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Abstract

With regard to retirement savings individual investors tend to hold large po-
sitions of their wealth in riskless assets, although equity products offer higher
returns. In this article we study a behavioral portfolio model which captures
this phenomenon by considering two behavioral aspects: fear and hope. In de-
tail, we extend Shefrin’s and Statman’s stochastic behavioral portfolio model
[SS00] and provide an equivalent deterministic model, which can be solved nu-
merically. This allows us to apply this behavioral portfolio model even to a large
amount of return data of retirement assets. When we assume fear, we find an
optimal retirement portfolio with large positions in riskless assets. In this case,
the proportion invested in equity is very small up to zero, while it is large when
we assume hope. In short, a fear-driven behavior results in a smaller expected
portfolio return and a shifting of wealth from risky to riskless assets; a hope-
driven behavior results in a larger expected portfolio return and a shifting of
wealth from riskless to risky assets.
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1 Introduction

1 Introduction

Because of its practical significance and its conceptual simplicity portfolio models based
on risk and return have been common methods to evaluate individual and institutional
portfolios. But, in reality investment decisions were not only made by risk and re-
turn, but also by behavioral aspects like personality, risk attitude, gender and even
emotions. These and other behavioral aspects might be reasons for some asset alloca-
tion phenomena such as the observation that long-term oriented individual investors
hold large positions in riskless assets (e.g. savings accounts, property used by own-
ers, and endowment insurance), even though equity products offer higher returns (see
for example DeBondt [DeB98] and Agell and Edin [AE90]). Classical portfolio theory
such as the mean-variance model [Mar52] can not explain this phenomenon, because
behavioral aspects were neglected and portfolios were only determined with regard to
risk and return. Behavioral portfolio theory includes, in addition to risk and return,
behavioral arguments and may explain this phenomenon. Shefrin and Statman [SS00]
were the first who suggested a behavioral portfolio model by allowing for emotions such
as fear and hope. Their model is a result of combining SP/A theory [Lop87, LO99], an
alternative approach of decision making under risk, and Telser’s safety-first rule [Tel55].
As they studied their model only from a theoretical point of view, there is little infor-
mation available on the applicability of this model to real return data. Furthermore,
it is an open question whether this model can explain the phenomenon mentioned.

The aim of the present article is twofold. First, we extend Shefrin’s and Statman’s
model such that it can be applied even to a large amount of data. In detail, we
reformulate the stochastic model, restrict portfolio weights to be non-negative, i.e.
short selling is prohibited and transform it to a deterministic model which can be solved
numerically. Second, we apply return data of retirement assets and calculate efficient
portfolios for both fear-driven and hope-driven investors. Based on our calculation, we
provide an explanation of the phenomenon mentioned, namely individuals are driven
by fear when constructing retirement portfolios.

The sequel of this article is organized as follows: In section two we present the
underlying model, a mixed-binary linear optimization program, which combines Lopes’
SP/A theory and Telser’s safety-first rule. In section three we report our return data
on which our calculations are based on. Section four contains the main results and
section five offers our conclusions.

2 Model Description

This section is divided into three parts: First, we review the basics of SP/A theory
[Lop87, LO99], second we provide a modified version of Shefrin’s and Statman’s stochas-
tic behavioral portfolio model [SS00] and, third, we suggest an equivalent deterministic
model.

We consider an investment horizon of n assets, each asset generates a random return
Rj, j = 1, . . . , n. As SP/A theory is a discrete decision model under risk, we assume
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2 Model Description

discrete distributed asset returns. In the sequel of this article we always refer to
realization tableau 1, where R̂i,j is the realized return of asset j at state i and

∑m
i=1 pi =

1.

p1 R̂1,1 R̂1,2 · · · R̂1,n

p2 R̂2,1 R̂2,2 · · · R̂2,n... ... ... · · · ...
pm R̂m,1 R̂m,2 · · · R̂m,n

Asset 1 Asset 2 Asset n· · ·

Table 1: Realization tableau

2.1 SP/A Theory

The SP/A theory, established by Lopes [Lop87, LO99], is an alternative approach of
decision making under risk, including two criteria: The SP-criterion, where S stands
for security and P for potential, describes two contrasting behavioral elements: On the
one hand individuals are looking for a general desire for security and, on the other
hand, they want to participate on some upward potential. In this portfolio context the
terms security and potential are understood as financial certainty and return seeking,
respectively. This criterion emerged from the Friedman-Savage-paradox [FS48], that is
the observation that individuals who buy insurance policies often buy lottery tickets
as well. According to Lopes, the SP-criterion is equivalent to two emotions that drive
financial decisions: fear and hope1. The A-criterion, where A stands for aspiration,
defines a target value or, in terms of portfolio theory, a return, which shall be achieved.
In the upcoming subsection 2.2 we will describe in detail how the aspiration level A is
included in the model.

In the sequel of this subsection, we demonstrate how the SP-criterion can be modeled
mathematically: Assume that the realizations of the random asset return Rj are ranked

such that R̂1,j ≤ . . . ≤ R̂m,j. Given a utility function u we calculate the expected utility
of Rj according to rank-dependent expected utility2 (see Quiggin [Qui82, Qui93]) as

E(u(Rj)) =
m∑

i=1

u(R̂i,j)wi(p) , (1)

1In the literature the terms pessimism and optimism are sometimes used instead.
2Rank-dependent expected utility theory is also known as anticipated utility theory or generalized

expected utility theory and is the natural extension of von Neumann and Morgenstern expected
utility theory.
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2 Model Description

where

wi(p) = h

(
i∑

k=1

pk

)
− h

(
i−1∑
k=1

pk

)
and h : [0, 1] → [0, 1] is a probability transformation function. Remark that equation
(1) collapses to von Neumann and Morgenstern expected utility when h is assumed to
be the identity function. Let Di,j = P (Rj ≥ R̂i,j) be the decumulative distribution
function and assuming a linear utility function u, equation (1) can equivalently be
written as3

E(Rj) =
m∑

i=1

h(Di,j)(R̂i,j − R̂i−1,j) , (2)

with R̂0,j = 0∀j. (For a formal prove of equation (2) see the appendix.) Equation
(2) is the functional form of SP/A theory where fear and hope can be modeled by
transforming decumulative probabilities. We call the case where neither fear nor hope
is assumed risk neutral behavior. If we assume fear-driven behavior, individuals over-
weight probabilities attached to unfavorable outcomes, which can be expressed by the
transformation function4

hS(D) = D1+qS , qS > 0 . (3)

Hope-driven behavior, which operates as an overweighting of probabilities attached to
favorable outcomes, can be expressed by

hP (D) = 1− (1−D)1+qP , qP > 0 . (4)

Because fear and hope reside within individuals simultaneously, the final shape of the
transformation function is a convex combination of hS and hP :

h(D) = λhS(D) + (1− λ)hP (D) , λ ∈ [0, 1] . (5)

Remark that an individual is (a) risk averse if the transformation function is everywhere
convex, i.e. λ = 1, and (b) risk seeking if the transformation function is everywhere
concave, i.e. λ = 0.

2.2 A Stochastic Behavioral Portfolio Model

Shefrin and Statman provided a single mental account version of their behavioral port-
folio theory which is based on a safety-first rule, established by Telser [Tel55]. The
safety-first rule allows the investor to define a target return which shall be achieved by
a given probability. In our portfolio context, the target return can exactly be viewed
as the aspiration level A from SP/A theory. The aspiration level serves as reference
point as portfolio returns which do not exceed A are neglected and those exceeding A
are accepted.

3Rank-dependent expected utility theory with linear utility function u is exactly the case of Yaari’s
dual theory of choice under risk [Yaa87]

4For sake of simplicity we omit subscripts of D at this point.
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2 Model Description

In contrast to Shefrin and Statman, who developed their model by defining initial
wealth and asset prices, we normalize our model by a portfolio vector x ∈ [0, 1]n, xj is
the proportion invested in asset j. Given the vector R = (R1, . . . , Rn)T of random asset
returns, we define the random portfolio return as the product Z := xTR . Also given
the expected returns E(Rj) of each asset, calculated by equation (2), and a chosen
target return A, we can formulate the stochastic linear optimization problem as

Problem 1.

max E(Z) = max
n∑

j=1

xjE(Rj) s.t.

P (Z < A) ≤ α , (6)

1Tx ≤ 1 , (7)

xj ≥ 0 j = 1, . . . , n , (8)

where the objective function is the expected portfolio return that should be maximized.
With the safety-first constraint (6) we allow the portfolio return Z to fall below the
target return A by at most a small probability α. Inequality (7) arises from our portfolio
definition5 and, with (8), short selling is prohibited.

2.3 An Equivalent Deterministic Behavioral Portfolio Model

As constraint (6) in problem 1 is stochastic, it is cumbersome for practical applications.
For this reason we need to transform problem 1 to a deterministic optimization problem,
which allows us to apply it even to a large amount of data. Using methods of stochastic
linear programming (for an overview see Kall [KM05]), there are several ways to do this,
e.g. assuming the existence of the second moments of the asset return distributions,
we can approximate the shortfall probability P (Z < A) by employing Tchebyshev’s
inequality and, as a result, constraint (6) collapses to a quadratic inequality6.

In this paper we assume, as is also done in the SP/A theory, that the random asset
returns have a finite discrete distribution according to realization tableau 1. We employ
Raike’s transformation method (see Raike [Rai70] and Kall [KM05]) and formulate the
deterministic optimization problem as

5Without loss of generality, constraint (7) can be written as equality constraint. Nevertheless, in
many applications it is useful to attach lower bounds to portfolio weights to avoid very small
portfolio weights. Applying lower bounds, an inequality constraint (7) is necessary.

6See Breuer et al. [BGS06] and Elton and Gruber [EG95] for a detailed analysis.
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3 Data

Problem 2.

max E(Z) s.t.

xT R̂i +M(1− di) ≥ A , i = 1, . . . ,m , (9)
m∑

i=1

pidi ≥ 1− α , (10)

di ∈ {0, 1} , i = 1, . . . ,m , (11)

1Tx ≤ 1 , (12)

xj ≥ 0 j = 1, . . . , n , (13)

where R̂i is the i th row of realization tableau 1, i.e. the i th realization of the random
return vector R, and, M is a real number that is chosen large enough7. Note that the
decision variables are the portfolio weights xj, j = 1, . . . , n and the binary variables
di, i = 1, . . . ,m, where the di’s serve as auxiliary variables.

The stochastic constraint (6) in problem 1 is equivalently substituted by the de-
terministic constraints (9)-(11) in problem 2. The deterministic behavioral portfolio
problem 2 is a mixed-binary linear optimization problem, which can be solved numer-
ically by using the SCIP-solver (Solving Constraint Integer Programs) developed by
Achterberg [Ach07], currently the fastest non-commercial mixed-integer programming
solver.

3 Data

In this section we provide return data of several retirement assets. We considered assets
which were most frequently chosen by individuals according to survey data8 and we
additionally considered assets which were recommended by the investment community,
but overlooked by individuals. Table 2 summarizes our asset basket.

For all additional products, displayed in the second column of table 2, we can provide
exact return data, but, for those preferred by individuals, we can not. Thus, we
approximated these returns as follows:9

Savings deposits: The interest rates for savings deposits are composed of deposit rates
of banks in Germany with minimum rates of return and with agreed notice of three
months. The average rates are calculated as unweighted arithmetic means from the
interest rates reported to be within the spread. The spread is ascertained by eliminating

7In the appendix we provide a precise declaration of M .
8We analyzed data from the Debt and Credit survey 2004, for which more than 10,000 individual

investors in Germany were asked about their asset allocation with regard to retirement savings,
among other areas surveyed.

9We employ Westerheide’s [Wes05] approximization method. Return data was extracted from the
Bundesbank, the Statistisches Bundesamt (Federal Office of Statistics) and the Deutsche Boerse
(German Bourse).

6



3 Data

Products preferred by individuals Additional products

• savings deposits

• fixed-term deposits

• savings plan with periodic pay-
ments

• property used by owners

• endowment insurance (EnIn)

• building society savings con-
tract (BSSC)

• equity products: DAX Performance In-
dex (DAXP); Siemens stock (Siem);
Munich Re stock (MuRe); equity fund,
Europe (EFEu); equity fund, Germany
(EFGe)

• pension funds: REX Performance In-
dex (REXP)

• real estate fund, Germany (REFG)

• gold

Table 2: Asset basket

the reports in the top 5% and the bottom 5% of the interest rate range. Including rates
for savings deposits, we consider the differences between the Bundesbank’s interest rate
statistics and the new European Central Bank’s statistics, with the latter starting at
January 2003.

Other investments with banks: We consider savings bonds with fixed maturity of four
years, overnight money, savings with/without a contract period for varying investment
volumes, and fixed-term deposits. We obtain a representative time series by calculating
the arithmetic mean of the mentioned time series.

Endowment insurance: To approximate the return of endowment insurances, we ob-
serve investment products that insurance companies are likely to purchase for their
deposits, which are loans for public households, Federal securities, fixed-income securi-
ties, mortgages and public “Pfandbriefe.” To achieve one time series, we calculate the
arithmetic mean of the products mentioned.

Building society savings contract: We approximated the return of building society
savings contracts by yields on debt securities outstanding issued by residents.

Property used by owners: We approximated the return of property used by owners
using the index for housing calculated by the Bundesbank, based on data provided by
BulwienGesa AG.

All together, our raw data contains continuously compounded monthly returns of
13 assets from July 1987 to May 2008, which implies a 252 × 13 realization tableau.
A choice of m = 252 in Problem 2 implies 252 inequalities in constraint (9), which
associates a high complexity concerning computer time. To solve optimization problem

7



4 Results

2 in an appropriate computer time, we reduced the number of states from 252 to
120, so that the reduced return history contains monthly returns of ten years, from
January 1998 to December 2007. We also found that savings deposits, property used by
owners and other investments with banks are dominated by the endowment insurance,
i.e. in each state the return on savings account, property used by owners and other
investments with banks, respectively, is smaller than the return of the endowment
insurance. Hence, we omit the return histories of these assets. Having employed these
two reductions we obtained a 120× 10 realization tableau.

4 Results

The 120×10 return matrix and the following parameters are included in the optimiza-
tion problem:

A : aspiration level, measures the monthly return in percent,

α : shortfall probability, step size=0.05,

qS : measures the strength of fear, qS > 0,

qP : measures the strength of hope, qP > 0, and

λ : determines the strength of fear relative to hope.

Note, in the special case where qS = qP = 0 the model (problem 1 and 2) collapses to
Telser’s safety-first model, where the expected returns of each asset is determined by
the arithmetic mean.

Because hope and/or fear does only affect the objective function in problem 1 and
problem 2, respectively, the feasible domain does not change when assuming hope
and/or fear or nothing of both. Hence, the existence of a feasible solution of problem
1 and problem 2, respectively, depends solely on the choice of A and α. A small A,
e.g. A = 0.1, can be achieved even by small α, whereas a large A, e.g. A = 0.8, can be
achieved by only a large α. Figure 1 contains the feasible (A,α)-combinations. Note
that the feasible domain of problem 1 and 2 is infinite rather than finite as displayed
in figure 1.

We use the concept of the SP/A-efficient frontier10 for presenting our main find-
ings. The SP/A-efficient frontier displays a criterion used to evaluate alternative risky
assets, plotted in (E(Z), α)-space. Shefrin [She05] defines the SP/A-efficient frontier
as monotone non-decreasing, because investors prefer higher E(Z), but lower α. But,
this definition contains some imprecision, because constant segments are allowed (see
figure 2). This implies that all portfolios on a constant segment have the same ex-
pected return (E(Z)) but different risk levels (α). Thus, the furthest left portfolio on a
constant segment dominates all others with the same expected return, because it has
the lowest risk level. In short, this definition does not exclude all inefficient portfolios.

10Shefrin [She05] first introduced the term SP/A-efficient frontier to refer to SP/A theory.
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4 Results

α
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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••••••••••••◦◦◦◦◦◦◦◦

Figure 1: Feasible (A,α)-combinations (•)

Nevertheless, this concept is a powerful tool to demonstrate efficient behavioral port-
folios. Figure 2 displays SP/A-efficient frontiers for different aspiration levels, where
risk neutral behavior is assumed, i.e. qS = qP = 0. Note that for A = 0.3, there exist
solutions only for α ≥ 0.15 and for A = 0.5 only for α ≥ 0.4.

4.1 Fear-driven Portfolios

Choosing qS > 0 and λ = 1 we assume fear-driven behavior, that is, the investor is
more security-oriented. Figure 3 shows the difference between the risk neutral and the
fear-driven investor with different aspiration levels. We observed that a fear-driven
investor’s expected portfolio return is always smaller than the risk neutral investor’s
expected portfolio return.

Table 3 and 4 present the corresponding portfolio weights for A = 0.2 and A =
0.3, respectively. For small α almost the entire wealth is invested in the endowment
insurance. However, there is a difference between the risk neutral and the fear-driven
portfolio. For example, for A = 0.2 and α = 0.15, the risk neutral investor holds
about 80% in the endowment insurance and the rest in risky assets, while the fear-
driven investor holds more than 90% in the endowment insurance. An increasing α
is associated with an increasing proportion invested in risky assets. For example, for
A = 0.2 and α = 0.3, the risk neutral investor holds his entire wealth in risky assets,
while the fear-driven investor holds 63% in the endowment insurance and only 37%
is invested in risky assets. All our calculations exhibit a shift of wealth from risky to
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Figure 2: SP/A-efficient frontiers for A = 0.1 (•), A = 0.3 (�) and A = 0.5 (�).

riskless assets, while switching from risk neutral to fear-driven behavior. In short, a
fear-driven behavior is accompanied by smaller expected portfolio returns and larger
proportions invested in riskless assets.

4.2 Hope-driven Portfolios

Choosing qP > 0 and λ = 0 we assume a hope-driven behavior, that is, the investor
is more potential-oriented. Figure 4 shows SP/A-efficient frontiers for risk neutral and
hope-driven investors with different aspiration levels. In contrast to fear-driven port-
folios, we observed an opposite result: The hope-driven investor’s expected portfolio
return is always larger than the risk neutral investor’s expected portfolio return.

Table 5 and 6 present the corresponding portfolio weights for A = 0.2 and A = 0.3,
respectively. Concerning portfolio weights, we observed a portfolio switching from
riskless to risky assets.

5 Discussion

The first aim of this paper was to extend Shefrin’s and Statman’s [SS00] stochas-
tic behavioral portfolio model to a deterministic behavioral portfolio model. For this
purpose we modified the original model by introducing a portfolio vector instead of
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(d) A = 0.5

Figure 3: SP/A-efficient frontiers for risk neutral (•), qS = qP = 0, and fear-driven (�)
behavior, qS = 0.05;λ = 1. Note that in some cases there exist no solution
for small α.
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5 Discussion

α DAXP REXP Siem MuRe UBSD Gold EnIn

0.026 0.751 0.015 0.006 0 0.202 0
0.3

0 0.141 0.038 0 0.009 0.183 0.629

0.033 0.113 0.019 0.001 0 0.128 0.706
0.25

0.022 0.032 0.02 0 0 0.126 0.8

0.039 0.191 0.007 0.001 0.002 0.072 0.688
0.2

0 0.012 0.003 0 0 0.085 0.9

0.026 0.106 0.002 0 0.017 0.052 0.797
0.15

0 0.022 0 0 0 0.066 0.912

0.001 0.105 0.009 0 0.001 0.044 0.841
0.1

0 0.099 0.009 0 0 0.044 0.849

0.001 0.056 0.008 0 0 0.035 0.9
0.05

0 0.05 0.008 0 0 0.035 0.907

Table 3: Portfolio weights for A = 0.2, for every α the first row displays the risk neutral
and the second row displays the fear-driven behavior.

α DAXP REXP Siem MuRe UBSD Gold EnIn

0.327 0.081 0.195 0.046 0 0.351 0
0.35

0.243 0.2 0.014 0 0 0.543 0

0.021 0.467 0.014 0 0 0.072 0.425
0.3

0.016 0.122 0.014 0 0 0.075 0.773

0.016 0.01 0.005 0 0.004 0.055 0.911
0.25

0.016 0.01 0.005 0 0.001 0.053 0.914

0.004 0.115 0.003 0 0 0.019 0.859
0.2

0 0.035 0.003 0 0 0.021 0.94

0.003 0.03 0 0 0.002 0.005 0.959
0.15

0.002 0.005 0 0 0 0.01 0.983

Table 4: Portfolio weights for A = 0.3, for every α the first row displays the risk neutral
and the second row displays the fear-driven behavior.
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(d) A = 0.5

Figure 4: SP/A-efficient frontiers for risk-neutral (•), qS = qP = 0, and hope-driven
(�) behavior, qP = 0.1;λ = 1, A = 0.2, . . . , 0.5. Note that in some cases
there exist no solution for small α.
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5 Discussion

α DAXP REXP Siem MuRe UBSD Gold EnIn

0.026 0.751 0.015 0.006 0 0.202 0
0.3

0.012 0.783 0.026 0 0.049 0.13 0

0.033 0.113 0.019 0.001 0 0.128 0.706
0.25

0.067 0.251 0.01 0.008 0.005 0.077 0.582

0.039 0.191 0.007 0.001 0.002 0.072 0.688
0.2

0.04 0.191 0.007 0.001 0.002 0.072 0.687

0.026 0.106 0.002 0 0.017 0.052 0.797
0.15

0.023 0.11 0.003 0.001 0.017 0.052 0.794

0.001 0.105 0.009 0 0.001 0.044 0.841
0.1

0.009 0.072 0.008 0.002 0 0.044 0.865

0.001 0.056 0.008 0 0 0.035 0.9
0.05

0 0.061 0.009 0 0 0.034 0.896

Table 5: Portfolio weights for A = 0.2, for every α the first row displays the risk neutral
and the second row displays the hope-driven behavior.

α DAXP REXP Siem MuRe UBSD Gold EnIn BSSC

0 0 0.406 0 0.011 0.019 0.564 0
0.4

0.128 0 0.587 0.227 0 0 0.058 0

0.327 0.081 0.195 0.046 0 0 0.351 0
0.35

0.327 0.081 0.195 0.046 0 0 0.351 0

0.021 0.467 0.014 0 0 0 0.072 0.425
0.3

0.021 0.467 0.014 0 0 0 0.072 0.425

0.016 0.010 0.005 0 0 0.004 0.055 0.911
0.25

0.001 0.201 0.009 0 0.001 0 0.031 0.756

0.004 0.115 0.003 0 0 0 0.019 0.859
0.2

0.014 0.104 0.002 0.001 0 0.003 0.012 0.863

0.003 0.03 0 0 0 0.002 0.005 0.959
0.15

0.003 0.03 0.001 0 0 0.002 0.005 0.959

Table 6: Portfolio weights for A = 0.3, for every α the first row displays the risk neutral
and the second row displays the hope-driven behavior.

14



5 Discussion

initial wealth and asset prices, and, we prohibit short sales. Problem 1 is the result
of our modifications. By assuming finite discrete distributed asset returns we trans-
formed problem 1 to an equivalent deterministic portfolio model (problem 2), which
can be solved numerically by mixed-binary linear programming. The second aim was to
demonstrate the model’s applicability to real return data, which we have obtained by
analyzing individual behavior with respect to retirement savings. For this purpose we
constructed an investment basket including assets that individual investors are likely
to hold, and, assets that were recommended by the investment community; especially
equity assets.

We achieved the following results: When we assume an investor acting under fear,
the optimal expected portfolio return decreases, and, we observed a portfolio switching
from risky to riskless assets. When we assume an investor acting under hope, the
optimal expected portfolio return increases, and, we observed a portfolio switching from
riskless to risky assets. We also stated that the role of equity for long-term investments
is important, because in the hope-driven case as well as in the risk neutral case the
proportion of equity is large. But, our analysis contains two basic shortcomings: First
as we could not provide real return data for some riskless assets, e.g. the endowment
insurance, we had to approximate those by return time series of related assets. Second,
solving mixed-binary linear optimization programs, such as problem 2, is very complex
with regard to computer time. This led us to reduce our data set from more than 20
years to 10 years, which might distort our results.

Nevertheless, our model can explain why individual investors choose conservative
portfolios, such as observed by DeBondt [DeB98] and Agell and Edin [AE90]; they
act under pessimism or, in terms of SP/A theory, under fear. This behavior is no
surprise and it reflects exactly previous research on this topic, but the way how we
achieved this result, namely by using a behavioral portfolio model, is new. Because
of its deterministic nature, this model is well-suited for practical purposes, especially
for asset management and financial risk management. With the help of this model
asset managers could act on different behavioral patterns and may obtain a better
understanding of their client’s behavior. Furthermore, they could state how their
clients behave, i.e. search for a feasible portfolio, and how they should behave, i.e.
suggest a portfolio on the efficient frontier.

For further research on this topic several extensions are possible: The most obvi-
ous extensions is the generalization from discrete SP/A theory to continuous SP/A
theory, which was also recognized by Shefrin and Statman [SS00]. This would allow
the application to continuous distributed asset returns, which affects the behavioral
portfolio model such that the probability constraint (6) collapses to the associated
continuous distribution function. The equivalent deterministic portfolio model based
on continuous distributed asset returns is, in general, less complex with regard to pro-
cessing time than the behavioral portfolio model based on discrete distributed asset
returns. Moving from the discrete model to the continuous model does not only raise
generality, but it also reduces complexity. A second extension concerns the aspiration
level A, which was assumed to be fixed. But, especially for long-term investments the
investor’s aspiration level may vary or he wants to adjust his aspiration according to a
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benchmark, which can be, for instance, an index like the DAX or the S&P 500. Thus,
we suggest a stochastic aspiration level, which was also stimulated by Kall [KM05].
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A Appendix

A.1 A Proof of Equation (2)

Proposition 1. If R̂1 ≤ . . . ≤ R̂m are realizations of the random asset return R and
Di = P (R ≥ R̂i) is the decumulative distribution function. Then the expected asset
return can be expressed by

E(R)
Def.
=

m∑
i=1

piR̂i
Prop.
=

m∑
i=1

Di(R̂i − R̂i−1) ,

where R̂0 = 0.

Proof: Because the return realizations are ranked from worst to best the decumu-
lative distribution function can be written as Di =

∑m
j=i pj. We prove the proposition

by induction. The base case (m = 1) is trivial. To prove the general case, we assume
that the proposition is true for m and show that it is true for m+ 1:

m+1∑
i=1

Di(R̂i − R̂i−1) =
m+1∑
i=1

m+1∑
j=i

pj(R̂i − R̂i−1)

= pm+1

m+1∑
i=1

(R̂i − R̂i−1)︸ ︷︷ ︸
=pm+1R̂m+1

+
m∑

i=1

m∑
j=i

pj(R̂i − R̂i−1)︸ ︷︷ ︸
=
∑m

i=1 piR̂i , by assumption

= pm+1R̂m+1 +
m∑

i=1

piR̂i

=
m+1∑
i=1

piR̂i

�
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A.2 A Necessary Condition for the Existence of a Feasible
Solution of Problem 2

We define the index set I := {i ∈ {1, . . . ,m} : R̂i,j < A ∀j = 1, . . . , n} of critical
events, i.e., I includes the indices of those states, which can not achieve the aspiration
level A by any portfolio vector.

Proposition 2. The feasible domain of problem 2 is not empty implies∑
i∈I

pi ≤ α . (14)

Proof: We show that
∑

i∈I pi > α implies, that the feasible domain is the empty
set. We have the following decomposition (recall that di is a binary variable)

m∑
i=1

dipi =
∑
i∈I

dipi +
∑
i/∈I

dipi , (15)

where the first addend is zero, because constraint (9) of problem 2 holds only, if di =
0 ∀i ∈ I. Equation (15) collapses to

m∑
i=1

dipi =
∑
i/∈I

dipi ≤
∑
i/∈I

pi < 1− α ,

which contradicts constraint (11) of problem 2.
�

A.3 A Precise Expression for M in Problem 2

Consider again optimization problem 2. If di = 1, M vanishes and we do not have
to care about M . If di = 0, we have to choose M such that constraint (9) always
holds. The worst case which may occur in one optimization step is when everything is
invested in the smallest return realization, e.i.

R̂min := min
i=1,...,m
j=1,...,n

R̂i,j .

Thus, when we choose M as A − R̂min than constraint (9) always holds. In our data
set the smallest return is the September 2002 return of the Munich Re stock with
R̂min = −52.65. When we choose M = A+ 52.65 constraint (9) always holds.
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