

A Service of

ZBШ

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Traistaru, Iulia; Wolff, Guntram B.

Working Paper Regional specialization and employment dynamics in transition countries

ZEI Working Paper, No. B 18-2002

Provided in Cooperation with: ZEI - Center for European Integration Studies, University of Bonn

Suggested Citation: Traistaru, Iulia; Wolff, Guntram B. (2002) : Regional specialization and employment dynamics in transition countries, ZEI Working Paper, No. B 18-2002, Rheinische Friedrich-Wilhelms-Universität Bonn, Zentrum für Europäische Integrationsforschung (ZEI), Bonn

This Version is available at: https://hdl.handle.net/10419/39615

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

Zentrum für Europäische Integrationsforschung Center for European Integration Studies Rheinische Friedrich-Wilhelms-Universität Bonn

Iulia Traistaru and Guntram B. Wolff

Regional Specialization and Employment Dynamics in Transition Countries

orkinc **B** 18

2002

Regional Specialization and Employment Dynamics in Transition Countries.

Iulia Traistaru^{*} and Guntram B. Wolff^{**}

Bonn, July 30, 2002^{††}

Abstract

Trade reorientation and transition to a market economy in Central and East European countries have resulted in structural change, i.e. industrial restructuring and labor reallocation across sectors and regions. In the 1990s, many transition countries have experienced considerable decline in output and employment.

In this paper we investigate and explain regional differentials in employment change in three transition countries: Bulgaria, Hungary and Romania. We apply a shift-share analysis using a three-factor decomposition and assess the role of industry mix (structural component), region-specific factors (differential component) and regional competitiveness (allocative component) in explaining regional differentials in employment growth. We find that the variance of regional employment growth is driven almost entirely by region-specific factors. Industry mix and regional competitiveness factors play only a minor role in explaining regional employment dynamics in the three countries included in our study.

JEL classification: J21, O41, R12, P23

Key words: Industry mix, regional growth, shift-share analysis, transition economies

^{*}ZEI – Center for European Integration Studies, Walter-Flex Str. 3, D-53113 Bonn, Tel: +49/228/73 - 1886, e-mail: traistar@united.econ.uni-bonn.de

^{**}ZEI – Center for European Integration Studies, Walter-Flex Str. 3, D-53113 Bonn, Tel: +49/228/73 - 1887, e-mail: gwolff@uni-bonn.de

^{††}We thank Ian Gordon, Roger Vickerman, Johannes Bröcker, Anna Iara, seminar participants at ZEI, University of Bonn and participants of the conference "Emerging Market Economies and European Economic Integration", organized by the Nordic section of the Regional Science Association, for helpful comments. Remaining errors are ours.

1 Introduction

Since 1990, trade reorientation and the transition to a market economy in Central and East European countries (CEECs) have resulted in major economic restructuring. Centrally planned economies had to adapt their regional and sectoral production structure to a market-based economic system. This led to large labor reallocation across sectors and regions. Regional employment changes can be driven by region-specific factors or by specialization in certain sectors, respectively industries of a region. The aim of this paper is to assess the importance of regional factors on the one hand and of industry specific factors on the other hand in explaining regional employment growth differentials in three selected transition countries, namely Bulgaria, Hungary and Romania.

This analysis is important and policy-relevant for a number of reasons. First, highly specialized regions are more vulnerable to asymmetric shocks, since industry demand shocks may become region-specific shocks. While in the long term regions may benefit from specialization via productivity growth, short run adjustment costs could be high in the case of relocation of firms. Second, region-specific shocks trigger different adjustment mechanisms. Third, the analysis of region-specific shocks should provide insights for the further development and co-ordination of regional policies within an integrated Europe.

Previous studies about the roles of national, industrial and regional factors in explaining regional employment change have established the following stylized facts. In a seminal paper, Blanchard and Katz (1992) show that in the US a large proportion of movements in employment growth is common to all states. In the case of Europe, Decressin and Fatas (1995) show that most of the dynamics in employment growth is region-specific which implies that region-specific shocks may be important in Europe. In the US, Gracia-Milà and McGuire (1993) find that the industrial mix plays an important role in explaining regional employment growth differentials. Esteban (2000) shows that region specific factors explain most of regional productivity differentials in Europe. In transition countries the existing evidence is less conclusive: while region specific factors explain regional employment growth differentials in Poland, the inherited, industry mix play the major role in countries such as Hungary and Slovakia (Boeri and Scarpetta 1996).

In this paper, we use sectoral employment data at regional level for the period 1990-1999 and investigate regional differentials in employment growth in Bulgaria, Hungary and Romania. We apply a shift-share analysis using a three-factor decomposition suggested in Esteban (2000) and assess the role of industry mix (structural component), region-specific factors (differential component) and regional competitiveness (allocative component) in explaining regional differentials in employment growth. To our knowledge this is the first contribution bringing empirical evidence on the role of these three components in explaining regional employment growth differentials in transition countries. We find that in all the countries investigated the variance of regional employment growth is driven almost entirely by region-specific factors. Industry mix and regional competitiveness factors play only a minor role in explaining regional employment dynamics in the three countries included in our study.

The remainder of this paper is organized as follows. Section 2 discusses the three-factor decomposition methodology applied. Section 3 introduces the data and section 4 describes the summary statistics of regional employment growth and regional specialization in Bulgaria, Romania and Hungary. The results we obtain from our shift-share analysis are presented and discussed in section 5. Finally, in section 6 we formulate the main conclusions of our findings as well as their policy implications.

2 Methodological Framework

Regional employment growth differentials can be analyzed with the shift-share methodology. Despite reservations and criticisms, the shift-share approach is the most commonly used method to decompose the regional employment dynamics into regional and structural factors (e.g. Patterson (1991), Loveridge and Selting (1998), Fothergill and Gudgin (1982) and Esteban (2000)).¹ Initially it was used to decompose growth differentials between a region and the national average into two components: the growth differential due to a better/worse than national average performance of the region; the growth differential due to the specialization of the region in fast/slow growing sectors (Dunn 1960). Esteban (1972) extended the two-factor decomposition to a sum of three components which could be described as: structural, differential and allocative. The structural component indicates the growth share due to the

¹One of the points of reservation raised is its lack of an underlying theory (Houston 1967). One additional major points of critique is that the method is deterministic. We believe that beside its deterministic nature, the method allows to give an accurate description of **actual** employment changes. Furthermore we do not seek to make statements about individual regions, for which a statistical significance test is necessary, but our analysis aims at looking at variance shares of the different components over the entire cross-section.

specialization (industry mix) of each region. The differential component, measures the part of growth due to region specific factors. Finally, the allocative component measures the covariance of the two factors and can be interpreted as regional growth deriving from its specialization in those activities where the region is most competitive.

In order to disentangle the role of industry mix and region specific factors in explaining the regional employment differentials we compare each region with a benchmark region having sectoral employment growth rates and industry mix equal to the national average. The differences between actual and the benchmark regions with respect to industry mix and sectoral employment growth capture the importance of these two factors in each region.

g	employment growth rate at national level
g_j	employment growth rate in region j
g_i	employment growth rate in industry i
\overline{E}	employment at national level
E_i	employment in region j
$\check{E_i}$	employment in industry i
E_{ij}	employment in industry i in region j
$s_{ij} = \check{E}_{ij} / E_j$	share of employment in industry i in region j in total employment of region j
$s_i = E_i/E$	share of employment in industry i at national level
$g_{ij} = \frac{E_{ij,t+1} - E_{ij,t}}{E_{ij,t}}$	growth rate of employment in industry i in region j .

Table 1: Notations and definition of variables.

The difference between regional and national growth rate, as defined by equation (1) can be decomposed into three components.

$$g_j - g = \sum_i g_{ij} s_{ij} - \sum_i g_i s_i \tag{1}$$

The growth differential due to the specific sectoral composition/specialization of the region j, assuming that sectoral employment growth rates in each region are equal to the national average, is measured by μ_j (equation (2)).

$$\mu_j = \sum_i (s_{ij} - s_i)g_i \tag{2}$$

 μ_j is positive if the region is specialized $(s_{ij} > s_i)$ in sectors with high positive employment growth rates at the national level and de-specialized $(s_{ij} < s_i)$ in sectors with low positive employment growth rates. μ_j is maximum in case the region j is specialized in the sector with the highest employment growth nation wide. μ_j is minimum if the region is specialized in the sector with the lowest employment change. Equation (2) can be rewritten as:

$$\sum_{i} s_{ij} g_i = g + \mu_j \tag{3}$$

The term on the left hand side (LHS) is the average employment growth in region j if regional and national employment growth rates coincide sector by sector.

The growth differential due to differences in employment growth of industry i in region j compared to the national growth of i, π_j , is given by equation (4).

$$\pi_j = \sum_i s_i (g_{ij} - g_i) \tag{4}$$

It can be rewritten as:

$$\sum_{i} s_i g_{ij} = g + \pi_j \tag{5}$$

The LHS describes the growth rate of the region, if it had the same sectoral structure. The variable π_j therefore describes the part of growth difference between the region and the national average, which can be attributed to region-specific factors.

The covariance between the two effects is given by equation (6).

$$\alpha_j = \sum_i (s_{ij} - s_i)(g_{ij} - g_i) \tag{6}$$

It captures high employment growth in those regions where a combination of certain industries and the region specific advantages lead to higher growth rates. With these equations it is easy to show that

$$g_j - g = \mu_j + \pi_j + \alpha_j = \sum_i s_{ij} g_{ij} - \sum_i s_i g_i \tag{7}$$

One way of measuring the role played by each of the shift-share components in explaining interregional differences in employment growth is to compute the relative weight of the variance of each component in overall observed variance. The variance of $g_j - g$ is

$$var(g_j - g) = var(\mu_j) + var(\pi_j) + var(\alpha_j) + 2[cov(\mu_j, \pi_j) + cov(\mu_j, \alpha_j) + cov(\pi_j, \alpha_j)]$$
(8)

Second, the importance of each factor can be assessed looking at the value of R^2 in regressions of total regional employment growth variation on each of the three factors separately.

$$g_j - g = a + b\mu_j + \epsilon_j \tag{9}$$

$$g_j - g = a + b\pi_j + \epsilon_j \tag{10}$$

$$g_j - g = a + b\alpha_j + \epsilon_j \tag{11}$$

We use the results of the regressions as a further check of the results of the relative variance comparison.

3 The Data

We use employment data at regional NUTS 3 level for Bulgaria, Hungary and Romania for the period 1990-1999². Our data set³ contains employment on sectors of economic activity and on manufacturing branches for 28 regions in Bulgaria, 20 regions in Hungary and 41 regions in Romania. The sectors of economic activity include agriculture, industry and services for Bulgaria and agriculture, industry, construction and services for Hungary and Romania. Regional manufacturing employment is disaggregated on 14 manufacturing branches for Bulgaria, 12 manufacturing branches for Romania and 8 manufacturing branches for Hungary. The data included in this data set has been collected from national statistical offices. Employment refers to persons employed in Bulgaria and Romania and employees only in Hungary. The GDP growth figures are taken from the EBRD Transition report, 2001 edition.

The average population size of NUTS 3 regions is similar in Hungary and Romania while in Bulgaria it is smaller. The average size of NUTS 3 regions has declined in the period 1990 to 1999 in all three countries. Regional size differentials are highest in Hungary and smallest in Romania. Regional size differentials have increased in Bulgaria and decreased in Hungary and Romania.

	Bulgaria	Hungary	Romania
Population 1990 in 1000			
average	309.2	514	566
min	155.5	225.4	237.7
max	1202.9	1993.9	2394.3
stdev	216.2	378.6	337.9
coefficient of variation (in $\%$)	69.9	73.7	59.7
Population 1999 in 1000			
average	292.5	505	547.8
min	138.8	217.8	239.5
max	1211.5	1838.7	2286.1
stdev	220.2	355	325.1
coefficient of variation (in $\%$)	75.3	70.3	59.3

Table 2: The average size of NUTS 3 regions in Bulgaria, Hungary and Romania in 1990 and 1999.

Source: Data set REGSTAT, own calculations.

²In Hungary and Romania, data were only available from 1992-1999.

³The data set REGSTAT has been generated in the framework of the project P98-1117-R undertaken with financial support from European Communities PHARE ACE programme 1998.

4 Regional Specialization and Employment Change Differentials

This section aims at understanding the regional employment specialization and dynamics in the three transition countries. We first analyze the evolution of GDP and aggregate employment figures, so as to gain insights into the process of transition. The evolution of sectoral employment shares in the economy describes the process of economic restructuring in the transition countries. The tables, presenting the coefficient of variation of employment, employment growth and industry shares, allow us to asses the regional variation of these variables. We find considerable regional variation in employment change, which we then decompose in the next section using a shift-share analysis.

4.1 Bulgaria

Bulgaria has experienced large losses in GDP and employment since the beginning of transition (EBRD 2001). While GDP per capita was more than 1500 US\$ in 1990, it declined to 1150 US\$ in 1994 and to similar values again in 1996. Figure 1 shows the evolution of real GDP and employment growth in Bulgaria in the 1990s. GDP and employment growth moved together during most of the 1990s. Only in 1999, employment decreased although GDP increased.

Figure 1: Real GDP and employment growth in Bulgaria.

The large losses in GDP were accompanied by significant restructuring across sectors. The share of the industrial sector in total employment decreased dramatically during the 1990s, falling from over 45 percent to 28 percent in 1999. The share of industry in GDP also decreased from 33 percent to 25 percent (EBRD 2001). At the same time, the service sector share continuously increased during the 1990s and so did the agricultural sector's. In absolute

Figure 2: Sectoral shares in total employment in Bulgaria.

Figure 3: Sectoral employment growth in Bulgaria.

terms, the industry sector continuously lost employment during the 1990s. From 1990 to 1999, industrial employment decreased from 1.9 million to 0.9 million. The shrinkage of industrial employment was most dramatic in the initial phase of transition. Employment in the service sector decreased slightly from 1.47 million to 1.40 million, while employment in the agricultural sector increased from 0.75 to 0.79 million.

Variable	Obs	Mean	Std. Dev.	Min	Max	coeff. of variation
Total regional employment	280	119156.7	91630.29	41921	580041	76.9
Sectors						
Agriculture	280	27201.43	12226.58	2125	93867	44.9
Industry	280	43360.85	35239	9180	260037	81.3
Service	280	48594.38	57316.7	17758	382675	117.9
Regions	28					
Shares						
Agriculture	280	0.272	0.096	0.013	0.479	35.2
Industry	280	0.357	0.083	0.179	0.587	23.3
Service	280	0.371	0.067	0.277	0.731	17.9
Growth						
Total regional employment	252	0.003	0.503	-0.785	7.369	15489.7
Agriculture	252	0.075	0.788	-0.920	11.757	1052.6
Industry	252	-0.047	0.442	-0.839	6.173	-942.1
Service	252	0.047	0.865	-0.847	13.355	1858.1

Table 3: Summary statistics for regional employment in Bulgaria.

On the regional level, the summary statistics (see Table 3) reveal considerable variation in employment shares and growth. The map (Figure 16 in the appendix) shows the spatial variation of employment growth during the 1990s. Some regions have lost more than 20 percent of their initial employment in the course of the 1990s! For the whole period considered, the lowest share for agriculture, was 1.2 percent in 1992 in Blagoevgrad, while the highest share was 47.9 percent in Silistra in 1999. The coefficients of variation⁴ range between 18 and 35 percent for the employment shares, for growth rates they are considerably higher in absolute values with up to 1000 percent. The coefficient of variation for total regional employment growth is high, indicating strong variation in regional employment growth rates during the 1990s in Bulgaria.

This pattern remains the same for an analysis of the data on a yearly basis (see Table 4). The coefficient of variation for total employment in levels increased over the entire period, with a maximum of 84.4 percent in 1996 when Bulgaria faced great economic difficulties and increased to 85.4 percent in 1999. Evidently, regional disparities in employment increased during the 1990s in Bulgaria.

The coefficient of variation for total regional employment growth shows a mixed pattern.⁵ It is very high during the period 1994-1996, reaching a peak in 1997 with a value of over 2400 percent. This indicates that there is considerable variation in regional employment growth.

⁴The coefficient of variation is defined as the ratio of standard deviation over the mean, (v = std.dev./mean * 100).

⁵A negative coefficient of variation indicates that the mean over all regions' employment growth in the respective year was negative, since standard deviation is positive.

Variable	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Total reg. empl.	70.9	71.5	73.9	76.6	77.0	79.1	84.4	79.8	79.9	85.4
Sectors										
Agriculture	44.9	49.0	48.9	48.6	43.1	40.8	56.2	40.2	39.2	40.8
Industry	72.0	71.2	76.5	81.9	84.9	83.7	82.8	76.7	75.3	81.2
Service	105.0	107.3	109.7	111.9	111.1	118.7	127.2	130.1	131.9	137.8
Shares										
Agriculture	35.6	37.7	34.9	33.9	33.3	30.8	35.6	31.7	30.4	31.6
Industry	13.1	14.9	16.5	18.5	19.8	19.7	21.7	21.2	21.9	24.9
Service	15.6	16.3	15.7	15.3	14.8	16.4	18.3	20.1	20.6	19.8
Growth										
Total reg. empl.		-25.5	-31.0	-112.5	410.6	360.6	497.0	-2469.8	-386.1	-65.6
Agriculture		-79.7	2293.7	196.8	176.2	126.1	442.4	536.6	134.0	-115.2
Industry		-17.8	-23.2	-50.6	-67.1	-148.6	525.5	-202.4	-79.7	-65.8
Service		-43.4	-31.5	1745.7	148.1	1536.2	457.1	-180.5	825.7	145.9

Table 4: Evolution of the coefficient of variation of sectoral employment, sectoral employment shares and (sectoral) employment growth for Bulgaria.

In summary, the industrial sector has lost employment in Bulgaria, while the agricultural sector and service sector retained more or less constant employment. There is considerable variation in regional employment growth and sectoral shares. During the 1990s regions have become more unequal in Bulgaria. Regional variation in employment growth was especially high during the period 1994-1998.

4.2 Romania

Over the period 1992-1999, Romania has continuously lost employment (see Figure 4). The loss was particularly high in 1993, a 3.8 percent decrease relative to 1992 and in 1995, a 5.2 percent respectively. Contrary to Bulgaria, the evolution of employment has not closely matched the real GDP growth. GDP declined sharply in the early 1990s, in the mid 1990s the economy recovered, entering in a new recession in 1997/1998. Since 2000, GDP is growing again. Especially in 1995, GDP growth was very high coinciding with negative employment growth. This points at productivity gains during the mid-1990s.

The employment share of the industry sector in Romania declined by 7 percentage points as shown in Figure 5. This loss was matched by an increase in the employment share of the agricultural sector, which has a share of over 40 percent in Romanian employment in 1999. The variation in total employment is mostly driven by the largest three sector, the agricultural, industry and service sectors, the construction sector playing only a minor role. While the agricultural sector remained at 3.4 million employed, the industrial sector lost more than 1 million workers, with the number of employed persons falling from

Figure 4: Real GDP and employment growth in Romania in percent.

Figure 5: Sectoral shares in employment in Romania.

3.3 to 2 million during the 1990s. The service sector employment fell from 3.2 to 2.6 million. In 1994/95, employment in the service sector moved along with increasing GDP, while employment in the other sectors declined.

The summary statistics of regional data (see Table 5) again reveal considerable variation in employment shares and growth rates, with a coefficient of variation for total regional employment of 60 percent some 18 percentage points lower than in Bulgaria. In the appendix, the map (Figure 17) shows the spatial variation of employment change during the 1990s. The regional variation in the sectoral employment shares is also considerable, with a share of 4 percent for the agricultural sector in Bucharest and a maximal share of 65 percent in Giurgiu. Especially in the agricultural sector's growth rate there is enormous variation in the 1990s. The evolution of the coefficient of variation shown in Table 6 indicates a different pattern compared to Bulgaria. While

Figure 6: Sectoral employment growth in Romania.

in Bulgaria it increased from 71 to 85 percent, in Romania it decreased from 67 to 51 percent, implying that Romanian regions have become more similar in terms of total employment in the 1990s. Total regional employment growth had large variations in 1994 and 1996 with values up to 1000 percent, while in all other years the variation coefficient was around 100 percent. Considerable regional variation can be noted in 1996 in the growth rate of the construction sector and in 1998 in the service sector's growth. As in the case of Bulgaria, the strong regional variation in employment growth raises the question about the factors contributing to these disparities.

Summing up, like Bulgaria, Romania experienced a process of deindustrialization in the 1990s. In contrast to Bulgaria, however, there were considerable employment losses in the service sector. Regions in Romania have become more similar in terms of employment. Regional employment growth experienced great regional variation in 1994 and 1996, which is lower than the variation in Bulgaria in the years with highest variation.

4.3 Hungary

In Hungary, employment decreased over the period 1992 - 1997. In the initial phase of transition, GDP decreased strongly, but it resumed positive growth by 1994. With higher GDP growth rates since 1997 (almost 5 percent), employment increased again.

The evolution of the sectoral shares in Hungary has been different compared to the other two investigated countries (Figure 8. While in Bulgaria and Romania, the industry sector has lost importance and the agricultural

Variable	Obs	Mean	Std. Dev.	Min	Max	coeff. of variation
Total regional employment	328	230.7	139.9	88	1201	60.6
Sectors						
Agriculture	328	83.8	28.2	32.4	159.3	33.6
Industry	328	65.5	52.1	10.8	417.1	79.6
Construction	328	11.7	15.2	1.9	141.9	130.2
Service	328	69.6	73.9	21.9	597.8	106.1
Regions	41					
Shares						
Agriculture	328	0.4	0.1	0.0	0.7	29.9
Industry	328	0.3	0.1	0.1	0.5	30.2
Construction	328	0.0	0.0	0.0	0.1	41.2
Service	328	0.3	0.1	0.2	0.6	22.7
Growth						
Total regional employment	287	0.0	0.0	-0.2	0.1	-176.0
Agriculture	287	0.0	0.1	-0.3	0.3	2942.6
Industry	287	-0.1	0.1	-0.3	0.5	-172.5
Construction	287	0.0	0.3	-0.7	3.3	-1025.1
Service	287	0.0	0.1	-0.4	0.6	-619.8

Table 5: Summary statistics for regional employment, sectoral employment shares and (sectoral) employment growth in Romania.

Figure 7: Real GDP and employment growth in Hungary.

sector increased to magnitudes of around 40 percent, in Hungary the service sector dominates the economy. Throughout the 1990s, its share increased from around 53 to 60 percent. The industry sector held a constant share of around 30 percent, while the agricultural sector slightly lost importance approaching a share close to West European values. Employment growth has been negative in all sectors until 1997. Since then employment increased considerably in the construction, industry, and service sectors. Thus after an initial phase of employment and GDP loss in Hungary, the economy now seems to recover.

As Table 7 shows, there are substantial regional disparities in employment in Hungary. While the smallest region has only 29 thousand employed people, the largest region has more than 950 thousand employed people. This ex-

Variable	1992	1993	1994	1995	1996	1997	1998	1999
Total regional employment	67.4	64.3	64.2	60.2	57.1	56.5	58.7	51.1
Sectors								
Agriculture	33.1	33.0	32.7	33.3	33.8	34.2	34.9	35.0
Industry	81.2	80.4	83.4	76.3	75.6	76.4	77.3	69.1
Construction	144.5	154.3	131.5	113.9	109.1	105.1	117.4	97.9
Service	115.9	114.0	114.6	103.1	98.5	100.3	106.0	96.2
Shares								
Agriculture	30.8	30.8	30.3	30.1	30.0	29.5	29.3	27.7
Industry	27.1	29.9	30.9	29.3	29.9	29.7	30.3	30.1
Construction	37.4	46.5	39.2	40.4	38.9	40.0	40.7	38.0
Service	20.7	22.8	23.4	21.4	21.7	24.4	21.7	24.3
Growth								
Total regional employment		-90.5	-1018.4	-98.7	-731.7	-145.6	-181.7	-166.6
Agriculture		76.9	487.3	-47.4	237.4	148.0	-172.6	51.7
Industry		-79.5	-172.5	-258.0	483.6	-80.7	-158.3	-180.0
Construction		5285.8	315.4	-182.7	699.6	-238.8	-136.8	-160.5
Service		-60.8	422.0	154.4	-159.8	-282.4	1183.8	-107.6

Table 6: Evolution of the coefficient of variation for Romania.

Figure 8: Sectoral shares in employment in Hungary.

plains the almost twice as high coefficient of variation compared to Romania. The sectoral shares in employment also have substantial regional differences. The coefficient of variation in shares increased during the 1990s for all sectors except the construction sector, which dropped in 1999 after having reached a maximum in 1996 (Table 8). The regions have become more different in 1998 in their total regional employment size. In the course of higher economic growth in Hungary, some regions appear to have increased much faster than others, which explains the jump in the coefficient of variation for total employment levels in 1998. Regional disparities in employment growth rates (In the appendix, the map (Figure 18) shows the spatial variation of employment change during the 1990s.) were especially high in 1996, mostly due to high regional growth variations in the industry sector. But also in 1998, there were still substantial variations in the growth rate. While Budapest had a strong

Figure 9: Sectoral employment growth in Hungary.

Variable	Obs	Mean	Std. Dev.	Min	Max	coeff. of variation
Total regional employment	160	130.29	155.93	29.26	952.22	119.68
Sector						
Agriculture	160	9.38	4.29	2.03	25.23	45.79
Industry	160	40.45	28.89	10.54	195.27	71.41
Construction	160	4.95	6.39	0.69	45.77	129.00
Service	160	75.51	123.16	14.93	734.18	163.10
Regions	20					
Share						
Agriculture	160	0.10	0.04	0.00	0.21	40.57
Industry	160	0.35	0.07	0.17	0.51	18.70
Construction	160	0.04	0.01	0.02	0.06	25.16
Service	160	0.51	0.08	0.37	0.79	15.21
Growth						
Total regional employment	140	-0.03	0.10	-0.36	0.40	-331.90
Agriculture	140	-0.10	0.11	-0.40	0.25	-109.17
Industry	140	-0.02	0.12	-0.43	0.52	-540.66
Construction	140	-0.01	0.23	-0.35	1.01	-1627.67
Service	140	-0.02	0.11	-0.35	0.46	-566.18

Table 7: Summary statistics for regional employment, sectoral employment shares and (sectoral) employment growth in Hungary.

increase in employment in 1998 (33 percent), other regions like Borsod-Abauj-Zemplen and Zala lost 14 and 17 percent of their employment respectively. In 1999 all regions experienced positive employment growth. Bacs-Kiskun and Pest had strong increases in employment of around 20 percent and 30 percent respectively, while employment in Tolna increased by 6 percent. The standard deviation of growth rates was thus much smaller, while the mean was higher, explaining the drop in the coefficient of variation to 42. The strong regional variability in the agricultural sector in 1999 was of little relevance for the entire economy due to its small share. Thus in 1999 the country as a whole had a good growth performance.

Summing up there are similarities and differences in the three countries

Variable	1992	1993	1994	1995	1996	1997	1998	1999
Total regional employment	111.2	114.7	113.2	113.9	111.2	109.9	148.9	145.6
Sector								
Agriculture	38.9	31.4	31.4	32.4	32.8	33.5	36.6	36.7
Industry	74.8	72.0	66.2	64.5	59.6	55.6	85.8	84.9
Construction	130.5	129.2	121.8	120.7	120.7	123.1	130.6	125.7
Service	155.6	155.5	153.8	155.6	153.5	153.9	201.7	194.0
Share								
Agriculture	37.8	36.6	37.1	37.8	37.2	38.3	39.7	39.6
Industry	17.2	17.3	17.3	18.5	19.0	20.2	20.6	19.7
Construction	19.1	21.4	20.8	23.2	27.2	25.4	23.8	16.3
Service	14.1	13.4	13.7	14.6	15.0	16.0	17.8	16.0
Growth								
Total regional employment		-25.5	-23.3	-167.5	-757.1	-120.0	-138.3	42.0
Agriculture		-55.5	-30.5	-61.9	-56.6	-161.5	-158.8	-2611.7
Industry		-27.4	-62.0	-231.4	2866.7	1102.1	-616.8	64.1
Construction		-49.6	-53.3	-99.3	-100.3	-71.5	132.9	57.3
Service		-92.5	-30.6	-184.6	-1159.6	-76.2	-83.9	38.7

Table 8: Evolution of the coefficient of variation for Hungary.

with respect to employment, sectoral shares and (sectoral) employment growth. The average employment size of a region in the three countries is different. While in Bulgaria and Hungary, the average regional employment is around 120 and 130 thousand people employed, in Romania 230 thousand people work in every region on average. Hungary has a very different sectoral structure from Romania and Bulgaria. While Bulgaria and especially Romania have a very large agrarian sector, Hungary's economy is dominated by the service sector. Regions differ largely in terms of employment size in Hungary, where the coefficient of variation increased during the 1990s. In Romania, the coefficient of variation for regional employment size is only half the size of Hungary and decreasing. Regions have thus become more similar. In Bulgaria, regional variation was somewhat higher than in Romania and increased during the 1990s. In Hungary, regional employment size variation increased in the course of the 1990s. For the sectoral employment shares there is less regional variation in Hungary compared to Romania and Bulgaria except for the agricultural share. Regional variation in employment growth rates is highest in Bulgaria, especially in the mid 1990s. In Hungary this variation is relatively low in the late 1990s but was quite high in 1996, especially in the industrial sector. Overall one can conclude that the three investigated countries differ substantially in terms of sectoral composition of their economies. Also the evolution of the variation in regional employment sizes shows a different pattern. Regional employment differentials have increased in Hungary and Bulgaria and decreased in Romania. Regions differ in terms of their sectoral shares, while this variation is lowest in Hungary. Regional employment growth variation is substantial in all three countries, especially in the early phase of transition.

5 Determinants of Regional Employment Change

This section presents the results of the regional employment growth decomposition into three components as described in section 2. Our aim is to assess the importance of the industry mix, regional factors and allocative factors in explaining regional growth differentials. We do so by calculating the variance shares of the respective components.

5.1 Bulgaria

In Bulgaria, region specific factors play the predominant role in explaining regional growth variation. π has the largest share of variance in all years, as shown in table 9. The sectoral/industry mix factor, μ , explains only little or nothing, while α , the allocative component, has a variance share between 5 and 56 percent. For some years, the covariance term is negative.

	1991	1992	1993	1994	1995	1996	1997	1998	1999
$var(\mu)/var(g_j)$	0.04	0.13	0.06	0.03	0.04	0.00	0.00	0.25	0.10
$var(\pi)/var(g_i)$	0.80	0.63	1.35	1.10	0.86	0.54	0.61	1.11	0.74
$var(\alpha)/var(g_i)$	0.05	0.19	0.11	0.56	0.07	0.08	0.05	0.35	0.30
$2 * Covariance/var(g_j)$	0.11	0.05	-0.52	-0.69	0.03	0.38	0.35	-0.70	-0.13

Table 9: Evolution of the variance shares for Bulgaria.

Figure 10 illustrates, that region specific factors played the major role in explaining employment growth differentials, whereas the different composition

Figure 10: The evolution of variance shares over time in Bulgaria.

of industries in the regions explained only little of the overall variance.

The fact that regional factors are the predominant source of regional growth variation is quite astonishing in view of the fact that the three sectors included in the analysis are expected to have very different growth potentials and different responsiveness to shocks. In the previous section we showed that there is considerable variation in the regional shares of sectors in total regional employment. Regional employment growth differences, however, are driven by factors specific to a region, not by differences in the shares. The importance of regional factors declined from 1993 to 1996 and had a second (lower) maximum in 1998. It is interesting to note that the regional component attains its two maxima in times when GDP growth was positive. Thus especially in times of booms, which coincide with times of expanding employment in Bulgaria, some regions grow faster than others. Growth of the economy thus appears to be unevenly distributed spatially. This result is in line with Petrakos and Saratsis (2000), who show for Greece that regional inequalities are pro-cyclical, increasing in times of economic booms and decreasing in times of recessions.

To further assess the importance of each of the three factors individually, we regressed the gap between regional and national average employment growth $g_j - g$ on each of the three factors separately, as in regressions (9) to (11).⁶ Clearly, variation of π has the highest explanatory power in the regressions for all years, with an R^2 between 0.44 to 0.99. The sectoral composition factor, μ , has explanatory power only in 1991, indicating that in the initial phase of transition the sectoral composition of employment had a significant impact on employment losses. Later on R^2 values are lower than 6 percent. The combination of region-specific factors and sectoral composition of the region, α , in some years contributes only little to the explanation of $g_j - g$. In other years its R^2 reaches values of 0.99. The regression results therefore confirm the insights gained. The sectoral composition has little explanatory power, while factors specific to a region drive regional employment growth differences.

5.2 Romania

Over the period 1993-1999 in Romania, regional factors have the largest share in overall regional employment growth variance (Table 10). Their variance share increased in the beginning of the sample and declined again in 1999 (see also Figure 11). The variance shares of the sectoral composition and the competitiveness factor remained stable at around 3 to 11 percent. Again this result is astonishing since we consider 4 sectors, which are unevenly distributed across

 $^{^{6}}$ The regression results are presented in Table 12 in the appendix.

	1993	1994	1995	1996	1997	1998	1999
$var(\mu)/var(g_j)$	0.09	0.01	0.03	0.03	0.06	0.01	0.10
$var(\pi)/var(g_i)$	0.62	1.27	1.03	0.99	0.91	1.13	0.71
$var(\alpha)/var(g_i)$	0.18	0.11	0.08	0.04	0.06	0.07	0.07
$2 * Covariance/var(g_j)$	0.11	-0.39	-0.14	-0.06	-0.03	-0.21	0.11

1.4 1.2 1 0.8 var(mu)/var(g_j) 0.6 var(pi)/var(g_j) 0.4 var(alpha)/var(g j) 0.2 0 88 <u> 9</u>65 1996 266 866 8 86 -0.2

Table 10: Evolution of the variance shares for Romania.

Figure 11: The evolution of variance shares over time in Romania.

regions. All 4 sectors may be subject to different shocks, regional growth differences should then be determined by the industry structure of the region. But the main driving force behind regional growth difference are regional factors, not structural ones.

As in the case of Bulgaria, for Romania the regression results indicate the highest explanatory power for the variable π with R^2 values between 0.69 and 0.94. Thus region specific factors appear to explain regional growth performances fairly well. The sectoral composition of the economy has some explanatory power only in 1996 and 1999, in all other years it is around zero percent. The competitiveness factor α has slightly higher R^2 values than μ but is also negligible.

5.3 Hungary

Region specific factors constitute the largest share of regional employment growth variance in Hungary, as shown in Table 11. π 's variance share is around 100 percent with a drop in 1997, where the covariance between the three factors gained some importance. Over the entire period the importance of π has decreased by 10 percentage points. Again we believe that the result is

	1993	1994	1995	1996	1997	1998	1999
$var(\mu)/var(g_j)$	0.20	0.09	0.00	0.00	0.00	0.00	0.01
$var(\pi)/var(g_i)$	1.07	1.26	1.04	1.00	0.77	0.93	0.96
$var(\alpha)/var(g_i)$	0.11	0.04	0.00	0.00	0.05	0.03	0.02
$2 * Covariance/var(g_j)$	-0.38	-0.39	-0.04	0.00	0.17	0.03	0.01

1.4 1.2 1 0,8 ar(mu)/var(g_i) 0.6 var(pi)/var(g_j) 0.4 var(alpha)/var(g_j) 0.2 0 8 8 80 88 1997 88 88 -0.2

Table 11: Evolution of the variance shares for Hungary.

Figure 12: The evolution of variance shares over time in Hungary.

remarkable since the 4 considered sectors have indeed very different shares in each region, though the coefficient of variation for the shares is in all but the agricultural sector lower than in Bulgaria and Romania. Although the sectors may be subject to very different shocks and thus cause regions to grow at different speed, regional differences in growth performance are almost entirely driven by region specific factors.

In Hungary, the same results as in Romania and Bulgaria are obtained in the regression analysis (Table 14 in the appendix). For every year the regression of $g_j - g$ on π yields the highest R^2 with values between 0.89 and 0.99. The R^2 in the regressions on α and μ respectively are much lower with values between 0 and 30.

5.4 Robustness Check and Interpretation

In the preceding exercise we assessed the role of sectoral employment composition in explaining regional employment growth differentials in three transition countries. We find that the sectoral mix does not play a major role in accounting for regional employment dynamics in Bulgaria, Hungary and Romania. Highly aggregated data may bias our results. Therefore, as a robustness check, the above analysis was applied to Hungarian data with a 1-digit industrial classification with 12 sectors. The results stayed qualitatively the same, indicating that our high level of aggregation with 4 sectors does not drive our results. Furthermore for all three countries, we implemented the shift-share analysis for a 2-digit classification of the manufacturing sector⁷ (see Figures 13, 14 and 15 in the appendix.). The results are qualitatively identical to those presented above.

The analysis shows that in the three transition countries, the sectorcomposition of employment in a region does not explain regional growth patterns. The results of the shift-share analysis rather indicate that by far the largest part of regional employment growth differentials can be ascribed to the fact that the industries in a region grow slower or faster than the national average. This is surprising given the regional differentials of sectoral shares. These broadly defined sectors are possibly subject to quite different shocks leading on a regional level to diverging growth performances.⁸

Our analysis, however, implies that in Bulgaria, Romania and Hungary the sectoral composition of the region does not play a major role. There are at least two explanations for this. First, the sectors may be strongly interrelated. This implies that if one sector is affected by a shock, all the other sectors in the respective region will benefit or suffer, meaning that strong interindustry spillover effects are present. Second, there may be very few idiosyncratic shocks affecting only one specific sector, whereas many region specific shocks affect regions as a whole. Both views justify the analysis of regions on an aggregate level, neglecting the sectoral composition of industries.

⁷In Bulgaria, national statistics published distinguish between 14 different manufacturing sectors, in Romania 12 and in Hungary 8. The analysis of the data showed that indeed regions have quite different compositions of sectors. All three capital regions, e.g. have a very low share in agriculture and very high shares in the service sector, whereas the opposite is true for the country side. Also, the coefficient of variation of sectoral shares is high in all cases.

⁸Consider the following thought experiment: The occurrence of a particularly long and strong winter should impact on the production of the agricultural sector, which should lead to significant lay-offs in employment. Regions with a high agricultural sector should be affected much more by this winter than regions with virtually no agricultural sector.

6 Conclusions and Policy Implications

In this paper we used employment data at regional level for the period 1990-1999 and applied a shift-share analysis to explain regional employment growth differentials at sectoral level in three transition countries, namely Bulgaria, Romania and Hungary. The sectors included in our analysis are agriculture, industry, construction and services. Our research results suggest the following conclusions and policy implications:

1. We find both commonalities and particularities in the patterns of regional employment growth in the three above mentioned transition countries. In the period 1990-1999 the industrial sector has declined everywhere, most strongly in Bulgaria and Romania, while the service sector has grown in Bulgaria and especially in Hungary. Bulgaria and Romania have experienced a growing share of employment in agriculture. Regional disparities in employment have been increasing in Bulgaria and Hungary and decreasing in Romania.

2. Despite different patterns of regional disparities we find that in all three countries regional variance in employment growth is explained mostly by region-specific factors. A complementary regression analysis performed for each component supports these results. Employment growth differentials are uniform across sectors and vary across regions. Our results indicate that over the period 1990-1999 the share of the variance due to region-specific factors is decreasing in Bulgaria and Hungary while it is increasing in Romania. Regional industry mix does not play an important role in explaining regional growth differentials.

Several hypotheses can be put forward to explain these results. First, the four sectors analyzed in this paper are interrelated at regional level. This implies that if one sector is affected the other sectors in the region will be affected as well. Second, the nature of shocks seems to be region-wide rather than industry -specific.

3. Our findings suggest that there is no scope for an industrial policy to foster a specific industrial mix in promoting regional growth in the three transition countries analyzed here. Regions lagging behind seem to suffer from an uniform employment growth gap across sectors. This suggest the need for (regional) policy measures to increase employment opportunities and attractiveness in these regions such as upgrading of infrastructure and human capital.

References

- Blanchard, O. J. and L. Katz, "Regional Evolutions," Brooking papers on economic activity, 1992, pp. 1–75.
- Boeri, T. and S. Scarpetta, "Regional Mismatch and the Transition to a Market Economy," *Labour Economics*, 1996, *3*, 233–254.
- **Decressin, J. and A. Fatas**, "Regional Labor Market Dynamics in Europe," *European Economic Review*, 1995.
- **Dunn, E.S.**, "A Statistical and Analytical Technique for Regional Analysis," Papers and Proceedings of the regional science association, 1960, 6, 97–112.
- **EBRD**, *Transition Report 2001*, London: European Bank for Reconstruction and Development, 2001.
- Esteban, J., "A Reinterpretation of Shift-Share Analysis," *Regional and Urban Economics*, 1972, 2, 249–261.
- -, "Regional Convergence in Europe and the Industry Mix: A Shift-Share Analysis," *Regional Science and Urban Economics*, 2000, 30, 353–364.
- Fothergill, S. and G. Gudgin, Unequal Growth, Urban and Regional Employment Change in the United Kingdom, London: Heinemann, 1982.
- Gracia-Milà, T. and T. McGuire, "Industrial Mix as a Factor in the Growth and Variability of States' Economies," *Regional Science and Urban Economics*, 1993, 23, 731–748.
- Houston, David, "The Shift and Share Analysis of Regional Growth: A Critique," Southern Economic Journal, 1967, 33, 557–581.
- Loveridge, S. and A.C. Selting, "A Review and Comparison of Shift-Share Identities," *International Regional Science Review*, 1998, 21, 37–58.
- Patterson, Murray G., "A Note on the Formulation of a Full-Analogue Regression Model of the Shift-Share Method," *Journal of Regional Science*, 1991, 31 (2), 211–216.
- Petrakos, G. and Y. Saratsis, "Regional Inequalities in Greece," Papers in Regional Science, 2000, 79, 1–18.

A Appendix

Figure 13: The evolution of variance shares over time in Bulgaria for the manufacturing sector.

Figure 14: The evolution of variance shares over time in Romania for the manufacturing sector.

Figure 15: The evolution of variance shares over time in Hungary for the manufacturing sector.

1991	const.	variable	R2
mue	-0.001	3 5 4 1	0.520
	(-0.23)	(5.31)	
ni	0.004	1.061	0.902
P	(1.85)	(15.47)	0.002
alnha	-0.001	0.066	0.0002
aipina	(-0.15)	(0.07)	0.0002
	(-0.13)	(0.07)	
1000			Da
1992	const.	variable	R∠
mue	-0.0001	-0.247	0.008
	(-0.04)	(-0.46)	
р	0.004	1.090	0.746
	(1.62)	(8,73)	
alpha	-0.004	1.854	0.646
	(-1.29)	(6.88)	
1993	const.	variable	R ²
mue	-0.005	-0.569	0.019
	(-0.91)	(-0.70)	
pi	-0.0001	-0.802	0.869
ľ	(-0.05)	(13.11)	
alpha	0.005	0.444	0.022
	(-1.05)	(-0.77)	
		· · · · /	
100/1	copet	variable	D 2
mue	0.006	0/07	0.005
nue	(0.72)	(0.26)	0.005
ni	(0.73)	(0.30)	0.444
р	0.003	0.634	0.444
- Ind	(0.44)	(4.56)	0.1.40
alpha	800.0	0.516	0.149
	(1.04)	(2.13)	
1995	const.	variable	R ²
mue	-0.003	-1.128	0.046
	(-0.79)	(-1.12)	
pi	0.002	1.040	0.934
	(1.43)	(19.15)	
alpha	-0.005	1.961	0.281
	(-1.45)	(3.19)	
		· · · · ·	
1996	const.	variable	R ²
mue	0.579	81 502	0.061
	(147)	(1.30)	0.001
ni	0.020	1.353	0.989
P	(0.46)	(48 14)	0.000
aloha	-0.001	3.440	0.924
афпа	(-0.01)	(17.74)	0.324
	(-0.01)	(1,1,4)	
1007		vori-L-	Da I
199/	const.	variable 10.000	H ²
nue	(0.71)	(0.25)	0.005
	(0.71)	(0.35)	0.0007
ы	0.008	1.285	0.9997
	(3.17)	(307.05)	0.000
aipha	-0.017	4.503	0.998
	1 1 1 1 1 1		
	(-2.21)	(102.21)	
	(-2.21)	(102.21)	
1998	const.	variable	R ²
1998 mue	const. -0.001	(102.21) variable 0.426	R ² 0.045
1998 mue	-0.001 (-0.28)	variable 0.426 (1.11)	R ² 0.045
1998 mue pi	(-2.21) -0.001 (-0.28) 0.001	variable 0.426 (1.11) 0.793	R ² 0.045 0.695
1998 mue pi	(-2.21) const. -0.001 (-0.28) 0.001 (0.92)	(102.21) variable 0.426 (1.11) 0.793 (7.70)	R ² 0.045 0.695
1 998 mue pi alpha	(*2.21) -0.001 (-0.28) 0.001 (0.92) -0.0001	variable 0.426 (1.11) 0.793 (7.70) 0.047	R ² 0.045 0.695 0.001
1998 mue pi alpha	(-2.21) -0.001 (-0.28) 0.001 (0.92) -0.0001 (-0.06)	variable 0.426 (1.11) 0.793 (7.70) 0.047 (0.14)	R ² 0.045 0.695 0.001
1998 mue pi alpha	(-2.21) -0.001 (-0.28) 0.001 (0.92) -0.0001 (-0.06)	(102.21) variable 0.426 (1.11) 0.793 (7.70) 0.047 (0.14)	R ² 0.045 0.695 0.001
1998 mue pi alpha 1999	(42.21) const. -0.001 (-0.28) 0.001 (0.92) -0.0001 (-0.06) const.	variable 0.426 (1.11) 0.793 (7.70) 0.047 (0.14) variable	R ² 0.045 0.695 0.001 R ²
1998 mue pi alpha 1999 mue	(42.21) -0.001 (-0.28) 0.001 (0.92) -0.0001 (-0.06) -0.006	variable 0.426 (1.11) 0.793 (7.70) 0.047 (0.14) variable 1.608	R ² 0.045 0.695 0.001 R ² 0.250
1998 mue pi alpha 1999 mue	(2.21) const. -0.001 (-0.28) 0.001 (0.92) -0.0001 (-0.06) const. -0.006 (-1.53)	variable 0.426 (1.11) 0.793 (7.70) 0.047 (0.14) variable 1.608 (2.94)	R2 0.695 0.001 R2 0.250
1998 mue pi alpha 1999 mue	(42.21) const. -0.001 (-0.28) 0.001 (0.92) -0.0001 (-0.06) const. -0.006 (-1.53) -0.001	variable 0.426 (1.11) 0.793 (7.70) 0.047 (0.14) variable 1.608 (2.94) 0.783	R2 0.045 0.695 0.001 R2 0.250 0.451
1998 mue pi alpha 1999 mue pi	(2.21) const. -0.001 (-0.28) 0.001 (0.92) -0.0001 (-0.06) const. -0.006 (-1.53) -0.001 (-0.01) (-0.001) -0.001 (-0.28) -0.0001 (-0.28) -0.001 (-0.28) -0.001 (-0.28) -0.001 (-0.28) -0.001 (-0.28) -0.001 (-0.28) -0.001 (-0.28) -0.0001 (-0.28) -0.0001 (-0.28) -0.0001 (-0.28) -0.0001 (-0.28) -0.0001 (-0.28) -0.0001 (-0.28) -0.0001 (-0.28) -0.0001 (-0.28) -0.0001 (-0.28) -0.0001 (-0.28) -0.0001 (-0.28) -0.0001 (-0.28) -0.0001 (-0.28) -0.0001 (-0.28) -0.0001 (-0.06) -0.0001 (-1.53) -0.0001 (-1.53) -0.0001 (-0.9) -0.0001 (-1.53) -0.0001 (-0.9) -0.0001 (-1.53) -0.0001 (-0.9) -0.0001 (-0.01) -0.001 (-0.15) (-0.15)	variable 0.426 (1.11) 0.793 (7.70) 0.047 (0.14) variable 1.608 (2.94) 0.783 (4.62)	R2 0.045 0.695 0.001 R2 0.250 0.451
1998 mue pi alpha 1999 mue pi alpha	(2.21) const. -0.001 (-0.28) 0.001 (-0.28) -0.0001 (-0.06) -0.006 (-1.53) -0.001 (-0.19) -0.017	variable 0.426 (1.11) 0.793 (7.70) 0.047 (0.14) variable 1.608 (2.94) 0.783 (4.62) 0.899	R ² 0.045 0.695 0.001 R ² 0.250 0.451 0.241
1998 mue pi alpha 1999 mue pi alpha	(2.21) const. -0.001 (0.28) 0.001 (0.92) -0.0001 (-0.06) const. -0.006 (-1.53) -0.001 (-0.17) -0.017 (-4.37)	variable 0.426 (1.11) 0.793 (7.70) 0.047 (0.14) variable 1.608 (2.94) 0.783 (4.62) 0.899 (2.87)	R2 0.045 0.695 0.001 R2 0.250 0.451 0.241

Table 12: Regression results of g_j on the respective variable, t-values in parenthesis: Bulgaria.

1003	const	variable	R2
1990 muo	0.014	0 192	0.003
mue	(1 50)	(0.24)	0.003
	(1.50)	(0.34)	0.004
р	0.016	1.060	0.694
	(3.33)	(9.40)	0.000
alpna	-0.002	1.825	0.600
	(-0.40)	(7.65)	
1994	const.	variable	R ²
mue	0.012	-0.674	0.006
	(1.88)	(-0.49)	
pi	0.005	0.838	0.890
	(2.23)	(17.72)	
alpha	0.013	-0.452	0.023
	(2.02)	(-0.97)	
	•		
1995	const.	variable	R ²
mue	0.019	0.433	0.006
	(2.09)	(0.49)	
pi	-0.003	0.933	0.899
~-	(-1 10)	(18 64)	0.000
alpha	0.018	0.290	0.007
apria	(2 08)	(0.51)	0.007
	(2.00)	(0.51)	
1006	const	variable	D2
1990			
nue	0.005	2.307	0.188
	(1.18)	(3.01)	0.040
рі	0.003	0.981	0.949
- 1	(2.80)	(26.95)	0.0.10
aipna	0.011	-0.986	0.042
	(2.35)	(-1.31)	
4007	·		F 2
1997	const.	variable	H²
mue	0.005	0.634	0.022
	(0.61)	(0.95)	
рі	0.006	0.985	0.887
	(2.35)	(17.46)	
alpha	0.004	1.004	0.065
	(0.49)	(1.64)	
1998	const.	variable	R ²
mue	0.003	-0.423	0.001
	(0.34)	(-0.21)	
pi	0.003	0.903	0.924
	(1.55)	(21.78)	
alpha	0.003	-0.279	0.006
	(0.39)	(-0.47)	
	•		
1999	const.	variable	R ²
mue	0.012	1.315	0.178
	(1.54)	(2.91)	
pi	0.002	1,102	0.866
pi	0.002	1.102	0.866
pi alpha	0.002 (0.59)	1.102 (15.86) 1.094	0.866
pi alpha	0.002 (0.59) 0.019 (2.42)	1.102 (15.86) 1.094 (1.92)	0.866

Table 13: Regression results of g_j on the respective variable, t-values in parenthesis: Romania.

1993	const	variable	R ²
mue	-0.001	0.476	0.045
mao	(-0.15)	(-0.92)	0.040
ni	-0.009	0.027	0.027
р	-0.003	(1510)	0.327
alaba	(-0.42)	(-13.10)	0.000
aipna	-0.006	-0.787	0.069
	(-1.12)	(-1.16)	
1004			Do.
1994	const.	variable	H²
mue	0.001	-1.131	0.119
-	(-0.11)	(-1.56)	
рі	-0.002	0.841	0.894
	(-1.36)	(-12.32)	
alpha	0.004	1.203	0.052
	(-1.05)	(-0.99)	
1995	const.	variable	R ²
mue	0.003	9.576	0.053
	(-0.11)	(-1.00)	
Dİ	0.002	0.981	0.997
ľ	(-1.54)	(80.43)	
alpha	0.018	8,369	0.184
apria	(0.72)	(-2.01)	01101
	(0172)	(2101)	
1006	const	variable	R2
mue	0.034	1 668	0.003
nue	(1 17)	4.000	0.003
ni	0.001	1 001	0.009
pi	(1.17)	(102.74)	0.990
alaha	(1.17)	(103.74)	0.004
aipna	0.030	1./84	0.004
	(0.97)	(0.27)	
1007		- vialata	Do
1997	const.	variable	H ²
mue	0.002	5.556	0.138
-	(0.31)	(1.70)	
рі	0.004	1.101	0.934
	(2.60)	(15.97)	
alpha	-0.003	2.419	0.306
	(-0.61)	(2.82)	
1998	const.	variable	R ²
mue	-0.059	19.271	0.179
	(<u>-2</u> .18)	(1.98)	
pi	0.017	1.017	0.967
	(2.63)	(22.90)	
alpha	-0.110	1.222	0.049
· ·	(-3.42)	(0.96)	
	/	· · ·	
1999	const.	variable	R ²
mue	0.012	0.954	0.007
	(0.66)	(0.37)	0.007
ni	_0.000	1.007	0.077
	(-5.20)	(27.63)	0.377
alpha	0.012	1 217	0.020
aipila	0.013	1.317	0.029
	(0.90)	(0.73)	

Table 14: Regression results of g_j on the respective variable, t-values in parenthesis: Hungary.

Figure 16: Regional employment growth over the entire period investigated, 1990-1999. Negative values indicate employment losses.

ol

Figure 17: Regional employment growth over the entire period investigated, 1992-1999. Negative values indicate employment losses.

Figure 18: Regional employment growth over the entire period investigated, 1992-1999. Negative values indicate employment losses.

2008		
B01-08 2007	Euro-Diplomatie durch gemeinsame "Wirtschaftsregierung"	Martin Seidel
B03-07	Löhne und Steuern im Systemwettbewerb der Mitgliedstaaten der Europäischen Union	Martin Seidel
B02-07	Konsolidierung und Reform der Europäischen Union	Martin Seidel
B01-07	The Ratification of European Treaties - Legal and Constitutio-	Martin Seidel
2006	nal Basis of a European Referendum.	
2000 B03-06	Financial Frictions Capital Reallocation and Aggregate Fluc-	lürgen von Hagen Haining Zhang
000 00	tuations	Surgen von Hugen, Hulping Zhung
B02-06	Financial Openness and Macroeconomic Volatility	Jürgen von Hagen, Haiping Zhang
B01-06	A Welfare Analysis of Capital Account Liberalization	Jürgen von Hagen, Haiping Zhang
2005		
B11-05	Das Kompetenz- und Entscheidungssystem des Vertrages von Rom im Wandel seiner Funktion und Verfassung	Martin Seidel
B10-05	Die Schutzklauseln der Beitrittsverträge	Martin Seidel
B09-05	Measuring Tax Burdens in Europe	Guntram B. Wolff
B08-05	Remittances as Investment in the Absence of Altruism	Gabriel González-König
B07-05	Economic Integration in a Multicone World?	Christian Volpe Martincus, Jenni- fer Pédussel Wu
B06-05	Banking Sector (Under?)Development in Central and Eastern Europe	Jürgen von Hagen, Valeriya Din- ger
B05-05	Regulatory Standards Can Lead to Predation	Stefan Lutz
B04-05	Währungspolitik als Sozialpolitik	Martin Seidel
B03-05	Public Education in an Integrated Europe: Studying to Migrate and Teaching to Stay?	Panu Poutvaara
B02-05	Voice of the Diaspora: An Analysis of Migrant Voting Behavior	Jan Fidrmuc, Orla Doyle
B01-05 2004	Macroeconomic Adjustment in the New EU Member States	Jürgen von Hagen, Iulia Traistaru
B33-04	The Effects of Transition and Political Instability On Foreign	Josef C. Brada, Ali M. Kutan, Ta-
	Direct Investment Inflows: Central Europe and the Balkans	ner M. Yigit
B32-04	The Choice of Exchange Rate Regimes in Developing Coun- tries: A Mulitnominal Panal Analysis	Jürgen von Hagen, Jizhong Zhou
B31-04	Fear of Floating and Fear of Pegging: An Empirical Anaysis of De Facto Exchange Rate Regimes in Developing Countries	Jürgen von Hagen, Jizhong Zhou
B30-04	Der Vollzug von Gemeinschaftsrecht über die Mitgliedstaaten und seine Rolle für die EU und den Beitrittsprozess	Martin Seidel
B29-04	Deutschlands Wirtschaft, seine Schulden und die Unzulänglich-	Dieter Spethmann, Otto Steiger
B28-04	Fiscal Crises in U.S. Cities: Structural and Non-structural Cau-	Guntram B. Wolff
B07 04	ses Firm Porformance and Privatization in Ukraine	Caluna Churananka Stafan Lutz
B27-04 B26-04	Analyzing Trade Opening in Ukraine: Effects of a Customs Uni-	Oksana Harbuzyuk, Stefan Lutz
R25 04	on with the EU Exchange Pate Pick and Convergence to the Euro	Lucian T. Orlowski
B25-04 B24-04	The Endogeneity of Money and the Eurosystem	Otto Steiger
B23-04	Which Lender of Last Resort for the Eurosystem?	Otto Steiger
B22-04	Non-Discretonary Monetary Policy: The Answer for Transition	Elham-Mafi Kreft, Steven F. Kreft
B21-04	The Effectiveness of Subsidies Revisited: Accounting for Wage	Volker Reinthaler. Guntram B.
	and Employment Effects in Business R+D	Wolff
B20-04	Money Market Pressure and the Determinants of Banking Crises	Jürgen von Hagen, Tai-kuang Ho
B19-04	Die Stellung der Europäischen Zentralbank nach dem Verfas- sungsvertrag	Martin Seidel

B18-04	Transmission Channels of Business Cycles Synchronization in	Iulia Traistaru
_	an Enlarged EMU	
B17-04	Foreign Exchange Regime, the Real Exchange Rate and Current	Sübidey Togan, Hasan Ersel
	Account Sustainability: The Case of Turkey	
B10-04	Does It Matter Where Immigrants Work? Traded Goods, Non-	Harry P. Bowen, Jennifer Pedussel
	traded Goods, and Sector Specific Employment	VVU Christian Value Martineus
D13-04	plain Local Datterns?	Christian Voipe Martineus
B14-04	Furn Adoption and Maastricht Criteria: Rules or Discretion?	liri lonas
B13-04	The Role of Electoral and Party Systems in the Development of	Sami Yläoutinen
010 01	Fiscal Institutions in the Central and Eastern European Coun-	
	tries	
B12-04	Measuring and Explaining Levels of Regional Economic Inte-	Jennifer Pédussel Wu
	gration	
B11-04	Economic Integration and Location of Manufacturing Activi-	Pablo Sanguinetti, Iulia Traistaru,
	ties: Evidence from MERCOSUR	Christian Volpe Martincus
B10-04	Economic Integration and Industry Location in Transition	Laura Resmini
	Countries	
B09-04	Testing Creditor Moral Hazard in Souvereign Bond Markets: A	Ayse Y. Evrensel, Ali M. Kutan
D a a a	Unified Theoretical Approach and Empirical Evidence	—
B08-04	European Integration, Productivity Growth and Real Conver-	Taner M. Yıgıt, Alı M. Kutan
	gence	Mine Delienseure Lute Stafen II
B07-04	Human Woll being in Africa	Ivina Ballamoune-Lutz, Stefan H.
B06-04	Rural Urban Inequality in Africa: A Panel Study of the Effects	Mina Baliamoune-Lutz Stefan H
D00 04	of Trade Liberalization and Financial Deepening	l utz
B05-04	Money Rules for the Eurozone Candidate Countries	Lucian T. Orlowski
B04-04	Who is in Favor of Enlargement? Determinants of Support for	Orla Dovle, Jan Fidrmuc
	EU Membership in the Candidate Countries' Referenda	
B03-04	Over- and Underbidding in Central Bank Open Market Opera-	Ulrich Bindseil
	tions Conducted as Fixed Rate Tender	
B02-04	Total Factor Productivity and Economic Freedom Implications	Ronald L. Moomaw, Euy Seok
_	for EU Enlargement	Yang
B01-04	Die neuen Schutzklauseln der Artikel 38 und 39 des Bei-	Martin Seidel
	trittsvertrages: Schutz der alten Mitgliedstaaten vor Storungen	
2002	durch die neuen witgliedstaaten	
2003 R20_03	Macroeconomic Implications of Low Inflation in the Euro Area	lürgen von Hagen, Boris Hofmann
B28-03	The Effects of Transition and Political Instability on Foreign	losef C Brada Ali M Kutan Ta-
020 00	Direct Investment: Central Europe and the Balkans	ner M. Yigit
B27-03	The Performance of the Euribor Futures Market: Efficiency and	Kerstin Bernoth, Juergen von Ha-
	the Impact of ECB Policy Announcements (Electronic Version	gen
	of International Finance)	
B26-03	Souvereign Risk Premia in the European Government Bond	Kerstin Bernoth, Juergen von Ha-
	Market (überarbeitete Version zum Herunterladen)	gen, Ludger Schulknecht
B25-03	How Flexible are Wages in EU Accession Countries?	Anna lara, Iulia Traistaru
B24-03	Monetary Policy Reaction Functions: ECB versus Bundesbank	Bernd Hayo, Boris Hofmann
B23-03	Economic Integration and Manufacturing Concentration Pat-	Iulia Iraistaru, Christian Volpe
	terns: Evidence from Mercosur	Martincus Martin Cailal
D22-U3 R01 02	Reformized and the Chargest of the Chargest for	wartin Seidel William Pyla
021-03	Inter-Firm Communication	vviilidili ryle
B20-03	Urban Primacy, Gigantism, and International Trade: Evidence	Ronald I Moomaw Mohammed
520 05	from Asia and the Americas	A. Alwosabi
B19-03	An Empirical Analysis of Competing Explanations of Urban Pri-	Ronald L. Moomaw. Mohammed
	macy Evidence from Asia and the Americas	A. Alwosabi

B18-03	The Effects of Regional and Industry-Wide FDI Spillovers on	Stefan H. Lutz, Oleksandr Talave-
	Export of Ukrainian Firms	ra, Sang-Min Park
B17-03	Determinants of Inter-Regional Migration in the Baltic States	Mihails Hazans
B16-03	South-East Europe: Economic Performance, Perspectives, and	lulia Traistaru, Jürgen von Hagen
	Policy Challenges	
B15-03	Employed and Unemployed Search: The Marginal Willingness	Jos van Ommeren, Mihails Hazans
	to Pay for Attributes in Lithuania, the US and the Netherlands	
B14-03	FCIs and Economic Activity: Some International Evidence	Charles Goodhart, Boris Hofmann
B13-03	The IS Curve and the Transmission of Monetary Policy: Is there	Charles Goodhart, Boris Hofmann
	a Puzzle?	
B12-03	What Makes Regions in Eastern Europe Catching Up? The	Gabriele Tondl, Goran Vuksic
	Role of Foreign Investment, Human Resources, and Geography	
B11-03	Die Weisungs- und Herrschaftsmacht der Europäischen Zen-	Martin Seidel
	tralbank im europäischen System der Zentralbanken - eine	
	rechtliche Analyse	
B10-03	Foreign Direct Investment and Perceptions of Vulnerability to	Josef C. Brada, Vladimír Tomsík
	Foreign Exchange Crises: Evidence from Transition Economies	
B09-03	The European Central Bank and the Eurosystem: An Analy-	Gunnar Heinsohn, Otto Steiger
	sis of the Missing Central Monetary Institution in European	
	Monetary Union	
B08-03	The Determination of Capital Controls: Which Role Do Ex-	Jürgen von Hagen, Jizhong Zhou
	change Rate Regimes Play?	
B07-03	Nach Nizza und Stockholm: Stand des Binnenmarktes und	Martin Seidel
	Prioritäten für die Zukunft	
B06-03	Fiscal Discipline and Growth in Euroland. Experiences with the	Jürgen von Hagen
	Stability and Growth Pact	
B05-03	Reconsidering the Evidence: Are Eurozone Business Cycles	Michael Massmann, James Mit-
	Converging?	chell
B04-03	Do Ukrainian Firms Benefit from FDI?	Stefan H. Lutz, Oleksandr Talave-
B04-03	Do Ukrainian Firms Benefit from FDI?	Stefan H. Lutz, Oleksandr Talave- ra
B04-03 B03-03	Do Ukrainian Firms Benefit from FDI? Europäische Steuerkoordination und die Schweiz	Stefan H. Lutz, Oleksandr Talave- ra Stefan H. Lutz
B04-03 B03-03 B02-03	Do Ukrainian Firms Benefit from FDI? Europäische Steuerkoordination und die Schweiz Commuting in the Baltic States: Patterns, Determinants, and	Stefan H. Lutz, Oleksandr Talave- ra Stefan H. Lutz Mihails Hazans
B04-03 B03-03 B02-03	Do Ukrainian Firms Benefit from FDI? Europäische Steuerkoordination und die Schweiz Commuting in the Baltic States: Patterns, Determinants, and Gains	Stefan H. Lutz, Oleksandr Talave- ra Stefan H. Lutz Mihails Hazans
B04-03 B03-03 B02-03 B01-03	Do Ukrainian Firms Benefit from FDI? Europäische Steuerkoordination und die Schweiz Commuting in the Baltic States: Patterns, Determinants, and Gains Die Wirtschafts- und Währungsunion im rechtlichen und poli-	Stefan H. Lutz, Oleksandr Talave- ra Stefan H. Lutz Mihails Hazans Martin Seidel
B04-03 B03-03 B02-03 B01-03	Do Ukrainian Firms Benefit from FDI? Europäische Steuerkoordination und die Schweiz Commuting in the Baltic States: Patterns, Determinants, and Gains Die Wirtschafts- und Währungsunion im rechtlichen und poli- tischen Gefüge der Europäischen Union	Stefan H. Lutz, Oleksandr Talave- ra Stefan H. Lutz Mihails Hazans Martin Seidel
B04-03 B03-03 B02-03 B01-03 2002	Do Ukrainian Firms Benefit from FDI? Europäische Steuerkoordination und die Schweiz Commuting in the Baltic States: Patterns, Determinants, and Gains Die Wirtschafts- und Währungsunion im rechtlichen und poli- tischen Gefüge der Europäischen Union	Stefan H. Lutz, Oleksandr Talave- ra Stefan H. Lutz Mihails Hazans Martin Seidel
B04-03 B03-03 B02-03 B01-03 2002 B30-02	Do Ukrainian Firms Benefit from FDI? Europäische Steuerkoordination und die Schweiz Commuting in the Baltic States: Patterns, Determinants, and Gains Die Wirtschafts- und Währungsunion im rechtlichen und poli- tischen Gefüge der Europäischen Union An Adverse Selection Model of Optimal Unemployment Ass-	Stefan H. Lutz, Oleksandr Talave- ra Stefan H. Lutz Mihails Hazans Martin Seidel Marcus Hagedorn, Ashok Kaul,
B04-03 B03-03 B02-03 B01-03 2002 B30-02	Do Ukrainian Firms Benefit from FDI? Europäische Steuerkoordination und die Schweiz Commuting in the Baltic States: Patterns, Determinants, and Gains Die Wirtschafts- und Währungsunion im rechtlichen und poli- tischen Gefüge der Europäischen Union An Adverse Selection Model of Optimal Unemployment Ass- urance	Stefan H. Lutz, Oleksandr Talave- ra Stefan H. Lutz Mihails Hazans Martin Seidel Marcus Hagedorn, Ashok Kaul, Tim Mennel
B04-03 B03-03 B02-03 B01-03 2002 B30-02 B29B-02	Do Ukrainian Firms Benefit from FDI? Europäische Steuerkoordination und die Schweiz Commuting in the Baltic States: Patterns, Determinants, and Gains Die Wirtschafts- und Währungsunion im rechtlichen und poli- tischen Gefüge der Europäischen Union An Adverse Selection Model of Optimal Unemployment Ass- urance Trade Agreements as Self-protection	Stefan H. Lutz, Oleksandr Talave- ra Stefan H. Lutz Mihails Hazans Martin Seidel Marcus Hagedorn, Ashok Kaul, Tim Mennel Jennifer Pédussel Wu
B04-03 B03-03 B02-03 B01-03 2002 B30-02 B29B-02 B29A-02	Do Ukrainian Firms Benefit from FDI? Europäische Steuerkoordination und die Schweiz Commuting in the Baltic States: Patterns, Determinants, and Gains Die Wirtschafts- und Währungsunion im rechtlichen und poli- tischen Gefüge der Europäischen Union An Adverse Selection Model of Optimal Unemployment Ass- urance Trade Agreements as Self-protection Growth and Business Cycles with Imperfect Credit Markets	Stefan H. Lutz, Oleksandr Talave- ra Stefan H. Lutz Mihails Hazans Martin Seidel Marcus Hagedorn, Ashok Kaul, Tim Mennel Jennifer Pédussel Wu Debajyoti Chakrabarty
B04-03 B03-03 B02-03 B01-03 2002 B30-02 B29B-02 B29A-02 B28-02	Do Ukrainian Firms Benefit from FDI? Europäische Steuerkoordination und die Schweiz Commuting in the Baltic States: Patterns, Determinants, and Gains Die Wirtschafts- und Währungsunion im rechtlichen und poli- tischen Gefüge der Europäischen Union An Adverse Selection Model of Optimal Unemployment Ass- urance Trade Agreements as Self-protection Growth and Business Cycles with Imperfect Credit Markets Inequality, Politics and Economic Growth	Stefan H. Lutz, Oleksandr Talave- ra Stefan H. Lutz Mihails Hazans Martin Seidel Marcus Hagedorn, Ashok Kaul, Tim Mennel Jennifer Pédussel Wu Debajyoti Chakrabarty Debajyoti Chakrabarty
B04-03 B03-03 B02-03 B01-03 2002 B30-02 B29B-02 B29A-02 B28-02 B27-02	Do Ukrainian Firms Benefit from FDI? Europäische Steuerkoordination und die Schweiz Commuting in the Baltic States: Patterns, Determinants, and Gains Die Wirtschafts- und Währungsunion im rechtlichen und poli- tischen Gefüge der Europäischen Union An Adverse Selection Model of Optimal Unemployment Ass- urance Trade Agreements as Self-protection Growth and Business Cycles with Imperfect Credit Markets Inequality, Politics and Economic Growth Poverty Traps and Growth in a Model of Endogenous Time	Stefan H. Lutz, Oleksandr Talave- ra Stefan H. Lutz Mihails Hazans Martin Seidel Marcus Hagedorn, Ashok Kaul, Tim Mennel Jennifer Pédussel Wu Debajyoti Chakrabarty Debajyoti Chakrabarty Debajyoti Chakrabarty
B04-03 B03-03 B02-03 B01-03 2002 B30-02 B29B-02 B29A-02 B28-02 B28-02 B27-02	Do Ukrainian Firms Benefit from FDI? Europäische Steuerkoordination und die Schweiz Commuting in the Baltic States: Patterns, Determinants, and Gains Die Wirtschafts- und Währungsunion im rechtlichen und poli- tischen Gefüge der Europäischen Union An Adverse Selection Model of Optimal Unemployment Ass- urance Trade Agreements as Self-protection Growth and Business Cycles with Imperfect Credit Markets Inequality, Politics and Economic Growth Poverty Traps and Growth in a Model of Endogenous Time Preference	Stefan H. Lutz, Oleksandr Talave- ra Stefan H. Lutz Mihails Hazans Martin Seidel Marcus Hagedorn, Ashok Kaul, Tim Mennel Jennifer Pédussel Wu Debajyoti Chakrabarty Debajyoti Chakrabarty
B04-03 B03-03 B01-03 B01-03 2002 B30-02 B29B-02 B29A-02 B28-02 B27-02 B26-02	Do Ukrainian Firms Benefit from FDI? Europäische Steuerkoordination und die Schweiz Commuting in the Baltic States: Patterns, Determinants, and Gains Die Wirtschafts- und Währungsunion im rechtlichen und poli- tischen Gefüge der Europäischen Union An Adverse Selection Model of Optimal Unemployment Ass- urance Trade Agreements as Self-protection Growth and Business Cycles with Imperfect Credit Markets Inequality, Politics and Economic Growth Poverty Traps and Growth in a Model of Endogenous Time Preference Monetary Convergence and Risk Premiums in the EU Candi-	Stefan H. Lutz, Oleksandr Talave- ra Stefan H. Lutz Mihails Hazans Martin Seidel Marcus Hagedorn, Ashok Kaul, Tim Mennel Jennifer Pédussel Wu Debajyoti Chakrabarty Debajyoti Chakrabarty Debajyoti Chakrabarty Lucjan T. Orlowski
B04-03 B03-03 B02-03 B01-03 2002 B30-02 B29B-02 B29A-02 B28-02 B28-02 B27-02 B26-02	Do Ukrainian Firms Benefit from FDI? Europäische Steuerkoordination und die Schweiz Commuting in the Baltic States: Patterns, Determinants, and Gains Die Wirtschafts- und Währungsunion im rechtlichen und poli- tischen Gefüge der Europäischen Union An Adverse Selection Model of Optimal Unemployment Ass- urance Trade Agreements as Self-protection Growth and Business Cycles with Imperfect Credit Markets Inequality, Politics and Economic Growth Poverty Traps and Growth in a Model of Endogenous Time Preference Monetary Convergence and Risk Premiums in the EU Candi- date Countries	Stefan H. Lutz, Oleksandr Talave- ra Stefan H. Lutz Mihails Hazans Martin Seidel Marcus Hagedorn, Ashok Kaul, Tim Mennel Jennifer Pédussel Wu Debajyoti Chakrabarty Debajyoti Chakrabarty Debajyoti Chakrabarty Lucjan T. Orlowski
B04-03 B03-03 B02-03 B01-03 2002 B30-02 B29B-02 B29A-02 B28-02 B28-02 B27-02 B26-02	Do Ukrainian Firms Benefit from FDI? Europäische Steuerkoordination und die Schweiz Commuting in the Baltic States: Patterns, Determinants, and Gains Die Wirtschafts- und Währungsunion im rechtlichen und poli- tischen Gefüge der Europäischen Union An Adverse Selection Model of Optimal Unemployment Ass- urance Trade Agreements as Self-protection Growth and Business Cycles with Imperfect Credit Markets Inequality, Politics and Economic Growth Poverty Traps and Growth in a Model of Endogenous Time Preference Monetary Convergence and Risk Premiums in the EU Candi- date Countries Trade Policy: Institutional Vs. Economic Factors	Stefan H. Lutz, Oleksandr Talave- ra Stefan H. Lutz Mihails Hazans Martin Seidel Marcus Hagedorn, Ashok Kaul, Tim Mennel Jennifer Pédussel Wu Debajyoti Chakrabarty Debajyoti Chakrabarty Debajyoti Chakrabarty Lucjan T. Orlowski Stefan Lutz
B04-03 B03-03 B02-03 B01-03 2002 B30-02 B29B-02 B29A-02 B28-02 B27-02 B26-02 B25-02 B24-02	Do Ukrainian Firms Benefit from FDI? Europäische Steuerkoordination und die Schweiz Commuting in the Baltic States: Patterns, Determinants, and Gains Die Wirtschafts- und Währungsunion im rechtlichen und poli- tischen Gefüge der Europäischen Union An Adverse Selection Model of Optimal Unemployment Ass- urance Trade Agreements as Self-protection Growth and Business Cycles with Imperfect Credit Markets Inequality, Politics and Economic Growth Poverty Traps and Growth in a Model of Endogenous Time Preference Monetary Convergence and Risk Premiums in the EU Candi- date Countries Trade Policy: Institutional Vs. Economic Factors The Effects of Quotas on Vertical Intra-industry Trade	Stefan H. Lutz, Oleksandr Talave- ra Stefan H. Lutz Mihails Hazans Martin Seidel Marcus Hagedorn, Ashok Kaul, Tim Mennel Jennifer Pédussel Wu Debajyoti Chakrabarty Debajyoti Chakrabarty Debajyoti Chakrabarty Lucjan T. Orlowski Stefan Lutz Stefan Lutz
B04-03 B03-03 B02-03 B01-03 2002 B30-02 B29B-02 B29A-02 B28-02 B27-02 B26-02 B25-02 B24-02 B24-02 B24-02 B23-02	Do Ukrainian Firms Benefit from FDI? Europäische Steuerkoordination und die Schweiz Commuting in the Baltic States: Patterns, Determinants, and Gains Die Wirtschafts- und Währungsunion im rechtlichen und poli- tischen Gefüge der Europäischen Union An Adverse Selection Model of Optimal Unemployment Ass- urance Trade Agreements as Self-protection Growth and Business Cycles with Imperfect Credit Markets Inequality, Politics and Economic Growth Poverty Traps and Growth in a Model of Endogenous Time Preference Monetary Convergence and Risk Premiums in the EU Candi- date Countries Trade Policy: Institutional Vs. Economic Factors The Effects of Quotas on Vertical Intra-industry Trade Legal Aspects of European Economic and Monetary Union	Stefan H. Lutz, Oleksandr Talave- ra Stefan H. Lutz Mihails Hazans Martin Seidel Marcus Hagedorn, Ashok Kaul, Tim Mennel Jennifer Pédussel Wu Debajyoti Chakrabarty Debajyoti Chakrabarty Debajyoti Chakrabarty Debajyoti Chakrabarty Lucjan T. Orlowski Stefan Lutz Stefan Lutz Martin Seidel
B04-03 B03-03 B02-03 B01-03 2002 B30-02 B29A-02 B29A-02 B27-02 B26-02 B25-02 B24-02 B23-02 B23-02 B22-02	Do Ukrainian Firms Benefit from FDI? Europäische Steuerkoordination und die Schweiz Commuting in the Baltic States: Patterns, Determinants, and Gains Die Wirtschafts- und Währungsunion im rechtlichen und poli- tischen Gefüge der Europäischen Union An Adverse Selection Model of Optimal Unemployment Ass- urance Trade Agreements as Self-protection Growth and Business Cycles with Imperfect Credit Markets Inequality, Politics and Economic Growth Poverty Traps and Growth in a Model of Endogenous Time Preference Monetary Convergence and Risk Premiums in the EU Candi- date Countries Trade Policy: Institutional Vs. Economic Factors The Effects of Quotas on Vertical Intra-industry Trade Legal Aspects of European Economic and Monetary Union Der Staat als Lender of Last Resort - oder: Die Achillesverse	Stefan H. Lutz, Oleksandr Talave- ra Stefan H. Lutz Mihails Hazans Martin Seidel Marcus Hagedorn, Ashok Kaul, Tim Mennel Jennifer Pédussel Wu Debajyoti Chakrabarty Debajyoti Chakrabarty Debajyoti Chakrabarty Lucjan T. Orlowski Stefan Lutz Stefan Lutz Stefan Lutz Martin Seidel Otto Steiger
B04-03 B03-03 B02-03 B01-03 2002 B30-02 B29B-02 B29A-02 B28-02 B27-02 B26-02 B26-02 B22-02 B23-02 B23-02 B22-02	Do Ukrainian Firms Benefit from FDI? Europäische Steuerkoordination und die Schweiz Commuting in the Baltic States: Patterns, Determinants, and Gains Die Wirtschafts- und Währungsunion im rechtlichen und poli- tischen Gefüge der Europäischen Union An Adverse Selection Model of Optimal Unemployment Ass- urance Trade Agreements as Self-protection Growth and Business Cycles with Imperfect Credit Markets Inequality, Politics and Economic Growth Poverty Traps and Growth in a Model of Endogenous Time Preference Monetary Convergence and Risk Premiums in the EU Candi- date Countries Trade Policy: Institutional Vs. Economic Factors The Effects of Quotas on Vertical Intra-industry Trade Legal Aspects of European Economic and Monetary Union Der Staat als Lender of Last Resort - oder: Die Achillesverse des Eurosystems	Stefan H. Lutz, Oleksandr Talave- ra Stefan H. Lutz Mihails Hazans Martin Seidel Marcus Hagedorn, Ashok Kaul, Tim Mennel Jennifer Pédussel Wu Debajyoti Chakrabarty Debajyoti Chakrabarty Debajyoti Chakrabarty Lucjan T. Orlowski Stefan Lutz Stefan Lutz Stefan Lutz Martin Seidel Otto Steiger
B04-03 B03-03 B02-03 B01-03 2002 B30-02 B29A-02 B29A-02 B28-02 B27-02 B26-02 B24-02 B24-02 B23-02 B23-02 B22-02 B21-02	Do Ukrainian Firms Benefit from FDI? Europäische Steuerkoordination und die Schweiz Commuting in the Baltic States: Patterns, Determinants, and Gains Die Wirtschafts- und Währungsunion im rechtlichen und poli- tischen Gefüge der Europäischen Union An Adverse Selection Model of Optimal Unemployment Ass- urance Trade Agreements as Self-protection Growth and Business Cycles with Imperfect Credit Markets Inequality, Politics and Economic Growth Poverty Traps and Growth in a Model of Endogenous Time Preference Monetary Convergence and Risk Premiums in the EU Candi- date Countries Trade Policy: Institutional Vs. Economic Factors The Effects of Quotas on Vertical Intra-industry Trade Legal Aspects of European Economic and Monetary Union Der Staat als Lender of Last Resort - oder: Die Achillesverse des Eurosystems Nominal and Real Stochastic Convergence Within the Tran-	Stefan H. Lutz, Oleksandr Talave- ra Stefan H. Lutz Mihails Hazans Martin Seidel Marcus Hagedorn, Ashok Kaul, Tim Mennel Jennifer Pédussel Wu Debajyoti Chakrabarty Debajyoti Chakrabarty Debajyoti Chakrabarty Lucjan T. Orlowski Stefan Lutz Stefan Lutz Martin Seidel Otto Steiger Ali M. Kutan, Taner M. Yigit
B04-03 B03-03 B02-03 B01-03 2002 B30-02 B29B-02 B29A-02 B28-02 B27-02 B26-02 B25-02 B24-02 B24-02 B23-02 B22-02 B21-02	Do Ukrainian Firms Benefit from FDI? Europäische Steuerkoordination und die Schweiz Commuting in the Baltic States: Patterns, Determinants, and Gains Die Wirtschafts- und Währungsunion im rechtlichen und poli- tischen Gefüge der Europäischen Union An Adverse Selection Model of Optimal Unemployment Ass- urance Trade Agreements as Self-protection Growth and Business Cycles with Imperfect Credit Markets Inequality, Politics and Economic Growth Poverty Traps and Growth in a Model of Endogenous Time Preference Monetary Convergence and Risk Premiums in the EU Candi- date Countries Trade Policy: Institutional Vs. Economic Factors The Effects of Quotas on Vertical Intra-industry Trade Legal Aspects of European Economic and Monetary Union Der Staat als Lender of Last Resort - oder: Die Achillesverse des Eurosystems Nominal and Real Stochastic Convergence Within the Tran- sition Economies and to the European Union: Evidence from	Stefan H. Lutz, Oleksandr Talave- ra Stefan H. Lutz Mihails Hazans Martin Seidel Marcus Hagedorn, Ashok Kaul, Tim Mennel Jennifer Pédussel Wu Debajyoti Chakrabarty Debajyoti Chakrabarty Debajyoti Chakrabarty Lucjan T. Orlowski Stefan Lutz Stefan Lutz Stefan Lutz Martin Seidel Otto Steiger Ali M. Kutan, Taner M. Yigit
B04-03 B03-03 B02-03 B01-03 2002 B30-02 B29B-02 B29A-02 B28-02 B27-02 B26-02 B25-02 B24-02 B23-02 B23-02 B22-02 B21-02	Do Ukrainian Firms Benefit from FDI? Europäische Steuerkoordination und die Schweiz Commuting in the Baltic States: Patterns, Determinants, and Gains Die Wirtschafts- und Währungsunion im rechtlichen und poli- tischen Gefüge der Europäischen Union An Adverse Selection Model of Optimal Unemployment Ass- urance Trade Agreements as Self-protection Growth and Business Cycles with Imperfect Credit Markets Inequality, Politics and Economic Growth Poverty Traps and Growth in a Model of Endogenous Time Preference Monetary Convergence and Risk Premiums in the EU Candi- date Countries Trade Policy: Institutional Vs. Economic Factors The Effects of Quotas on Vertical Intra-industry Trade Legal Aspects of European Economic and Monetary Union Der Staat als Lender of Last Resort - oder: Die Achillesverse des Eurosystems Nominal and Real Stochastic Convergence Within the Tran- sition Economies and to the European Union: Evidence from Panel Data	Stefan H. Lutz, Oleksandr Talave- ra Stefan H. Lutz Mihails Hazans Martin Seidel Marcus Hagedorn, Ashok Kaul, Tim Mennel Jennifer Pédussel Wu Debajyoti Chakrabarty Debajyoti Chakrabarty Debajyoti Chakrabarty Lucjan T. Orlowski Stefan Lutz Stefan Lutz Stefan Lutz Martin Seidel Otto Steiger Ali M. Kutan, Taner M. Yigit
B04-03 B03-03 B02-03 B01-03 2002 B30-02 B29B-02 B29A-02 B29A-02 B27-02 B26-02 B25-02 B22-02 B22-02 B21-02 B21-02	Do Ukrainian Firms Benefit from FDI? Europäische Steuerkoordination und die Schweiz Commuting in the Baltic States: Patterns, Determinants, and Gains Die Wirtschafts- und Währungsunion im rechtlichen und poli- tischen Gefüge der Europäischen Union An Adverse Selection Model of Optimal Unemployment Ass- urance Trade Agreements as Self-protection Growth and Business Cycles with Imperfect Credit Markets Inequality, Politics and Economic Growth Poverty Traps and Growth in a Model of Endogenous Time Preference Monetary Convergence and Risk Premiums in the EU Candi- date Countries Trade Policy: Institutional Vs. Economic Factors The Effects of Quotas on Vertical Intra-industry Trade Legal Aspects of European Economic and Monetary Union Der Staat als Lender of Last Resort - oder: Die Achillesverse des Eurosystems Nominal and Real Stochastic Convergence Within the Tran- sition Economies and to the European Union: Evidence from Panel Data The Impact of News, Oil Prices, and International Spillovers	Stefan H. Lutz, Oleksandr Talave- ra Stefan H. Lutz Mihails Hazans Martin Seidel Marcus Hagedorn, Ashok Kaul, Tim Mennel Jennifer Pédussel Wu Debajyoti Chakrabarty Debajyoti Chakrabarty Debajyoti Chakrabarty Lucjan T. Orlowski Stefan Lutz Stefan Lutz Stefan Lutz Martin Seidel Otto Steiger Ali M. Kutan, Taner M. Yigit

B19-02	East Germany: Transition with Unification, Experiments and Experiences	Jürgen von Hagen, Rolf R. Strauch, Guntram B. Wolff
B18-02	Regional Specialization and Employment Dynamics in Transi- tion Countries	Iulia Traistaru, Guntram B. Wolff
B17-02	Specialization and Growth Patterns in Border Regions of Ac- cession Countries	Laura Resmini
B16-02	Regional Specialization and Concentration of Industrial Activity in Accession Countries	Iulia Traistaru, Peter Nijkamp, Si- monetta Longhi
B15-02	Does Broad Money Matter for Interest Rate Policy?	Matthias Brückner, Andreas Scha- ber
B14-02	The Long and Short of It: Global Liberalization, Poverty and Inequality	Christian E. Weller, Adam Hersch
B13-02	De Facto and Official Exchange Rate Regimes in Transition Economies	Jürgen von Hagen, Jizhong Zhou
B12-02	Argentina: The Anatomy of A Crisis	Jiri Jonas
B11-02	The Eurosystem and the Art of Central Banking	Gunnar Heinsohn, Otto Steiger
B10-02	National Origins of European Law: Towards an Autonomous System of European Law?	Martin Seidel
B09-02	Monetary Policy in the Euro Area - Lessons from the First Years	Volker Clausen, Bernd Hayo
B08-02	Has the Link Between the Spot and Forward Exchange Rates Broken Down? Evidence From Rolling Cointegration Tests	Ali M. Kutan, Su Zhou
B07-02	Perspektiven der Erweiterung der Europäischen Union	Martin Seidel
B06-02	Is There Asymmetry in Forward Exchange Rate Bias? Multi- Country Evidence	Su Zhou, Ali M. Kutan
B05-02	Real and Monetary Convergence Within the European Union and Between the European Union and Candidate Countries: A Rolling Cointegration Approach	Josef C. Brada, Ali M. Kutan, Su Zhou
B04-02	Asymmetric Monetary Policy Effects in EMU	Volker Clausen, Bernd Havo
B03-02	The Choice of Exchange Rate Regimes: An Empirical Analysis for Transition Economies	Jürgen von Hagen, Jizhong Zhou
B02-02	The Euro System and the Federal Reserve System Compared: Facts and Challenges	Karlheinz Ruckriegel, Franz Seitz
B01-02	Does Inflation Targeting Matter?	Manfred J. M. Neumann, Jürgen von Hagen
2001		
B29-01	Is Kazakhstan Vulnerable to the Dutch Disease?	Karlygash Kuralbayeva, Ali M. Ku- tan, Michael L. Wyzan
B28-01	Council. The Future of European Agricultural Policies	Schaftspolitisches Forum
B27-01	Investor Panic, IMF Actions, and Emerging Stock Market Re- turns and Volatility: A Panel Investigation	Bernd Hayo, Ali M. Kutan
B26-01	Regional Effects of Terrorism on Tourism: Evidence from Three Mediterranean Countries	Konstantinos Drakos, Ali M. Ku- tan
B25-01	Monetary Convergence of the EU Candidates to the Euro: A Theoretical Framework and Policy Implications	Lucjan T. Orlowski
B24-01	Disintegration and Trade	Jarko and Jan Fidrmuc
B23-01	Migration and Adjustment to Shocks in Transition Economies	Jan Fidrmuc
B22-01	Strategic Delegation and International Capital Taxation	Matthias Brückner
B21-01	Balkan and Mediterranean Candidates for European Union Membership: The Convergence of Their Monetary Policy With	Josef C. Brada, Ali M. Kutan
B20-01	I NAT OF THE EUROPAEN CENTRAL BANK An Empirical Inquiry of the Efficiency of Intergovernmental	Anna Rubinchik-Pessach
520 01	Transfers for Water Projects Based on the WRDA Data	
B19-01	Detrending and the Money-Output Link: International Evi- dence	R.W. Hafer, Ali M. Kutan

B18-01	Monetary Policy in Unknown Territory. The European Central	Jürgen von Hagen, Matthias
_	Bank in the Early Years	Brückner
B17-01	Executive Authority, the Personal Vote, and Budget Discipline	Mark Hallerberg, Patrick Marier
D1C 01	in Latin American and Carribean Countries	
B10-01	Sources of Inflation and Output Fluctuations in Poland and	Selanattin Diboogiu, Ali Wi. Kutan
	Hungary: implications for Full Membership in the European	
B15-01	Programs Without Alternative: Public Pensions in the OFCD	Christian F. Weller
B13-01	Formal Fiscal Restraints and Budget Processes As Solutions to	Rolf R Strauch lürgen von Hagen
01101	a Deficit and Spending Bias in Public Finances - U.S. Experi-	non n. ettaden, surgen von nagen
	ence and Possible Lessons for EMU	
B13-01	German Public Finances: Recent Experiences and Future Chal-	Jürgen von Hagen, Rolf R. Strauch
	lenges	
B12-01	The Impact of Eastern Enlargement On EU-Labour Markets.	Deutsch-Französisches Wirt-
	Pensions Reform Between Economic and Political Problems	schaftspolitisches Forum
B11-01	Inflationary Performance in a Monetary Union With Large Wa-	Lilia Cavallar
	ge Setters	
B10-01	Integration of the Baltic States into the EU and Institutions	Alı M. Kutan, Nıına Pautola-Mol
	of Fiscal Convergence: A Critical Evaluation of Key Issues and	
R00.01	Empirical Evidence	Ion Fidrmuc
D09-01	Wheels of Growth?	Jan Flumnuc
B08-01	The Functioning of Economic Policy Coordination	lürgen von Hagen Susanne
200 01		Mundschenk
B07-01	The Convergence of Monetary Policy Between Candidate	Josef C. Brada, Ali M. Kutan
	Countries and the European Union	
B06-01	Opposites Attract: The Case of Greek and Turkish Financial	Konstantinos Drakos, Ali M. Ku-
	Markets	tan
B05-01	Trade Rules and Global Governance: A Long Term Agenda.	Deutsch-Französisches Wirt-
D04.01	The Future of Banking.	schaftspolitisches Forum
B04-01	The Determination of Unemployment Benefits	Kafael di Tella, Kobert J. Mac-
B03-01	Preferences Over Inflation and Unemployment: Evidence from	Rafael di Tella Robert I Mac-
200 01	Surveys of Happiness	Culloch, Andrew J. Oswald
B02-01	The Konstanz Seminar on Monetary Theory and Policy at Thir-	Michele Fratianni, Jürgen von Ha-
	ty	gen
B01-01	Divided Boards: Partisanship Through Delegated Monetary Po-	Etienne Farvaque, Gael Lagadec
	licy	
0000		
2000 R20.00	Broakin up a Nation From the Inside	Etionno Eonroque
B20-00 B10_00	Income Dynamics and Stability in the Transition Process ge-	Luenne Farvaque Jens Hölscher
D19-00	neral Reflections applied to the Czech Republic	
B18-00	Budget Processes: Theory and Experimental Evidence	Karl-Martin Ehrhart. Rov Gardner.
		Jürgen von Hagen, Claudia Keser
B17-00	Rückführung der Landwirtschaftspolitik in die Verantwortung	Martin Seidel
	der Mitgliedsstaaten? - Rechts- und Verfassungsfragen des Ge-	
	meinschaftsrechts	
B16-00	The European Central Bank: Independence and Accountability	Christa Randzio-Plath, Tomasso
		Padoa-Schioppa
B15-00	Regional Risk Sharing and Redistribution in the German Fede-	Jurgen von Hagen, Ralf Hepp
R1/ 00	ration Sources of Roal Exchange Rate Eluctuations in Transition Fee	Salahattin Diboogly Ali M Kutan
D14-00	SUBJES OF NEAL EXCHANGE NALE FINCTUATIONS IN TRANSITION ECO-	JEIAHALLIH DIDUUYIU, AH IVI, NULAH
	nomies: The Case of Poland and Hungary	
B13-00	nomies: The Case of Poland and Hungary Back to the Future: The Growth Prospects of Transition Eco-	Nauro F. Campos

B12-00	Rechtsetzung und Rechtsangleichung als Folge der Einheitli- chen Europäischen Währung	Martin Seidel
B11-00	A Dynamic Approach to Inflation Targeting in Transition Eco- nomies	Lucjan T. Orlowski
B10-00	The Importance of Domestic Political Institutions: Why and How Belgium Qualified for EMU	Marc Hallerberg
B09-00	Rational Institutions Yield Hysteresis	Rafael Di Tella, Robert Mac- Culloch
B08-00	The Effectiveness of Self-Protection Policies for Safeguarding Emerging Market Economies from Crises	Kenneth Kletzer
B07-00	Financial Supervision and Policy Coordination in The EMU	Deutsch-Französisches Wirt- schaftspolitisches Forum
B06-00	The Demand for Money in Austria	Bernd Hayo
B05-00	Liberalization, Democracy and Economic Performance during Transition	Jan Fidrmuc
B04-00	A New Political Culture in The EU - Democratic Accountability of the ECB	Christa Randzio-Plath
B03-00	Integration, Disintegration and Trade in Europe: Evolution of Trade Relations during the 1990's	Jarko Fidrmuc, Jan Fidrmuc
B02-00	Inflation Bias and Productivity Shocks in Transition Economies: The Case of the Czech Republic	Josef C. Barda, Arthur E. King, Ali M. Kutan
B01-00	Monetary Union and Fiscal Federalism	Kenneth Kletzer, Jürgen von Ha- gen
1999		
B26-99	Skills, Labour Costs, and Vertically Differentiated Industries: A General Equilibrium Analysis	Stefan Lutz, Alessandro Turrini
B25-99	Micro and Macro Determinants of Public Support for Market Reforms in Eastern Europe	Bernd Hayo
B24-99	What Makes a Revolution?	Robert MacCulloch
B23-99	Informal Family Insurance and the Design of the Welfare State	Rafael Di Tella, Robert Mac- Culloch
B22-99	Partisan Social Happiness	Rafael Di Tella, Robert Mac- Culloch
B21-99	The End of Moderate Inflation in Three Transition Economies?	Josef C. Brada, Ali M. Kutan
B20-99 B10.00	Subnational Government Ballouts in Germany	Helmut Seitz Ali M. Kutan, Josef C. Brada
B19-99 B18-99	Why are Eastern Europe's Banks not failing when everybody else's are?	Christian E. Weller, Bernard Mor-
B17-99	Stability of Monetary Unions: Lessons from the Break-Up of Czechoslovakia	Jan Fidrmuc, Julius Horvath and Jarko Fidrmuc
B16-99	Multinational Banks and Development Finance	Christian E.Weller and Mark J. Scher
B15-99	Financial Crises after Financial Liberalization: Exceptional Cir- cumstances or Structural Weakness?	Christian E. Weller
B14-99	Industry Effects of Monetary Policy in Germany	Bernd Hayo and Birgit Uhlenbrock
B13-99	Fiancial Fragility or What Went Right and What Could Go	Christian E. Weller and Jürgen von
_	Wrong in Central European Banking?	Hagen
B12 -99	Size Distortions of Tests of the Null Hypothesis of Stationarity: Evidence and Implications for Applied Work	Mehmet Caner and Lutz Kilian
B11-99	Financial Supervision and Policy Coordination in the EMU	Deutsch-Französisches Wirt- schaftspolitisches Forum
B10-99	Financial Liberalization, Multinational Banks and Credit Sup- ply: The Case of Poland	Christian Weller
B09-99 B08-99	Monetary Policy, Parameter Uncertainty and Optimal Learning The Connection between more Multinational Banks and less Real Credit in Transition Economies	Volker Wieland Christian Weller

B07-99	Comovement and Catch-up in Productivity across Sectors: Evi- dence from the OECD	Christopher M. Cornwell and Jens- Uwe Wächter
B06-99	Productivity Convergence and Economic Growth: A Frontier Production Function Approach	Christopher M. Cornwell and Jens- Uwe Wächter
B05-99	Tumbling Giant: Germany's Experience with the Maastricht Fiscal Criteria	Jürgen von Hagen and Rolf Strauch
B04-99	The Finance-Investment Link in a Transition Economy: Evi- dence for Poland from Panel Data	Christian Weller
B03-99	The Macroeconomics of Happiness	Rafael Di Tella, Robert Mac- Culloch and Andrew J. Oswald
B02-99	The Consequences of Labour Market Flexibility: Panel Evidence Based on Survey Data	Rafael Di Tella and Robert Mac- Culloch
B01-99	The Excess Volatility of Foreign Exchange Rates: Statistical Puzzle or Theoretical Artifact?	Robert B.H. Hauswald
1998		
B10-98	Labour Market + Tax Policy in the EMU	schaftspolitisches Forum
B15-98	Can Taxing Foreign Competition Harm the Domestic Industry?	Stefan Lutz
B14-98	Russian Trade	Rafael Reuveny and John Maxwell
B13-98	Fiscal Policy and Intranational Risk-Sharing	Jürgen von Hagen
B12-98	Price Stability and Monetary Policy Effectiveness when Nomi- nal Interest Rates are Bounded at Zero	Athanasios Orphanides and Volker Wieland
B11A-98	Die Bewertung der "dauerhaft tragbaren öffentlichen Finanz- lage"der EU Mitgliedstaaten beim Übergang zur dritten Stufe der EWWU	Rolf Strauch
B11-98	Exchange Rate Regimes in the Transition Economies: Case Stu- dy of the Czech Republic: 1990-1997	Julius Horvath and Jiri Jonas
B10-98	Der Wettbewerb der Rechts- und politischen Systeme in der Europäischen Union	Martin Seidel
B09-98	U.S. Monetary Policy and Monetary Policy and the ESCB	Robert L. Hetzel
B08-98	Money-Output Granger Causality Revisited: An Empirical Ana- lysis of EU Countries (überarbeitete Version zum Herunterla- den)	Bernd Hayo
B07-98	Designing Voluntary Environmental Agreements in Europe: So- me Lessons from the U.S. EPA's 33/50 Program	John W. Maxwell
B06-98	Monetary Union, Asymmetric Productivity Shocks and Fiscal Insurance: an Analytical Discussion of Welfare Issues	Kenneth Kletzer
B05-98	Estimating a European Demand for Money (überarbeitete Ver- sion zum Herunterladen)	Bernd Hayo
B04-98	The EMU's Exchange Rate Policy	Deutsch-Französisches Wirt- schaftspolitisches Forum
B03-98	Central Bank Policy in a More Perfect Financial System	Jürgen von Hagen / Ingo Fender
B02-98	Trade with Low-Wage Countries and Wage Inequality	Jaleel Ahmad
B01-98	Budgeting Institutions for Aggregate Fiscal Discipline	Jürgen von Hagen
1997		
B04-97	Macroeconomic Stabilization with a Common Currency: Does European Monetary Unification Create a Need for Fiscal Ins- urance or Federalism?	Kenneth Kletzer
B-03-97	Liberalising European Markets for Energy and Telecommunica- tions: Some Lessons from the US Electric Utility Industry	Tom Lyon / John Mayo
B02-97	Employment and EMU	Deutsch-Französisches Wirt- schaftspolitisches Forum
B01-97	A Stability Pact for Europe	(a Forum organized by ZEI)

ISSN 1436 - 6053

Zentrum für Europäische Integrationsforschung Center for European Integration Studies Rheinische Friedrich-Wilhelms-Universität Bonn

Walter-Flex-Strasse 3 D-53113 Bonn Germany

Tel.: +49-228-73-1732 Fax: +49-228-73-1809 www.zei.de