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Abstract

Safety-first portfolio optimization is concerned with maximizing the expected
portfolio return subject to a safety-first constraint, which is defined as the proba-
bility of failing to achieve a specified target. Commonly the target is assumed to
be fixed, which, however, leads to significant conceptual disadvantages, e.g. when
an actively managed portfolio seeks to track or outperform a random benchmark,
such as a stock index. In this paper we consider both a fixed and a random tar-
get strategy and give an answer to the question which strategy is better off. In
detail, we compare optimal expected returns of both strategies under the normal
assumption and obtain following results: The random target strategy outper-
forms the fixed target strategy if the portfolio return and the random target are
positively correlated and riskless investing is prohibited, whereas the fixed target
strategy outperforms the random target strategy if the portfolio return and the
random target are non-positively correlated. Furthermore, we show that these
results also hold when relaxing the normal assumption.
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1 Introduction

Portfolio optimization under the safety-first criterion is concerned with maximizing the
expected portfolio return, while, simultaneously, the probability of failing to achieve a
specified (fixed) target must fall below a critical level and has its origins in the early
papers of Roy (1952), Telser (1955) and Kataoka (1963). The safety-first risk measure
is commonly expressed by a probability statement as P (Z < T ) ≤ α where Z is a
random variable, e.g. portfolio return, T is a fixed target, e.g. a minimum desired
portfolio return and α is a critical level on the probability of failing to achieve the
target.

A comparative advantage of the safety-first criterion over deviation risk measures,
such as the variance, is its consistency with the way investors actually perceive risk (see
for example Atwood et al., 1988; Harlow, 1991; Brogan and Stidham, 2005). Empiri-
cally, this was shown for example by Lopes (1987), Kroll et al. (1988), DeBondt (1998)
and Neugebauer (2008). Thus, since its first formalization by Shefrin and Statman
(2000) the safety-first criterion has played a key role in behavioral portfolio theory,
which studies the asset allocation with respect to an appropriate risk perception and
other behavioral considerations. In a recent paper, Das et al. transformed the utility
based interpretation of mean-variance portfolio theory to the more appealing target
based interpretation of safety-first portfolio theory under the assumption of normal
distributed asset returns. More generally, Kalin and Zagst (1999) showed the equiva-
lence of mean-variance and safety-first portfolio theory for a wide class of probability
distributions with shift and scale parameter.

What all the above cited papers have in common is the assumption of a fixed target T ,
which, however, leads to significant conceptual disadvantages: Suppose an investment
funds which seeks to achieve a fixed return T for the next period. According to this
target the funds manager purchases and sells assets. What happen when the market
return within the next period is greater than T though? The funds performed rather
poorly. This situation could have been avoided if the manager had reallocated the
assets according to the expected performance of the market, which is common practice
in passive portfolio management. Or, suppose a funds which seeks to outperform the
market (active portfolio management), i.e. the target for the next investment period
is the sum of the expected market performance and some extra return.1 Or, more
generally, from an individual perspective the target may not even be known. Many
individuals have the target of “being successful”, but only a very few know precisely
which selection of money, leisure time, culture etc. must be attained to achieve this
target (Bordley and LiCalzi, 2000). Hence, in many applications of the safety-first
framework an unknown or random target, T , seems quite reasonable. But what is
ceteris paribus better, a fixed or a random target? As the safety-first model calculates
an optimal return, the question is, which target choice generates greater returns? In
this paper we suggest a first answer to that question.

1For financial risk management with benchmarking see for example Basak et al. (2006), Browne
(2000) and Gaivoronski et al. (2005).
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In detail, we assume normal distributed asset returns. Then, we know for example
from Kalin and Zagst (1999) that the (probabilistic) safety-first risk measure can eas-
ily be transformed in a deterministic risk measure in terms of standard deviation. In
section 2, we use this result to transform the safety-first portfolio model in an equiva-
lent deterministic version, which is general enough to consider both, fixed and random
targets. In section 3, we compare optimal expected portfolio returns of the fixed and
random target strategy. We obtain following results: The random target strategy out-
performs the fixed target strategy if the portfolio return and the random target are
positively correlated and riskless investing is prohibited, whereas the fixed target strat-
egy outperforms the random target strategy if the portfolio return and the random
target are not positively correlated. The normal assumption is, indeed, common prac-
tice in the financial literature, but it is questionable whether return distributions are
normal in general. Hence, if the return distribution is unknown, but good estimates of
the mean and the variance can be calculated, then Chebyshev’s inequality provides an
upper bound for the safety-first criterion. In section 4, we show that all results from
section 3 hold when employing Chebyshev’s inequality. Section 5 offers a discussion
and concludes the paper.

2 Safety-First Portfolio Optimization with Normal
Distributed Asset Returns

Consider an investment universe of n different financial assets with R := (R1, . . . , Rn)T

presenting the vector of random asset returns. A portfolio where short sales are prohib-
ited is defined as a vector x ∈ [0, 1]n with xi being the proportion invested in asset i and
the proportions sum to one, which is also known under the “fully invested constraint”.
Let the product xTR be the random portfolio return, T be a fixed or random target
and α be a critical probability, then the safety-first portfolio model which maximizes
the expected portfolio return subject to a safety-first constraint can be expressed as

Problem 1.

max
x∈[0,1]n

E(xTR) s.t.

P (xTR < T ) ≤ α , (1)

1Tx = 1 . (2)

For a numerical treatment of problem 1 it is useful to provide a deterministic rather
than a probabilistic expression of the safety-first constraint (1), which can be easily
achieved under the normal assumption (see Kalin and Zagst, 1999). Because of its uni-
versality and simplicity the normal distribution is commonly assumed to describe asset
returns. Leibowitz and Henriksson (1989), Leibowitz and Kogelman (1991), Albrecht
(1993), among others, studied the safety-first framework with fixed target under the
normal assumption. Define therefore Z := xTR− T with Z ∼ N (µZ , σ

2
Z) as a normal

distributed random variable with expected value µZ and variance σ2
Z . Then, employing
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the usual textbook transformation for the normal distribution, safety-first constraint
(1) can be equivalently expressed as

P (Z < 0) ≤ α ⇔

P

(
Z − µZ

σZ

< −µZ

σZ

)
≤ α ⇔

Φ

(
−µZ

σZ

)
≤ α ⇔

Φ−1(α)σZ + µZ ≥ 0 , (3)

where Φ−1(α) is the α-quantile of the standard normal distribution and σZ is the
standard deviation obtained from drawing the positive square root of the variance, σ2

Z .
The following theorem, found in a slightly modified version in Kall and Mayer (2005,
p. 103f) and Ruszczyński and Shapiro (2003, p. 10), provides precise expressions for
µZ and σ2

Z (and σZ).

Theorem 1. If the random return vector R = (R1, . . . , Rn)T is multivariate normal
distributed with expected value vector µ ∈ Rn and covariance matrix Σ ∈ Rn×n, R ∼
N (µ,Σ), and the random target T is normal distributed with expected value µT ∈ R
and variance σ2

T ∈ R+, T ∼ N (µT , σ
2
T ), then the random variable

Z = xTR− T ∼ N (µTx− µT , ‖LTx− b‖2)

is normal distributed with expected value µTx−µT ∈ R and variance ‖LTx−b‖2 ∈ R+

where L ∈ Rn×n is a lower triangular matrix and b ∈ Rn, both obtained from the
Cholesky-factorization of the covariance matrix

COV(RT , T ) = COV(R1, . . . , Rn, T ) =

(
L

bT

)(
L

bT

)T

,

and ‖.‖ denotes the Euclidean norm.

�2

Applying then the deterministic safety-first constraint (3) with µZ = µTx− µT and
σZ = ‖LTx− b‖, problem 1 can be reformulated as

Problem 2.

max
x∈[0,1]n

E(xTR) = max
x∈[0,1]n

xT µ s.t.

Φ−1(α)‖LTx− b‖+ µTx ≥ µT , (4)

1Tx = 1 .

2Those readers who are interested in the proof, please consult Kall and Mayer (2005, p. 103f).
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Problem 2 is the deterministic equivalent of problem 1 and can now be solved nu-
merically. It is linear in its objective but quadratic in its constraints.3 It therefore
relates to the class of quadratic optimization problems. If α ∈ (0, 1

2
) the deterministic

safety-first constraint (4) is concave in x as was first shown by Kataoka (1963). Under
this assumption problem 2 can easily be solved by concave optimization methods.4 As
α represents the maximum probability of failing to achieve the target and is moreover
specified by the investor herself, it is usually chosen to be low, e.g. 5% or 10%. The
restriction of α not exceeding 50% does not limit the practical value of our results. We
therefore stick throughout our analysis to this assumption.

Note, modeling a riskfree asset j can be easily achieved by setting the j-th row of L
to the zero-vector. Then, we have Rj = µj with µj being the riskfree rate. Analogously,
a fixed target instead of a normal distributed target can be achieved by setting b to
the zero-vector. Then, the correlation between the target and the asset returns is zero
and T collapses to a fixed target measured as µT .

3 Fixed versus Benchmark Target

This section concerns the comparison of the fixed target strategy (S1) with the ran-
dom target strategy (S2). The fixed and the random target is denoted as T1 and T2,
respectively. Both strategies face the same investment universe and the same esti-
mates for the expected returns, µ = (µ1, . . . , µn)T , and covariances, Σ. Additionally,
the covariations between the random target and the asset returns are denoted by the
vector (Lb) = COV(R, T2). Note that L is a lower triangular matrix and b is a vec-
tor, both obtained from the Cholesky-factorization of the overall covariance matrix
COV(R1, . . . , Rn, T2) (see Theorem 1). The vector COV(R, T2) denotes therefore the
cross-covariances between T2 and Ri, i = 1, . . . , n .

As assumed in Theorem 1, T2 is normal distributed with expected value µT2 and
variance σ2

T2
. It appears reasonable to assume, µT2 > T1, so that the expected target

return of S2 is greater than T1. This is due to the higher risk of strategy S2, which must
be compensated by a greater expected target return. However, to keep our results as
simple as possible we assume throughout this section that µT2 = T1. But, all results
presented here can be straightforwardly modified such that µT2 > T1, for example by
defining µT2 := T1 + ε, ε > 0 and adapting the calculations.

In the following, we compare the performance of S1 and S2 while comparing optimal
expected portfolio returns. In subsection 3.1 the practical more interesting case where
the random target and the asset returns are crosswise positively correlated is discussed,
whereas, in subsection 3.2 the opposite case is discussed.

3More precisely, (4) is a second-order cone constraint, also called ice-cream cone or Lorentz cone.
For a detailed discussion on that, please consult Kall and Mayer (2005, p. 273f) and the references
therein.

4If the feasible domain is concave and not empty, there exists a unique maximum. For an overview
of convex optimization see Boyd and Vandenberghe (2007)
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3.1 The Positive Correlated Case

Consider strategy S2 where a portfolio is managed subject to the performance of a
benchmark, such as a stock index like the S&P 500, without directly investing into
the benchmark.5 There are at least three situations where this appears reasonable:
First, the portfolio seeks to outperform the benchmark, which is typically for actively
traded funds. Second, from an individual perspective, an investor might be attracted
by the performance of a foreign market, but she does not want to invest directly
into the market. She rather seeks to track the performance of the foreign market
with only investing in domestic stocks. This situation is derived from a behavioral
phenomenon called home bias, which was first documented by French and Poterba
(1991). Third, the situation where a foreign market should be tracked by only investing
in the domestic market could also be interesting for institutional investors, for example
to avoid exchange risks on foreign currencies. Reducing all three examples to the stock
market, they have in common to track or outperform one stock market by investing in
similar but different assets from another stock market. We therefore assume that asset
returns are positively correlated with the benchmark return, i.e. the cross-covariance
vector between R = (R1, . . . , Rn)T and T2 is

(Lb) = COV(R, T2) > 0 . (5)

This assumption is generally justified for most of the risky financial assets, in particular
for stock markets. Later in this subsection we show three stock market examples, which
provide support that even a stronger version of (5) is justified. Remark that assumption
(5) excludes riskless investing because the covariance between the return of the riskless
asset and the benchmark target must be zero. We have S1 with fixed target, T1, and
S2 with normal distributed target, T2 ∼ N (T1, σ

2
T2

). Applying theorem 1 yields

Z1 = xT
1 R− T1 with Z1 ∼ N (µTx1 − T1, ‖LTx1‖2) ,

Z2 = xT
2 R− T2 with Z2 ∼ N (µTx2 − T1, ‖LTx2 − b‖2) ,

where x1 and x2 represents the portfolio vector of S1 and S2, respectively. Note,
the expected values of Z1 and Z2 coincide, but the variances differ. Thus, in the
normal distributed case, the question, whether S1 outperforms S2 or vice versa is
simply the question of comparing variances. The following theorem shows that, under
a weak additional assumption, the variance of Z2 is smaller than the variance of Z1

and therefore, S2 outperforms S1. To prove this theorem we make use of

Lemma 1. Provided assumption (5) holds. If

COV(Ri, T2) >
1

2
σ2

T2
, i = 1, . . . , n , (6)

5A direct investment in an index can be obtained by purchasing an exchange traded funds (ETF) on
the index, which explicitly tracks the index and is, moreover, attractive because of low transactions
costs and tax efficiency.
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holds, then for any critical probability α ∈ (0, 1
2
) the following inequality is true:

Φ−1(α)σZ2 + µZ2 > Φ−1(α)σZ1 + µZ1

Proof: From the fully invested constraint (2) together with (6) follows

COV(R, T2)
Tx >

1

2
σ2

T2
,

which is equivalent to

0 > −2COV(R, T2)
Tx + σ2

T2
⇔

‖LTx‖2 > ‖LTx‖2 − 2(Lb)Tx + bTb ⇔

‖LTx‖ > ‖LTx− b‖ ⇔

Φ−1(α)‖LTx‖+ µTx− T1 < Φ−1(α)‖LTx− b‖+ µTx− T1 ⇔

Φ−1(α)σZ1 + µZ1 < Φ−1(α)σZ2 + µZ2 .

Notice that the second last inequality reverses because Φ−1(α) < 0 ∀α ∈ (0, 1
2
).

�

Theorem 2. Provided (5) and (6) hold. For any critical probability α ∈ (0, 1
2
) the

optimal expected portfolio return of S2 is larger or equal than the optimal expected
portfolio return of S1, i.e. µTx∗2 ≥ µTx∗1.

Proof: It is sufficient to show that the set of feasible portfolios of S1 is a subset of
feasible portfolios of S2. In other words, it is to show that any feasible portfolio for S1

is also feasible for S2, but at least one portfolio exists which is feasible for S2, but not
for S1. We first show, if the feasible domain for S2 is not empty, there exists a portfolio
x which is feasible for S2, but not for S1. For any feasible α ∈ (0, 1

2
) choose x so that

α = P (xTR < T2) = P (Z2 < 0) ⇔ Φ−1(α)σZ2 + µZ2 = 0 .

Applying lemma 1 yields Φ−1(α)σZ1 + µZ1 < 0, which is equivalent to

P (Z1 < 0) = P (xTR < T1) > α .

Thus, the safety-first constraint for S1 is not met. With the same arguments it follows
that any portfolio x, which is feasible for S1 is also feasible for S2. If there exists no
portfolio x such that the safety-first constraint for S2 is satisfied, i.e. P (xTR < T2) >
α ∀x ∈ [0, 1]n, then the portfolio problem of S2 is infeasible and thus also the portfolio
problem for S1.

�
Remark, the special case where the safety-first constraint for S1 is satisfied for all

portfolios x, i.e. P (xTR < T1) < α ∀x ∈ [0, 1]n, then the entire wealth is invested in
the the asset with the highest expected return and thus the same is true for S2. In
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α
α1 α2 α3

µTx∗

µTx∗(α3)

µTx∗
2(α2)

µTx∗
1(α2)

S2 S1

Figure 1: Safety-first efficient frontiers for S1 and S2.

this case both investors obtain the same optimal expected portfolio return and only
one asset is hold. This special but trivial case is considered in theorem 1, but it is not
explicitly mentioned in the proof thereafter.

In figure 1, where the safety-first efficient frontiers6 for S1 and S2 are sketched, we
illustrate the previous result: Suppose, both investors choose a critical probability of
α1, then the portfolio problem is neither feasible for S1 nor feasible for S2. Suppose,
both choose α2, then S2 outperforms S1 as µTx∗2 > µTx∗1. Finally, suppose that they
choose α3, then their optimal expected portfolio returns coincide and their entire wealth
is invested in the asset with the highest expected return.

Remark, if inequality (6) reverses, the result clearly reverses, i.e. S1 outperforms
S2. But this is practically not the case as supported by table 1, which summarizes
cross-covariances of four domestic (German) stocks from different industries and three
important stock indices. Table 1 shows that condition (6) is satisfied in all cases, which
indicates a strong relevance of this result for stock market applications, e.g. for actively
managed stock portfolios. Suppose exemplary two investment funds, both S1 and S2

facing the same investment universe, but S1 guarantees a certain minimum return, T1,
S2 guarantees nothing. Now, the question which funds is better off in terms of optimal
expected portfolio returns could be answered with the help of theorem 2.

6Shefrin (2005) uses the term SP/A efficient frontier, which is the same as the safety-first efficient
frontier, plotted in (µT x∗, α)-space. The safety-first efficient frontier is monotone non-decreasing
as investors prefer higher portfolio returns (µT x∗) but lower risk (α).
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Table 1: Cross-covariances between the returns of (B) Bayer (pharmaceuticals and
chemicals), (C) Commerzbank (financial services), (D) Dt. Telekom (telecom-
munications), (E) E.ON (energy) and three important stock indices were es-
timated on the basis of monthly returns for the period January 2003 to De-
cember 2008.

T2
1
2
VAR(T2) COV(B, T2) COV(C, T2) COV(D,T2) COV(E, T2)

DAX 16.2 34.2 62.0 19.8 30.7
S&P 500 7.8 18.8 40.4 9.9 16.5

FTSE 100 6.9 14.8 40.3 9.5 11.3

3.2 The Non-Positive Correlated Case

This case which assumes a non-positive correlation between the random target and the
asset returns, i.e. the cross-covariance vector between T2 and R is non-positive,

(Lb) = COV(R, T2) ≤ 0 , (7)

comprises two situations or a mix of both: First, from an individual perspective the
target may not even be known. Many individuals have the target of “being successful”,
but only a very few know precisely which selection of money, leisure time, culture etc.
must be attained to achieve this target (Bordley and LiCalzi, 2000). Or, individuals
may follow a group target, which can be interpreted as herd behavior (see for example
Shiller, 2005, p. 157-172). In these situations the correlation between T2 and R is
zero. Second, there exists a negative correlation between T2 and R, which for example
occurs when T2 expresses the return of a bond market whereas R are stock returns.7

We argue that a benchmark (random target) is chosen inappropriately if there exists
a negative correlation between the benchmark and the portfolio return.

As in the previous subsection, for the strategies S1 and S2 we have the corresponding
random variables

Z1 = xT
1 R− T1 with Z1 ∼ N (µTx1 − T1, ‖LTx1‖2) and

Z2 = xT
2 R− T2 with Z2 ∼ N (µTx2 − T1, ‖LTx2 − b‖2) ,

respectively, obtained from theorem 1. Notice, in the case where T2 and R are un-
correlated, the variance of the sum, σ2(Z2) = σ2(xT

2 R − T2), is the sum of variances,
σ2(Z2) = σ2(xT

2 R) + σ2(T2) = ‖LTx2‖2 + σ2
T2

. In this case it can be shown graphically
that S1 outperforms S2: From figure 2, which shows the probability density functions
of Z1 (f1(z)) and Z2 (f2(z)), it is easy to verify that S2 is riskier than S1. In this con-
text risk is the probability of not achieving the target, i.e. the probability of shortfall,
P (Z < 0) = P (xTR < T ), which is for S2 the shaded area under f2(z) and for S1 the

7We tested this case while comparing the covariations between the German REXP, which measures
the performance of 30 representative German sovereign bonds, and the same four stocks from table
1 for the same time period. In all cases we calculated a negative correlation.
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Figure 2: Probability density function of S1 (f1(z)) and S2 (f2(z))

shaded area under f1(z). As the shaded area under f2(z) is larger than under f1(z),
S2 is riskier than S1. We now show formally that under the more general assumption
(7), S1 outperforms S2. To prove the following theorem we use

Lemma 2. Provided (7) holds. For any critical probability α ∈ (0, 1
2
) the following

inequality holds:
Φ−1(α)σZ2 + µZ2 < Φ−1(α)σZ1 + µZ1

Proof:

0 < −2 COV(R, T2)
Tx︸ ︷︷ ︸

≤0

+ σ2
T2︸︷︷︸

>0

⇔

‖LTx‖2 < ‖LTx‖2 − 2(Lb)Tx + bTb ⇔

‖LTx‖ < ‖LTx− b‖ ⇔

Φ−1(α)‖LTx‖+ µTx− T1 > Φ−1(α)‖LTx− b‖+ µTx− T1 ⇔

Φ−1(α)σZ1 + µZ1 > Φ−1(α)σZ2 + µZ2

Notice that the second last inequality reverses because Φ−1(α) < 0 ∀α ∈ (0, 1
2
).

�

Theorem 3. Provided (7) holds. For any critical probability α ∈ (0, 1
2
) the optimal

expected portfolio return of S1 is larger or equal than the optimal expected portfolio
return of S2, i.e. µTx∗1 ≥ µTx∗2.

10



Proof: Employing lemma 2 instead of 1 and redoing the proof of theorem 2 yields
the proposition.

�
This result requires, compared to the positive correlated case discussed in subsec-

tion 3.1, no additional assumption. Furthermore, it allows riskless investing, which is
prohibited in the previous case. As S1 outperforms S2 it reveals, however, that general
uncertainty about the target and the choice of an inappropriately benchmark should
be avoided in this context.

4 Distribution is unknown

Empirically, it was shown that return distributions are fat-tailed (see for example Adler,
1998, and the references therein) and skewed to the left, i.e. losses weigh heavier than
gains, discussed for example in Harlow (1991). These findings indicate that the normal
assumption does not necessarily hold in general. We therefore relax this assumption and
only assume that good estimates for the first two moments of the return distributions
exist. Then we can use a textbook probability inequality, the Chebyshev inequality.8

In the following we apply Chebyshev’s inequality to the safety-first constraint (1) and
obtain a stronger but deterministic version of (1).9 Providing this, it is easy to verify
that under unknown return distributions the results from section 3 hold analogously.

Again, let Z = xTR−T be a random variable with xTR being the random portfolio
return and T being a target, either fixed or random. For the expected value and the
variance of Z we get

µZ = µTx− µT ,
σ2

Z = ‖LTx− b‖2 .
The following inequalities provide an upper bound for the safety-first constraint (1):

P (xTR < T ) = P (Z < 0)

≤ P (Z ≤ 0) = P (Z − µZ ≤ −µZ) = P (µZ − Z ≥ µZ)

≤ P (|µZ − Z| ≥ µZ)

≤ σ2
Z

µ2
Z

=
‖LTx− b‖2

(µTx− µT )2
,

where the last inequality is obtained from Chebyshev’s rule.10 Instead of (1) the
stronger inequality

‖LTx− b‖2

(µTx− µT )2
≤ α

8This idea has been first suggested by Roy (1952).
9For a detailed discussion on the application of Chebyshev’s inequality to the safety-first criterion

Kall and Mayer (2005, see) or Birge and Louveaux (1997).
10A detailed illustration for the univariate case is provided in Breuer et al. (2006, p. 119f). For the

Chebyshev inequality in general consult a textbook on probability theory, such as Behnen and
Neuhaus (1995).
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can be applied. Drawing the square root and rearranging yields

−α−
1
2‖LTx− b‖+ µTx ≥ µT . (8)

Comparing (8) and the deterministic safety-first constraint (4) obtained for the mul-
tivariate normal case (see section 2), the sole difference is the multiplier for the term

‖LTx− b‖. In (4) the multiplier is Φ−1(α) whereas it is −α− 1
2 for (8), both are nega-

tive for all α ∈ (0, 1
2
). Thus, redoing the proofs from section 3 with (8) instead of (4)

yields the same results. Moreover, as (8) is concave for all α the same efficient solving
methods as for problem 2 can be used.

Note, applying the stronger inequality (8) instead of (1) reduces the number of
feasible portfolios, i.e. the feasible domain of problem 1 with (8) instead of (1) is a
subset of the feasible domain of the original problem 1. Thus, choosing α very small
may lead to infeasibility of the safety-first problem under (8), but not necessarily under
the true safety-first constraint (1). Nevertheless, this approach provides a useful and
tractable alternative to the multivariate normal case.

5 Conclusion

This paper attempted to analyze safety-first portfolio optimization under two different
target assumptions, the fixed target, which is widely assumed in the literature, and the
random target, which describes the uncertain return of a benchmark and is commonly
applied for managing institutional portfolios. The main focus of this paper was on the
question which strategy is better off. Assuming multivariate normality the answer is:
(1) The random target strategy outperforms the fixed target strategy if the portfolio
return and the random target are positively correlated and riskless investing is pro-
hibited, (2) the fixed target strategy outperforms the random target strategy if the
portfolio return and the benchmark target are not positively correlated. The first re-
sult is useful for institutional funds management, which seeks to track or outperform a
benchmark, but also for the skilled private investor. It suggests how to find a portfolio
which may outperform a benchmark. The second result suggests that general uncer-
tainty about the target and an inappropriate target choice should be avoided. As the
normal assumption is hotly debated in the financial literature we relaxed this assump-
tion and showed that both results hold when approximating the safety-first statement
by the well known Chebyshev inequality.

The normal distribution and Chebyshev’s inequality are on the one hand very tractable
and easy to implement, but on the other hand not very accurate. To overcome this
limitation several extensions are possible: First, the normal assumption can be relaxed
to the general distribution family depending on a shift and a scale parameter (see Kalin
and Zagst, 1999). Second, a copula function, which provides a general technique for
formulating a multivariate distribution, can be used. Third, considering higher order
moments a more accurate probability inequality can be used. We recommend this
issues for further research.
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ing. Management Science, 52(4):542–557, 2006.

Konrad Behnen and Georg Neuhaus. Grundkurs Stochastik. Teubner, Stuttgart, 1995.

John R. Birge and François Louveaux. Introduction to Stochastic Programming.
Springer, New York, NY, 1997.

R. Bordley and M. LiCalzi. Decision analysis using targets instead of utility functions.
Decisions in Economics and Finance, 23(1):53–74, 2000.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univ.
Press, Cambridge, 2007.
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