d S_l(t) / S_l(t) = (d_l(t) + \zeta_{S_i l}(t)) dt + \sigma_{S_i}(t) dW_{S_i l}(t),
\]
(17)

and consequently
\[
d S_l(t) / S_l(t) = (d_{S_l}(t) + \zeta_{S_S l}(t)) dt + \sigma_{S_l}(t) dW_{S_S l}(t).
\]
(18)

Before we conclude this subsection, we would like to make a remark on how these abstract assets fit the arbitrage theory framework. As in Björk [1], Chapter 24, arbitrage theory requires that the numéraire of a given model definition must be a traded asset. Clearly these abstract assets are not traded *per se*, and they cannot be replicated by any self-financing portfolio. However, we were able to find the \(Q_{S_i} \) measure in which all the portfolios \(\vartheta \) of the above assets and abstract assets, expressed in units of \(B_k \), are martingales when translated to units of \(B_i \), by \(\vartheta(t) B_k(t) / B_i(t) S_i(t) \).
2.3 Generic Contract

Now we need an abstract definition of a contract, or a claim, that should include as many features and existing contracts as possible. Hence, we propose the following payoff definition expressed in terms of asset A_k

$$\Phi_k = \sum_{i=1}^{n} c_i S_{I_i,t_i}(T_i) I_{C_i},$$

(19)

with $c_i \in \mathbb{R}$, $S_{I_i,t_i}(T_i)$ as the price of an abstract asset A_{I_i} expressed in terms of A_k, observed at time t_i, to be settled at time T_i, and I_{C_i} the indicator function of the set C_i that will be defined in section 2.4. For the payoff to be adapted, we need $t_i \leq T_i$. We note that $S_{I_i,t_i}(t)$ is actually a stopped process as above and, likewise, $dS_{I_i,t_i}(t)$, $\sigma S_{I_i,t_i}(t)$ and $\zeta S_{I_i,t_i}(t)$ are zero for $t > t_i$. Likewise, the return rate $r_{S_{I_i,t_i}}(t) = r_k(t)$ for $t > t_i$.

To be able to price this claim, we assume the existence of a filtered probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, P)$ and that all prices S_i are adapted. The arbitrage free price of such a contract is, as usual, the discounted expected payoff under the unique equivalent martingale measure Q_k, thus

$$V(t_0) = \sum_{i=1}^{n} c_i B_k(t_0) E_{t_0}^{Q_k} \left[\frac{S_{I_i,t_i}(T_i) I_{C_i}}{B_k(T_i)} \right],$$

(20)

where $E_{t_0}^{Q_k}$ is the conditional expectation, under the measure Q_k, conditioned on the σ-algebra \mathcal{F}_{t_0}. We also use the fact that the conditional expectation is a linear operator to interchange it with the summation.

For each term of the summation we may write, with $V(t_0) = \sum_{i=1}^{n} v_i(t_0)$,

$$\frac{v_i(t_0)}{B_k(t_0)} = E_{t_0}^{Q_k} \left[c_i \frac{S_{I_i,t_i}(T_i) I_{C_i}}{B_k(T_i)} \right],$$

(21)

which is a martingale by definition of Q_k.

We now translate the price and the payoff expressed in units of B_k in units of $B_{I_i,t_i}(T_i)$. These new quantities are martingales under the measure $Q_{S_{I_i,t_i}}$, and therefore

$$\frac{v_i(t_0)}{B_k(t_0)} \frac{B_k(t_0)}{S_{I_i,t_i}(t_0) B_{I_i,t_i}(t_0)} = E_{t_0}^{Q_{S_{I_i,t_i}}} \left[c_i \frac{S_{I_i,t_i}(T_i) I_{C_i}}{B_k(T_i)} \frac{B_k(T_i)}{S_{I_i,t_i}(T_i) B_{I_i,t_i}(T_i)} \right].$$

(22)

This step can be view as a change of numeraire from B_k to B_{I_i,t_i} as in Geman et al. [7]. However, despite the similarity, this is not a standard change of numeraire because neither $S_{I_i,t_i}(T_i)$ is the price of a traded asset nor is $B_{I_i,t_i}(T_i)$ a portfolio of tradable assets. Similar measures may be found in Carr [4] and Björk and Landén [2].

2The authors wish to thank Prof. Tomas Björk for his advice on this issue.
Canceling terms and rearranging we get
\[V(t_0) = \sum_{i=1}^{n} c_i \mathbb{I}_{I_i,t_i}(t_0) \mathbb{E}_{I_i,t_i}(t_0) \mathbb{E}_{Q_{S_{t_i,t_i}}(t_0)} \left[\frac{\mathbb{I}_{C_i}}{\mathbb{E}_{I_i,t_i}(T_i)} \right]. \] (23)

Additionally, we know that \(\mathbb{E}_i \) is a deterministic process under the measure \(Q_{S_{t_i,t_i}} \) and can thus be taken out of the expectation, yielding
\[V(t_0) = \sum_{i=1}^{n} c_i \mathbb{I}_{I_i,t_i}(t_0) \mathbb{E}_{I_i,t_i}(T_i) P_{Q_{S_{t_i,t_i}}(t_0)}(C_i) \]
\[= \sum_{i=1}^{n} c_i \mathbb{I}_{I_i,t_i}(t_0) \exp \left\{ - \int_{t_0}^{T_i} r_{S_{t_i,t_i}}(u) du \right\} P_{Q_{S_{t_i,t_i}}(t_0)}(C_i), \] (24)
where \(P_{Q_{S_{t_i,t_i}}(t_0)}(C_i) \) is the probability of the set \(C_i \), under the risk neutral measure \(Q_{S_{t_i,t_i}} \), and considering the prices at time \(t_0 \).

However, in general the expression on the right hand side of (24) does not lead to a closed formula and may require numerical integration. Hence, we need to impose some restrictions on the shape of the set \(C_i \) to make sure the probability terms \(P_{Q_{S_{t_i,t_i}}(t_0)}(C_i) \) can be evaluated using a closed form expression. More specifically, we will constrain the set \(C_i \) in a way that guarantees that \(P_{Q_{S_{t_i,t_i}}(t_0)}(C_i) \) can be evaluated by a sum of multivariate normal cumulative distribution functions.

2.4 Set Definition and its Probability

Before we state the main result of this section we need the following:

Proposition 2.1. The processes \(\log(S_{l,s}(t)) \), with \(l \) iterating over all asset prices in the model, and \(s \geq 0 \), are jointly normally distributed for any time \(t > 0 \).

Proof. Standard stochastic calculus, applied to equation (17), yields its solution as
\[S_{l,s}(t) = S_l(t_0 \wedge s) \exp \left\{ \int_{t_0 \wedge s}^{t \wedge s} \left(d_l(u) + \zeta_{S,l}(u) - \frac{\sigma_l^2(u)}{2} \right) du \right. \right. \]
\[+ \left. \left. \int_{t_0 \wedge s}^{t \wedge s} \sigma_l(u) dW_{\mathbb{E}_l}(u) \right\}. \] (25)

From this solution, it follows immediately that \(\log(S_{l,s}(t)) \) is normally distributed with mean \(\mu \) and variance \(\psi \) as
\[\mu = \log(S_l(t_0 \wedge s)) + \int_{t_0 \wedge s}^{t \wedge s} \left(d_l(u) + \zeta_{S,l}(u) - \frac{\sigma_l^2(u)}{2} \right) du, \]
\[\psi = \int_{t_0 \wedge s}^{t \wedge s} \sigma_l^2(u) du. \]
Furthermore, any linear combination of the logs of frozen processes is still normally distributed. Without loss of generality, let \(0 = s_0 \leq s_1 \leq \ldots \leq s_m\). Then
\[
\sum_{g=1}^{m} \alpha_g \log(S_{i,g}(s_g(t))) = \sum_{g=1}^{m} \alpha_g \mu_g + \sum_{g=1}^{m} \int_{t_0}^{t_0+s_g} \alpha_g \sigma_{i,g}(u) dW_{i,g}(u) \tag{26}
\]
is normally distributed, with mean \(\sum_{g=1}^{m} \alpha_g \mu_g\) and variance
\[
\sum_{g=1}^{m} \int_{t_0}^{t_0+s_g} \sum_{a=g}^{m} \sum_{b=g}^{m} \alpha_a \alpha_b S_{i,a,t_a}(u) S_{i,b,t_b}(u) du. \tag{27}
\]
By theorem 9.5.13 of [6], this is enough to prove that any set of random variables \(\log(S_{i,s}(t))\) is jointly normally distributed.

Proposition 2.2. Let the set \(C_i\) be of the form
\[
\bigcap_{l=1}^{m_i} \left\{ \frac{S_{I_u,t_u}(T_i)}{S_{I_d,t_d}(T_i)} < h_l \right\}, \tag{28}
\]
with \(I_u, I_d\) denoting the indexes of abstract assets, \(h_l \geq 0\) and \(t_u, t_d \leq T_i\).

Then \(P^{Q}_{S_{I_u,t_u}}(C_i)\) is of the form
\[
N_{m_i}^{S_{I_u,t_u}}(v; \phi, \Sigma), \tag{29}
\]
with \(N_{m_i}\) denoting the \(m_i\)-dimensional multivariate normal cumulative distribution function, with covariance matrix \(\Sigma\) and mean vector \(\phi\), evaluated at vector \(v\).

Proof. By (8) and recalling that all \(S_i(t)\) are positive by definition, we have
\[
\bigcap_{l=1}^{m_i} \left\{ \frac{S_{I_u,t_u}(T_i)}{S_{I_d,t_d}(T_i)} < h_l \right\} = \bigcap_{l=1}^{m_i} \left\{ \sum_{a=1}^{m_i} \alpha_a \log(S_{i,a,t_a}(t_u)) - \sum_{b=1}^{m_i} \alpha_b \log(S_{i,b,t_b}(t_d)) < \log(h_l) \right\}. \tag{30}
\]
Proposition 2.1 tells us that all \(\log(S_{i,s}(t))\) are jointly normally distributed. Therefore, the random vector \(X\) with \(m_i\) elements
\[
X_l = \sum_{a=1}^{m_i} \alpha_a \log(S_{i,a,t_a}(t_u)) - \sum_{b=1}^{m_i} \alpha_b \log(S_{i,b,t_b}(t_d)), \tag{32}
\]
with \(l = 1, \ldots, m_i\), is just a linear transformation of the vector of variables of the type of \(\log(S_{i,s}(t))\) and, therefore, is normally distributed (or its elements are jointly normally distributed).
From proposition 2.1 we can derive their mean. Thus, \(\phi = [\phi_1, \ldots, \phi_m]^T \)
with
\[
\phi_l = \sum_{a=1}^{m_l} \alpha_a \left(\log(S_{i_a}(t_0 \wedge t_a)) + \int_{t_0 \wedge t_a}^{t_a} d_{i_a}(s) + \zeta_{i_l, i_a}(s) - \frac{\sigma_{i_a}^2(s)}{2} \, ds \right) - \\
- \left(\sum_{b=1}^{m_l} \alpha_b \left(\log(S_{i_b}(t_0 \wedge t_b)) + \int_{t_0 \wedge t_b}^{t_b} d_{i_b}(s) + \zeta_{i_l, i_b}(s) - \frac{\sigma_{i_b}^2(s)}{2} \, ds \right) \right)
\]

\((33) \)

\[
= \log \left(S_{i_l, i_u}(t_0) \right) + \int_{t_0}^{T_{i_l}} d_{S_{i_l, i_u}}(s) - \frac{\sigma_{S_{i_l, i_u}}^2(s)}{2} + \zeta_{S_{i_l, i_u}, S_{i_l, i_u}}(s) \, ds \\
- \left(\log \left(S_{i_{l'}, i_u}(t_0) \right) + \int_{t_0}^{T_{i_l}} d_{S_{i_{l'}, i_u}}(s) - \frac{\sigma_{S_{i_{l'}, i_u}}^2(s)}{2} + \zeta_{S_{i_{l'}, i_u}, S_{i_{l'}, i_u}}(s) \, ds \right)
\]

\((34) \)

Let us define \(\Sigma_{e,f} \), the elements of \(\Sigma \), with \(e, f = 1, \ldots, m_l \). The covariance between two of the random variables \(X_e, X_f \) is, by definition,
\[
\Sigma_{e,f} = E_{Q_{i_l, i_l}} [(X_e - \phi_e) (X_f - \phi_f)],
\]
which yields, after some simple algebra,
\[
\int_{t_0}^{T_{i_l}} \zeta_{S_{i_l, i_u}, S_{i_{l'}, i_u}}(s) - \zeta_{S_{i_{l'}, i_u}, S_{i_{l'}, i_u}}(s) \\
- \zeta_{S_{i_{l'}, i_{l'}}, S_{i_{l'}, i_{l'}}}(s) + \zeta_{S_{i_{l'}, i_{l'}}, S_{i_{l'}, i_{l'}}}(s) \, ds, \quad (36)
\]

where \(S^e \) and \(S' \) are the assets in conditions \(l = e \) and \(l = f \) respectively. It is worth noting that the covariance is the same whatever the measure under which the expectation is taken. This follows the well known fact that changes of martingale measures only modify the location of the distribution and not its shape.

The variance of \(X_e \) is obtained with \(f = e \). The elements of the vector \(v \) are \(v_l = \log(h_l) \), with \(l = 1, \ldots, m_l \).

\(\square \)

2.5 Pricing Formula

Proposition 2.2 together with Equation (24) allow us to write the following:

Theorem 2.1. The arbitrage free price of the claim with payoff \(\Phi_k \) as in (19) and the sets \(C_i \) as in (28) can be calculated using the formula
\[
V(t_0) = \sum_{i=1}^{n} c_i S_{i_l, i}(t_0) \exp \left\{ - \int_{t_0}^{T_{i_l}} r_{S_{i_l, i}}(u) \, du \right\} \sum_{m_i}^{S_{i_l, i}} (v; \phi, \Sigma). \quad (37)
\]

12
Finally, we may also consider the complement of sets C_i in proposition 2.2, as we have $P_t^{Q_{j_i,t_i}}(C_i) = 1 - \mathcal{N}_{S_{j_i,t_i}}(v; \phi, \Sigma)$, by the properties of cumulative distribution functions.

2.6 Derivatives

Developing a closed pricing formula has immediate benefits when it comes to pricing the claims and also opens the possibility of allowing the calculation of the quantities relevant for hedging strategies and risk management, i.e., partial derivatives, also by closed formulas. This assumes special importance as the numeric methods to calculate the price typically show significant degradation when used to evaluate partial derivatives.

The approach we take to calculate the relevant partial derivatives relies on the works of Carr [4] and of Reiß and Wystup [17]. The first paper shows how to calculate spatial derivatives, i.e., derivatives with respect to the asset prices, by deriving the payoff function instead of the pricing formula. The second enables us to write the derivatives with respect to the other parameters in the model as functions of the spatial derivatives, in particular with respect to correlation parameters.

We start by writing the partial differential equation (PDE) implicit in the pricing formula (20) by using the Feynman-Kac theorem

$$V_t + \frac{1}{2} \sum_{i,j=1}^{n} \zeta_{S_i, S_j} S_i S_j V_{S_i, S_j} + \sum_{i=1}^{n} d_{S_i} S_i V_{S_i} = r_k V, \quad (38)$$

where we removed the parameters of all the functions and processes to promote clarity and also the freeze time subscript making $S_{I_i,t_i}(t) = S_{I_i}$. n is the number of abstract assets in the model and the subscripts of V denote partial derivatives. See Björk [1] for details.

If we derive PDE (38) with respect to any S_i, we get a PDE for the derivative function, the quantity needed for delta-hedging the claim. Consecutive derivations yield PDEs for all higher order spatial derivatives.

We now need to write the PDE (38) derivative with respect to an arbitrary sequence of variables. Hence, we write it as

$$V_{tD_p} + \frac{1}{2} \sum_{i,j=1}^{n} \zeta_{S_i, S_j} S_i S_j V_{S_i, S_j} D_p + \sum_{i=1}^{n} a_i(D_p) S_i V_{S_i} D_p = b(D_p) V_{D_p}, \quad (39)$$

with D_p denoting the sequence of derivations, formally $D_p = \prod_{h=1}^{p} S_{I_h}$, and I_h an index of an abstract asset in the model. Additionally, a_i and b are functions of time t defined by
We list a_i and b in Table 1 for the first and second order derivatives.

<table>
<thead>
<tr>
<th>p</th>
<th>$a_i(D_p)$</th>
<th>$b(D_p)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$d_{S_{I_1}}$</td>
<td>$r_k - d_{S_{I_1}}$</td>
</tr>
<tr>
<td>1</td>
<td>$d_{S_{I_1}} + \zeta_{S_{I_i}S_{I_1}}$</td>
<td>$r_k - d_{S_{I_1}} - d_{S_{I_2}} - \zeta_{S_{I_i}S_{I_1}}$</td>
</tr>
<tr>
<td>2</td>
<td>$d_{S_{I_1}} + \zeta_{S_{I_i}S_{I_1}} + \zeta_{S_{I_i}S_{I_2}}$</td>
<td>$r_k - d_{S_{I_1}} - d_{S_{I_2}} - \zeta_{S_{I_i}S_{I_1}}$</td>
</tr>
</tbody>
</table>

It is worth noting that a_i and b of the first order derivatives recover the trend of all S_{I_i}s under the measure $Q_{S_{I_1}}$ in equation (18) and the deposit rate $r_{S_{I_1}}$ in equation (16), respectively. The volatilities and covariances are trivially recovered since they do not change. Hence, the measure under which we should take the expectation of the first derivative of the payoff, with respect to S_{I_1}, is the measure where S_{I_1} itself is the numéraire, i.e., $Q_{S_{I_1}}$. Therefore, we denote the measure produced by the p-th order derivative as Q_{D_p} with the respective numéraire $D_p = \prod_{h=1}^p S_{I_h}$ and deposit return rate $r_{D_p} = b(D_p)$.

To apply the Feynman-Kac theorem to the PDE (39), all we need is to calculate the respective boundary condition. We do so on a term by term basis of contract function (19)

\[
\frac{\partial^p \Phi_k}{\partial D_p} = \sum_{i=1}^n c_i \exp\left\{-\int_{t_0}^{T_i} r_{D_p}(u) du\right\} E_{t_0}^{Q_{D_p}} \left[\frac{\partial^p S_{I_i,t_i(T_i)} I_{C_i}}{\partial D_p} \right].
\]

We can now proceed to write an expression for the spatial derivatives.

Theorem 2.2. Spatial derivatives of the pricing function of the $V(t(0))$ are given by the expression

\[
\frac{\partial^p V(t_0)}{\partial D_p(t_0)} = \sum_{i=1}^n c_i \exp\left\{-\int_{t_0}^{T_i} r_{D_p}(u) du\right\} E_{t_0}^{Q_{D_p}} \left[\frac{\partial^p S_{I_i,t_i(T_i)} I_{C_i}}{\partial D_p} \right].
\]
solutions, we use the definition in Proposition 2.2 as a product of indicator functions. Thus,
\[\mathbb{I}_{C_i} = \prod_{l=1}^{m_i} \mathbb{I}\left\{ \frac{S_{I_{lu},t_{lu}}(T_i)}{S_{I_{ld},t_{ld}}(T_i)} < h_l \right\}. \]

(44)

To derive the contract function, all we need is to apply the product rule and to recall that
\[\frac{\partial \mathbb{I}\{ a < b \}}{\partial b} = \delta(a - bc), \quad \text{and} \quad \frac{\partial \mathbb{I}\{ a < b \}}{\partial a} = -\delta(a - bc), \]

(45)

with \(\delta(x) \) the Dirac delta function.\(^3\)

We find
\[
\frac{\partial \Phi_k}{\partial S_{I_{x},t_{x}}(T_i)} = \sum_{i=1}^{n} c_i \left(\mathbb{I}_{\{(I_{x},t_{x})=(I_i,t_i)\}} \mathbb{I}_{C_i} \right.
\]
\[+ \mathbb{S}_{I_{x},t_{x}}(T_i) \left(\sum_{j=1}^{m_i} \mathbb{I}_{\{(I_{x},t_{x})=(I_{ju},t_{ju})\}} \delta \left(\mathbb{S}_{I_{ju},t_{ju}}(T_i) - h_j \mathbb{S}_{I_{ld},t_{ld}}(T_i) \right) \right. \]
\[\left. - \sum_{j=1}^{m_i} \mathbb{I}_{\{(I_{x},t_{x})=(I_{ju},t_{ju})\}} \delta \left(\mathbb{S}_{I_{ju},t_{ju}}(T_i) - h_j \mathbb{S}_{I_{ld},t_{ld}}(T_i) \right) \right) \]
\[\prod_{l \neq j}^{m_i} \mathbb{I}\left\{ \frac{S_{I_{lu},t_{lu}}(T_i)}{S_{I_{ld},t_{ld}}(T_i)} < h_l \right\} \right). \]

Taking advantage of the fact that \(Q_{D_p} = Q_{S_{I_{x},t_{x}}} \), the first order derivative formula turns out to be

\(^3\)The Dirac delta function is characterized by the two properties
\[\delta(x) = \begin{cases} 0 & \text{if } x \neq 0 \\ \infty & \text{if } x = 0 \end{cases} \quad \text{and} \quad \int_{-\infty}^{+\infty} \delta(x) dx = 1. \]
\[\frac{\partial V(t_0)}{\partial S_{I_x,t_x}(t_0)} = \exp \left\{ - \int_{t_0}^{T_i} r S_{I_x,t_x}(u) du \right\}. \]

(46a)

\[\left(\sum_{i=1}^{n} c_i S_{I_i,t_i}(t_0) \sum_{j=1}^{m_i} \mathbb{I}\{ (I_x,t_x) = (I_{jd},t_{jd}) \} \mathcal{N}_m^{S_{I_x,t_x}} \right) \left(v; \phi, \Sigma \right) \left(\frac{S_{I_{ju},t_{ju}}(T_i)}{S_{I_{id},t_{id}}(T_i)} = h_j \right) \]

(46b)

\[\left(\sum_{i=1}^{n} c_i S_{I_i,t_i}(t_0) \sum_{j=1}^{m_i} \mathbb{I}\{ (I_x,t_x) = (I_{jd},t_{jd}) \} \mathcal{N}_m^{S_{I_x,t_x}} \right) \left(v; \phi, \Sigma | \frac{S_{I_{ju},t_{ju}}(T_i)}{S_{I_{id},t_{id}}(T_i)} = h_j \right) \]

(46c)

\[\left(\sum_{i=1}^{n} c_i S_{I_i,t_i}(t_0) \sum_{j=1}^{m_i} \mathbb{I}\{ (I_x,t_x) = (I_{jd},t_{jd}) \} \mathcal{N}_m^{S_{I_x,t_x}} \right) \left(v; \phi, \Sigma | \frac{S_{I_{ju},t_{ju}}(T_i)}{S_{I_{id},t_{id}}(T_i)} = h_j \right) \]

(46d)

For performance reasons, it is important to observe that the probabilities \(\mathcal{N}_m^{S_{I_x,t_x}} \) in (46b) are also calculated in the context of the pricing function.

In order to recover the derivatives with respect to real asset prices \(S_t \), all we need is to apply the chain rule. Thus,

\[\frac{\partial V(t_0)}{\partial S(t_0)} = \sum_{x=1}^{n} \frac{\partial V(t_0)}{\partial S_{I_x,t_x}(t_0)} \frac{\partial S_{I_x,t_x}(t_0)}{\partial S(t_0)}. \]

(47)

The first factor in the summation is the one we derived above; the second factor is a simple derivative that either yields zero, if \(S(t_0) \) no longer affects \(S_{I_x,t_x}(t_0) \), or yields \(S_{I_x,t_x}(t_0) \alpha \) otherwise, with \(\alpha \) as in the definition (8).

Finally, we can use the result from Reiß and Wystup [17] to calculate the derivatives with respect to the other model parameters. As an example, in a model with constant volatilities and correlations, a derivative with respect to the correlation between two asset prices is given by

\[\frac{\partial V(t_0)}{\partial \rho_{jk}} = S_j(t_0)S_k(t_0)\sigma_j\sigma_k \frac{\partial^2 V(t_0)}{\partial S_j(t_0)\partial S_k(t_0)}(t^* - t_0), \]

(48)

With \(t^* \) the maximum \(t \), with \(t_0 \leq t \leq T \), such that both \(S_j(t) \) and \(S_k(t) \) still influence the payoff function \(\Phi_k \).

3 Applications

We believe that this paper provides relevant contributions to several practical problems. First of all, it offers a multi-currency, multi-asset model description fit for implementation. The model itself is of the Black–Scholes
type with time dependent parameters. The general description of the contract payoff allows for implementations where each instrument is defined through a payoff language. Such a payoff language enables addition of new instruments without additional development of the application. The payoff profiles that are covered by the general form of the contract, in (19) and (28), are the following: European style vanilla options, exchange options, digital options, forward start and cliquet options, options on the n^{th}-best/worst, options on the discretely observed maximum/minimum, most types of mountain range options, discrete barriers and lookbacks, power options and combinations of these. It allows the use of the following prices as underlying assets: stocks prices denominated on domestic currency, foreign currency (quanto), and foreign currency translated to domestic, as well as geometric averages of stocks prices to produce geometric Asian options or geometric basket options. These last two types are not as common in the industry as their arithmetic counterparts, but their prices are still very useful as control variates, which are very effective in reducing the variance of Monte Carlo simulations of the arithmetic versions. To illustrate the breadth of instruments covered by the contract definition above, we provide below a series of examples.

3.1 Performance

As the pricing formula for the contract requires several evaluations of multivariate normal probabilities, it is crucial to weight its computational cost against that of the alternative methods. To calculate the multivariate normal, we used the method developed by Genz [8]. The alternative, as far as we know, is only a Monte Carlo simulation that may, or may not, include variance reduction techniques. However, due to the fact that the convergence of Monte Carlo simulations depends strongly on the payoff profile of the contract, it is impossible to run a performance comparison valid for the contract’s general form (28). Therefore, we shall provide only case based performance analyses in each example of section 3.2. For a performance comparison focused only on the calculation of the multivariate normal probabilities, we refer to Genz [8]. The Genz method also relies on a Monte Carlo simulation but does so in the context of a chain of unidimensional integrals. For this reason, the closed formula prices of the examples below will also show an error term.

In most cases, we have encountered that the closed formula outperforms the Monte Carlo simulation, though to different degrees depending on several factors. The addition of asset prices to the payoff implies an increase in the number of dimensions of both procedures, although it generally weighs heavier on Monte Carlo simulation. The presence of several time points at which stock prices are observed to compose the claim’s payoff greatly increases the dimensionality of the Monte Carlo simulation, degrading thus
its performance. Several time points also have an impact on the closed formula alternative, as they give rise to highly correlated random variables. The complexity of the payoff may require the evaluation of a large number of summands in (37), thus worsening the performance of the closed formula while not necessarily changing the Monte Carlo’s performance.

Finally, the integrals of the parameter functions r, σ and ς typically have closed form solutions, as their definition is usually done as piece-wise linear functions or functions that have indefinite integrals. Therefore, its calculation has a residual impact on the overall computation time. The same is true, by definition, for integrals of δ, θ and ζ functions.

3.2 Examples

Our market setup for the cases included in this section is described as follows. The numéraire asset is chosen to be the asset in which the options pay off. It is the same for all options, and it yields risk free returns at the rate of 5%. We then have 5 currencies with risk free yields, from the first to the last, of 1%, 2%, ..., 5% respectively. The price of each currency is expressed in terms of the numéraire asset (in the natural direction) and they have volatilities, from the first to the last, of 11%, 12%, ..., 15% respectively. The correlation between the currencies’ prices is 20% for all combinations. There are also five equity indexes that yield risk free returns, from the first to the last, of 2%, 4%, ..., 10% respectively. The price of each index is expressed (in the natural direction) in terms of the currency with the same cardinal as the index. All indexes start with a price of 100. The volatilities of each index, from the first to the last, are 22%, 24%, ..., 30% respectively. The correlation between any two indexes is 60%. The correlation between any combination of index and currency is 10%.

We consider four options: a cliquet on the first index, a best of five indexes, a discrete lookback on the first index, and a Himalaya on the first three indexes. All options have a maturity of one year, $T = 1$, $t_0 = 0$.

The cliquet option has five periods of equal length. Hence, it can be viewed as a portfolio of a vanilla at-the-money (spot) option plus four forward start at-the-money (spot) options. As vanillas and forward start options involve only one condition, the cliquet option is evaluated instantly. In fact, in this case, the general formula (37) reduces to the known closed formula for cliquets.

$$
\Phi = \sum_{n=1}^{5} \Phi_n \left(\frac{n}{5} T \right), \quad \Phi_n \left(\frac{n}{5} T \right) = \left(S_1 \left(\frac{n}{5} T \right) - S_1 \left(\frac{n-1}{5} T \right) \right)^+.
$$

The best of five pays off the difference, if positive, between the maximum of the five index values at maturity and 100.
\[\Phi(T) = \left(\max \left(S_1 \left(\frac{t}{12} T \right), S_1 \left(\frac{2}{12} T \right), \ldots, S_1 \left(\frac{12}{12} T \right) \right) - 100 \right)^+ . \]

The discrete lookback pays off the difference, if positive, of the highest stored value of the first index and 100. The index values are stored 12 times during the year at evenly spaced times, starting at 1/12.

\[\Phi(T) = \left(\max \left(S_1 \left(\frac{1}{12} T \right), S_1 \left(\frac{2}{12} T \right), \ldots, S_1 \left(\frac{12}{12} T \right) \right) - 100 \right)^+ . \]

At the end of each period of 1/3 units of time, the Himalaya option pays off the best return of the three first indexes over that period times 100, but only if the best return is positive. The indexes that pay out are not considered for any of the subsequent periods.

\[\Phi = \sum_{n=1}^{3} \Phi_n \left(\frac{n}{3} T \right) , \]

\[\Phi_n \left(\frac{n}{3} T \right) = 100 \max \left(0, \eta_{n,1}, S_1 \left(\frac{n}{3} T \right), \eta_{n,2}, S_2 \left(\frac{n}{3} T \right), \eta_{n,3}, S_3 \left(\frac{n}{3} T \right) \right) , \]

where \(\eta_{n,i} \) equals 0 if the asset \(i \) has determined the payout of one of the payments at any time \(t < \frac{n}{3} T \), and 1 otherwise.

The parameterization of these payoff functions, including the set definition for each of the terms in the payoff summation, is given in the appendix.

To assess the performance of the closed formula, we benchmark the results against a Monte Carlo experiment. The results are shown in Table 2. The Table shows a price estimate and a 99% confidence error bound expressed in percentage of the price estimate. The pricing routines were allowed to run for 10 seconds and for five minutes.

<table>
<thead>
<tr>
<th></th>
<th>Cliquet</th>
<th>Best of 5</th>
<th>Lookback</th>
<th>Himalaya</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC</td>
<td>18.27%</td>
<td>19.16%</td>
<td>13.50%</td>
<td>174.46%</td>
</tr>
<tr>
<td></td>
<td>0.53%</td>
<td>0.43%</td>
<td>1.03%</td>
<td>0.57%</td>
</tr>
<tr>
<td>CF</td>
<td>18.33%</td>
<td>19.16%</td>
<td>13.47%</td>
<td>173.90%</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>0.29%</td>
<td>1.24%</td>
<td>0.05%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>calculation time = 5'</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC</td>
</tr>
<tr>
<td>CF</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

The results show that the closed formula is superior in all cases but the lookback. The cliquet case just shows that the general formula is able to produce the already known formulas, namely for vanilla options, exchange options, forward starts, digitals and others of European style that constitute
unidimensional problems. The best-of-5 is an example with low correlation between random variables, in this case between different stocks, and only one time horizon, the maturity date. The closed formula increases the precision by a factor of 1.45(=0.427%/0.294%). Hence, considering the rate of convergence of the Monte Carlo, the closed formula is 2.11(=1.45^2) times faster. In the Himalaya case, the performance is even more extreme with the precision increasing by a factor of 10.52(=0.571%/0.543%) or, equivalently, 111(=10.52^2) times faster. The Himalaya is a case in which the closed formula performs particularly well. Even though it requires the evaluation of 63 cumulative probability functions, they are of low dimensionality, 6.9 on average, while the Monte Carlo engine needs to account for a 9 dimensional problem (3 stocks observed at 3 time horizons). In the Lookback case, the dimensionality was 12 for both methods and required the evaluation of 13 cumulative probability functions.

The Lookback result came as a surprise as the closed formula performed worse than in the Monte Carlo simulation. To figure out what was causing the poor performance, we applied two variations to the initial problem. We first diminished the number of observation points to 4 to test if the dimensionality constituted a problem. Then we enlarged the time between two observations from 1 month to 3 months. The results for 5 minute simulations are listed in Table 3.

<table>
<thead>
<tr>
<th>Observations</th>
<th>12</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δt = 1/12</td>
<td>MC</td>
<td>CF</td>
</tr>
<tr>
<td></td>
<td>13.50</td>
<td>0.19%</td>
</tr>
<tr>
<td>Δt = 3/12</td>
<td>20.99</td>
<td>0.20%</td>
</tr>
</tbody>
</table>

These results lead us to conclude that the closed formula does not provide better performance when the time between observations is small and starts to perform better the larger the time between observations. Small intervals between observations give rise to highly correlated random variables, the asset prices at each observation moment. Such cases are known to carry convergence problems for numerical procedures, and thus it is not surprising that the multivariate normal numerical procedure performance shows degradation. What is surprising though is that it shows worst results than the Monte Carlo simulation, which also suffers from the same effect as it is also a numerical procedure.

4 Conclusion and Future Research

The results above produce a closed formula that generalizes a large class of multivariate European style options, ranging from the plain vanilla to mount-
tain range options. It does so in a generalized Black-Scholes model, with
time dependent parameters, able to cope with an arbitrary number of cur-
currency zones. It introduces the concept of abstract assets as an intermediate
random variable that allows the formula to cover variations like geometric
averages, baskets, asset prices expressed in foreign currencies, and forward
start features. In fact, abstract assets are a useful generalization of the asset
concept and should be considered as a replacement of plain assets in Monte
Carlo engines.

The closed formula performs better than the alternative Monte Carlo
simulations in most cases, improving performance by more than 100 times
in the most extreme. However, for problems with highly correlated ran-
dom variables the performance was worse than Monte Carlo’s. The exam-
pies show that even when the closed formula requires the evaluation of a
large number of cumulative probability functions, it still outperforms Monte
Carlo.

As a byproduct of the definition of the closed formula, a language for
option payoff definition arises. This language acquires extreme importance
in industrial systems as it enables the decoupling of the payoff definition
function from the pricing function. Hence, the pricing function is able to
price any option as long as its payoff is expressable in terms of the language.

Future research should focus on including other features of options for
which there are closed formulas, namely continuous barrier and lookback
features. The problem with including barrier options in the general formula
above is that it requires the knowledge of the joint distribution of a Brownian
motion with time dependent drift and its running maximum. The results on
Brownian motion with constant drift are applicable neither to models with
time dependent parameters nor to abstract asset’s dynamics.

Appendix

The payoff parameterization of the options considered in the examples sec-
tion above follows expression (19) and uses that same notation. The C_i
set definition follows expression (28) and also uses its notation. For each term
in the payoff (19), it is still required to select if the set C_i or its complement,$\overline{C_i}$, determines the payment.

The index of the *numéraire* asset is $I_0 = 0$. As the examples do not
include payments of currency prices, we index the underlying equity indexes
with $I_1, \ldots, 5$.

Cliquet Option

This option payoff is composed of 10 terms. The terms follow a structure
that can be summarized by iterating $t = 0.2, 0.4, 0.6, 0.8, 1$. In this case
the sets C_i have only one condition for all terms, i.e., $m_i = 1.$
Term $i = 1, 3, 5, 7, 9$ *(strike payment for each t)*

<table>
<thead>
<tr>
<th>c_i</th>
<th>I_i</th>
<th>t_i</th>
<th>T_i</th>
<th>Set Complement Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1</td>
<td>$t-0.2$</td>
<td>t</td>
<td>false</td>
</tr>
</tbody>
</table>

Set C_i

<table>
<thead>
<tr>
<th>I_{lu}</th>
<th>t_{lu}</th>
<th>I_{ld}</th>
<th>t_{ld}</th>
<th>h_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$t-0.2$</td>
<td>1</td>
<td>t</td>
<td>1</td>
</tr>
</tbody>
</table>

Term $i = 2, 4, 6, 8, 10$ *(index price reception for each t)*

<table>
<thead>
<tr>
<th>c_i</th>
<th>I_i</th>
<th>t_i</th>
<th>T_i</th>
<th>Set Complement Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>t</td>
<td>t</td>
<td>false</td>
</tr>
</tbody>
</table>

Set C_i

<table>
<thead>
<tr>
<th>I_{lu}</th>
<th>t_{lu}</th>
<th>I_{ld}</th>
<th>t_{ld}</th>
<th>h_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$t-0.2$</td>
<td>1</td>
<td>t</td>
<td>1</td>
</tr>
</tbody>
</table>

Best of 5

This option payoff is composed of 6 terms, five for the reception of each of the five possible maximum index prices at maturity, and one payment of the exercise price 100.

The terms for each of the five index payments follow the following rule. Let $a_i = 1, \ldots, 5$ and let $b_{i,1}, \ldots, b_{i,4}$ be the elements of the set $\{1,2,3,4,5\} \setminus a_i$.

The terms for reception of each of the five index prices is parameterized by

<table>
<thead>
<tr>
<th>c_i</th>
<th>I_i</th>
<th>t_i</th>
<th>T_i</th>
<th>Set Complement Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a_i</td>
<td>1</td>
<td>1</td>
<td>false</td>
</tr>
</tbody>
</table>

Set C_i

<table>
<thead>
<tr>
<th>I_{lu}</th>
<th>t_{lu}</th>
<th>I_{ld}</th>
<th>t_{ld}</th>
<th>h_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>a_i</td>
<td>1</td>
<td>1/100</td>
</tr>
<tr>
<td>$b_{i,1}$</td>
<td>1</td>
<td>a_i</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$b_{i,2}$</td>
<td>1</td>
<td>a_i</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$b_{i,3}$</td>
<td>1</td>
<td>a_i</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$b_{i,4}$</td>
<td>1</td>
<td>a_i</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The term of the strike payment is parameterized as

Term $i=6$ *(strike payment)*

<table>
<thead>
<tr>
<th>c_i</th>
<th>I_i</th>
<th>t_i</th>
<th>T_i</th>
<th>Set Complement Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>-100</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>true</td>
</tr>
</tbody>
</table>

Set C_6

<table>
<thead>
<tr>
<th>I_{lu}</th>
<th>t_{lu}</th>
<th>I_{ld}</th>
<th>t_{ld}</th>
<th>h_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>a_2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>a_3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>a_4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>a_5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>
Discrete Lookback

This option payoff is composed of 13 terms, 12 for the reception of each of the 12 possible maximum values of the index prices during the life of the option, and one payment of the exercise price 100.

The terms for each of the 12 index payments follow the following rule. Let \(u_i = 1/12, 2/12, \ldots, 12/12 \) and let \(v_{i,1}, \ldots, v_{i,11} \) be the elements of the set \(\{1/12, 2/12, \ldots, 12/12\} \setminus u_i \).

The terms for reception of each of the 12 possible maximum index prices is parameterized by

\[
\text{Term } i = 1, \ldots, 12 \text{ (index price reception)}
\]

<table>
<thead>
<tr>
<th>(c_i)</th>
<th>(I_i)</th>
<th>(t_i)</th>
<th>(T_i)</th>
<th>Set Complement Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(1)</td>
<td>(u_i)</td>
<td>(1)</td>
<td>(\text{false})</td>
</tr>
</tbody>
</table>

\[
\begin{array}{cccc}
I_{t_0} & t_{t_0} & I_{t_1} & t_{t_1} \\
0 & 0 & 1 & u_i & 1/100 \\
1 & v_{i,1} & 1 & u_i & 1 \\
1 & v_{i,2} & 1 & u_i & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & v_{i,11} & 1 & u_i & 1 \\
\end{array}
\]

The term of the strike payment is parameterized as

\[
\text{Term } i=13 \text{ (strike payment)}
\]

<table>
<thead>
<tr>
<th>(c_i)</th>
<th>(I_i)</th>
<th>(t_i)</th>
<th>(T_i)</th>
<th>Set Complement Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-100)</td>
<td>(0)</td>
<td>(0)</td>
<td>(1)</td>
<td>(\text{true})</td>
</tr>
</tbody>
</table>

\[
\begin{array}{cccc}
I_{t_0} & t_{t_0} & I_{t_1} & t_{t_1} \\
1 & u_1 & 0 & 0 & 100 \\
1 & u_2 & 0 & 0 & 100 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & u_{12} & 0 & 0 & 100 \\
\end{array}
\]

Himalaya

This option has payments at three distinct times. For each of the periods that end at these payment dates, only the period return matters and not the accumulated return since inception. We represent each of these returns with an abstract asset price of the form

\[
S_j = S_{j,T}/S_{j,T-1},
\]

the ratio of two versions of the same price process frozen at different moments in time. The numerator version, frozen at the end and the denominator at the beginning of the reference return period. As we have 3 assets and 3 return periods, we have 9 abstract assets for all combinations of both.
We shall index the abstract assets that represent the first period return on the first 3 assets by \(a_{1,i} = 1, 2, 3 \). The returns of the second period returns are indexed as \(a_{2,i} = 4, 5, 6 \). Finally, the returns of the third period are indexed by \(a_{3,i} = 7, 8, 9 \), with \(i = 1, 2, 3 \). We also have \(b_{j,i,1}, b_{j,i,2} \), the elements of the set \(\{a_{j,1}, a_{j,2}, a_{j,3}\} \setminus a_{j,i} \).

For the payments at the end of the first period, at \(t = T/3 \) we have 3 terms in the payoff function.

Term \(i = 1, 2, 3 \) (index price return reception, \(t = T/3 \))

<table>
<thead>
<tr>
<th>(c_i)</th>
<th>(I_i)</th>
<th>(t_i)</th>
<th>(T_i)</th>
<th>Set Complement Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>(a_{1,i})</td>
<td>1</td>
<td>1</td>
<td>false</td>
</tr>
</tbody>
</table>

Sets \(C_i \), with \(g_1, g_2 \) the elements of all the possible permutations of the elements of the set \{1, 2\}

<table>
<thead>
<tr>
<th>(I_{I_u})</th>
<th>(I_{t_u})</th>
<th>(I_{t_d})</th>
<th>(I_{t_d})</th>
<th>(h_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_{1,i})</td>
<td>0</td>
<td>(a_{1,i})</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(b_{1,i,1})</td>
<td>1</td>
<td>(a_{1,i})</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(b_{1,i,2})</td>
<td>1</td>
<td>(a_{1,i})</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

For the payments at the end of the first period, at \(t = 2T/3 \) we have 12 terms in the payoff function. For each of the 3 possible return payments there are 4 terms, all with the same asset payment and the 4 sets \(C_i \) below.

Term \(i \), with \(i = 1, 2, 3 \) (index price return reception, \(t = 2T/3 \))

<table>
<thead>
<tr>
<th>(c_i)</th>
<th>(I_i)</th>
<th>(t_i)</th>
<th>(T_i)</th>
<th>Set Complement Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>(a_{2,i})</td>
<td>2</td>
<td>2</td>
<td>false</td>
</tr>
</tbody>
</table>

Sets \(C_i \), with \(g_1, g_2 \) the elements of all the possible permutations of the elements of the set \{1, 2\}

<table>
<thead>
<tr>
<th>(I_{I_u})</th>
<th>(I_{t_u})</th>
<th>(I_{t_d})</th>
<th>(I_{t_d})</th>
<th>(h_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_{2,i})</td>
<td>1</td>
<td>(a_{2,i})</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(b_{2,i,1})</td>
<td>2</td>
<td>(a_{2,i})</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(b_{2,i,2})</td>
<td>2</td>
<td>(a_{2,i})</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(a_{1,i})</td>
<td>1</td>
<td>(b_{1,i,1})</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(a_{1,i})</td>
<td>1</td>
<td>(b_{1,i,2})</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(I_{I_u})</th>
<th>(I_{t_u})</th>
<th>(I_{t_d})</th>
<th>(I_{t_d})</th>
<th>(h_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_{2,i})</td>
<td>1</td>
<td>(a_{2,i})</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(b_{2,i,1})</td>
<td>2</td>
<td>(a_{2,i})</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(b_{2,i,2})</td>
<td>2</td>
<td>(a_{2,i})</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(a_{1,i})</td>
<td>1</td>
<td>(a_{1,i})</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(a_{1,i})</td>
<td>1</td>
<td>(a_{1,i})</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

For the payments at the end of the first period, at \(t = 3T/3 \) we have 48 terms in the payoff function. For each of the 3 possible return payments there are 16 terms, all with the same asset payment and the 16 sets \(C_i \) below.

Term \(i \), with \(i = 1, 2, 3 \) (index price return reception, \(t = 3T/3 \))

<table>
<thead>
<tr>
<th>(c_i)</th>
<th>(I_i)</th>
<th>(t_i)</th>
<th>(T_i)</th>
<th>Set Complement Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>(a_{3,i})</td>
<td>3</td>
<td>3</td>
<td>false</td>
</tr>
</tbody>
</table>

Sets \(C_i \), with \(g_1, g_2 \) the elements of all the possible permutations of the
elements of the set \(\{1, 2\} \), and \(h_1, h_2 \) also the elements of a similar permutation.

<table>
<thead>
<tr>
<th>(I_{i_a})</th>
<th>(t_{i_a})</th>
<th>(I_{i_b})</th>
<th>(t_{i_b})</th>
<th>(h_1)</th>
<th>(I_{i_c})</th>
<th>(t_{i_c})</th>
<th>(I_{i_d})</th>
<th>(t_{i_d})</th>
<th>(h_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_{3,1})</td>
<td>1</td>
<td>(a_{3,1})</td>
<td>2</td>
<td>1</td>
<td>(a_{3,1})</td>
<td>1</td>
<td>(a_{3,1})</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(b_{3,1,1})</td>
<td>2</td>
<td>(a_{3,1})</td>
<td>2</td>
<td>1</td>
<td>(b_{3,1,1})</td>
<td>2</td>
<td>(a_{3,1})</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(b_{3,1,2})</td>
<td>2</td>
<td>(a_{3,1})</td>
<td>2</td>
<td>1</td>
<td>(b_{3,1,2})</td>
<td>2</td>
<td>(a_{3,1})</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(a_{1,1})</td>
<td>1</td>
<td>(b_{1,1,1})</td>
<td>1</td>
<td>1</td>
<td>(a_{1,1})</td>
<td>1</td>
<td>(b_{1,1,1})</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(a_{1,1})</td>
<td>1</td>
<td>(b_{1,1,2})</td>
<td>1</td>
<td>1</td>
<td>(a_{1,1})</td>
<td>1</td>
<td>(b_{1,1,2})</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(a_{2,1})</td>
<td>2</td>
<td>(b_{2,1,1})</td>
<td>2</td>
<td>1</td>
<td>(a_{2,1})</td>
<td>2</td>
<td>(b_{2,1,1})</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(a_{2,2})</td>
<td>2</td>
<td>(b_{2,1,2})</td>
<td>2</td>
<td>1</td>
<td>(a_{2,2})</td>
<td>2</td>
<td>(b_{2,1,2})</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(b_{3,1,1})</td>
<td>2</td>
<td>(a_{3,1})</td>
<td>2</td>
<td>1</td>
<td>(b_{3,1,1})</td>
<td>2</td>
<td>(a_{3,1})</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(b_{3,1,2})</td>
<td>2</td>
<td>(a_{3,1})</td>
<td>2</td>
<td>1</td>
<td>(b_{3,1,2})</td>
<td>2</td>
<td>(a_{3,1})</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(b_{1,1,1})</td>
<td>2</td>
<td>(a_{2,1})</td>
<td>2</td>
<td>1</td>
<td>(b_{1,1,1})</td>
<td>2</td>
<td>(a_{2,1})</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(b_{1,1,2})</td>
<td>2</td>
<td>(a_{2,1})</td>
<td>2</td>
<td>1</td>
<td>(b_{1,1,2})</td>
<td>2</td>
<td>(a_{2,1})</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(a_{1,1})</td>
<td>1</td>
<td>(b_{2,1,1})</td>
<td>2</td>
<td>1</td>
<td>(a_{1,1})</td>
<td>1</td>
<td>(b_{2,1,1})</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(a_{1,1})</td>
<td>1</td>
<td>(b_{2,1,2})</td>
<td>2</td>
<td>1</td>
<td>(a_{1,1})</td>
<td>1</td>
<td>(b_{2,1,2})</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(a_{2,1})</td>
<td>2</td>
<td>(b_{2,1,1})</td>
<td>2</td>
<td>1</td>
<td>(a_{2,1})</td>
<td>2</td>
<td>(b_{2,1,1})</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(a_{2,2})</td>
<td>2</td>
<td>(b_{2,1,2})</td>
<td>2</td>
<td>1</td>
<td>(a_{2,2})</td>
<td>2</td>
<td>(b_{2,1,2})</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

25
<table>
<thead>
<tr>
<th>I_{i_n}</th>
<th>t_{i_n}</th>
<th>I_{i_d}</th>
<th>t_{i_d}</th>
<th>h_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_{3,i}$</td>
<td>1</td>
<td>$a_{3,i}$</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>$b_{3,i,1}$</td>
<td>2</td>
<td>$a_{3,i}$</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>$b_{3,i,2}$</td>
<td>2</td>
<td>$b_{3,i}$</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>$b_{1,i,1}$</td>
<td>1</td>
<td>$a_{1,i}$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$b_{1,i,2}$</td>
<td>1</td>
<td>$a_{1,i}$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_{1,i}$</td>
<td>1</td>
<td>$a_{1,i}$</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$b_{2,i,1}$</td>
<td>2</td>
<td>$a_{2,i}$</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>$b_{2,i,2}$</td>
<td>2</td>
<td>$a_{2,i}$</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>$a_{2,i}$</td>
<td>2</td>
<td>$a_{2,i}$</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

References

26

<table>
<thead>
<tr>
<th>No.</th>
<th>Author/Title</th>
<th>Year</th>
</tr>
</thead>
</table>
| 134 | Herrmann-Pillath, Carsten
 Entropy, Function and Evolution: Naturalizing Peircean Semiosis | 2010 |
| 133 | Bannier, Christina E. / Behr, Patrick / Güttler, Andre
 Rating opaque borrowers: why are unsolicited ratings lower? | 2009 |
| 132 | Herrmann-Pillath, Carsten
 Social Capital, Chinese Style: Individualism, Relational Collectivism and the Cultural Embeddedness of the Institutions-Performance Link | 2009 |
| 131 | Schäffler, Christian / Schmaltz, Christian
 Market Liquidity: An Introduction for Practitioners | 2009 |
| 130 | Herrmann-Pillath, Carsten
| 129 | Hankir, Yassin / Rauch, Christian / Umber, Marc
 It’s the Market Power, Stupid! – Stock Return Patterns in International Bank M&A | 2009 |
| 128 | Herrmann-Pillath, Carsten
 Outline of a Darwinian Theory of Money | 2009 |
| 127 | Cremers, Heinz / Walzner, Jens
 Modellierung des Kreditrisikos im Portfoliobevorrat | 2009 |
| 126 | Cremers, Heinz / Walzner, Jens
 Modellierung des Kreditrisikos im Einwertpapierfall | 2009 |
| 125 | Heidorn, Thomas / Schmaltz, Christian
 Interne Transferpreise für Liquidität | 2009 |
| 124 | Bannier, Christina E. / Hirsch, Christian
 The economic function of credit rating agencies - What does the watchlist tell us? | 2009 |
| 123 | Herrmann-Pillath, Carsten
 A Neurolinguistic Approach to Performativity in Economics | 2009 |
| 122 | Winkler, Adalbert / Vogel, Ursula
 Finanzierungsstrukturen und makroökonomische Stabilität in den Ländern Südosteuropas, der Türkei und in den GUS-Staaten | 2009 |
| 121 | Heidorn, Thomas / Rupprecht, Stephan
 Einführung in das Kapitalstrukturmanagement bei Banken | 2009 |
| 120 | Rossbach, Peter
 Die Rolle des Internets als Informationsbeschaffungsmedium in Banken | 2009 |
| 119 | Herrmann-Pillath, Carsten
 Diversity Management and diversitätstätsbasiertes Controlling: Von der „Diversity Scorecard“ zur „Open Balanced Scorecard“ | 2009 |
| 118 | Hölscher, Luise / Clasen, Sven
 Erfolgsfaktoren von Private Equity Fonds | 2009 |
| 117 | Bannier, Christina E.
 Is there a hold-up benefit in heterogeneous multiple bank financing? | 2009 |
| 116 | Rößbach, Peter / Gießamer, Dirk
 Ein eLearning-System zur Unterstützung der Wissensvermittlung von Web-Entwicklern in Sicherheitsthemen | 2009 |
| 115 | Herrmann-Pillath, Carsten
 Kulturelle Hybridisierung und Wirtschaftsentwicklung in China | 2009 |
| 114 | Schalast, Christoph
| 113 | Schalast, Christoph / Alram, Johannes
 Konstruktion einer Anleihe mit hypothekarischer Besicherung | 2009 |
| 112 | Schalast, Christoph / Bolder, Markus / Radünz, Claus / Siepmann, Stephanie / Weber, Thorsten
 Transaktionen und Servicing in der Finanzkrise: Berichte und Referate des Frankfurt School NPL Forums 2008 | 2009 |
| 111 | Werner, Karl / Moormann, Jürgen
 Efficiency and Profitability of European Banks – How Important Is Operational Efficiency? | 2009 |
| 110 | Herrmann-Pillath, Carsten
 Moralische Gefühle als Grundlage einer wohlstandsbeschaffenden Wettbewerbsordnung: Ein neuer Ansatz zur erforschung von Sozialkapital und seine Anwendung auf China | 2009 |
108. Herrmann-Pillath, Carsten
Neuroeconomics, Naturalism and Language 2008

107. Schalast, Christoph / Benita, Barten
Private Equity und Familienunternehmen – eine Untersuchung unter besonderer Berücksichtigung deutscher Maschinen- und Anlagenbaunnehmen 2008

106. Bannier, Christina E. / Grote, Michael H.

105. Herrmann-Pillath, Carsten
The Naturalistic Turn in Economics: Implications for the Theory of Finance 2008

104. Schalast, Christoph (Hrsg.) / Schanz, Kay-Michael / Scholl, Wolfgang
Aktionärsschutz in der AG falsch verstanden? Die Leica-Entscheidung des LG Frankfurt am Main 2008

103. Bannier, Christina E. / Müsch, Stefan
Die Auswirkungen der Subprime-Krise auf den deutschen LBO-Markt für Small- und MidCaps 2008

102. Cremers, Heinz / Vetter, Michael
Das IRB-Modell des Kreditrisikos im Vergleich zum Modell einer logarithmisch normalverteilten Verlustfunktion 2008

101. Heidorn, Thomas / Pleißner, Mathias
Determinanten Europäischer CMBS Spreads. Ein empirisches Modell zur Bestimmung der Risikoaufschläge von Commercial Mortgage-Backed Securities (CMBS) 2008

100. Schalast, Christoph (Hrsg.) / Schanz, Kay-Michael / Scholl, Wolfgang
Schaeffler KG/Continental AG im Lichte der CSX Corp.-Entscheidung des US District Court for the Southern District of New York 2008

99. Hölscher, Luise / Haug, Michael / Schweinberger, Andreas
Analyse von Steueramnestiedaten 2008

98. Heimer, Thomas / Arend, Sebastian
The Genesis of the Black-Scholes Option Pricing Formula 2008

97. Heimer, Thomas / Hölscher, Luise / Werner, Matthias Ralf
Access to Finance and Venture Capital for Industrial SMEs 2008

96. Böttger, Marc / Guthoff, Anja / Heidorn, Thomas
Loss Given Default Modelle zur Schätzung von Recovery Rates 2008

95. Almer, Thomas / Heidorn, Thomas / Schmaltz, Christian
The Dynamics of Short- and Long-Term CDS-spreads of Banks 2008

94. Barthel, Erich / Wollersheim, Jutta
Kulturunterschiede bei Mergers & Acquisitions: Entwicklung eines Konzeptes zur Durchführung einer Cultural Due Diligence 2008

93. Heidorn, Thomas / Kunze, Wolfgang / Schmaltz, Christian
Liquiditätsmodellierung von Kreditzusagen (Term Facilities and Revolver) 2008

92. Burger, Andreas
Produktivität und Effizienz in Banken – Terminologie, Methoden und Status quo 2008

91. Lochel, Horst / Pecher, Florian
The Strategic Value of Investments in Chinese Banks by Foreign Financial Institutions 2008

90. Schalast, Christoph / Morgenschweis, Bernd / Sprengesser, Hans Otto / Ockens, Klaas / Stachuletz, Rainer / Safran, Robert

89. Schalast, Christoph / Stralkowski, Ingo
10 Jahre deutsche Buyouts 2008

88. Bannier, Christina E. / Hirsch, Christian
The Economics of Rating Watchlists: Evidence from Rating Changes 2007

87. Demidova-Menzel, Nadeshda / Heidorn, Thomas
Gold in the Investment Portfolio 2007

86. Hölscher, Luise / Rosenthal, Johannes
Leistungsmessung der Internen Revision 2007

85. Bannier, Christina / Hänsel, Dennis
Determinants of banks' engagement in loan securitization 2007

84. Bannier, Christina
“Smoothing“ versus ”Timeliness“ - Wann sind stabile Ratings optimal und welche Anforderungen sind an optimale Berichtsregeln zu stellen? 2007
83. Bannier, Christina E.
Heterogeneous Multiple Bank Financing: Does it Reduce Inefficient Credit-Renegotiation Incidences? 2007

82. Cremers, Heinz / Lörhr, Andreas
Beschreibung und Bewertung strukturierter Produkte unter besonderer Berücksichtigung verschiedener Marktszenarien 2007

81. Demidova-Menzel, Nadeshda / Heidorn, Thomas
Commodities in Asset Management 2007

80. Cremers, Heinz / Walzner, Jens
Risikosteuerung mit Kreditderivaten unter besonderer Berücksichtigung von Credit Default Swaps 2007

79. Cremers, Heinz / Traugaber, Patrick
Handlungsalternativen einer Genossenschaftsbank im Investmentprozess unter Berücksichtigung der Risikotragfähig-

78. Gerdesmeier, Dieter / Roffia, Barbara
Monetary Analysis: A VAR Perspective 2007

77. Cremers, Heinz / Kaiser, Dieter G. / Muschiol, Andrea
Portfoliooptimierung mit Hedgefonds unter Berücksichtigung höherer Momente der Verteilung 2007

76. Jobe, Clemens J. / Ockens, Klaus / Safran, Robert / Schalast, Christoph
Work-Out und Servicing von notleidenden Krediten – Berichte und Referate des HfB-NPL Servicing Forums 2006

75. Abrar, Kamyar / Schalast, Christoph
Fusionskontrolle in dynamischen Netzsektoren am Beispiel des Breitbandkabelsektors 2006

74. Schalast, Christoph / Schanz, Kay-Michael
Wertpapierprospekte: Marktinformationspublizität nach EU-Prospektverordnung und Wertpapierprospektgesetz 2005

73. Dickler, Robert A. / Schalast, Christoph

72. Belke, Angar / Polleit, Thorsten
How the ECB and the US Fed set interest rates 2006

71. Heidorn, Thomas / Hoppe, Christian / Kaiser, Dieter G.
Heterogenität von Hedgefondsindizes 2006

70. Schalast, Christoph / Schanz, Kay-Michael
Niederschlagsderivatve 2005

69. Heidorn, Thomas / Hoppe, Christian / Kaiser, Dieter G.
Measures of excess liquidity 2005

68. Heidorn, Thomas / Hoppe, Christian / Kaiser, Dieter G.
Modernisierung der Wasserwirtschaft im Spannungsfeld von Umweltschutz und Wettbewerb – Braucht Deutschland eine Rechtsgrundlage für die Vergabe von Wasserversorgungskonzessionen? – 2005

67. Belke, Angar / Polleit, Thorsten
(How) Do Stock Market Returns React to Monetary Policy? An ARDL Cointegration Analysis for Germany 2005

66. Daynes, Christian / Schalast, Christoph
Aktuelle Rechtsfragen des Bank- und Kapitalmarktrechts II: Distressed Debt - Investing in Deutschland 2005

65. Gerdesmeier, Dieter / Polleit, Thorsten
Unternehmen im Prime Standard - “Staying Public” oder “Going Private”? - Nutzenanalyse der Börsennotiz - 2005

64. Becker, Gernot M. / Harding, Perham / Hölscher, Luise
Financing the Embedded Value of Life Insurance Portfolios 2005

63. Schalast, Christoph
Modernisierung der Wasserwirtschaft im Spannungsfeld von Umweltschutz und Wettbewerb – Braucht Deutschland eine Rechtsgrundlage für die Vergabe von Wasserversorgungskonzessionen? – 2005

62. Bayer, Marcus / Cremers, Heinz / Kluß, Norbert
Wertsicherungsstrategien für das Asset Management 2005

61. Lochel, Horst / Polleit, Thorsten
A case for money in the ECB monetary policy strategy 2005

60. Richard, Jörg / Schalast, Christoph / Schanz, Kay-Michael

59. Heun, Michael / Schlink, Torsten
Early Warning Systems of Financial Crises - Implementation of a currency crisis model for Uganda 2004

58. Heimer, Thomas / Köhler, Thomas
Auswirkungen des Basill II Akkords auf österreichische KMU 2004

57. Heidorn, Thomas / Meyer, Bernd / Pietrowiak, Alexander
Performanceeffekte nach Directors Dealings in Deutschland, Italien und den Niederlanden 2004

56. Gerdesmeier, Dieter / Roffia, Barbara
The Relevance of real-time data in estimating reaction functions for the euro area 2004
55. Barthel, Erich / Gierig, Rauno / Kühn, Ilmhart-Wolfram
Unterschiedliche Ansätze zur Messung des Humankapitals
2004

54. Anders, Dietmar / Binder, Andreas / Hesdahl, Ralf / Schalast, Christoph / Thöne, Thomas
Aktuelle Rechtsfragen des Bank- und Kapitalmarktrechts I:
Non-Performing-Loans / Faule Kredite - Handel, Work-Out, Outsourcing und Securitisation
2004

53. Polleit, Thorsten
The Slowdown in German Bank Lending – Revisited
2004

52. Heidorn, Thomas / Siragusano, Tindaro
Die Anwendbarkeit der Behavioral Finance im Devisenmarkt
2004

51. Schütze, Daniel / Schalast, Christoph (Hrsg.)
Wider die Verschleudерung von Unternehmen durch Pfandversteigerung
2004

50. Gerhold, Mirko / Heidorn, Thomas
Investitionen und Emissionen von Convertible Bonds (Wandelanleihen)
2004

49. Chevalier, Pierre / Heidorn, Thomas / Krieger, Christian
Temperaturerivate zur strategischen Absicherung von Beschaffungs- und Absatzrisiken
2003

48. Becker, Gernot M. / Seeger, Norbert
Internationale Cash Flow-Rechnungen aus Eigner- und Gläubigersicht
2003

47. Boenkost, Wolfram / Schmidt, Wolfgang M.
Notes on convexity and quanto adjustments for interest rates and related options
2003

46. Hess, Dieter
Determinants of the relative price impact of unanticipated Information in U.S. macroeconomic releases
2003

45. Cremers, Heinz / Klüf, Norbert / König, Markus
Incentive Fees. Erfolgsabhängige Vergütungsmodelle deutscher Publikumsfonds
2003

44. Heidorn, Thomas / König, Lars
Investitionen in Collateralized Debt Obligations
2003

43. Kahlert, Holger / Seeger, Norbert
Bilanzierung von Unternehmenszusammenschlüssen nach US-GAAP
2003

42. Beiträge von Studierenden des Studiengangs BBA 012 unter Begleitung von Prof. Dr. Norbert Seeger
Rechnungslegung im Umbruch - HGB-Bilanzierung im Wettbewerb mit den internationalen Standards nach IAS und US-GAAP
2003

41. Overbeck, Ludger / Schmidt, Wolfgang
Modeling Default Dependence with Threshold Models
2003

40. Balthasar, Daniel / Cremers, Heinz / Schmidt, Michael
Portfoliooptimierung mit Hedge Fonds unter besonderer Berücksichtigung der Risikokomponente
2002

39. Heidorn, Thomas / Kantwill, Jens
Eine empirische Analyse der Spreadunterschiede von Festsatzanleihen zu Floatern im Euroraum und deren Zusammenhang zum Preis eines Credit Default Swaps
2002

38. Böttcher, Henner / Seeger, Norbert
Bilanzierung von Finanzderivaten nach HGB, EstG, IAS und US-GAAP
2003

37. Moormann, Jürgen
Terminologie und Glossar der Bankinformatik
2002

36. Heidorn, Thomas
Bewertung von Kreditprodukten und Credit Default Swaps
2001

35. Heidorn, Thomas / Weier, Sven
Einführung in die fundamentale Aktienanalyse
2001

34. Seeger, Norbert
International Accounting Standards (IAS)
2001

33. Moormann, Jürgen / Stehling, Frank
Strategic Positioning of E-Commerce Business Models in the Portfolio of Corporate Banking
2001

32. Sokolovsky, Zbynek / Strohhecker, Jürgen
Fit für den Euro, Simulationsbasierte Euro-Maßnahmenplanung für Dresdner-Bank-Geschäftsstellen
2001

31. Roßbach, Peter
Behavioral Finance - Eine Alternative zur vorherrschenden Kapitalmarkttheorie?
2001

30. Heidorn, Thomas / Jaster, Oliver / Willeitner, Ulrich
Event Risk Covenants
2001

29. Biswas, Rita / Löchel, Horst
Recent Trends in U.S. and German Banking: Convergence or Divergence?
2001
28. Eberle, Günter Georg / Löchel, Horst
Die Auswirkungen des Übergangs zum Kapitaldeckungsverfahren in der Rentenversicherung auf die Kapitalmärkte 2001
27. Heidorn, Thomas / Klein, Hans-Dieter / Siebrecht, Frank
Economic Value Added zur Prognose der Performance europäischer Aktien 2000
26. Cremers, Heinz
Konvergenz der binomialen Optionspreismodelle gegen das Modell von Black/Scholes/Merton 2000
25. Löchel, Horst
Die ökonomischen Dimensionen der 'New Economy' 2000
24. Frank, Axel / Moormann, Jürgen
Grenzen des Outsourcing: Eine Exploration am Beispiel von Direktbanken 2000
23. Heidorn, Thomas / Schmidt, Peter / Seiler, Stefan
Neue Möglichkeiten durch die Namensaktie 2000
22. Böger, Andreas / Heidorn, Thomas / Graf Waldstein, Philipp
Hybrides Kernkapital für Kreditinstitute 2000
21. Heidorn, Thomas
Entscheidungsorientierte Mindestmargenkalkulation 2000
20. Wolf, Birgit
Die Eigenmittelkonzeption des § 10 KWG 2000
19. Cremers, Heinz / Robé, Sophie / Thiele, Dirk
Beta als Risikomaß - Eine Untersuchung am europäischen Aktienmarkt 2000
18. Cremers, Heinz
Optionspreisbestimmung 1999
17. Cremers, Heinz
Value at Risk-Konzepte für Marktrisiken 1999
Gründung einer deutschen Strombörse für Elektrizitätsderivate 1999
15. Deister, Daniel / Ehrlicher, Sven / Heidorn, Thomas
CatBonds 1999
14. Jochum, Eduard
Hoshin Kanri / Management by Policy (MbP) 1999
13. Heidorn, Thomas
Kreditderivate 1999
12. Heidorn, Thomas
Kreditrisiko (CreditMetrics) 1999
11. Moormann, Jürgen
Terminologie und Glossar der Bankinformatik 1999
10. Löchel, Horst
The EMU and the Theory of Optimum Currency Areas 1998
09. Löchel, Horst
Die Geldpolitik im Währungsraum des Euro 1998
08. Heidorn, Thomas / Hund, Jürgen
Die Umstellung auf die Stückaktie für deutsche Aktiengesellschaften 1998
07. Moormann, Jürgen
Stand und Perspektiven der Informationsverarbeitung in Banken 1998
06. Heidorn, Thomas / Schmidt, Wolfgang
LIBOR in Arrears 1998
04. Ecker, Thomas / Moormann, Jürgen
Die Bank als Betreiberin einer elektronischen Shopping-Mall 1997
03. Jahresbericht 1996 1997
02. Cremers, Heinz / Schwarz, Willi
Interpolation of Discount Factors 1996
01. Moormann, Jürgen
Lean Reporting und Führungsinformationssysteme bei deutschen Finanzdienstleistern 1995
<table>
<thead>
<tr>
<th>No.</th>
<th>Author/Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.</td>
<td>Esquível, Manuel L. / Veiga, Carlos / Wystup, Uwe</td>
<td>2010</td>
</tr>
<tr>
<td></td>
<td>Unifying Exotic Option Closed Formulas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit gap risk in a first passage time model with jumps</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit dynamics in a first passage time model with jumps</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Reiswich, Dimitri / Wystup, Uwe</td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td>FX Volatility Smile Construction</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Reiswich, Dimitri / Tompkins, Robert</td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td>Potential PCA Interpretation Problems for Volatility Smile Dynamics</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Keller-Ressel, Martin / Kilin, Fiodar</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>Forward-Start Options in the Barndorff-Nielsen-Shephard Model</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Griebsch, Susanne / Wystup, Uwe</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>On the Valuation of Fader and Discrete Barrier Options in Heston’s Stochastic Volatility Model</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Veiga, Carlos / Wystup, Uwe</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>Closed Formula for Options with Discrete Dividends and its Derivatives</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Packham, Natalie / Schmidt, Wolfgang</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>Latin hypercube sampling with dependence and applications in finance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FX Basket Options</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Weber, Andreas / Wystup, Uwe</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>Vergleich von Anlagestrategien bei Riesterrenten ohne Berücksichtigung von Gebühren. Eine Simulationsstudie zur Verteilung der Renditen</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Weber, Andreas / Wystup, Uwe</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>Riesterrente im Vergleich. Eine Simulationsstudie zur Verteilung der Renditen</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Wystup, Uwe</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>Vanna-Volga Pricing</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Wystup, Uwe</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>Foreign Exchange Quanto Options</td>
<td></td>
</tr>
<tr>
<td>09.</td>
<td>Wystup, Uwe</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>Foreign Exchange Symmetries</td>
<td></td>
</tr>
<tr>
<td>08.</td>
<td>Becker, Christoph / Wystup, Uwe</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>Was kostet eine Garantie? Ein statistischer Vergleich der Rendite von langfristigen Anlagen</td>
<td></td>
</tr>
<tr>
<td>07.</td>
<td>Schmidt, Wolfgang</td>
<td>2007</td>
</tr>
<tr>
<td></td>
<td>Default Swaps and Hedging Credit Baskets</td>
<td></td>
</tr>
<tr>
<td>06.</td>
<td>Kilin, Fiodor</td>
<td>2007</td>
</tr>
<tr>
<td></td>
<td>Accelerating the Calibration of Stochastic Volatility Models</td>
<td></td>
</tr>
<tr>
<td>05.</td>
<td>Griebsch, Susanne/ Kuhn, Christoph / Wystup, Uwe</td>
<td>2007</td>
</tr>
<tr>
<td></td>
<td>Instalment Options: A Closed-Form Solution and the Limiting Case</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interest Rate Convexity and the Volatility Smile</td>
<td></td>
</tr>
<tr>
<td>03.</td>
<td>Becker, Christoph/ Wystup, Uwe</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td>On the Cost of Delayed Currency Fixing</td>
<td></td>
</tr>
<tr>
<td>02.</td>
<td>Boenkost, Wolfram / Schmidt, Wolfgang M.</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td>Cross currency swap valuation</td>
<td></td>
</tr>
<tr>
<td>01.</td>
<td>Wallner, Christian / Wystup, Uwe</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td>Efficient Computation of Option Price Sensitivities for Options of American Style</td>
<td></td>
</tr>
</tbody>
</table>

HfB – SONDERARBEITSBERICHTE DER HfB - BUSINESS SCHOOL OF FINANCE & MANAGEMENT

<table>
<thead>
<tr>
<th>No.</th>
<th>Author/Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.</td>
<td>Nicole Kahmer / Jürgen Moormann</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td>Studie zur Ausrichtung von Banken an Kundenprozessen am Beispiel des Internet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Preis: € 120,--)</td>
<td></td>
</tr>
</tbody>
</table>