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Clarifying Poverty Decomposition

Adrian Muller∗†

Abstract: I discuss how poverty decomposition methods relate to integral

approximation, which ultimately is the foundation of every decomposition of

the temporal change of a quantity into key drivers. This offers a common

framework for the different decomposition methods used in the literature,

clarifies their often somewhat unclear theoretical underpinning and identi-

fies the methods’ shortcomings. In light of integral approximation, many

methods actually lack a sound theoretical basis and they usually have an

ad-hoc character in assigning the residual terms to the different key effects. I

illustrate these claims for the Shapley-value decomposition and methods re-

lated to the Datt-Ravaillon approach and point out difficulties in axiomatic

approaches to poverty decomposition. Recent developments in energy and

pollutant decomposition offer some improved methods, but ultimately, a fur-

ther development of poverty decomposition should account for the basis in

integral approximation.
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†Many thanks to Uma Rani and Åsa Löfgren for helpful remarks and inspiring discus-

sions, and to Erika Meins for the correction of my English. The usual disclaimer applies.
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NOTE: this is a working paper; for a the next version and the presentation,

I will in particular give additional illustration and motivation for equation

(1) and its interpretation as the fundamental equation for decomposition.

Keywords: poverty analysis, poverty measures, decomposition, Shapley-

value, inequality

JEL: I32, C43

1 Introduction

Decomposing some key variable in components assigned to different driving

forces is a common exercise in many areas. Classical areas are the evolution of

energy use and pollutant emissions (e.g. Ang 1995, 2004; Bruvoll and Larsen

2004) or poverty and inequality measures (e.g. Shorrocks 1999; Kakwani

2000; for a recent review, see Heshmati 2004).

Such decomposition is related to the general index number theory as de-

veloped for price and quantity indices. The calculation of such indices is

based on integral approximations and the price and quantity index literature

is aware of this (Trivedi 1981). The awareness of this basis in integral ap-

proximation has, however, been lost in most of the literature on energy and

pollutant decomposition (Muller 2006), and in poverty decomposition in par-

ticular. The lack of this connection to the underlying basic formalism makes

current efforts to develop optimal decomposition approaches somewhat ar-

bitrary and often difficult to understand. This is the case for the recently

developed Logarithmic Mean Divisia Index (LMDI) approach in the energy

and pollutant context (Ang 2004, Muller 2006), for example, and for the

discussion of the residual and zero or negative values in this same context.
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Decomposition of poverty measures is even more arbitrary in that the

motivations for the choice of a certain method usually lie even further from

the underlying integral approximations. This is especially confusing in the

context of the Shapley-value decomposition (Shorrocks 1999; Baye 2005)

where reference is made to game theoretic concepts. In addition, critique

emerges regarding the performance of these methods and claims arise that

they are only suitable in special cases (Sastre and Trannoy 2000; Fiorio 2006).

Explicit reference to integral approximation as the underlying formalism

of decomposition would not only clarify issues and make the methods easier

to access, it would also add to the understanding of the problem of zero

and negative values virulent in energy and pollution decomposition and it

would shed a new light on the discussion of the residual. This has been

done for energy and pollutant decomposition in Muller (2006). Zero and

negative values are no topic in poverty decomposition because they either do

not occur or they do not pose any problem in the methods currently applied.

The residual, on the other hand, is present in some classical approaches to

poverty decomposition and usually given the somewhat vague interpretation

of interaction effects (e.g. Datt and Ravaillon 1992). This interpretation is

often criticized and the absence of a residual term in the newer approaches

related to the Shapley-value is seen as an advantage (Baye 2005).

As in energy decomposition, though, the zero residual is not a good crite-

rion to identify optimal decomposition methods. The methods are much bet-

ter understood if tied to the underlying integral approximations, where the

presence of some residual due to approximation errors is natural. Referring

to this basis offers a common framework for the decomposition approaches
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mainly applied in the poverty and inequality context, i.e. the Shapley-value

based decomposition and the decomposition methods similar to the one pre-

sented in Datt and Ravaillon (1992). I will show that these methods are

special and not entirely consistent approaches to approximate the underly-

ing integrals. In general, decomposition would gain, irrespective of where it

is applied, if this common ground in integral approximation would be appre-

ciated. Ultimately, it could be promising to develop improved methods on

this basis.

Section 2 introduces the general formalism of decomposition, illustrates

how it is linked to integral approximation and how decomposition is dis-

cussed in the energy and pollution context. Section 3 presents some of the

main methods of poverty decomposition currently applied and illustrates how

they relate to each other and to the general formalism based on integral ap-

proximation. Conclusions are drawn in section 4.

2 A General Formalism for Decomposition

The aim of dynamic decomposition analysis1 is to identify and assess the

(relative) magnitude of different variables driving the time development of a

key quantity. One example is the total industrial energy use and how much

the changes in sector-wise energy efficiency, in the relative size of the different

1In a static decomposition analysis, a key variable is decomposed for one period to

investigate the differences between several groups, such as states or castes. As often done

in energy analysis, a dynamic approach can also be differentiated to account for the effects

of group structures. A static decomposition is usually of only restricted interest, as the

information on time development is missing. I therefore focus on the dynamic approach,

but add some more remarks on the static approach in section 3.
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sectors, and in the size of the total industry contribute to its development.

Another example is how much changes in mean income and inequality con-

tribute to changes in total poverty within a country.

I develop the following general formalism. I will show in section 3 how

the methods commonly used for poverty decomposition can be seen as spe-

cial cases of this general formalism. The key quantity of interest shall be

P (t) =P (x1(t), ..., xm(t)), depending on m time-dependent drivers xi(t), i =

1, ...m, t ∈ [T0, Tn].2 The change in P is given by its total derivative dP
dt

and

the change from T0 to Tn can be written as

∆PT0,Tn := P (Tn)− P (T0) =

∫ Tn

T0

dP

dt
dt =

=

∫ Tn

T0

( ∂P

∂x1

∂x1

∂t
+

∂P

∂x2

∂x2

∂t
+ ... +

∂P

∂xm

∂xm

∂t

)
dt = (1)

=

∫ Tn

T0

∂P

∂x1

∂x1

∂t
dt +

∫ Tn

T0

∂P

∂x2

∂x2

∂t
dt + ... +

∫ Tn

T0

∂P

∂xm

∂xm

∂t
dt.

The part containing the derivative with respect to xi is then interpreted

as the contribution of changes in xi to the total change in P . I denote this

by ∆P xi
T0,Tn

. Usually, the functions involved are not known for all points t ∈

[T0, Tn], but only for some discrete points of time, most often equally spaced

(e.g. annually): T0, T1, T2, ..., Tn−1, Tn. The integrals then have the following

structure and the integrands are basically only known at the endpoints (i =

1, ...,m):

2P can further be differentiated according to some group-structure of interest, i.e.

P =
∑G

g=1 Pg, where P g is the value for P referring to group g, but this does not change

the general argument and I use the simpler notation without this additional structure.
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∆P xi
T,T+1 =

∫ T+1

T

∂P (x1, ..., xm)

∂xi

∂xi

∂t
dt. (2)

Decomposing P thus boils down to solving such integrals. Because of

the lack of information, though, i.e. the lack of knowledge of the underlying

functions besides for the boundary values T and T + 1, this is essentially an

approximation problem. The integral has to be approximated by the values

of the integrand at the endpoints of the integration range. In addition, the

presence of derivatives may cause a problem as usually only the functions

but not their derivatives are known for the endpoints. In this case, some

approximation of the derivatives is necessary as well. The integral can thus

be written as a function J or J̃ of the values at the end-points:3

∆P xi
T,T+1 ≈

≈ J
(
P (T ), xi(T ),

∂P

∂xi

(T ),
∂xi

∂t
(T ),

P (T + 1), xi(T + 1),
∂P

∂xi

(T + 1),
∂xi

∂t
(T + 1)

)
≈

≈ J̃
(
P (T ), xi(T ), P (T + 1), xi(T + 1),

P (T − 1), xi(T − 1), P (T + 2), xi(T + 2)
)
, (3)

As the decomposition problem in energy and pollutant analysis is framed,

∂P
∂xi

is usually known due to the particular structure of P being a product of

3J includes the derivatives directly, while they are approximated in J̃ . For J̃ , I chose

the general formulation including P (T −1), xi(T −1), P (T +2) and xi(T +2), as they may

enter the formula dependent on how the derivatives are approximated. An approximation

of the derivative at T + 1 from the right side, for example, usually depends on the value

at T + 2.
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the various xi (Muller 2006). Besides the integral, only the derivative of xi

remains then to be approximated.

How to best approximate ∆P xi
T,T+1, i.e. how to optimally choose J or J̃ is

implicitly driving all the different approaches to decompose energy use and

pollutant emissions. “Implicitly” only, though, as awareness of the basis in

integral approximation is largely missing in the literature. The problem is

basically seen as one of choosing the correct weights for the known values at

the two end-points to best calculate the change in P over the whole range in

between. Choosing weights actually has its roots in integral approximation,

as the simplest method to approximate an expression such as equation (2)

consists in replacing the integral with the product of the value of the inte-

grand at the upper or lower end-point times the distance on the ordinate ∆T ,

in this case equaling one: J = ∂P
∂x

∂x
∂t
|T+1 resp. T . This gives a weight of one

to the upper or lower boundary and a weight zero to the other. Weighting

both boundaries equally results in the average of the two values times ∆T ,

equaling one again: J = [∂P
∂x

∂x
∂t

(T + 1) + ∂P
∂x

∂x
∂t

(T )]/2. These are three ap-

proximations replacing the true function by different types of step-functions.

They are analogous to classical indices in the price/quantity context (the

Laspeyres, Paasche and Marshall-Edgeworth index) and especially the first

two were also applied in (early) energy decomposition, but they have several

disadvantages, such as a usually rather large residual term or the asymmetry

regarding the boundaries (Ang 2004).

The energy decomposition literature has then developed further approaches

based on more flexible weights (e.g. the Divisia approach J = ∂P
∂x

∂x
∂t

(T ) +

α[∂P
∂x

∂x
∂t

(T + 1) − ∂P
∂x

∂x
∂t

(T )] with α ∈ [0, 1]; α = 0, 1 or 1
2

replicate the three
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methods mentioned above).4 This strategy separated decomposition even

further from its base in integral approximation, as the single most impor-

tant criterion for good weights became associated with a vanishing residual,

meaning that J or J̃ not only approximate, but exactly replicate the left-

hand side in equation (3).5 This however is a misleading criterion, as the

chance to exactly approximate the unknown integral based on the boundary

values only is very small. A zero residual thus bears the danger of having

been forced to be zero by just randomly or without strong reasons appor-

tioning it to the different parts of a decomposition. A decomposition with

zero residual thus needs not at all be superior to one with some residual -

which, if it is too large, however clearly also spoils the explanatory power of

the result.6

4 ∂x
∂t (T +1) and ∂x

∂t (T ) are usually approximated by the slope of the straight line joining

the endpoints, i.e. ∂x
∂t (T + 1) ≈ x(T + 1)− x(T ) ≈ ∂x

∂t (T ), thus giving the same value and

simplifying formulae such as the Divisia Index above. This strategy could be criticized

because of its inconsistency by taking the approximation from the right for the value at

the left boundary T and the value from the left at T +1. This leads to potentially different

results for ∂x
∂t (T ) depending on whether it is part of a term between T−1 and T or between

T and T + 1. However, the strategy makes sense if seen in the context of replacing the

whole unknown function with straight lines joining the known values (as for the Divisia

with α = 1
2 , i.e. the Marshall-Edgworth Index), for example.

5This criticism applies for example to the LMDI currently advocated as the most ade-

quate index for energy and pollutant decomposition (Ang 2004).
6See Muller (2006) for an illustrative simulation of these issues in energy/pollution

decomposition.
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3 Poverty Decomposition

As for energy decomposition, there is a range of methods for poverty decom-

position. The choice of a certain method is sometimes based on some formal

symmetry arguments or axioms (Shorrocks 1982; Tsui 1996; Kakwani 2000),

but in most cases rather ad-hoc. There is no awareness of the underlying

approximation problem, although the decomposition methods proposed can

be understood in this frame (see section 3.2 below). Poverty decomposition

usually refers to decomposing some kind of poverty measure P , often the

classical measure introduced in Foster et al. (1984), into parts corresponding

to the effects of temporal changes in the mean income µ, the income distri-

bution L and the poverty line z: P = P (µ, L, z). This can be normalized by

z, i.e. the function to be investigated afterward depends on only two instead

of three variables: P̄ (µ
z
, L

z
). It follows from the discussion above that the

general decomposition of the poverty measure reads

∆PT,T+1 =

∫ T+1

T

∂P

∂µ

∂µ

∂t
dt +

∫ T+1

T

∂P

∂L

∂L

∂t
dt +

∫ T+1

T

∂P

∂z

∂z

∂t
dt, (4)

where the integrals involved have the same structure as discussed above and

similar problems related to their approximation are encountered. This also

illustrates the formal equivalence of poverty and energy decomposition.

In the following, I will introduce the most common methods for decom-

position of changes in poverty or inequality measures (the decompositions in

the spirit of Datt and Ravaillon (1992), the Shapley-value decomposition and

some further related approaches) and show how they relate to the general

framework presented above.
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3.1 Common Approaches to Poverty Decomposition

Most poverty measure decomposition approaches assume that the contribu-

tion of one variable to total change in poverty can be separated if all other

variables are kept constant, i.e. if an unobserved “counterfactual situation”

is correctly constructed. In particular, the choice of the time period, in which

to keep the other variables constant, is crucial and various possibilities for

this differentiate the methods. This approach leads to decompositions such

as (taking the normalized form with µ̄ := µ
z

and L̄ := L
z
)

∆P̄T,T+1 = P̄ (µ̄(T + 1), L̄(T + 1))− P̄ (µ̄(T ), L̄(T )) = (5)

=
[
P̄ (µ̄(T + 1), L̄(T + 1))− P̄ (µ̄(T ), L̄(T + 1))

]
+

+
[
P̄ (µ̄(T + 1), L̄(T + 1))− P̄ (µ̄(T + 1), L̄(T ))

]
+ R̄ =

= µ̄(i.e. growth)-effect + L̄(i.e. inequality)-effect + R̄,

where R̄ is the residual - also referred to as the interaction effect between

growth and changes in inequality, given by R̄ = P̄ (µ̄(T ), L̄(T +1))−P̄ (µ̄(T +

1), L̄(T +1))+ P̄ (µ̄(T +1), L̄(T ))− P̄ (µ̄(T ), L̄(T )) (Datt and Ravallion 1992;

Baye 2004).

The residual thus has a similar structure as the decomposition itself and

the whole formula has a rather ad-hoc character by adding and subtracting

terms to get the effects of interest and then correcting for it by collecting

their corresponding negatives in the residual, thus guaranteeing the validity

of the formula. Datt and Ravallion (1992) also observe that this residual

can be quite large, thus invalidating the whole approach. Equation (5) also

depends on the period chosen as base period, as it is not symmetrical in T and
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T + 1. This method nevertheless is applied without discussion of potential

problems, e.g. in Grootaert (1995) or Kraay (2006).

A similar approach is proposed by Jain and Tendulkar (1990),

∆P̄T,T+1 =
[
P̄ (µ̄(T + 1), L̄(T + 1))− P̄ (µ̄(T ), L̄(T + 1))

]
+

+
[
P̄ (µ̄(T ), L̄(T + 1))− P̄ (µ̄(T ), L̄(T ))

]
, (6)

where the residual is zero, but the two effects are calculated with reference

to different base periods and the decomposition is again not symmetric in T

and T + 1.

This situation led other authors (e.g. Kakwani 2000; Mazumdar and

Son 2001; Bhanumurthy and Mitra 2003; Son 2003) to suggest a symmetric

alternative of this decomposition by averaging the formulae with base periods

T and T +1. Kakwani (2000) in particular motivates this by proposing a set

of axioms any poverty decomposition should fulfill (cf. footnote 12 below).

This leads to a symmetric decomposition without residual and the growth

and inequality effects have the same combination of mixed base periods:

∆P̄T,T+1 =
1

2

[
P̄ (µ̄(T + 1), L̄(T + 1))− P̄ (µ̄(T ), L̄(T + 1)) +

+P̄ (µ̄(T + 1), L̄(T ))− P̄ (µ̄(T ), L̄(T )
]

+

+
1

2

[
P̄ (µ̄(T + 1), L̄(T + 1))− P̄ (µ̄(T + 1), L̄(T )) +

+P̄ (µ̄(T ), L̄(T + 1))− P̄ (µ̄(T ), L̄(T ))
]
. (7)

This decomposition can be applied to any numbers of variables. Given a

poverty measure P depending on m variables x1, ..., xm, the contribution of

xi to changes in P can be defined to be a combination of all terms
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∆P xi
T,T+1(πs−1,m−s) = [P (..., xi(T + 1), ...)− P (..., xi(T ), ...)], (8)

where πs−1,m−s is any m−1-vector with s−1 entries T +1 and m−s entries T .

The elements of this vector indicate at which time the variables other than

xi, i.e. x1, ..., xi−1, xi+1, ..., xm, are taken in both the terms on the right hand

side in equation (8).7 For m variables, a certain combination of s variables

taken at T + 1 and m− s at T thus shows up in the final expression s times

with a positive sign, stemming from the positive part of equation (8), for

each variable at T + 1. And correspondingly, it shows up m− s times in the

final expression with a negative sign, stemming from the negative part, but

referring to the corresponding expression for s+1.8 The condition that in the

end only the original terms remain, i.e. ∆P̄T,T+1 = P (x1(T + 1), ..., xi(T +

1), ..., xm(T +1))−P (x1(T ), ..., xi(T ), ..., xm(T )), requires coefficients unequal

1 for the various terms. In the simplest case, the coefficients of the positive

terms can be chosen to be 1
s

and for the negative ones 1
m−s

, for s 6= 0 and

s 6= m, and 1
m−s

= 1
m

for s = 0 while the positive part is absent, and 1
s

= 1
m

for s = m, where the negative part is absent.

A more general choice of the coefficients is then γ(m, s)1
s

and γ(m, s) 1
m−s

with γ(m, 0) = 1 = γ(m, m). This decomposition is symmetric and residual-

free. Choosing γ(m, s) = s!(m−s)!
m!

then gives the Shapley-value coefficients

(see e.g. Baye (2005), taking s + 1 instead of s for the negative terms)

7This is a type of ceteris paribus reasoning employing all combinations of how the other

variables can stay constant: each at T or at T + 1
8πs−1,m−s gives s variables at T + 1 in the positive parts of ∆P xi

T,T+1(πs−1,m−s) and

s − 1 at T + 1 in the negative ones. Correspondingly, s + 1 gives s variables at T + 1 in

the negative parts that combine with the corresponding terms referring to s.
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and the decomposition coincides with the Shapley-value based poverty de-

composition as introduced in Shorrocks (1999), which is seen as one of the

best methods currently available (Baye 2004, 2005; Kolenikov and Shorrocks

2005). For two variables, this is equivalent to equation (7). It is not clear,

though, how this or any other specific choice of weights might be motivated.

The derivation of this decomposition as just described is transparent but

it lacks a sound motivation. However, in my opinion, the game-theoretic

background of the Shapley-value neither offers additional relevant motiva-

tion (i.e. motivation related to the problem of poverty decomposition, which

has no tie to game theory) on how the decomposition should best be done,

respectively on why to choose γ(m, s) in this particular way. Admittedly,

the Shapley-value has some distinct axiomatic background (symmetry, no

essential player, additivity), but I will show in the next subsection that the

Shapley-value is not optimal in the light of decomposition as integral approx-

imation, and that thus these axioms cannot be employed as a motivation for

the method’s optimality.

There are other approaches aiming at improving poverty decomposition.

Dercon (2006) bases decomposition on a micro-level assessment of single

households and their status as poor or non-poor and how this changes be-

tween periods. Another different approach is based on the linkages captured

in the Social Accounting Matrix (e.g. Thorbecke and Jung (1996) and ref-

erences therein). Thirdly, Fournier (2001) discusses an approach explicitly

taking into account changes in the different underlying variables and their

correlations separately. This is, in fact, similar to taking some terms of the

Shapley-value approach into account and explaining part of the remaining

13



residual by building counterfactuals based on the rank-correlation structure.

Usually, some residual remains. Fourthly, there are regression-based ap-

proaches to decomposition (see e.g. Juhn et al. (1993), Borooah (2005) or

Wan and Zhou (2005) and references therein). The regressions, however,

refer to the definition, choice, or identification of the variables the decom-

position is based on or the construction of the counterfactual case, while

the decomposition itself (i.e. the combination of the terms where only one

variable changes) is again made according to the common approaches as de-

scribed in this subsection. Similarly, Di Nardo et al. (1996) discuss a kernel

estimation approach to construct counterfactuals needed for the decompo-

sition into changes attributable to single variables, while the decomposition

ultimately is again a variant of the approaches discussed above. This should

not be seen as an encompassing list and I do not discuss these alternative

approaches in more detail (for a recent review of methods, see also Heshmati

(2004)).

3.2 Poverty Decomposition and Integral Approxima-

tion

In this subsection, I discuss the poverty decomposition approaches intro-

duced above in the light of general decomposition as integral approximation

as presented in section 2. This establishes a common basis for and a new

understanding of poverty decomposition methods.
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3.2.1 Most Common Approaches and the Shapley-Value

Approximating the terms in equation (4) by their values at the upper bound-

ary leads to expressions such as J ≈ ∂P
∂µ

∂µ
∂t
|T+1∆T , and approximating the

derivatives by the slope of the straight line joining the end-points as discussed

in footnote 4 gives

J ≈ P (µ̄(T + 1), L̄(T + 1))− P (µ̄(T ), L̄(T + 1))

µ̄(T + 1)− µ̄(T )

µ̄(T + 1)− µ̄(T )

∆T
∆T, (9)

which is the Laspeyres index. The corresponding expression can be calculated

for the variable L̄ and both can also be evaluated at time T , thus giving

the Paasche index. The combination of the Laspeyres for both µ̄ and L̄

gives the Datt-Ravaillon decomposition equation (5), and the combination

of Laspeyres for µ̄ and Paasche for L̄ gives the Jain-Tendulkar formula (6).

Taking the average of the Laspeyres and Paasche indices gives the Marshall-

Edgeworth index (equivalent to the Divisia index with α = 1
2
). This, finally,

is the same as the Shapley-value decomposition for two variables, equation

(7).

So far, I have shown how the basic poverty decomposition methods can

be seen as special cases of integral approximation. This is however not true

any longer for the generalised formulae used in the literature and presented

above, i.e. for the Shapley-value with more than two variables. One criticism

is that in the light of the equivalence of the Shapley-value decomposition and

the decomposition method introduced in Sun (1998) (Ang et al. 2003), the

various terms in the Shapley-value can be understood as an assignment of

the residual to the various effects based on some symmetry arguments but

without further basis in the properties of the underlying functions or integral
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approximations. Thus, all variables are treated equally, irrespective of their

properties. I illustrate this for three variables and a total which is their

multiplication:

∆P = P (T )− P (0) = x1(T )x2(T )x3(T )− x1(0)x2(0)x3(0)

= ∆P1 + ∆P2 + ∆P3, (10)

where ∆Pi is the contribution of the variable xi to the decomposition of P .

Replacing xT
i with x0

i +∆xi, seeing ∆xi as the incremental change in xi from

period 0 to T , and symmetrically rearranging terms, we thus have

∆P = (x0
1 + ∆x1)(x

0
2 + ∆x2)(x

0
3 + ∆x3)− x0

1x
0
2x

0
3 =

= ∆x1x
0
2x

0
3 + ∆x2x

0
1x

0
3 + ∆x3x

0
1x

0
2 +

+∆x1∆x2x
0
3 + ∆x1∆x3x

0
2 + ∆x2∆x3x

0
1 + ∆x1∆x2∆x3 =

= ∆x1x
0
2x

0
3 +

1

2
[∆x1∆x2x

0
3 + ∆x1∆x0

3x
0
2] +

1

3
∆x1∆x2∆x3 +

+∆x2x
0
1x

0
3 +

1

2
[∆x1∆x2x

0
3 + ∆x2∆x0

3x
0
1] +

1

3
∆x1∆x2∆x3 +

+∆x3x
0
1x

0
2 +

1

2
[∆x1∆x3x

0
2 + ∆x2∆x0

3x
0
1] +

1

3
∆x1∆x2∆x3. (11)

The three last lines are ∆P1, ∆P2 and ∆P3, respectively, and equal the

contributions of the three variables as identified in Sun (1998). As shown

in Ang et al. (2003), they are equal to the Shapley-value decomposition, as

can also be seen by further rearranging terms and comparing to the formulae

for the Shapley-value given above. As already indicated, the logic behind

this formula is to equally assign all the difference-terms involving ∆xi’s to

the contributions of the variables xi, i.e. a term involving s ∆-factors is
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divided by s. A pictorial illustration for this simple example are the volumes

of two cubes with edges x0
i and x0

i +∆xi, respectively, and how to assign the

difference in volume between the two to each of the differences in the single

edges.

A decomposition rule is based on the goal to decompose a general func-

tion of some m variables into m additive parts, each one corresponding to

the contribution of one of these variables. This is thus some type of linearisa-

tion, and basing a decomposition procedure on some symmetries on the level

of these linearised summands, as it is done in the Shapley-value approach,

treating all variables symmetrically, need not be correct. This is so as we are

not primarily interested in ∆xi itself, but rather in ∆xi = xi(t + ∆t)− xi(t)

as a function of ∆t, which, in general, will not be linear.

I illustrate this criticism of the Shapley-value with a simulation based

on some concrete choice of the variables xi as functions of t: let’s choose

x1 = t, x2 = t2, x3 = t
4
. Inserting this in equation (1), where again P =

x1x2x3, and solving the integrals gives ∆P = ∆P1 + ∆P2 + ∆P3 = T 4

4
and

the following (exact) decomposition

∆P1 =

∫ T

0

∂x1

∂t
x2x3dt =

∫ T

0

t3

4
dt =

T 4

16
, ∆P2 =

T 4

8
, ∆P3 =

T 4

16
. (12)

Using the Shapley-value equation (11), the result is different (but also exact),

which shows that the Shapley-value does not necessarily lead to the correct

decomposition9:

9Most terms are equal zero in this simple example, as x0
i = 0 for i = 1, 2, 3, but this

special property is not crucial for the general argument.

17



∆P1 = ∆P2 = ∆P3 =
T 4

12
. (13)

For further illustration, I also state the condition for the Shapley-value

for three variables to be exact. It is, for the contribution of the first variable

(xt
i = xi(t)), the requirement that

∫ T

0

∂x1(t)

∂t
x2(t)x3(t)dt

!
=

!
= (xT

1 − x0
1)x

0
2x

0
3 +

1

2
[(xT

1 − x0
1)(x

T
2 − x0

2)x
0
3 + (xT

1 − x0
1)(x

T
3 − x0

3)x
0
2] +

+
1

3
(xT

1 − x0
1)(x

T
2 − x0

2)(x
T
3 − x0

3). (14)

Comparing this to integral approximation as discussed above shows also that

the Shapley-value contains too many terms mixing values referring to the two

different boundaries. In correct integral approximation, such mixture only

occurs via the derivative-term, i.e. for one variable only, while all the others

are evaluated either at the upper or lower boundary only.

3.2.2 Static and Axiomatic Decomposition

A somewhat different approach to decomposition is taken by authors that

address the static decomposition of differences between various groups in

the society such as spatial groups, e.g. states in a nation (Dhongde 2003;

Kolenikov and Shorrocks 2005), or different castes (Borooah 2005) rather

than changes between time periods. Formally this could be seen as the same

problem as temporal decomposition, and the same methods could be applied.

This however would assume some continuous range of parameters between

spatial groups, states, castes etc., which clearly is not the case for most
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group-variables in reality - although approximation formulae based on the

values at the endpoints (i.e. for two groups, for example) can be applied

due to formal equivalence. Thus, the framework of integral approximation is

not adequate for such static analysis as the notion of a path connecting the

groups generally does not make sense. Postulating such a path makes the

formulae from integral approximation applicable but it will likely lack a sound

interpretation. The case is different as soon as some temporal information

is available. Then, the decomposition can be undertaken as discussed above,

employing separate group-wise analysis (i.e. separately for each state, caste,

etc.), or it could be done by directly incorporating the different group effects

as they are usually incorporated in energy decomposition (for groupings such

as by fuel type or industry sector, see e.g. Muller 2006).10

Finally, I link the poverty decomposition method based on integral ap-

proximation as described above to some axiomatic approaches in the liter-

ature. Most recent is Kakwani (2000), who sets up a system of 5 simple

rather intuitive axioms any poverty decomposition should fulfil (mainly sym-

metry and consistency properties, see the formalism below and footnote 12),

discusses and criticises existing decomposition methods in the light of these

axioms and proposes a new method that fulfils all 5 axioms. His discussion

is framed in a two-variable setting and the method he finally recommends is

just the Shapley-value for two variables.11 Adopting his notation, we consider

10A separate analysis is udnertaken for each group and then aggregated for all groups.

This leads to results quantifying the relative effects of changes in fuel-composition or

sectoral structure without further specification of how changes in the single fuels or sectors

contribute.
11He does not mention this, though - but the Shapley-value decomposition was also

introduced after this paper was originally written in 1997.
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a poverty measure in period i depending on a measure for inequality (like the

Lorenz curve L) and a measure of the average income level µ: Θ(µi, Li). Em-

ploying the integral approximation approach to decomposition, the change

in this measure between two periods can then be written as

Θij =

∫ j

i

∂Θ

∂µt

∂µt

∂t
dt +

∫ j

i

∂Θ

∂Lt

∂Lt

∂t
dt =: Gij + Iij, (15)

where G is the growth and I the inequality component. Due to the properties

of integration, the decomposition based on integral approximation thus fulfills

these 5 axioms set up by Kakwani (2000)12.

Other axiomatic systems are presented in Shorrocks (1982) and Tsui

(1996), for example. The axiomatisation in Tsui, however, mainly refers

to the poverty measure itself and less to its decomposition, which is basically

the same as finally derived in Kakwani (2000).

Decomposition based on integral approximation does however not fulfil

the axioms of Shorrocks (1982). The assumption on symmetric treatment of

factors (his assumption 2b) is not fulfilled in his sense, where it refers to the

functional dependence of the contribution to inequality of one factor being

the same for all factors. Using his notation, in my approach, the contribution

of a factor Y k to the general inequality measure I(Y ), where Y =
∑K

k=0 Y k

is total income built of several types of income Y k, is Sk(Y
1, ..., Y K ; K) :=∫ T

0
∂I(Y )
∂Y k

∂Y k

∂t
dt. As a functional description, this is symmetric in the different

factors, but not necessarily on the level of S as a function of Y k. Furthermore,

Shorrocks’ approach is also criticised by several authors, e.g. by Paul (2004)

12The axioms are 1) If Iij = 0 then Θij = Gij and if Gij = 0 then Θij = Iij ; 2) if

Gij ≤ 0 and Iij ≤ 0 then Θij ≤ 0 and if Gij ≥ 0 and Iij ≥ 0 then Θij ≥ 0; 3) Gij = −Gji

and Iij = −Iji; 4) Gij = Gik + Gkj ; 5) Iij = Iik + Ikj for all periods i, j, k;
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for the lack of motivation for some of his conditions13 and by Fournier (2001)

as being too restrictive and, being static, as not being of primary interest —

although static decomposition is applied frequently.

It may be concluded from this discussion that generally, as in energy

and pollutant decomposition, formulating axioms for the decomposition of

changes should not be given too much weight to, especially if decomposition

is seen in the light of integral approximation. Furthermore, although the

general formulation of decomposition based on integrals may fulfil the axioms,

due to the unavoidable errors, they may not be fulfilled when it comes to

concrete approximations (cf. also Muller 2006). Investigating axioms for

poverty measures themselves, however, may clearly make sense, but this is

not the topic of this paper.

4 Conclusions

A wide range of methods for poverty or general inequality measure decom-

position is currently being applied. None of these methods, however, has a

sound basis, as none refers to integral approximation, which is the ultimate

starting point of any dynamic decomposition analysis. Muller (2006) recently

analysed these issues in the context of energy and pollutant decomposition,

where similar problems are encountered. The methods used in energy de-

composition perform somewhat more satisfactorily from a theoretical point

of view than the common poverty decomposition methods. To assess the ad-

equacy of the methods most often applied in poverty decomposition, such as

the Shapley-value, comparison with methods more directly related to integral

13Paul (2004) however retains the symmetry axiom I criticise here.
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approximation is necessary. For energy decomposition, such an assessment

has been done for the LMDI (Ang 2004; Muller 2006), which is seen as one

of the best methods in this context. Although lacking a sound theoretical

basis, this method performs reasonably well also in relation to integral ap-

proximation, and the LMDI may be used as a reasonably reliable option for

most cases.

Thus I suggest to apply the LMDI also for the decomposition of changes

in poverty or general inequality measures. This method is more appropriate

than the Shapley-value, which has desirable features, but assigns the resid-

ual term in an inadequate manner to the different drivers behind changes in

poverty. This does not mean that results based on the Shapley-value neces-

sarily are wrong - but it is difficult to assess when it is adequate and how

large potential errors may be. Admittedly, an assessment of the performance

of the LMDI may not be easy and the best practice would be to solely rely

on integral approximation. This would work best if it is possible to collect

or access additional data for the case at hand, thus gaining additional infor-

mation on the functions to be approximated and improving the reliability of

the result.

Finally, I emphasize that, as in energy and pollutant decomposition, in-

creased reliance on axiomatic approaches is no solution to identify optimal

methods. In the light of integral approximation, desirable properties only

need to be fulfilled approximately, thus spoiling assessments of methods based

on a system of axioms. The prime example for this may be the desirability

of a zero residual, i.e. of a complete decomposition, which does not need

to hold for an approach based on approximations. It is only natural to en-
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counter some errors when approximating - which simply lies in the nature of

an approximation in comparison to an exact solution.
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