Edwards, T. Huw

Article
Globalisation as a 'good times' phenomenon: A search-based explanation

Economics: The Open-Access, Open-Assessment E-Journal

Provided in Cooperation with:
Kiel Institute for the World Economy (IfW)

This Version is available at:
http://hdl.handle.net/10419/39690

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

http://creativecommons.org/licenses/by-nc/2.0/de/deed.en
Globalisation as a ‘Good Times’ Phenomenon: A Search-Based Explanation

T. Huw Edwards
CSGR, Warwick, and Loughborough University

Abstract Globalisation is associated with long periods of sustained economic growth and credit expansion, whereas major recessions tend to lead to falling trade and protectionism. The sensitivity of trade to global economic conditions is not simply driven by policy: rather, in a model of costly search, firms who are engaged in a searching process are very sensitive to changing economic circumstances. In turn, this causes protectionism to be partly endogenous, since optimal noncooperative tariffs can be high during periods when the sensitive, searching firms have exited the market.

JEL F15, F43
Keywords Globalisation; trade; search

Correspondence T. Huw Edwards, Economics, Loughborough University, Epinal Way, LE113TU Loughborough, United Kingdom; e-mail: T.H.Edwards@lboro.ac.uk
Introduction

‘Good times dampen anti-globalization attitudes, while bad times deepen them.’ —Jagdish Bhagwati.¹

Why do periods of prolonged global growth, such as 1980–2007, tend to be accompanied by even faster growth of World trade, particularly inter-firm, inter-industry trade? Why is the stalling of such growth traditionally associated with protectionism? In addressing these questions, I wish particularly to stress the two-way nature of the relationship between globalisation and worldwide growth. Some characteristics of the boom years of the 1980s, 1990s and 2000s, which were associated with the integration of India, China and Eastern Europe into the World economy, are summarised in Table 1. Some of these features (though not the vertical fragmentation of production) replicate those of the pre-1929 globalisation boom. By contrast, the 1930s saw most of these trends go into sharp reversal (Crafts, 2004).

Some of the features in Table 1 deserve special comment. In particular, the (not uncontroversial) conclusion that more open, market-orientated economies experienced faster growth stands rather contrary to standard economic thinking. After all, standard textbooks would argue that, while trade is good for all economies taken together, in most circumstances it is in the individual interests of ‘large’ countries to impose a protectionist set of ‘optimal’ tariffs on imports and exports, in order to improve their terms of trade², so that there is a prisoner’s dilemma situation, whereby the noncooperative outcome of tariff-setting games is against the collective interest. By contrast, one might tentatively view the evidence of the last 20 years or so as suggesting that there is little evidence of a prisoner’s dilemma: open trade policies, which favour a country’s neighbours, also seem in many circumstances to serve its self-interest. This is a feature which I particularly wish to investigate: is there some characteristic of globalisation booms which leads to a convergence of country and global welfare-maximising policies, and, if so, does such a convergence break down during prolonged recessions or depressions?

Table 1: Stylised characteristics of the recent globalisation phase

1. Relatively rapid growth of the global economy.
2. Fast credit expansion, international mobility of capital and ease of borrowing.
3. Trade growing much faster than global GDP (a), with a high income elasticity. (b)
4. A growing extensive margin of trade.(c)
5. Rapid churn of trading firms.(d)
6. Trade growth based upon the expansion of traditional trading networks.(e)
7. Interfirm, inter-industry trade growing faster still.(f)
 Vertical FDI/outsourcing.(g) Fragmentation.(h)
8. Growth especially concentrated in areas of the South or former Communist bloc entering the outsourcing trade.
10. Countries which pursued open strategies outperformed less open economies.(i)

Notes on Table 1:
b) Ishii and Yi (1997).
e) Rauch and Trindade (2003).
g) Markusen (1995).
h) Feenstra and Hanson (1999).
In this paper, I link this, in particular, with point 3—the high observed income elasticity of trade during the economic ‘good times’. The starting point is that this high elasticity represents a footloose element of supply, which is explicitly linked to the dynamics of a search process, and which may be the first thing to be eliminated during an economic downturn. Once this footloose element is eliminated, the economics of trade protection are turned on their head—essentially, the prisoner’s dilemma is returned.

The structure of the paper is as follows. The rest of Section 1 and Section 2 build on the theoretical ideas of existing papers by Ishii and Yi (1997), Rauch and Trindade (2003) and Rauch and Casella (2003) and Grossman and Helpman (2002 and 2005), to develop a partial equilibrium model of a single industry with two-stage production, outlining the difference between growing and declining sectors and that between matched and searching firm pairs. In Section 3, I then set up a three-phase time schema, whereby in phase 1 there is little trade, phase 2 sees globalisation and phase 3 sees an economic crisis. Section 4 discusses how either a demand crisis, a credit crisis or a prolonged period of demand stagnation can affect this model. Section 5 is perhaps the most important part of the paper, since it develops the model into an explanation of why optimal tariffs may be low during periods of economic growth, but high during periods of economic slowdown, particularly when credit shortage is a contributory factor. In particular, behaviour can switch from free-trade to protectionist, if there is a crisis, particularly if it is followed by growth resuming at below a critical threshold level. This is illustrated by a numerical simulation model, calibrated to a stylised data set.

It is also important to ask whether search is, in fact, quantitatively important enough to influence behaviour in the ways suggested in this paper. In this regard, Section 5.2 reviews the empirical evidence. This is still somewhat limited, due to the short timespan of most firm-level data sets, but evidence from Besedes and Prusa (2006) and Eaton et al. (2007) suggests fast entry and exit. Despite the small scale of firms on initial entry, during the search process, those new entrants who survive rapidly build up to account for perhaps 20–25% of trade volumes. Tentative evidence linking outsourcing to search is also discussed.
0.1 Fixed Costs, Search Costs and Trade Elasticities

It has become a commonplace that costs of market entry impede global trading patterns, such that economic integration, even in the good times of the 1990s and 2000s, falls far short of what neoclassical theory would predict (Trefler, 1995; Obstfeld and Rogoff, 2000). Since this primarily reflects limitations on the extensive margins of trade (in other words, the fact that most firms do not trade most products internationally), this is widely explained in terms of a fixed cost of market entry (Tybout, 2002)—firms need to make a particular level of profit in order to justify market entry, there are both selection effects in favour of large and successful firms (Bernard et al., 2007) and threshold effects on entry. The latter, threshold effect can also be explained simply in terms of a Ricardian model of comparative advantage (Yi, 2003): once trade costs fall sufficiently, the fragmentation of production becomes possible so that different stages can be carried out in different countries. Consequently, there is a rapid, nonlinear growth of market participation, particularly in terms of vertical tie-ups between firms (Yi, 2003). In addition, where tariffs are ad valorem, effective protection against individual stages of production is magnified (since a tariff may be paid more than once, as the goods cross and re-cross borders), and the same applies to transport costs—so exaggerating the apparent price-sensitivity of intermediates trade.

Many of these arguments are often summarised as the ‘new, new’ trade theory—i.e. supplementing the models of Krugman, 1979 and Grossman and Helpman, 1992, with the incorporation of firm-level participation effects and production fragmentation. These elements are now acknowledged to have powerful implications for growth through firm selection, distribution and the observed volatility of trade. By themselves, however, they offer only a partial explanation, containing no real evidence of the nature of the fixed costs of market participation, and under what circumstances they may become sunken rather than just fixed. To explain this, we need to turn to another branch of the literature—the evidence of informational barriers and a search process. This stems from stylised facts 5 and 6.

3To use Srinivasan and Archana’s (2009) terminology.
5Feenstra and Hanson, 1999.
6Ishii and Yi (1997).
6 in Table 1: the high turnover of trading firms (Besedes and Prusa, 2006) and the evidence of network effects (Rauch and Trindade, 2003), taken with strong evidence that clusters of low-cost producers can go unnoticed by traders for long periods (the noted example being surgical steel production in Sialkot, Pakistan\(^7\)). Informational barriers can generate a search process, and I argue that this process is a primary cause of threshold effects, which in turn helps explain the dynamics of trade.\(^8\) Search takes time and requires confidence and the availability of credit. Critically, firms need to incur a series of ongoing fixed costs during the search process, but once they eventually achieve a satisfactory match, the cost of the past search is sunken. This means that searching firms will indeed be very sensitive to price movements, as in Ishii and Yi (1997), but that, as the search process goes on, firms achieve matches and become more heterogeneous and less subject to threshold effects. This process indicates a sensitivity of trade during the process of globalisation to international traded prices, global aggregate demand and capital availability,\(^9\) but the trading patterns of long-established firms, which are likely to be much less sensitive,\(^10\) and it is this nonlinearity—missed by the existing literature—which may underlie the danger of policy shifts during and after economic crises.

1 An Illustrative Model of Firm-Level Trade

I set up a simple, stylised, partial equilibrium model of a monopolistically competitive industry in a two-country world—the two countries being the North and the South, the former being characterised by higher skill endowments per head.

\(^7\) Schmitz, 1999.

\(^8\) Ishii and Yi (1997) use fixed costs of vertical specialization to explain the high observed income elasticities of trade—which they argue cannot plausibly reconciled with more orthodox models.

\(^9\) In terms of a macroeconomic model, market search has elements of capital formation, and so it should be no surprise that it has many of the characteristics of investment demand—in terms of cyclical sensitivity.

\(^10\) This reflects in part the heterogeneity both of firms (Melitz, 2003) and of trading match quality (Rauch and Casella, 2003).
The main market for final goods is in the North. Production requires two stages, which I name upstream (u) and downstream (d). Typically these are carried out by a pairing of firms (which may or may not be vertically integrated by merger), where u sells a semi-finished good to d, who then completes the manufacture and sells it on to final consumers. The two firms are of equal size and ex ante expected efficiency: however, productivity varies depending on the goodness of fit of the match, \(\mu_i \). As in Rauch and Casella (2003) or Rauch and Trindade (2003), \(\mu \) potentially follows a uniform, rectangular distribution between 0 and 1, and firms do not know \(\mu_i \) before entering a match \(i \), though they know its overall distribution.\(^{11}\) (See Appendix 1 for more details on the derivation.)

Trade between the North and South develops over time. The historical setup takes three phases. In phase 1, trade costs are high, so that there is little trade, and most goods are produced by pairings of firms type u and d within the North. However, the South is assumed to have a potential comparative advantage in upstream production, while the North has a comparative advantage in downstream production. We then enter phase 2: a period of growth and global integration, spurred by a technological or policy change reducing trade costs. Some Northern, downstream firms (though not all) will now search for upstream partners in the South. For example, garments might be manufactured by an upstream firm in China, but according to designs from the downstream firm in a Western economy, which then completes the marketing and distribution worldwide. Phase 3 represents an unanticipated crisis, where credit ceases to be available and growth stalls for a protracted period.

Concentrating on phase 2, the period of globalisation, the growth of the outsourcing trade is impeded by search friction deriving from an assumed need for at least one firm to make a relationship-specific investment: in order to avoid a potential hold-up problem,\(^{12}\) this generally requires a contractual relationship for at least some minimum period, which I characterise by a fixed contract period, \(t \), during which the two firms have an exclusive relationship.

\(^{11}\)This setup is derived from Salop’s circular cylinder, and is standard in firm-level matching models. Note that Grossman and Helpman’s (2002) model is similar, except that firms know with certainty the location of potential partners, and always match with the nearest.

Firms employ labour in the form of fixed and variable elements. The cost of the latter is normalised at $C = C_N$ for North-North pairings, and at $C = C_S$ ($C_S < C_N$) for North-South pairings. The elasticity of substitution between final goods varieties is ε, which will also closely approximate the own-price elasticity for the output sold by firm pairings, at least as long as the number of firms, N, is large. Sales by pairing i will equal

$$Y_i = A\left(\frac{\varepsilon C_i}{(\varepsilon - 1)P^\varepsilon}\right)^{-\varepsilon}, i \in \{N, S\},$$

where P^ε is the CES aggregate price index. Profits of the pairing, before subtracting fixed costs, will equal

$$\pi_i = A\left(\frac{\varepsilon C_i}{(\varepsilon - 1)P^\varepsilon}\right)^{1-\varepsilon} P^{\varepsilon} = kC_i^{1-\varepsilon} P^{\varepsilon}.$$

The model is driven by an assumed coordination cost which is inversely linearly related to the quality of the match μ_i between firms in pairing i. For simplicity, I concentrate on a rather stylised model where quality of match affects fixed cost, rather than unit variable costs. More precisely, I assume that fixed costs are $F - \mu_i$, so that profits after subtracting fixed cost,

$$\Pi_i = kC_i^{1-\varepsilon} P^{\varepsilon} - F + \mu_i.$$

Note I am also assuming equal Nash bargaining weights between the upstream and downstream firms.

1.1 The Matching Process

We now want to look at the matching process in more detail. Appendix 1 explains the matching process in more detail. I assume firms take a series of blind matches, where match quality, μ_i, varies according to a uniform rectangular distribution between 0 and 1. Further, assume that firms are stuck with an existing partner for a fixed contract period, t, during which time firms face a discount rate r. Firm pairings are also subject to sudden, random death with a constant probability of
For simplicity, I normalise the discount rate in terms of the contract period, defining the discount rate and depreciation rate per contract period,

\[\rho = (1 + r)^t - 1; \]
\[D = \frac{1}{(1 - d)^2} - 1. \]

(4a)
(4b)

Note that the depreciation rate reflects the probability of either firm in a pairing dying during the contract period.

At the end of each contract period, the firm may either stick with its existing partner (which it will do if match quality \(\mu_i \) exceeds a reservation match quality, \(\mu_R \)), or else seek a new partner (which it will do if \(\mu_i < \mu_R \)). Note that, as we have assumed a uniform, rectangular ex ante probability distribution of match quality, the probability that search will be renewed, after the initial match period will equal \(\mu_R \). However, over time, the probability of not having found a successful match will decline geometrically. By noting that, when \(\mu_i = \mu_R \), a pair of firms will be indifferent between renewing search or staying together, we can derive the condition for equating discounted present value of searching and not searching, and so find a value for the reservation match quality. This can be shown to satisfy

\[\mu_R = 1 + \rho + D - \sqrt{(\rho + D)(1 + \rho + D)}, \]

(5)

which is declining as \(\rho \) or \(D \) increases.

From (5), we can conclude that, with zero discount rates and zero probability of firm death \((r = d = \rho = D = 0) \), firms will be infinitely patient in their search, so that the long-run equilibrium is for all firms to be equally and successfully matched. By contrast (and more realistically), with positive time preference, the long-run equilibrium has a uniform distribution of surviving matches, of quality ranging from \(\mu_R \) to 1, with profits likewise varying. A consequence is that firm pairings are heterogeneous in the long-run, both in terms of profits and trade volumes, with heterogeneity increasing when long-run interest rates are higher or contract periods are longer.

1.2 The Role of Monopolistic Competition

I assume there is free entry and exit into the industry. Consequently, the number of firm pairings will vary, with competition forcing the industry aggregate price,
P^* up or down so as to make the marginal firm indifferent as to whether to enter or exit.

I focus first on an expanding industry. In this case, the marginal firm is a new, searching firm. The condition for determining the reservation match quality means that the expected present discounted profit of entering and engaging in a new search will equal that of a firm in a stable match of quality μ_R.

\[
\Pi_i = kC_i^{1-\epsilon} P^{*\epsilon} - F + \mu_i,
\]

\[
\Pi_i = 0 \text{ when } \mu_i = \mu_R;
\]

\[
P^* = \left(\frac{F - \mu_R}{k} \right)^{\frac{1}{\epsilon}} C_N^{1-\epsilon},
\]

where C_m is the unit cost of the marginal pairing (so it will equal C_N during the pre-globalisation phase 1, and C_S during phase 2). In phase 1, all firms have the same unit cost C_m, and if we also note that the CES aggregate price

\[
P^* = N^{1-\epsilon} C_m,
\]

where N is the number of pairings in the industry, then the initial number of pairings

\[
N_1 = \left(\frac{F - \mu_R}{kC_m} \right)^{\frac{1}{\epsilon - 1}}.
\]

2 The Stages of Development of North-South Interfirm Trade

I discuss the three phases of the stylised time-scheme in turn.

2.1 Phase 1: The Pre-Globalisation, Northern Economy

I start by concentrating on the initial phase 1 of our time-scheme, when trade costs are sufficient to ensure that there are no matches between Northern and Southern partners. I consider an equilibrium, where the industry in the North is initially static, with demand and prices constant.
I start by characterising firm pairs on this initial equilibrium growth path as ‘established’ or ‘matched’, if they are already in a settled match ($\mu_i \geq \mu_R$) at the start of a contract period—otherwise, we define them as ‘searching’.

The basic situation is shown in Figure 1. Since unit variable cost with Northern pairings is 1, firm pairs will supply at a price of

$$P^*_1 = \left(F - \mu_R \right)^{\frac{1}{\epsilon}}. \tag{9}$$

Searching firms will only engage in search if the price is at least P^*_1: free entry will keep the price to this level, as long as the industry is not shrinking. Matched firm pairings will also supply at this price, though most of these are intramarginal matches, which would continue to produce if the price were to fall (hence the upward-sloping supply curve for matched firms). The number of firms in the industry will satisfy (8), and also balance demand and supply at the price P^*_1: I will denote this initial demand level for the industry’s products as Y^*_1.

If firms were infinitely-lived, the economy would tend towards a steady-state equilibrium where all firms were matched ($\mu_i \geq \mu_R$). However, if proportion D of firm pairings suffer in a given contract period from one or both firms randomly expiring, then there will be some new firms entering and searching. In equilibrium, I denote the number of matched firms in period 1 as N_{m1} and the number of searching firms as N_{s1}. In the next contract period, proportion D of existing matched pairings will expire, while proportion $(1 - \mu_R)$ of searching pairings will find established partners. In a static equilibrium, where N_m is constant over time, this implies

$$\frac{N_{s1}}{N_{m1}} = \frac{D}{1 - \mu_R}. \tag{10}$$

If the number of firms in the industry were growing at rate G, this would become

$$\frac{N_{s1}}{N_{m1}} = \frac{G + D}{1 - \mu_R}. \tag{10a}$$

This situation is shown in Figure 1. The price in equilibrium, P^*_1, is given by the entry price for new, searching pairings. However, there is a kink in the supply
curve, since searching pairings will all enter or leave the market at \(P_1 = P_1^* \), while matched firms are heterogeneous in the price at which they would exit the market. The most efficient firm pairing would potentially leave the market at \(P_1 = P_1^* \), as given in equation (9). The ratio of searching to matched firms in equilibrium is given by equation (10) or (10a).

2.2 Phase 2: The Globalising Economy

Now assume that trade costs fall, so that upstream production in the South becomes more competitive. In particular, assume that unit variable costs, including trade costs, for a North-South pairing are \(C_S \), as opposed to 1 for a North-North pairing (\(C_S < 1 \)). However to enter the market, foreign firms of type \(u \) have to engage in a costly search process, and so will only do so at a World reference price of

\[
P_2^* = P_1^* C_S^{\frac{1}{\tau - 1}},
\]

(11)
at which a firm in a reservation-quality pairing breaks even.

The effect on existing North-North pairings is variable. The \(N_{S1} \) searching Northern pairings would not expect to break even at the new, lower price, and consequently will exit the market, except for a fraction who find their existing partners profitable and become matched.

The \(N_{m1} \) existing matched North-North pairings are heterogeneous, since they vary in match quality between \(\mu_R \) and 1. The price at which a matched pairing of quality \(\mu_i \) will exit the market is given by

\[
P'_i = \left(\frac{F - \mu_i}{k} \right)^{\frac{1}{\varepsilon}} = P'_1 \left(\frac{F - \mu_i}{F - \mu_R} \right)^{\frac{1}{\varepsilon}}.
\]

The last firm will exit when

\[
P'_1 = P'_1 \left(\frac{F - 1}{F - \mu_R} \right)^{\frac{1}{\varepsilon}}.
\]
(12a)

(See Figure 1).

I assume North-South pairings are not sufficiently low-cost to drive the price down to this level. At price \(P_2 \), the proportion of firms in existing North-North pairings which will continue in the market is

\[
\sigma_{N2} = \frac{1 - \mu_i}{1 - \mu_R} = 1 - \frac{(F - \mu_R)(1 - C_S^{\frac{1}{\varepsilon}})}{1 - \mu_R},
\]
(13)

which is declining as \(C_S \) falls. Output of these pairings will also be lower than before the start of globalisation by proportion \((\frac{P_2'}{P_1'})^{-\varepsilon} \), since the industry aggregate price has fallen. However, total industry output will be higher, due to the fall in prices: I denote the own-price demand elasticity for the industry’s output as \(-\eta\), so that

\[
\frac{Y_2^*}{Y_1^*} = \left(\frac{P_2^*}{P_1^*} \right)^{-\eta}.
\]
(14)

The residual will be made up by new, North-South pairings. Initially, these will be searching, but over time, in a model with static overall demand, the proportion of
these still searching will decline, as some gain matches, until eventually the ratio of searching to matched pairs among the North-South pairings will equal that in equation (10).

Figure 2 shows the situation in an economy during the globalisation phase. Searching North-South (foreign) pairings are prepared to enter the market at price P^*_2, which is lower than P^*_1, but assumed to be above P'_1. Consequently, all North-North (domestic) searching pairings exit the market, as do some matched North-North pairings. Once some North-South pairings find successful matches, the result is a supply curve with three segments (i.e. two kinks). First, between P'_2 and P'_1 (the left segment), only the most successful North-South pairings will be prepared to supply. Between P'_1 and P'_2 we are summing horizontally the supply curves of North-North and North-South matched pairings, so the gradient is somewhat less steep. Finally, when the industry aggregate price, $P^* = P^*_2$, there is a horizontal segment made up of searching North-South pairings.
Figure 3: Evolution of different types of pairings after a reduction in trade costs starts a globalisation phase, related to the underlying growth of demand per annum.

The kinks in this supply curve are an important element in explaining the differential effects of economic shocks, and the potential change in policy following such shocks—as explained in the subsequent sections.

Figure 3 summarises some simulations on the evolution of the proportions of different types of firm pairings over time, following a 10% reduction in the cost of North-South pairings. These are based upon the parameter assumptions in Table 2.

Simulations are carried out for underlying demand growth rates of 2%, 5% and 8%. After 20 periods, the proportions of searching NS pairings vary between 15—30%, depending on demand growth, while matched NS pairings are 56—62% and NN pairings 8—29% per cent of the market.
Table 2: Parameter assumptions for simulations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time preference per contract period</td>
<td>ρ</td>
</tr>
<tr>
<td>Death rate of one firm in pairing</td>
<td>D</td>
</tr>
<tr>
<td>Basic fixed cost of market participation</td>
<td>F</td>
</tr>
<tr>
<td>Subs elasticity between firms</td>
<td>ϵ</td>
</tr>
<tr>
<td>Own price elasticity for industry output</td>
<td>η</td>
</tr>
<tr>
<td>Implied reservation match quality</td>
<td>μ_R</td>
</tr>
</tbody>
</table>

3 The Impact of a Negative Economic Shock

3.1 A Demand Shock

We now want to consider the effect of shocks to an economy which has been undergoing the process of globalisation (in the sense of entry by searching foreign upstream firms, and the gradual development of successful, importing partnerships). Take the situation in Figure 2, and assume that there is a sudden inward shift in the demand curve, caused by a recession. The situation is shown in Figure 4: essentially, searching foreign firms are footloose, and will simply exit the market at the end of their existing contracts (except for the minority who find profitable contracts). This is a component of import supply which is very sensitive to demand changes. Consequently, unless the demand shock is very large, it can be accommodated simply by the exit of these firms: the remaining foreign and domestic firms see very little change in their demand or prices. Only larger shocks will force established firm pairings back down their supply curves.

Note that, at the point where searching North-South pairings have been eliminated, the elasticity of imports with respect to the industry aggregate price falls from infinite to $\frac{\epsilon}{\mu_R}$, and continues to rise thereafter, as more firms are driven out.

The situation with a larger negative demand shock is that, only after searching firms have been eliminated will prices be driven down. At this point, existing domestic pairings, as well as established importing pairings will be faced with falling prices, and the least efficient will be eliminated (so driving the firms down their supply curves). This is shown in Figure 5.
Figure 4: A negative demand shock which wipes out searching firms, leaving matched firms unchanged.

Note that an implication is that the first firm pairings to exit the market are searching, North-South pairings, so that trade is especially vulnerable to a medium shock. In the larger shock in Figure 4, matched North-North pairings will exit at the margin faster than matched North-South pairings in the ratio

\[
\frac{\sigma_{N3}}{\sigma_{S3}} = \frac{P_2^* - P_1'}{P_2^i - P_2^f} < 1.
\]

\[(15) \]

3.2 A Credit Shock

A credit shock is somewhat harder to model—particularly where it results in shortages of cash, rather than a rise in headline interest rates. Nevertheless, I will assume that firms suddenly face a rise in risk premia on their interest rates, so that the interest rate per contract period rises to

\[\rho' > \rho. \]
I consider the unlikely phenomenon of a pure credit shock (one which affects supply, but does not result in a recession shifting the demand curve inwards). It is worth noting that this type of shock hits different firms disproportionately. In particular, by raising the *de facto* interest rate facing firms, a credit shortage will make the search process costly. As a result, the reservation match quality will fall (firms will accept lower-quality reservation matches than previously, when they were more patient). The implication of this is that the reservation match quality falls to

$$\mu'_R = 1 + \rho' + D - \sqrt{(\rho' + D)(1 + \rho' + D)} < \mu_R. \quad (16)$$

However, since the reservation price which overseas firms type u will demand in order to enter into search is

$$P^{**} = \frac{\mu_R}{\mu'_R} P^{e}_2, \quad (17)$$

this will now be higher than previously. However, while the supply price of searching firms is raised, the supply curves of established firms are unchanged.
Figure 6 shows a pure credit shock, just sufficient to drive searching foreign firms out of the market, while raising prices at home (hence leading to established domestic and foreign firms supplying marginally more than before). Note that the price does not rise as far as P^*, so that search is halted entirely in the short/medium run. Existing firms can supply somewhat more than previously, as the market price, P', rises, in accordance with equation (1). However, new firms cannot enter unless the price rises to P^*, so below that level supply is relatively inelastic.

In reality, we should perhaps consider that, at least in their initial stages, credit shocks are usually associated with demand shocks as well. However, in both cases we should note that it is the searching importing firms (and their domestic partners) which are the most sensitive to macroeconomic shocks: established pairings, whether domestic or international, are far more robust.

13 In the longer run, depreciation of the stock of existing matched firms at rate D will gradually raise the supply cost and price, until it reaches P^{**} and new firms start to enter and search again.
The conclusion should be that, in the event of a combined credit and demand shock hitting an economy which had been undergoing a process of steady growth and increasing trade openness, there will be a relatively large proportion of trading firms and their partners—as implied by equation (15)—which will exit the market relatively quickly.

One should perhaps not be surprised by this finding. Trade search can be viewed as a kind of capital formation, with firms prepared to undergo losses in the early years of search, in order to make an expected positive return thereafter, once they are established. Like any form of capital formation, we would expect search capital formation to be sensitive, both to changes in the cost and availability of credit, and to accelerator-type changes in overall demand growth. That is what this model indicates.

4 Endogenous Policy Responses to a Boom, a Shock or Stagnation

We have so far established that, during a globalisation boom, where demand and imports are rising fast, there should be at any one time a relatively high proportion of trade which is accounted for by searching firms, whose presence in the market is footloose, and who are vulnerable to either demand and/or credit shocks. This, by itself, implies that the globalisation process can be suddenly halted by unexpected shocks, regardless of any policy response. Moreover, since search is necessary for the long-run growth of trade, a shock may have a prolonged negative impact upon trade.

We now want to consider how trade policy might respond to economic circumstances, given a search model, where various components of foreign supply differ greatly in terms of their price sensitivity. In this context, it is worth bearing in mind that, where trade is between firms who are specifically matched, all countries can be considered ‘large’ from the point of view of trade policy, since trade with a matched partner is differentiated from trade with any other potential partner, yielding potential monopsony power to the importing country (and monopoly power to the exporting country). We will follow a modified version of the standard ‘large country, partial equilibrium’ exposition of optimal tariff policy (see, for example, van Marrewijk, 2007, Section 8.3).
Figure 7 shows schematically the effects of imposing a tariff on an economy with a large amount of initial importers who are searching (and hence price-sensitive). It has been drawn slightly differently to Figures 1, 2, 4, 5 and 6, since domestic supply is now subtracted from consumers’ demand, to give a demand curve for imports. (Note that the domestic supply curve increases less quickly above P^*, since a rise in price does not affect the number of domestic firms, while a fall in price will cause further exit). The elastic portion of the supply curve, accounted for by the initial searching importers, means that a tariff has to be substantial before it can begin to lower the import price. The welfare effects of this are that there is a rise in consumer prices (causing a welfare loss), and no fall in import costs. There is, however, some tariff revenue from the higher price paid by consumers (though there is still a deadweight loss). Since the model is monopolistically competitive, and prices exceed marginal costs, there is also a profit-shifting effect from the increase in market share borne by domestic producers (see Brander and Krugman, 1983). (This effect will only be enough to outweigh the
loss of consumer surplus when the elasticity of substitution, ε, is low enough to generate high profit margins, yet still large enough for domestic sales to increase significantly.)

Figure 8 shows a larger tariff, which begins to lower import prices (c.f. the large, open economy partial equilibrium model in many trade textbooks). The fall in import prices (by driving out the less efficient importers) means that some of the tariff revenue is at the expense of importers rather than consumers. However, the presence of the flat segment (the threshold effect) means that this effect (when combined with the profit-shifting effect) needs to be large to offset the loss of consumer surplus, since only sizeable tariffs will begin to reduce traded prices.

By contrast, where there are few initial searching firms, a tariff begins much more quickly to impact upon traded prices. The implication is that there is likely to be a discontinuity in tariff-setting: when the sector is shrinking, or growing
Table 3: Parameters for numerical simulation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount per contract period</td>
<td>ρ 0.08</td>
</tr>
<tr>
<td>Fixed cost</td>
<td>F 1</td>
</tr>
<tr>
<td>Elasticity of substitution between firms</td>
<td>ε 10</td>
</tr>
<tr>
<td>Share of non-trading firm pairs (base)</td>
<td>S_D 0.5</td>
</tr>
<tr>
<td>Death rate of firms per contract period</td>
<td>D 0.02</td>
</tr>
<tr>
<td>Marginal cost of NN pairing</td>
<td>C_N 1</td>
</tr>
<tr>
<td>Marginal cost of SN pairing</td>
<td>C_S $\frac{1}{1.1}$</td>
</tr>
<tr>
<td>Total expenditure on the product</td>
<td>M 1000.</td>
</tr>
</tbody>
</table>

slowly, optimal tariffs are positive, while, when the sectoral rate of import growth exceeds a threshold rate, optimal tariffs fall to zero.

The analysis here is somewhat simplified, since in reality one needs to consider tariffs in a dynamic setting. In due course, even with a tariff, the natural death of existing matched firms will lead the economy back to a position where searching firms begin to reenter the market—under some circumstances, we would expect this to lead to a cycle of optimal tariffs over time. Nevertheless, the situation with stalled growth indicates a significant difference between eras of prolonged trade growth, where protection is not favoured, and eras of stagnation, where it is.

4.1 Numerical Simulation Analysis (see Appendix 3)

To examine the effects of a crisis and/or a period of stalling of growth, I set up a numerical simulation of the partial equilibrium model outlined in Figures 7 and 8. The model is static only. Key parameters chosen are as shown in Table 3. An elasticity between firms of $\varepsilon = 10$ is consistent with many recent studies of trade elasticities (Anderson and van Wincoop, 2004).

The model is calibrated to a series of equilibrium starting growth paths for a variety of growth rates between -2% and $+9\%$ per annum. The former case corresponds to the situation where $G + D = 0$, and so is a situation where in equilibrium there are no searching firms. The higher the initial growth rate, the more searching firms there will be.

To summarise the results of the simulations:
Given the parameter assumptions, a tariff that eliminates searching firms reduces national welfare. This is because, while the tariff is not large enough to remove more than the price-sensitive, searching component of supply, import prices do not fall. Consequently, the tariff revenue plus profit-shifting are insufficient at the margin to outweigh the loss of consumer surplus. The results are shown in Appendix 1, Table A1.

Note that, where the elasticity of substitution is lower, or the initial share of domestic production is higher, then the profit-shifting effect will be larger, and may outweigh the loss of consumer surplus.

Driving searching firms out is costlier to welfare, the higher is the initial growth rate of trade. This is seen in Appendix 3, Figures A3–A5, and should not be seen as surprising, since a higher tariff is required when there are more searching firms to start with.

Once searching firms have been driven out, a further rise in the tariff first increases and then reduces welfare. This can be seen in Appendix 3, Figures A3–A5. It is worth remembering that, once searching firms have been driven out, the analysis is closer to the typical large country model of trade, where a tariff is initially welfare-improving, by reducing import prices. Only later do the marginal costs of a tariff outweigh the benefits.

This result is important in the immediate aftermath of a crisis, where a fall in demand or a collapse of credit have resulted in the exclusion of searching firms. In this case, as in Appendix 1, Figure A1, there are no initial searching firms, and welfare will always benefit from some tariff (in this case, reaching a non-cooperative ‘optimal tariff’ of around 4%, reducing trade by around 32% in total.

Whether or not a tariff can improve national welfare depends on the initial number of searching firms. This is seen by comparing Appendix 3, Figures A3–A5 The faster the initial growth rate of the economy, the more searching firms have to be driven out before a tariff can start to improve the country’s terms of trade. Consequently, the inverted-U curve of welfare starts from a lower point. Beyond some threshold rate of growth (in this case, approximately \(G = 5\% \)), a country will switch from charging an ‘optimal tariff’ to free trade. This is also summarised in Figure 9, which shows the simulated ‘optimal tariff’ for different initial growth rates.
For growth rates below about 5% per annum, countries will choose noncooperative tariffs of around 4% on trade. By contrast, above this threshold growth rate, there is a sudden, nonlinear shift to a zero noncooperative tariff, as countries prefer free trade, in order to attract the more footloose, searching firms.

Again, this result is dependent upon the substitution elasticity assumed, and upon the initial import share (a lower substitution elasticity and/or lower import share would raise the growth threshold needed to make tariffs unattractive, while a higher substitution elasticity or higher import share would do the reverse).14

The evidence that there is a threshold growth rate required to induce countries to maintain open markets is significant. As long as $G + D > 0$, new firm entry into trade will eventually resume following a crisis. However, many economic shocks—such as Latin America in the early 1980s, Japan in the early 1990s and the Asian Tigers in 1997—tend to be followed by either stagnation (a ‘lost dec-

14Details available from author.
ade’) or at least reduced growth for a prolonged period. If growth falls below a critical trigger, the analysis of this section suggests that open trade policies may be harder to sustain.

4.2 Is Search Sufficient to Trigger a Policy Switch?

While the model in the preceding section is somewhat sensitive to parameter choices, it does indicate certain important properties: in particular, a prolonged period of high global trade growth will favour little or no protectionism, but only if the growth rate exceeds a critical threshold (maybe around 5% per annum). Linked to this is the question of how much trade, in practice, can be considered to be searching. Evidence on this is somewhat hard to come by, partly because most firm-level trade databases have until recently covered timespans too short to assess long-run industry dynamics thoroughly. Nevertheless, Besedes and Prusa’s (2006) study of US imports suggests a 1 year average turnover for new products entering the market. In a model of industry dynamics, these would then be replaced by other new entrants in a repeating cycle. Eaton et al.’s (2007) study of Colombian exporters shows even faster exit rates (83% of entrants in 1997 left after a year), but continuing high exit rates in the second year (38%) and third year (10%) after entry. The number of firms entering in any one year is very large compared to the overall number of firms in the market (for example, in 2005, there were 5060 firms which had been exporting for less than a year, out of 11,720 exporters): however, firms exporting in the first year tend to export very small amounts. The scale of survivors each year then increases steadily over at least a decade, as they expand their networks of customers. The share of total sales by firms of different age vintages is shown in Figure 10—given the high exit rates for the first 3—4 years we can certainly argue that at least 5—10% of sales should be considered searching exports, but given the continuing build-up of customers per firm over 10 years, we could also view all firms with less than ten years in the market as being searchers (which would imply nearly 25% of total sales). A slight caution here: Colombian exports tend to be dominated by small flower-growers, who can enter foreign markets easily and are less tied to a single customer (e.g. by blueprints) than exporters from other countries in other industries might be.
An alternative argument that search is quantitatively significant is given in Edwards and Ferrett (2009), based upon the idea that merger with a downstream supplier usually gives better coordination and security, whereas inter-firm trade benefits from flexibility, and so is associated with search or experimentation. This is supported by evidence from Spencer (2005), showing that outsourcing in China preceded the growth of FDI, but that perhaps 20% of firm-level trade is still accounted for by outsourcing rather than FDI.

Both the Eaton et al. (2007) and Edwards and Ferrett (2009) estimates of search would suggest values (during the growth cycle) quite close to that required on our parameter assumptions to trigger a switch to zero protectionism. This may indicate that countries would be likely to favour free trade in faster-growing industries, while maybe not in others. Following the crisis of 2008–2009, it is likely that few industries would still have enough search to make unilateral free trade attractive.
It is worth bearing in mind that, in a CES demand formulation, the profit-shifting effect (which makes tariffs more attractive) is higher in industries with a lower import share.

5 Implications: Return of the Prisoner’s Dilemma in Trade Liberalisation?

Trade liberalisation is often portrayed as a prisoner’s dilemma situation: liberalisation benefits countries collectively, but large countries, individually, have an incentive to cheat and impose optimal (terms-of-trade-improving) tariffs.

The argument of this paper is that, in a rapidly changing, globalising world, the incentives to impose protection in this way would be greatly reduced by the presence of a relatively large share of footloose trade, associated with searching firms. In such circumstances, the incentives of individual countries are not far out of line from those of the global economy, which benefits from free trade.

This conclusion might raise some eyebrows: few involved in trade negotiations over recent decades would argue that they were pushing on an open door (as the failure of the Doha Round talks indicates). Nevertheless, trade liberalisation has undoubtedly made substantial strides—particularly with respect to developing countries abandoning previous autarkic developmental strategies, but also in terms of successive rounds of tariff reduction by the advanced countries. Perhaps most significantly, where protection has been maintained, or liberalisation has been resisted, the reasons have tended to be argued in terms of distributional impact, or in terms of damage to countries within trade blocs which were dependent on trade diverted from poorer countries outside the bloc (for example, Portugal or Italy resisting EU liberalisation of textiles and footwear industries). In general, the argument that high tariffs benefit national income—at least, when based upon terms of trade arguments—has rarely been used. An exception may be in agricultural commodities.

Part of the reason may be a trend towards accepting that the price elasticity of demand for traded commodities is perhaps higher than we used to think—for example, Anderson and van Wincoop’s (2004) survey cites elasticities of between 5 and 10 for many commodities: a far higher number than traditionally used in
Armington CGE models of the 1980s and 1990s.15 These higher trade elasticities are seen as fitting the data because of Ricardian, fixed-factor elements in trade,16 including firm heterogeneity, which mean that supply elasticities are reduced. However, a search-based interpretation would say that supply elasticities differ considerably \textit{ex ante} and \textit{ex post}, and that expanding supply may be more elastic than contracting supply.

In addition, the recent wave of globalisation has essentially involved connecting a large workforce in China, India, Asia and Eastern Europe to global markets from which they were previously isolated by autarkic policies and/or by their location in pre-industrial societies. The supply of labour to the globalising cities of Asia has been elastic at a low wage, so ensuring that, once search and other capital costs are met, there is an elastic supply of unskilled labour-intensive goods, meaning that optimal tariffs for large, advanced countries are likely to be much less than at some other stages of global development.17

A prolonged global recession—perhaps especially one where credit is short—is likely to change this situation for the worse (as memories of the 1930s indicate).18 In terms of the very schematic analysis of this paper, we are moving from the situation in Figure 6, where there is a substantial volume of footloose trade, to that in Figure 8, where the supply of price-elastic, searching trade is insufficient to maintain the incentive to keep tariffs low. In such a situation, the interests of individual countries (which may wish to try to manipulate their terms of trade by protection) and those of the global economy are no longer aligned, hence raising the risks of triggering a round of beggar-thy-neighbour policies. Given the recent

15Anderson and Winters (2008) provide an excellent discussion of the effects of moving from traditional to more modern CGE models in assessing trade policy.

16Eaton and Kortum, 2002.

17The situation described here in some ways mimics Sir Arthur Lewis’s model of the development of trade, whereby large supplies of Indian and Chinese labour in the late 19th and early 20th centuries pushed down prices of unskilled-intensive commodities. Ironically, this led Lewis towards pessimism about export-led development in developing countries, on the grounds of elasticity pessimism.

18Eichengreen et al. (2009) summarise the trade experience of the current economic crisis, with a roughly 20% fall in World trade (April 2008 to a year later).
advances in understanding the interaction between trade integration and growth, there must be a danger that protection could trigger a self-perpetuating circle, whereby trade growth is reduced, increasing incentives to protect.

A secondary element, which must be of particular concern when countries are credit constrained, is the potential effect on the stability of existing agreements, where these are sustained by the threat of retaliation in a trigger strategy. Such a strategy depends upon people weighing the loss of future welfare, from the collapse of trade agreements, more highly than the short-term gain from imposing a terms-of-trade-improving tariff. Again, if credit constraints shorten national time-horizons, the prisoner’s dilemma will be restored.

In sum: the recent wave of globalisation has been sustained and strengthened by the coming-together of national and global interests, when trade is relatively footloose and credit is available. The removal of those conditions, once a shock drives out the more price-elastic elements of trade, creates a totally new set of incentives, where national interests are to protect, yet the global interest still requires a liberal trade regime. If cooperation is allowed to fall, it may be very difficult to restore global trade to its recent Golden Age.

19 Not just the standard comparative advantage effects, but the pro-competitive, choice-widening and scale-exploiting effects identified by the New Trade Theory (Krugman, 1979), as well as the firm selection effects of the New New Trade Theory (Melitz, 2003). The starting premises of this paper—that search costs, even in phase 2 of our time-schema, maintain trade at below the level which would be favoured in the presence of full information, rather emphasise that trade-impeding policies will push the World further from optimality.
Appendix 1: The Matching Setup

The paper follows Rauch and Trindade (2003) and Rauch and Casella (2003) in using a matching framework based upon Salop’s circular cylinder (note that Grossman and Helpman, 2002, use a similar setup). This is shown in Figure A1. Position on the circle refers to some firm-specific characteristics. The essence of the Salop model is that firms are *ex ante* equal in efficiency, but that firm performance is determined by the degree of fit with the match partner: the aim is to match with a firm directly opposite on the cylinder. Hence, match quality, μ_i, is measured by the circumference distance between the two firms. Firms only have a single partner at any time.

![Figure A1: The Salop matching framework](image)

The key difference between the match-searching model employed here and the models in the earlier papers is the ability of a firm in an unsatisfactory match to renew search, after a given contract period. This determines the generation of a reservation match quality, μ_R. The decision process of the firm is shown in Figure A2.
Any match with a circumference length greater than μ_R will yield a profit great enough for the firms to choose to continue. This gives a probability of acceptance of $1 - \mu_R$. However, of these pairings, proportion D will naturally expire anyway during the first contract period, so any surviving firm will have to renew search. By contrast, proportion μ_R of initial pairings will be unsatisfactory, and be dropped after one contract period.

Figure A2: The match-searching decision setup

We note that the profit of a reservation quality match ($\mu_i = \mu_R$) is zero. Profit increases linearly with respect to match quality, so that the expected profit of a successful match (where $\mu_R < \mu_i < 1$) is $\frac{1+\mu_R}{2}$ minus the profit of a reservation quality match. This yields an expected profit of $\frac{1-\mu_R}{2}$. Likewise, an unsatisfactory match will have an expected profit of $-\frac{\mu_R}{2}$. Finally note that a renewed search will yield a present discounted value of zero.

<table>
<thead>
<tr>
<th>Match</th>
<th>Probability</th>
<th>Expected profit above reservation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfactory</td>
<td>Both firms survive</td>
<td>$(1 - \mu_R)(1 - D)$</td>
</tr>
<tr>
<td></td>
<td>One or more dies</td>
<td>$(1 - \mu_R)D$</td>
</tr>
<tr>
<td>Unsatisfactory</td>
<td>μ_R</td>
<td></td>
</tr>
</tbody>
</table>

Table A1: Expected returns for the matching process
We wish now to solve this problem, based upon the knowledge that monopolistic competition will equate the expected return from entering a search process to zero.

Discounted profit with a successful match = one period expected loss with a poor match

\[
\frac{(1 - \mu_R)^2}{2\Phi} = \frac{\mu_R^2}{2(1 + \Phi)}, \text{ where } \Phi = \rho + D; \quad (18)
\]

\[
(1 + \Phi)(1 - 2\mu_R + \mu_R^2) = \Phi\mu_R^2; \quad (19)
\]

\[
\mu_R^2 - 2(1 + \Phi)\mu_R + (1 + \Phi) = 0; \quad (20)
\]

\[
\mu_R = \frac{2(1 + \Phi) \pm \sqrt{4(1 + \Phi)^2 - 4(1 + \Phi)}}{2},
\]

\[
= 1 + \Phi - \sqrt{\Phi(1 + \Phi)}, \quad (21)
\]
since only the negative root lies between zero and unity.
Appendix 2: The Thick Industry ‘Love of Variety’ Partial Equilibrium Model with Match-Searching

The industry is described as ‘thick’ in the sense that the number of firms producing differentiated goods is large.

Competitive Structure

The industry is assumed to be monopolistically competitive, on the lines of Krugman (1979). There are both fixed and variable costs. Subject to these, firms can enter or exit the market, although they need a partner (existing or new) in order to produce saleable goods. The elasticity of substitution between final goods varieties is \(\varepsilon (>1) \), which closely approximates the own-price elasticity for the output sold by firm pairings, at least as long as the number of firms, \(N \), is large.

To summarise the love of variety model, we start with a Dixit-Stiglitz utility function for utility from consumption of the industry’s good:

\[
\bar{Y} = \Omega \left(\sum_{i=1}^{N} Y_i \frac{\varepsilon}{\varepsilon+1} \right)^{-\frac{1}{\varepsilon+1}}.
\]

(22)

\(Y_i \) is sales by firm pairing \(i \). \(\varepsilon \) is the elasticity of substitution in consumption and \(\Omega \) is a scale parameter, which we can set at 1 without loss of generality, since utility is basically ordinal. Hence we derive

\[
\bar{Y} = \left(\sum_{i=1}^{N} Y_i \frac{\varepsilon}{\varepsilon+1} \right)^{-\frac{1}{\varepsilon+1}}.
\]

(23)

The first order condition for an optimum is

\[
\frac{\partial \bar{Y}}{\partial Y_i} = \left(\sum_{j=1}^{N} Y_j \frac{\varepsilon}{\varepsilon+1} \right)^{-\frac{1}{\varepsilon+1}} Y_i \frac{1}{\varepsilon+1} = \frac{P_i}{P^*}; i \in j,
\]

(24)

The restriction \(\varepsilon > 1 \) is associated with consumers’ assumed ‘love of variety’, and also helps ensure finite pricing by firms.
where P^* is the aggregate CES price of utility. We can replace the term in brackets by rearranging (24), so that

$$\frac{\partial Y}{\partial Y_i} = Y^{\frac{1}{\epsilon}} Y_i^{\frac{-1}{\epsilon}} = \frac{P_i}{P^*},$$

(25)

Or, by rearranging,

$$Y_i = \overline{Y} \left(\frac{P_i}{P^*}\right)^{-\epsilon}. \quad \text{(equation 1)}$$

Defining $A = \overline{Y}$, this is equation (1) in the main paper.

When the number of firms, N, is large, then a change in Y_i will have negligible impact upon U, in which case

$$\frac{\partial \ln Y_i}{\partial \ln P_i} = -\epsilon. \quad \text{(26)}$$

Applying the standard profit-maximising formula for a firm with constant demand elasticity and a constant marginal cost, C_i, firm pairing i will charge a price of

$$P_i = \frac{\epsilon}{\epsilon - 1} C_i. \quad \text{(27)}$$

Substituting from (1) into (23)

$$\overline{Y} = \overline{Y} P^{\epsilon} \left(\sum_{j} P_j^{1-\epsilon}\right)^{\frac{\epsilon}{\epsilon - 1}};$$

$$P^* = \left(\sum_{j=1}^{N} P_j^{1-\epsilon}\right)^{\frac{1}{\epsilon - 1}}. \quad \text{(28)}$$

When all firms are identical, $P_j = \overline{P}$ $\forall j$. Consequently,

$$P^* = N^{\frac{1}{\epsilon - 1}} \overline{P} = N^{\frac{1}{\epsilon - 1}} \frac{\epsilon}{\epsilon - 1} \overline{C}, \quad \text{(29)}$$

which is decreasing with respect to N for $\epsilon > 1$, demonstrating the love of variety effect.
Firm Profits

Taking (26), we note that profit of firm i, before taking account of fixed cost, is

$$
\pi_i = (P_i - C_i)Y_i = \frac{1}{\varepsilon - 1}C_iY_i = \frac{1}{\varepsilon - 1}C_i\bar{Y}\left(\frac{\varepsilon - 1}{P^*}\right)^{-\varepsilon}, \\
= \frac{1}{\varepsilon - 1}C_i\bar{Y}P^\varepsilon\left(\frac{\varepsilon}{\varepsilon - 1}C_i\right)^{-\varepsilon} = \frac{\bar{Y}}{\varepsilon}P^\varepsilon\left(\frac{\varepsilon}{\varepsilon - 1}\right)^{1-\varepsilon}C_i^{1-\varepsilon}, \quad \text{(equation 2)}$

where

$$
k = \frac{1}{\varepsilon}\left(\frac{\varepsilon}{\varepsilon - 1}\right)^{1-\varepsilon}.
$$

We assume the firm’s fixed costs

$$
f_c = F - \mu_i, \quad \text{where } F \geq 1. \quad \text{(30)}$$

μ_i is a random match quality parameter, where $0 \leq \mu_i \leq 1$. Hence, profit after fixed cost

$$
\Pi_i = k\bar{Y}P^\varepsilon C_i^{1-\varepsilon} - F + \mu_i. \quad \text{(equation 3)}
$$

Where all firms have identical marginal costs

$$
\Pi_i = kP^\varepsilon\bar{C}^{1-\varepsilon} - F + \mu_i, \\
= k\bar{Y}N^{\frac{\varepsilon}{\varepsilon - 1}}\left(\frac{\varepsilon}{\varepsilon - 1}\right)^{\varepsilon}\bar{C} - F + \mu_i, \\
= \frac{\bar{Y}}{\varepsilon - 1}N^{\frac{\varepsilon}{\varepsilon - 1}}\bar{C} - F + \mu_i. \quad \text{(32)}
$$
Monopolistic Competition with Free Entry and Exit and Search

In the monopolistically competitive model, a firm pairing with the reservation match quality, $\mu_i = \mu_R$, will just break even after its fixed costs. Hence, in an equilibrium where all firms have the reservation match quality,

$$\frac{Y}{\varepsilon - 1} N^{\frac{\varepsilon}{\varepsilon - 1}} C - F + \mu_R = 0;$$

$$N = \left(\frac{(\varepsilon - 1)(F - \mu_R)}{YC} \right)^{\frac{1}{\varepsilon}}.$$ (equation 8)

Substituting into (29), we obtain P^*,

$$P^* = N^{\frac{1}{\varepsilon}} \frac{\varepsilon}{\varepsilon - 1} C,$$ (equation 7)

$$= \left(\frac{(\varepsilon - 1)(F - \mu_R)}{YC} \right)^{\frac{1}{\varepsilon}} \frac{\varepsilon}{\varepsilon - 1} C,$$

$$= \left(\frac{Y}{(\varepsilon - 1)(F - \mu_R)} \right)^{\frac{1}{\varepsilon}} \frac{\varepsilon}{\varepsilon - 1} C^{\frac{\varepsilon - 1}{\varepsilon}}.$$ (33)

Note that, in a model with constant and identical marginal cost, all firms will be of the same scale, so all will set prices and output at the level that a firm pairing with reservation match quality would set. Hence (7) and (8) describe the equilibrium with identical firms.

Another way of writing (8) is to take

$$\pi_i = k\bar{Y}P^{*\varepsilon}C^{1-\varepsilon} = F - \mu_R;$$

$$P^* = \left(\frac{F - \mu_R}{k\bar{Y}C^{1-\varepsilon}} \right)^{\frac{1}{\varepsilon}}.$$ (equation 6)

Higher-Level Demand

Consumption of the industry good, at price P^*, leads to utility of $\bar{Y}(P^*)$. This is assumed to be isoelastic, so that

$$\bar{Y} = \bar{Y}_0 P^{*-\nu},$$ (34)
where $\nu > 0$. Hence, substituting into (33),

$$P^* = P^*^\nu (\frac{Y_0}{(\varepsilon - 1)(F - \mu_R)})^{-\frac{1}{\varepsilon}} \frac{\varepsilon}{\varepsilon - 1} C^{\frac{\varepsilon - 1}{\varepsilon}};$$

$$P^{*\varepsilon - \nu} = (\frac{\varepsilon - 1}{\varepsilon - 1})^{\frac{1}{\varepsilon - \nu}} (\frac{\varepsilon}{\varepsilon - 1})^{\frac{\varepsilon - 1}{\varepsilon - \nu}} C^{\frac{\varepsilon - 1}{\varepsilon - \nu}};$$

$$P^* = (\frac{\varepsilon - 1}{\varepsilon - 1})^{\frac{1}{\varepsilon - \nu}} (\frac{\varepsilon}{\varepsilon - 1})^{\frac{\varepsilon - 1}{\varepsilon - \nu}} C^{\frac{\varepsilon - 1}{\varepsilon - \nu}}. \quad (35)$$

For utility to be decreasing with respect to C, we need the parameter restriction that $\varepsilon > \nu$.

Assuming a Cobb-Douglas higher-level nesting of the economy, then, as long as the industry is 'small' in proportion to the overall economy, we can take overall national income as given, and hence assume $\nu = 1$. Hence, (35) becomes

$$P^* = (\frac{\varepsilon - 1}{\varepsilon - 1})^{\frac{1}{\varepsilon - 0}} (\frac{\varepsilon}{\varepsilon - 1})^{\frac{\varepsilon - 1}{\varepsilon - 0}} C. \quad (36)$$

Ranges of Firm Threshold Prices

An existing, successfully-matched firm pairing will have a match quality $\mu_R < \mu_i < 1$. The reservation market price for a firm with match quality μ_i, P'_i, is the value of P^* at which a firm with match quality μ_i will break even. From (3) this condition is

$$kY P^{*\varepsilon} C_i^{1-\varepsilon} - F + \mu_i = 0; \quad (37)$$

$$P' = (\frac{F - \mu_i}{kY C_i^{1-\varepsilon}})^\frac{1}{\varepsilon} \quad (38)$$

When $\mu_i = \mu_R$, this is satisfied by P^* as calculated in the previous section. By contrast, when $\mu_i = 1$, this corresponds to

$$P' = (\frac{F - 1}{kY C_i^{1-\varepsilon}})^\frac{1}{\varepsilon}, \quad (39)$$
which is lower than P^*, firstly because $F - 1 < F - \mu_R$, and also because the term on the denominator, is an increasing function of Y, which should improve as P falls. The intuition is that the most efficient matched firm pairings will withdraw from the market at a lower price than the threshold for new firm entry, and this difference is greater the lower is μ_R, and hence the more heterogeneous are existing matched pairings.

We really want to substitute for k in (39) as a function of P^*. Since $k = \frac{1}{\varepsilon} \left(\frac{\varepsilon}{\varepsilon - 1} \right)^{1-\varepsilon}$, assuming a top-level own price elasticity of unity for the aggregate industry produce, and substituting into (38), we can write

$$P_0' = \left(\frac{F - \mu_i}{kC_i} \right)^{\frac{1}{\varepsilon - 1}} Y_0^{\frac{1}{\varepsilon - 1}} P^' \frac{1}{\varepsilon};$$

$$P_0' = \left(\frac{F - \mu_i}{kC_i} \right)^{\frac{1}{\varepsilon - 1}} Y_0^{\frac{1}{\varepsilon - 1}} = \left(\frac{F - \mu_i}{kC_i} \right)^{\frac{1}{\varepsilon - 1}} Y_0^{\frac{1}{\varepsilon - 1}} C_i.$$

Hence, we have a situation where P_0' is proportional to C_i. Also note that the reservation prices for market withdrawal when $\mu_i = \mu_R$ and $\mu_i = 1$, in the case where marginal cost, $C_i = C$ are

$$P^* = \left(\frac{F - \mu_R}{kC_i} \right)^{\frac{1}{\varepsilon - 1}} Y_0^{\frac{1}{\varepsilon - 1}} C;$$

$$P^' = \left(\frac{F - 1}{kC_i} \right)^{\frac{1}{\varepsilon - 1}} Y_0^{\frac{1}{\varepsilon - 1}} C;$$

$$\frac{P^'}{P^*} = \left(\frac{F - 1}{F - \mu_R} \right)^{\frac{1}{\varepsilon - 1}}.$$

(41)

The Model with Alternative Supply Sources

Phase 1 pre-globalisation: We start assuming the only pairings available are NN, who supply at a combined cost of $C = 1$. Consequently, the entry price is given by substitution into equation (9):

$$P_1^* = \left((\varepsilon - 1)(F - \mu_R) \right)^{\frac{1}{\varepsilon - 1}} \left(\frac{\varepsilon}{\varepsilon - 1} \right)^{\frac{\varepsilon}{\varepsilon - 1}}.$$
Phase 2 globalisation: SN pairings are now available, at a marginal supply cost of $\bar{C}_S (< 1)$. This means they will enter at any aggregate price greater than P_2^*, where

$$P_2^* = \left(\left(\varepsilon - 1\right)\left(F - \mu_R\right)\right)^{\frac{1}{1-\varepsilon}} \frac{\varepsilon}{\varepsilon - 1} \bar{C}_S = P_1^* \bar{C}_S.$$ \hspace{1cm} (equation 11)

The price at which a given NN pairing of quality $\mu_i > \mu_R$ will withdraw from the market is given by

$$\frac{P_{i1}'}{P_1^*} = \left(\frac{F - \mu_i}{F - \mu_R}\right)^{\frac{1}{1-\varepsilon}},$$ \hspace{1cm} (equation 12)

so that at price P_2^*, the critical match quality at which existing matched NN pairings which will withdraw is

$$\mu_i = F - \left(\frac{P_2^*}{P_1^*}\right)^{\varepsilon-1}(F - \mu_R) = (1 - \bar{C}_2^{\varepsilon-1})F + \bar{C}_S^{\varepsilon-1}\mu_R;$$

and

$$\mu_i - \mu_R = (1 - \bar{C}_S^{\varepsilon-1})(F - \mu_R).$$

at which price the proportion of firms which will continue in the market is

$$\sigma_{N2} = \frac{1 - \mu_i}{1 - \mu_R} = 1 - \frac{\mu_i - \mu_R}{1 - \mu_R};$$

and

$$\sigma_{N2} = 1 - \frac{(1 - \bar{C}_S^{\varepsilon-1})(F - \mu_R)}{1 - \mu_R}.$$ \hspace{1cm} (z = equation (13))

Appendix 3: National Welfare Effects of a Tariff in the Presence of Search

The economy is assumed to be in a steady-state growth equilibrium, with growth rate G, which can be varied between -2% and 9% per annum. Other key parameters are:
Discount per contract period \(\rho \) 0.08
Fixed cost \(F \) 1
Elasticity of substitution between firms \(\varepsilon \) 10
Share of non-trading firm pairs (base) \(S_D \) 0.5
Death rate of firms per contract period \(D \) 0.02
Marginal cost of NN pairing \(C_N \) 1
Marginal cost of SN pairing \(C_S \) \(\frac{1}{\varepsilon} \)
Total expenditure on the product \(M \) 1000.

From this, some key initial derived parameters are:

YY CES substitution parameter \(\eta = \frac{\varepsilon - 1}{\varepsilon} \).
Reservation match quality \(\mu_R = 1 + \rho + D - \sqrt{(\rho + D)(1 + \rho + D)} \).
Unit price of a northern pairing \(P_N = \frac{\varepsilon}{\varepsilon - 1} C_N \).
Unit price of a SN pairing \(P_S \).
Pre-trade scale of a NN pairing \(S_{N0} = \frac{F - \mu_R}{P_N - C_N} \).

Initial scale of a SN pairing after trade starts \(S_{S1} = \frac{F - \mu_R}{P_S - C_S} \).
Scale of NN pairings after trade starts \(S_{N1} = S_{N0} \left(\frac{P_S}{P_N} \right)^\varepsilon \).
Number of NN pairings after trade starts \(N_D = \frac{S_D M}{S_{N1}} \).

Number of SN pairings after trade starts \(N_S = \frac{(1 - S_D) M}{S_{S1}} \).
Share of searching to non-searching SN pairings \(\sigma_{1g} = \frac{Gg + D}{1 - \mu_R} \).
Number of searching pairings \(N_{SS} = \frac{\sigma_{1g}}{1 + \sigma_{1g}} N_S \).
Number of non-searching SN pairings \(N_{SN} = N_S - N_{SS} \).
Output scalar (from CES demand function) \(\Psi = \frac{M}{\left[N_D S_{N1} + N_S S_{S1} \right]^\frac{\eta}{\eta}} \).
First scenario: a tariff to remove searching firms

The first scenario is that a tariff is applied sufficient to remove all searching SN pairings (but no other ones). The tariff required to do this is derived by numerically solving two simultaneous equations:

\[M = P_N N_D \left(\frac{P_X}{P_S} \right)^\varepsilon + (P_S + \tau) N_{SN} S_{S1}; \]
\[\frac{M}{P_X} = \Psi \left[N_{DS}^{\eta N} \left(\frac{P_X}{P_S} \right)^{\varepsilon \eta} + N_{SN} S_{S1}^{\eta} \right]^{\frac{1}{\eta}}. \]

The first equation derives from the assumption of unit elastic demand for the product as a whole (so expenditure, \(M \), is constant, while the CES aggregate price, \(P_X \) changes. \(P_X \) will equal average cost of domestic and imported goods.). The second equation derives real-terms CES aggregate consumption. The assumption of both equation is that the tariff is applied to SN pairings only, and drives out the searching (but not the non-searching) pairings. The industry aggregate price facing domestic producers, \(P_X \), is raised, but that facing SN pairings is unchanged.

Welfare calculations are as follows:

- Consumer surplus loss
 \[V = \left[\frac{1}{P_X^{\varepsilon}} - \frac{1}{P_S^{\varepsilon}} \right] \frac{M}{2} \]
- Tariff revenue gain
 \[T = \tau N_{SN} S_{S1} \]
- Domestic profit gain (profit shift)
 \[\Pi = (P_N - C_N) N_{DS} S_{N1} \left(\frac{P_X}{P_S} \right)^\varepsilon - 1 \]
- Domestic welfare loss
 \[W = V - T - \Pi. \]

Table A2 shows the key results of the numerical simulation of this scenario.

21 Although the bargaining process between the firms in SN pairings has not been modelled in depth, it is expected that an unanticipated tariff on imports would be borne primarily by the foreign firm in the pairing (by shifting the threat point).
Table A2: Effect of steady-state growth rate on share of searching firms

<table>
<thead>
<tr>
<th>Growth rate</th>
<th>Searching firms as share of trading firms per cent.</th>
<th>Tariff required to exclude searching firms</th>
<th>Net loss of welfare (+=loss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2%</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-1%</td>
<td>4.1</td>
<td>0.3</td>
<td>0.107</td>
</tr>
<tr>
<td>0%</td>
<td>7.9</td>
<td>0.6</td>
<td>0.243</td>
</tr>
<tr>
<td>1%</td>
<td>11.5</td>
<td>0.9</td>
<td>0.401</td>
</tr>
<tr>
<td>2%</td>
<td>14.7</td>
<td>1.2</td>
<td>0.574</td>
</tr>
<tr>
<td>3%</td>
<td>17.8</td>
<td>1.4</td>
<td>0.760</td>
</tr>
<tr>
<td>4%</td>
<td>20.6</td>
<td>1.6</td>
<td>0.954</td>
</tr>
<tr>
<td>5%</td>
<td>23.2</td>
<td>1.8</td>
<td>1.154</td>
</tr>
<tr>
<td>6%</td>
<td>25.7</td>
<td>1.9</td>
<td>1.357</td>
</tr>
<tr>
<td>7%</td>
<td>28</td>
<td>2.1</td>
<td>1.562</td>
</tr>
<tr>
<td>8%</td>
<td>30.2</td>
<td>2.2</td>
<td>1.768</td>
</tr>
<tr>
<td>9%</td>
<td>32.2</td>
<td>2.4</td>
<td>1.973</td>
</tr>
</tbody>
</table>

The faster the economy is growing in steady-state, the higher the equilibrium share of searching firms, the larger the tariff needed to eliminate them, and the greater the net loss of welfare from doing so.
Second scenario: a tariff to maximise welfare in steady-state growth

The model in this case is somewhat more complicated (as Figure 7 in the paper would indicate). We estimate the following equations simultaneously:

Total expenditure M relating to CES aggregate price level P_D

$$M = P_N N_D S_{S1} \left(\frac{P_D}{P_S} \right)^\varepsilon + P_T N'_S S_{S1} \left(\frac{P_S}{P_T} \right)^\varepsilon .$$

Aggregate output and price level, P_D

$$\frac{M}{P_D} = \Psi \left[N_D S_{N1} \left(\frac{P_D}{P_S} \right)^{\varepsilon \eta} + N'_S S_{S1} \left(\frac{P_S}{P_S} \right)^{\varepsilon \eta} \right]^{\frac{1}{\eta}} .$$

Number of importing firms $N'_S = N_S \left[1 - \frac{1 - \left(\frac{P_S}{P_S} \right)^{\varepsilon}}{1 - \mu_R} \right] .

Welfare is calculated as follows:

Consumer surplus loss

$$V = \left[\frac{1}{P_D^2} - \frac{1}{P_S^2} \right] \frac{M}{\tau} .$$

Tariff revenue gain

$$T = \tau N'_S S_{S1} \left(\frac{P_S}{P_S} \right)^\varepsilon .$$

Domestic profit gain (profit shift)

$$\Pi = (P_N - C_N) N_D S_{N1} \left(\frac{P_S}{P_S} \right)^\varepsilon - 1 .$$

Domestic welfare loss

$$W = V - T - \Pi .$$

Results:

Figures A3–A5 plot national welfare change against the tariff level. Note that simulations have been carried out for a series of tariffs, starting from the tariff level needed to exclude searching firms (so the starting tariff for the simulations varies according to the growth rate). Critically, once the growth rate rises above 5% per annum, the curve never crosses zero, so there is no longer any optimal tariff rate which is preferable to a zero tariff.

It is worth noting that in all cases the national welfare curve peaks at a tariff rate of about 4%. However, when growth is faster, the curve is shifted downwards (because there is a larger initial loss from applying a tariff to the searching firms). Beyond a point (approximately 5% annual trade growth), no positive tariff will yield a higher national welfare than free trade. The results of these simulations are summarised in Figure 9, in the main text.
Figure A3: Welfare gain plotted against tariff with a growth rate of -2%, plotted for tariff rates over and above that required to exclude searching firms

Figure A4: Welfare gain plotted against tariff with a growth rate of +2%, plotted for rates over and above that required to exclude searching firms
Third scenario: initial searching firms are wiped out

This scenario is analytically equivalent to our scenario where $G = -2\%$, since in that case $G + D = 0$ and hence there are no initial searching firms. Consequently, in our numerical example, a tariff of around 4\% would maximise national welfare.
References

Please note:

You are most sincerely encouraged to participate in the open assessment of this article. You can do so by either recommending the article or by posting your comments.

Please go to:
www.economics-ejournal.org/economics/journalarticles/2010-24

The Editor