Cornwell, Christopher Mark; Wächter, Jens-Uwe

Working Paper

Productivity convergence and economic growth: A frontier production function approach

Provided in Cooperation with:
ZEI - Center for European Integration Studies, University of Bonn

Suggested Citation: Cornwell, Christopher Mark; Wächter, Jens-Uwe (1999) : Productivity convergence and economic growth: A frontier production function approach, ZEI Working Paper, No. B 06-1999, Rheinische Friedrich-Wilhelms-Universität Bonn, Zentrum für Europäische Integrationsforschung (ZEI), Bonn

This Version is available at:
http://hdl.handle.net/10419/39601

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Christopher M. Cornwell
and Jens-Uwe Wächtter

Productivity Convergence
and Economic Growth: A
Frontier Production
Function Approach
Productivity Convergence and Economic Growth:
A Frontier Production Function Approach

Christopher M. Cornwell
Department of Economics
University of Georgia
Athens, GA 30602 USA
cornwl@rigel.econ.uga.edu

Jens-Uwe Wächter
Center for European Integration Studies
University of Bonn
Walter-Flex-Straße 3
D–53113 Bonn
waechter@united.econ.uni-bonn.de

September 1998

Abstract

The empirical growth literature has focused on capital accumulation but largely ignored productivity growth. To address this imbalance, we propose a methodology for analyzing productivity convergence based on frontier production functions. We examine whether departures from the frontier are cointegrated, determine the extent and speed of catch-up, and assess the importance of efficiency changes for economic growth. Using a sample of 26 OECD countries from 1965–90, we find convergence and catch-up is fairly strong among EU countries but not among the G–7. Overall, the ability to absorb new technology is an important source of economic growth.

Key Words: cointegration, convergence, growth, productivity, unit root
JEL Classification: C2, O47, O57
1 Introduction

In the last ten years, the empirical growth literature has rapidly expanded. The most prominent feature of this literature has been its focus on the question of convergence—do poorer countries grow faster than richer countries, thereby narrowing the income gap—a fundamental implication of the neoclassical growth model introduced by Solow (1956). While support for the convergence hypothesis is found in a number of recent papers (for example, Abramovitz (1986, 1990), Baumol (1986), Barro (1991, 1996), Barro and Sala-i-Martin (1991, 1992), Mankiw, Romer, and Weil (1992) and Islam (1995), the empirics typically focus narrowly on the role of capital in generating economic growth. This is surprising given the important role of technology in endogenous growth models, e.g., Romer (1986, 1990).

Clearly, to the extent that differences in growth rates across countries arise from differences in productivity, the current literature provides an incomplete picture of cross-country growth patterns. Recent papers by Dowrick and Nguyen (1989) and Bernard and Jones (1996a,b,c) have attempted to fill this gap. Dowrick and Nguyen find that income levels of OECD countries have not converged since 1950. Despite this result, they find productivity catch-up to be a dominant and stable trend during the post-war period. Bernard and Jones argue that the adoption and accumulation of technologies is important for convergence. Thus, steady state levels of per capita output depend on countries’ abilities to adopt new technologies. In a sense, countries that are good adopters benefit from inventions abroad, and this ability places them in a good position relative to all other countries. The authors emphasize their argument by pointing to empirical evidence that supports the hypothesis of technological differences across countries.

In this paper, we propose a methodology for examining productivity differences across countries. Our approach is based on a frontier production function, which is the empirical analog to the theoretical construct of the boundary of the production set. The advantage to focusing on maximum output is the ability to identify inefficiencies in production through observed departures from the frontier. Further, to the extent such inefficiencies reflect sluggish adoption of new technologies, improvements therein represent productivity catch-up from technology diffusion. However, with the exception of Färe et al. (1994), the empirical growth literature has largely ignored empirical techniques directed at the production frontier.

Our methodology proceeds in four steps. First, we construct an empirical representation of the frontier technology for a given set of countries. This can be accomplished through non-parametric programming methods or parametric econometric estimation techniques. Departures from the
constructed frontier are translated into a measure of a country’s efficiency, which we interpret as a
country’s ability to absorb technological innovations. Second, we determine whether the country-
level efficiencies are cointegrated. Failure to reject the cointegration null for a set of countries would
indicate a long-run relationship in the diffusion of technology within that set.\(^1\) Third, we estimate
convergence regressions to determine the degree of productivity convergence or catch-up in the
cointegrated set. Finally, we assess the contribution of efficiency changes for economic growth.

We apply this methodology to a sample of 26 OECD countries observed over the period 1965–
90, with two sets of questions in mind. Is there a long-run relationship between the country-level
efficiencies, and if so, do they converge? In addition, is it justified to view capital accumulation as
the sole driving force of output growth (in this sample)?

To summarize, we find fairly strong evidence of convergence among EU countries, but no signif-
icant long-run relationship among the G–7. Overall, our results suggest that the ability to absorb
new technology innovations to be an important source of economic growth in the OECD.

This paper proceeds as follows. Section 2 describes the computation of productivity growth. In
section 3, we develop our methodology for examining productivity convergence. Section 4 contains
empirical results and section 5 concludes.

2 Measuring Productivity Growth

When we refer to the term “productivity,” it is total factor productivity (TFP) rather than labor
productivity that we have in mind. In the simple setup discussed below, the concept of TFP
assumes that capital and labor are the only factors of production. We will look at two different
ways to measure TFP growth. The distinction between these two approaches that is important for
our purposes lies in the way the frontier concept is treated.

Consider the constant returns to scale version of a Cobb–Douglas production function
\[Y(t) = A(t)K(t)^\alpha L(t)^{1-\alpha} \]
with Hicks–neutral productivity index \(A(t) \). Taking derivatives with respect to
time and rewriting the ensuing expression in percentage terms yields

\[
\frac{\dot{A}}{A} = \frac{\dot{Y}}{Y} - \alpha \frac{\dot{K}}{K} - (1 - \alpha) \frac{\dot{L}}{L}.
\]

(1)

Productivity growth is defined as a residual, obtained as the difference between output growth
and share-weighted input growth. In this formulation, observed output is assumed to be frontier

\(^1\) Similar strategies have been applied to international output series; see e.g., Bernard and Durlauf (1995)).
output, that is, all countries have access to and employ best-practice technology. Thus, since there are no movements toward or away from the “frontier,” productivity growth is identified with shifts in the production function, i.e., technical change (cf. Solow (1957)).

The second approach explicitly incorporates the idea of the production frontier. Not every country is assumed to produce frontier level output. Deviations from the frontier reflect technical inefficiency; that is, a failure to produce maximum possible output given inputs and the available technology. Thus, a productivity growth measure that allows for departures from the frontier can distinguish laggards from best-practice. Such a measure can also distinguish movements toward the frontier from movements of the frontier. The latter is the familiar concept of technical change, while the former is a measure of catch-up ignored in conventional growth empirics. As suggested by Färe et al. (1994), catch-up as represented by changes in a country’s efficiency level is expected to capture technological diffusion.

Typically, efficiency levels are computed using either data envelopment analysis (DEA) or stochastic frontier analysis (SFA). DEA is a mathematical programming technique that does not require a functional form assumption, but also does not account for statistical noise, so that all departures from the frontier are counted as inefficiency. The alternative—estimating a parametric stochastic frontier—may be less robust in terms of functional form assumptions, but has the advantage of incorporating purely random deviations from the frontier in the form a regression disturbance. Moreover, SFA permits inference about features of technology like returns to scale. We employ both techniques, with one serving as a check on the deficiencies of the other.

3 Testing for Productivity Convergence

Our approach to productivity convergence is based on the idea that country-level efficiencies exhibit a long-run relationship. If so, measured efficiencies should be cointegrated. Then, among countries with cointegrated efficiency series, laggards may catch up or converge to the frontier, ostensibly through technological diffusion.

First, we obtain country efficiency levels from both DEA and SFA. The second stage of our analysis involves the application of unit-root tests to the efficiency series of each country. Third, we test whether there are any cointegrating relationships among the efficiency series. In the last
stage, we estimate convergence regressions to determine the degree of catch-up. Furthermore, we evaluate the effect of efficiency change on output growth.\footnote{A similar approach was employed by Alam and Sickles (1998) to examine productivity convergence in the US airline industry.}

3.1 Construction of Efficiency Series using DEA

To compute country–level efficiencies using DEA, we solve the following linear program:

\[
(D_t(x^i_t, y^i_t))^{-1} = \max_{\lambda, z} \lambda \\
\text{s.t.} \quad \lambda y^k_t \leq \sum_{i=1}^{N} z_i y^k_{it}, \quad k = 1, 2, \ldots, K, \\
\sum_{i=1}^{N} z_i x^l_{it} \leq x^l_{it}, \quad l = 1, 2, \ldots, L, \\
z_i \geq 0, \quad i = 1, 2, \ldots, N, \tag{2}
\]

where \(D_t(\cdot, \cdot) \) is an output distance function, \(y^k_{it} \) denotes output \(k \) of country \(i \) in period \(t \), \(x^l_{it} \) denotes input \(l \) of country \(i \) in period \(t \), and the vector \(z \) contains intensity variables. As pointed out in Färe et al. (1994), the inverse of the output distance function is the Farrell (1957) output measure of technical efficiency.

3.2 Construction of Efficiency Series using SFA

In this case, we follow the usual procedures in the stochastic frontier literature introduced by Aigner, Lovell, and Schmidt (1977). The fundamental distinction between DEA and SFA is that the programming approach assumes a deterministic production frontier so that every deviation from it is interpreted as inefficiency. Hence, this approach does not account for noise in the data and thus does not allow statistical inference.

The stochastic frontier approach, on the other hand, specifically treats the frontier as random. Deviations from the frontier no longer represent just inefficiency but also statistical noise. The latter might be measurement error as well as circumstances that cannot be anticipated and are beyond the control of each country, such as climate or natural disasters. These random occurrences allow countries to deviate from the frontier and still be labeled efficient. More specifically, the stochastic frontier may be written as

\[
y_t = f(x_t; \beta) \exp(v_t + u_t) \tag{3}
\]

where \(y_t \) denotes output, \(x_t \) is a vector of inputs, and \(v \) and \(u \) are random variables. We assume the \(v \) are distributed iid normal with zero mean and constant variance \(\sigma_v^2 \) and represent random noise.
The u_i are one-sided disturbances ($u_i \leq 0, \forall i$) with mean $\mu < 0$ and variance σ_u^2 and capture the inefficiency of each country.

To estimate the stochastic frontier model, one has to assume a specific functional form. In this paper, we will estimate a translog stochastic frontier model because it is a flexible functional form and imposes no a priori restrictions on the elasticities of substitution. The empirical production frontier can be expressed as follows:

$$\ln y_i = \beta_0 + \sum_{l=1}^{L} \beta_l \ln x_{il} + \frac{1}{2} \sum_{l=1}^{L} \sum_{m=1}^{L} \beta_{lm} \ln x_{il} \ln x_{im} + v_i + u_i, \quad (4)$$

with the symmetry restrictions $\beta_{lm} = \beta_{ml}, \forall m, l, m \neq l$ imposed.

We estimate equation (4) by OLS separately for each year. Year-by-year regressions allow the greatest temporal flexibility in the production frontier parameters and parallel closely DEA which constructs a separate frontier for each year. The alternative of pooling the data and imposing some degree of parameter homogeneity is inappropriate in our sample, where $T = 26$.

OLS provides consistent estimates of all of the production frontier coefficients except the intercept term. With distributional assumptions for the v_i and u_i, the OLS estimate of the intercept can be corrected by a consistent estimate of $E(u_i)$, which is identified through the higher-order moments of the OLS residuals. The standard assumptions are that the v_i are normal and the one-sided u_i are half-normal.3

More importantly, the distributional assumptions allow estimates of the country-level inefficiencies to be extracted from the composed disturbance. Following Jondrow et al. (1982), this involves estimating the conditional expectation

$$E(u_i | \epsilon_i) = \mu_\epsilon + \sigma_\epsilon \frac{\phi(-\mu_\epsilon / \sigma_\epsilon)}{1 - \Phi(-\mu_\epsilon / \sigma_\epsilon)} \quad (5)$$

where $\epsilon_i = v_i + u_i$, ϕ and Φ represent the standard normal pdf and cdf, $\sigma^2 = \sigma_v^2 + \sigma_u^2$, $\mu_\epsilon = -\frac{\sigma_u^2}{\sigma_v^2}$, and $\sigma_\epsilon^2 = \frac{\sigma_v^2 \sigma_u^2}{\sigma_v^2}$. The level of technical efficiency (TE$_i$) is then obtained as the antilog of the conditional expectation of the one-sided error, i.e.,

$$TE_i = \exp(-E(u_i | \epsilon_i)). \quad (6)$$

3ML might be preferred on the grounds that it produces more efficient estimates of the βs, but the Monte Carlo results of Ogbu, Schmidt, and Waldman (1980) suggest that ML and “corrected” OLS perform equally well under the standard distributional assumptions.
3.3 Unit–Root Tests

After having constructed the two technical efficiency series for each country, the second step of our analysis consists of conducting unit–root tests. The unit–root inference is the basis for subsequent cointegration tests of long–run relationships between integrated series.

The interpretation of unit–root tests in this context is somewhat problematic. Recall that the DEA efficiency levels are bounded by zero and unity. Hence, they can never really diverge to infinity, which is what the presence of a unit root would suggest. In addition, unit roots represent a “razor’s edge” problem. Nevertheless, failure to reject the unit–root null hypothesis can be interpreted as an indication of “persistence.” In this view, the efficiency series can be treated “as if” they are I(1).

The simplest and most widely used test for unit–root nonstationarity is the Dickey–Fuller (DF) (1979) test. Depending on the assumptions about the data–generating process of the efficiency levels, several different test regressions are available. In section 4, we report results from the regression

\[\Delta T E_{it} = (\alpha - 1) T E_{i,t-1} + \omega_{it}, \]

where TE denotes the efficiency level series and \(\omega_{it} \) is white noise. The usual DF test statistic is just the \(t \)-ratio corresponding to the coefficient of \(T E_{i,t-1} \).

Since DF tests are characterized by low power in distinguishing roots that are close (and even not so close) to unity from ones that are exactly unity, we also perform the unit–root test proposed by Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) (1992), which contrasts the stationarity null with a unit–root alternative. Stationarity can mean either level or trend stationarity, which can be tested for separately. Testing for level stationarity requires the residuals from a regression of the efficiency levels on a constant. Testing for trend stationarity requires the residuals, \(e_t \), from a regression of the efficiency levels on a constant and a time trend. Assuming that the errors in these auxiliary regressions are iid, the test statistic is constructed as

\[\text{LM} = \frac{1}{T^2} \sum_{t=1}^{T} S_t^2 / \hat{\sigma}_t^2, \]

where \(S_t = \sum_{t=1}^{T} e_t, t = 1, \ldots, T \) and \(\hat{\sigma}_t^2 = \frac{1}{T} \sum_{t-1}^{T} (e_t - \bar{e})^2. \)

\(^4\)Test outcomes are not altered by the inclusion of drift and trend terms, nor by allowing for first–order dependence in the \(\omega_{it} \).

\(^5\)If the iid assumption about the errors is dropped, the estimator of the variance is replaced by a consistent estimator of the long–run variance. This is the version of the test we employ.
3.4 Cointegration Tests

If a linear combination of two or more nonstationary series is stationary, then these series are said to be cointegrated. This means that even though each series diverges from its mean as time passes, the series move together in the long run. Therefore, cointegration between economic time series is often interpreted as indicating some sort of long-run equilibrium relationship.

We conduct two distinct cointegration tests: the Engle-Granger (1987) test and the Johansen (1991) test. We employ the former because its simplicity permits straightforward tests for cointegrating relationships between all country pairs. The latter has the advantage of being invariant to normalization and can reveal cointegrating relationships between more than two variables. However, because of data limitations, the Johansen test is infeasible for the entire sample of countries. We therefore apply this test to two subsets of countries: the G-7 and EU.

To implement the Engle-Granger test, we first regress the efficiency series of country i on that of country j:

$$ TE_{it} = \beta_0 + \eta j TE_{jt} + \nu_t, \quad (9) $$

where ν_t is a random disturbance. These two efficiency series can be regarded as cointegrated if the residuals from (9) are stationary. Thus, the null of no cointegration is tested by determining whether the $\hat{\nu}_t$ have a unit root, which involves estimating the test regression,

$$ \Delta \hat{\nu}_t = (\alpha - 1)\hat{\nu}_{t-1} + \epsilon_t, \quad (10) $$

and applying a residual-based unit-root test.

In contrast, Johansen’s test takes a full-information maximum likelihood (FIML) approach to the problem. Following Johansen, we specify a VAR in the country efficiency series (either G-7 or EU as noted earlier), which we express in levels as

$$ TE_t = \pi_0 + \pi_1 TE_{t-1} + \pi_2 TE_{t-2} + \epsilon_t, \quad (11) $$

where TE_t is a vector containing the period t efficiency level for each country and ϵ_t is a zero-mean random vector with $E(\epsilon_t, \epsilon'_s) = \Omega, \forall t = s$ and zero, otherwise.\footnote{Including a time trend had no impact on the results.} More convenient is the formulation in differences:

$$ \Delta TE_t = \pi_0 + \xi_1 \Delta TE_{t-1} + \xi_0 TE_{t-1} + \epsilon_t \quad (12) $$

\footnote{We found a lag length of 2 was sufficient to capture the system dynamics.}
where $\xi_1 = -\pi_2$ and $\xi_0 = \pi_1 + \pi_2 - I$ determines the extent to which the system is cointegrated.

To construct the test statistic, we estimate two sets of auxiliary regressions,

$$\Delta TE_{it} = \Pi_0 + \Pi_1 \Delta TE_{t-1} + u_{it},$$
$$TE_{t, t-1} = \Theta_0 + \Theta_1 \Delta TE_{t-1} + v_{it},$$

for each country separately by OLS. These regressions serve to concentrate the likelihood function about ξ_0 and Ω. The concentrated likelihood depends on the canonical correlations between u_t and v_t, which we calculate from the eigenvalues ($\hat{\lambda}_1 > \hat{\lambda}_2 > \cdots > \hat{\lambda}_n$) of

$$\hat{\Sigma}_{vv}^{-1} \hat{\Sigma}_{vu} \hat{\Sigma}_{uu}^{-1} \hat{\Sigma}_{uv}.$$ \hspace{1cm} (15)

where

$$\hat{\Sigma}_{uv} = \frac{1}{T} \sum_{t=1}^{T} \hat{v}_t \hat{u}_t', \quad \hat{\Sigma}_{uu} = \frac{1}{T} \sum_{t=1}^{T} \hat{u}_t \hat{u}_t',$$
$$\hat{\Sigma}_{vu} = \frac{1}{T} \sum_{t=1}^{T} \hat{v}_t \hat{u}_t', \quad \hat{\Sigma}_{vv} = \frac{1}{T} \sum_{t=1}^{T} \hat{v}_t \hat{v}_t'.$$

and the \hat{u}_t and \hat{v}_t are the residual vectors from the auxiliary regressions. This yields two likelihood–ratio test statistics:

$$\text{trace} = -T \sum_{i=r+1}^{n} \ln(1 - \hat{\lambda}_i)$$
$$\text{maximum eigenvalue} = -T \ln(1 - \hat{\lambda}_{r+1}).$$

The former is referred to as the trace test and contrasts the null of exactly r cointegrating relations with an alternative of n (i.e., that ξ_0 is of full rank, if n is the number of elements in TE_t). The latter is called the maximum eigenvalue test since it compares the r cointegrating relations null with an $r + 1$ alternative. We report the outcomes of both tests.

3.5 Convergence Regressions

The presence of cointegration indicates a long-run relationship between the efficiency series. However, this does not necessarily imply convergence of efficiency levels. To investigate the convergence aspect, we run simple cross-sectional regressions of time–averaged efficiency growth rates on the initial level of efficiency:

$$\text{GRTE6590}_i = \alpha + \beta \text{TE}_{i, 1965} + \epsilon_i$$ \hspace{1cm} (16)
where $GR_{TE_{65-90}}^i$ denotes the average growth rate of the efficiency level in country i between 1965 and 1990; and $TE_{i,1965}^i$ is the level of efficiency of country i in 1965. In the tradition of Baumol and Barro, a negative and statistically significant coefficient on the initial level of efficiency can be interpreted as indicating convergence of efficiency levels.

However, Quah (1993, 1996), among others, criticizes such regressions on the grounds that they are plagued by Galton’s “regression-to-the-mean” fallacy. We address this criticism by calculating coefficients of variation in the efficiency series along with the regression coefficients.

4 Application to OECD Countries

In this section, we apply the methodology outlined above to 26 OECD countries observed from 1965–90.

4.1 Data

We use the Penn World Table (Mark 5.6) data set, a revised and updated version of the data set compiled by Summers and Heston (1991). Our sample is comprised of 26 OECD countries observed over the period 1965–1990. The sample period is constrained to 26 years because of the lack of capital stock data. Although the OECD currently has 29 member countries, we do not use the data from the Eastern European nations, Czech Republic, Hungary, and Poland, since their data prior to their transition to capitalist societies are either unreliable or missing.

The aggregate output variable in our analysis is real GDP per capita in constant dollars expressed in 1985 international prices (called GDP). The labor-force participation rate and the per capita capital stock serve as measures of aggregate inputs (called LABOR and CAPITAL, respectively). The former can be retrieved from the Penn World Tables by dividing real GDP per capita by real GDP per worker. The latter is constructed as the product of capital stock per worker and the newly constructed LABOR variable.

4.2 Computation of Efficiency Levels

In the first step of our analysis, we construct the efficiency series for each country by DEA and SFA as described in sections 3.1 and 3.2. In both cases, we assume constant returns to scale (CRS). As noted earlier, an advantage of SFA is that it allows us to test assumptions like CRS. In our sample, the parametric restrictions associated with CRS cannot be rejected at usual significance levels. On
the other hand, the data do reject the Cobb-Douglas restrictions, so our SFA results are based on a translog production frontier with CRS imposed.

Table 1 summarizes the DEA and SFA results, presenting each country's maximum and minimum efficiency rank and level as obtained from each method. Note that the efficiency level of the most efficient country in a given period as derived from SFA is not normalized to unity. Since each regression is modified using higher-order moments of the OLS residuals, the estimated efficiencies can take on values greater than one. In any case, there appears to be substantial agreement between DEA and SFA regarding the country ranks, especially regarding those countries which tend to operate near the frontier (e.g., Spain, Great Britain, Iceland, Luxembourg, and USA) and those which lag the farthest behind (e.g., Finland, Greece, Japan, Korea, and Norway).

4.3 Efficiency Change in Output Growth

Apart from evidence of productivity convergence, we are also interested in the importance of efficiency change for output growth. Improvements in efficiency represent movements toward the frontier, which should translate directly into greater output per unit of input, thereby contributing to an increased rate of output growth. If the impact of efficiency change on output growth is relatively large, then the current focus on capital accumulation as the engine of growth may be misguided. At the same time, such a result would focus attention on factors influencing technological diffusion and catch-up.

In table 2, we summarize R^2 measures from regressions of annual rates of per capita output growth on a constant and annual rates of efficiency change. A large percentage of variation in output growth can be explained by variation in efficiency change. The effects are particularly strong for smaller countries like Ireland, Iceland, Luxembourg, and New Zealand. But efficiency change seems to matter even for larger countries like Great Britain and Italy. While these results do not negate the importance of capital accumulation, they do suggest, however, that overlooking changes in efficiency may lead to seriously distorted conclusions about fundamental components of the growth process.

4.4 Unit–Root Tests

Next, we conduct the unit–root tests, estimating the DF test regression in equation (7) for each country series. Columns 2 and 3 of Table 3 contain the values of the DF t–statistics obtained
from equation (7). The unit-root null cannot be rejected for any country series, providing strong evidence of persistence in OECD efficiency levels.

As a check on the DF results, we also conduct KPSS tests for level stationarity against a unit-root alternative. The values of the KPSS test statistic described in equation 8 are reported in columns 4 and 5 of Table 3. In general, the KPSS test results support the view of widespread persistence in efficiency levels of OECD countries. Using the DEA (SFA) series, the stationarity null is rejected in 15 (19) countries.

4.5 Cointegration Tests

Our cointegration empirics are focused on those country series for which the DF and KPSS tests reinforce each other. For the Engle-Granger tests we use all 15 DEA series and all 19 SFA series identified as exhibiting unit-root behavior, estimating two versions of equation (9), one with a trend term and a constant and one with just a constant. We estimate two regressions for each country-pair: once with an efficiency series as the regressor and once as the regressand. Using the residuals from these regressions form the test regressions given in equation (10).

The Engle-Granger tests indicate cointegration between efficiency series for small subset of countries. With the DEA-constructed efficiency series, we reject the null hypothesis of no cointegration at the 5 (10) percent level for only 5 (20) country-pairs. With SFA, there is slightly more evidence of cointegration; the null is rejected for 10 (31) country-pairs at the 5 (10) percent level. However, France and Greece is the only country-pair that exhibits cointegration in “both directions,” which is a reflection of the Engle-Granger test’s lack of invariance to the normalization in equation (9). Thus, it is difficult to draw any strong conclusions from the Engle-Granger tests about the long-run comovements in productive efficiency among OECD nations.

Dependence on the normalization is one disadvantage of the bivariate Engle-Granger approach. The inability to identify cointegrating relationships between more than two variables is another. While the FIML-based procedure of Johansen overcomes both of these defects, its application here...
must be limited to subsets of the 26 countries since estimating a VAR for the entire OECD is
infeasible. We apply Johansen's test to two groups of countries—the G-7 and the EU—which are
distinguished, in part, by the degree to which their economies are interlinked.\footnote{The G-7 members are Canada, France, Germany, Great Britain, Italy, Japan, and USA. The EU consists of Austria, Belgium, Denmark, Finland, France, Germany, Great Britain, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal, Spain, and Sweden.}

Table 6 summarizes the DEA FIML results, while table 7 presents those derived from SFA.
Each table gives the values of trace and maximum-eigenvalue test statistics obtained from VARs
comprised of the G-7 and EU efficiency series which were found to have a unit root.\footnote{For the DEA series, the G-7 group consists of Canada, Germany, Italy, and Japan. Austria, Belgium, Denmark, Finland, France, Germany, Italy, Luxembourg, and Spain are in the EU subset. For the SFA series, the G-7 and EU groups consist of Canada, France, Germany, Great Britain, Italy, and USA and of Belgium, Finland, France, Germany, Great Britain, Greece, Ireland, Italy, Luxembourg, Portugal, and Spain.} For the
purpose of comparison, we also summarize the Engle-Granger test outcomes for the same countries
in tables 4 and 5.

Overall, the trace and maximum eigenvalue tests generate a much more coherent picture of the
long-run relationships between country efficiencies. As far as the G-7 nations are concerned, there
is little evidence of cointegration. Only one cointegrating relation is found (at the 10 percent level)
using the DEA series, while just two are revealed among the SFA series. In sharp contrast, the
FIML-based tests provide strong evidence of cointegration among EU members. With the DEA
(SFA) series, we cannot reject the hypothesis of seven (ten) or less cointegrating relations at the 5
percent significance level. This picture appears reasonable in light of EU policies, such as assistance
payments and technology transfers, directed toward the integration of poorer countries into the
union.\footnote{Cf. Slaughter (1997) for a similar argument.}

4.6 Convergence Regressions

Next, we investigate whether long-run relationships between efficiency levels are also characterized
by convergence. Table 8 reports the results from convergence regressions on the G-7 and EU
members listed in tables 6 and 7. The G-7 countries do not show any sign of convergence, using
the DEA series, consistent with the absence of cointegration among these countries, while the SFA
series indicate otherwise. Of course, results from regressions with samples sizes of 4 and 6 must be
interpreted cautiously. On the other hand, the EU efficiency levels appear to converge regardless of
how efficiency is measured. The estimated speeds of catch-up—over 4.5 percent based on DEA and
approximately 2.5 percent based on SFA—suggest that technological diffusion may be a relatively slow process.

As noted above, Quah has criticized estimated convergence regressions as examples of Galton’s fallacy. Our response to this problem is to examine the temporal pattern of the coefficients of variation of the efficiency levels. These statistics for the G-7 and EU are displayed in figures 1 and 2. Declining coefficients of variation would tend to rebut Quah’s critique and support a convergence result, and this is what we find in the EU. A similar pattern is exhibited by the coefficients of variation of the G-7 SFA series. Thus, where there is evidence of convergence from the regression analysis, it is reinforced by the corresponding coefficients of variation.

5 Conclusions

This paper intends to close an obvious gap in the empirical growth literature: the fact that differences in cross-country growth rates arise from differences in technology. The empires in virtually everyone of the recent papers narrowly focus on the role of capital accumulation in generating economic growth.

We suggest a methodology to assess whether the economies under consideration display any reduction in their technological differences. Our approach is based on a frontier production function, which allows us to identify cross-country differences in productive efficiency. By examining the time-series properties of these country efficiency levels, we are able to determine (a) whether a long-run relationship exists among them, and (b) whether they exhibit convergence. Evidence of convergence would signal catch-up by less productive countries through the diffusion of technology.

We apply this methodology to a sample of 26 OECD countries observed over the period 1965–90. Overall, we find changes in country efficiency explain a large percentage of the variation in output growth, indicating the importance of a country’s ability to absorb new technology. Regarding the time-series properties of the country efficiencies, unit-root tests provide evidence of a great deal of persistence across the OECD. In addition, cointegration tests suggest long-run relationships between the efficiency levels of the EU subset, which is consistent with the relatively greater integration of the EU economies. Finally, cross-sectional convergence regressions indicate catch-up by the less productive members of the EU.

Future research should proceed in at least two directions. Although it appears that efficiency levels exhibit a long-run relationship, no efforts have been made to explain the reasons for this.
It should be a worthwhile project to explore the underlying causes of this relationship. The other direction should focus on disaggregated data on the sectoral level. This might prove valuable in discovering which sectors emerge as the driving forces behind the convergence of productivity.
References

Figure 1: Coefficients of Variation of Efficiency Levels of G-7 Countries

![Graph showing the Coefficients of Variation of Efficiency Levels of G-7 Countries.]

Figure 2: Coefficients of Variation of Efficiency Levels of EU Countries

![Graph showing the Coefficients of Variation of Efficiency Levels of EU Countries.]
<table>
<thead>
<tr>
<th>Country</th>
<th>DEA Series</th>
<th></th>
<th></th>
<th>SFA Series</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rank Levels</td>
<td>Low High Max Min</td>
<td>Rank Levels</td>
<td>Low High Max Min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>16 7 87.6 75.1</td>
<td>15 7 93.7 83.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>23 6 88.5 69.7</td>
<td>21 13 86.3 80.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>21 7 88.3 69.7</td>
<td>19 9 93.4 79.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>17 4 95.6 79.3</td>
<td>9 4 96.6 90.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>11 3 94.1 82.1</td>
<td>17 7 92.2 82.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>23 10 86.0 65.4</td>
<td>21 15 86.5 72.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>23 14 76.1 65.4</td>
<td>23 16 84.9 72.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>18 1 100.0 75.7</td>
<td>18 2 99.2 85.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>26 20 74.9 49.3</td>
<td>25 22 82.5 61.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>16 8 87.9 79.3</td>
<td>17 8 92.1 83.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Great Britain</td>
<td>13 1 100.0 83.1</td>
<td>7 2 103.5 90.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>26 24 63.3 54.9</td>
<td>26 24 73.1 57.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>23 10 88.7 69.0</td>
<td>23 11 91.2 72.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td>7 1 100.0 86.2</td>
<td>14 1 111.7 87.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>22 7 89.2 67.5</td>
<td>22 6 95.2 72.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>26 18 73.9 56.3</td>
<td>25 23 74.6 58.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td>26 16 73.3 47.9</td>
<td>26 15 84.8 63.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luxembourg</td>
<td>22 1 100.0 67.3</td>
<td>20 2 100.0 77.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>19 5 95.5 73.9</td>
<td>17 3 98.5 83.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>11 4 92.9 82.6</td>
<td>9 2 97.0 89.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td>24 9 86.2 61.0</td>
<td>24 14 88.3 65.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Zealand</td>
<td>22 8 91.3 71.2</td>
<td>21 4 95.9 81.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>17 1 100.0 77.5</td>
<td>15 3 97.7 84.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>20 11 83.4 73.0</td>
<td>19 9 89.9 81.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>24 8 89.1 59.2</td>
<td>23 3 95.8 81.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>1 1 100.0 100.0</td>
<td>2 1 113.2 101.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: All efficiency levels are in per cent. The SFA efficiency levels are not normalized relative to the most efficient country.
<table>
<thead>
<tr>
<th>Country</th>
<th>Annual Output Growth Rate</th>
<th>DEA</th>
<th>SFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>1.97</td>
<td>0.21</td>
<td>0.30</td>
</tr>
<tr>
<td>Austria</td>
<td>2.90</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>Belgium</td>
<td>2.69</td>
<td>0.27</td>
<td>0.12</td>
</tr>
<tr>
<td>Canada</td>
<td>2.74</td>
<td>0.13</td>
<td>0.29</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1.57</td>
<td>0.38</td>
<td>0.08</td>
</tr>
<tr>
<td>Germany</td>
<td>2.38</td>
<td>0.11</td>
<td>0.22</td>
</tr>
<tr>
<td>Denmark</td>
<td>2.00</td>
<td>0.18</td>
<td>0.32</td>
</tr>
<tr>
<td>Spain</td>
<td>2.95</td>
<td>0.32</td>
<td>0.25</td>
</tr>
<tr>
<td>Finland</td>
<td>3.08</td>
<td>0.57</td>
<td>0.32</td>
</tr>
<tr>
<td>France</td>
<td>2.58</td>
<td>0.06</td>
<td>0.10</td>
</tr>
<tr>
<td>Great Britain</td>
<td>2.17</td>
<td>0.38</td>
<td>0.37</td>
</tr>
<tr>
<td>Greece</td>
<td>3.17</td>
<td>0.34</td>
<td>0.30</td>
</tr>
<tr>
<td>Ireland</td>
<td>3.36</td>
<td>0.45</td>
<td>0.41</td>
</tr>
<tr>
<td>Iceland</td>
<td>3.06</td>
<td>0.44</td>
<td>0.71</td>
</tr>
<tr>
<td>Italy</td>
<td>3.14</td>
<td>0.46</td>
<td>0.32</td>
</tr>
<tr>
<td>Japan</td>
<td>4.64</td>
<td>0.20</td>
<td>0.08</td>
</tr>
<tr>
<td>Korea</td>
<td>7.37</td>
<td>0.35</td>
<td>0.32</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>2.57</td>
<td>0.60</td>
<td>0.61</td>
</tr>
<tr>
<td>Mexico</td>
<td>2.21</td>
<td>0.23</td>
<td>0.41</td>
</tr>
<tr>
<td>Netherlands</td>
<td>2.27</td>
<td>0.10</td>
<td>0.15</td>
</tr>
<tr>
<td>Norway</td>
<td>3.05</td>
<td>0.26</td>
<td>0.13</td>
</tr>
<tr>
<td>New Zealand</td>
<td>0.97</td>
<td>0.60</td>
<td>0.67</td>
</tr>
<tr>
<td>Portugal</td>
<td>4.53</td>
<td>0.08</td>
<td>0.24</td>
</tr>
<tr>
<td>Sweden</td>
<td>1.80</td>
<td>0.26</td>
<td>0.17</td>
</tr>
<tr>
<td>Turkey</td>
<td>2.90</td>
<td>0.21</td>
<td>0.10</td>
</tr>
<tr>
<td>USA</td>
<td>1.75</td>
<td>n.a.</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Note: The figures in column 1 are in per cent. The R^2 measures in columns 2 and 3 are obtained by regressing the annual rate of per capita output growth on a constant and the annual rate of efficiency change obtained from the DEA or the SFA approach.
<table>
<thead>
<tr>
<th>Country</th>
<th>Dickey-Fuller Test DEA Series</th>
<th>SFA Series</th>
<th>Kwiatkowski et al. Test DEA Series</th>
<th>SFA Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>0.5570</td>
<td>0.2863</td>
<td>0.0040**</td>
<td>0.0750**</td>
</tr>
<tr>
<td>Austria</td>
<td>-1.4262</td>
<td>-0.3926</td>
<td>1.3032**</td>
<td>0.2918</td>
</tr>
<tr>
<td>Belgium</td>
<td>1.1140</td>
<td>2.6749</td>
<td>0.9771**</td>
<td>1.3032**</td>
</tr>
<tr>
<td>Canada</td>
<td>1.5726</td>
<td>0.5856</td>
<td>1.1991**</td>
<td>1.0617**</td>
</tr>
<tr>
<td>Switzerland</td>
<td>0.0777</td>
<td>0.3830</td>
<td>0.2864</td>
<td>0.1623</td>
</tr>
<tr>
<td>Germany</td>
<td>0.7348</td>
<td>0.3806</td>
<td>0.9810**</td>
<td>0.8576**</td>
</tr>
<tr>
<td>Denmark</td>
<td>-0.0559</td>
<td>0.2796</td>
<td>0.6700**</td>
<td>0.3086</td>
</tr>
<tr>
<td>Spain</td>
<td>-1.1927</td>
<td>-1.0508</td>
<td>1.1727**</td>
<td>1.1324**</td>
</tr>
<tr>
<td>Finland</td>
<td>1.5212</td>
<td>1.6282</td>
<td>1.2628**</td>
<td>1.2434**</td>
</tr>
<tr>
<td>France</td>
<td>0.1507</td>
<td>1.0908</td>
<td>0.1383</td>
<td>1.0219**</td>
</tr>
<tr>
<td>Great Britain</td>
<td>-0.0820</td>
<td>0.3601</td>
<td>0.3741*</td>
<td>0.8010**</td>
</tr>
<tr>
<td>Greece</td>
<td>0.3357</td>
<td>0.5054</td>
<td>0.1671</td>
<td>1.0608**</td>
</tr>
<tr>
<td>Ireland</td>
<td>0.8980</td>
<td>1.3308</td>
<td>0.1075</td>
<td>1.1043**</td>
</tr>
<tr>
<td>Iceland</td>
<td>-0.4891</td>
<td>-0.1458</td>
<td>0.1470</td>
<td>0.6532**</td>
</tr>
<tr>
<td>Italy</td>
<td>1.4115</td>
<td>3.1366</td>
<td>1.0578**</td>
<td>1.3072**</td>
</tr>
<tr>
<td>Japan</td>
<td>-0.4588</td>
<td>0.1748</td>
<td>0.9412**</td>
<td>0.3041</td>
</tr>
<tr>
<td>Korea</td>
<td>-0.1846</td>
<td>-0.8002</td>
<td>0.5194**</td>
<td>0.3428</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>1.5133</td>
<td>1.3347</td>
<td>1.1037**</td>
<td>1.1324**</td>
</tr>
<tr>
<td>Mexico</td>
<td>0.1032</td>
<td>0.2180</td>
<td>0.3676*</td>
<td>0.4827**</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.3605</td>
<td>0.7607</td>
<td>0.2343</td>
<td>0.2428</td>
</tr>
<tr>
<td>Norway</td>
<td>1.3874</td>
<td>0.9455</td>
<td>1.2507**</td>
<td>1.1501**</td>
</tr>
<tr>
<td>New Zealand</td>
<td>-0.8784</td>
<td>-1.4878</td>
<td>0.5319**</td>
<td>0.7252**</td>
</tr>
<tr>
<td>Portugal</td>
<td>0.6097</td>
<td>0.7241</td>
<td>0.1725</td>
<td>0.9277**</td>
</tr>
<tr>
<td>Sweden</td>
<td>-0.4243</td>
<td>-0.7432</td>
<td>0.2291</td>
<td>0.2517</td>
</tr>
<tr>
<td>Turkey</td>
<td>0.1046</td>
<td>-0.4272</td>
<td>0.5945**</td>
<td>0.7981**</td>
</tr>
<tr>
<td>USA</td>
<td>-0.0641</td>
<td>-0.0681</td>
<td>0.6731**</td>
<td></td>
</tr>
</tbody>
</table>

Note: ** denotes significance at 5% level, * at 10% level. The table entries in columns 2 and 3 are the DF test statistics on the slope coefficients of equation (7). Critical values can be found in Hamilton (1994), pp. 763-4. The entries in columns 4 and 5 are KPSS test statistics computed in equation (8). Critical values can be found in Kwiatkowski et al. (1992), p. 166.
Table 4: Results from Engle-Granger Cointegration Tests; DEA

Data Envelopment Analysis

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Independent Variable</th>
<th>G-7</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Canada</td>
<td></td>
<td>AUT</td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

Note: "*" denotes significance at 5% level; "**" at 10% level. The * in the upper panel in row Italy and column Canada means that the residuals from the regression of Italy's efficiency levels on Canada's efficiency levels do not exhibit a unit root, i.e., they are I(0). However, the same is not true for the reverse case of the regression of Canada's efficiency levels on Italy's efficiency levels.
Table 5: Results from Engle-Granger Cointegration Tests; SFA

Stochastic Frontier Analysis

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Canada</th>
<th>France</th>
<th>Germany</th>
<th>Great Britain</th>
<th>Italy</th>
<th>USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Great Britain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stochastic Frontier Analysis

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>BEL</th>
<th>FIN</th>
<th>FRA</th>
<th>DEU</th>
<th>GBR</th>
<th>GRG</th>
<th>IRL</th>
<th>ITA</th>
<th>LUX</th>
<th>PRT</th>
<th>ESP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td>**</td>
<td>**</td>
<td></td>
<td>**</td>
<td>**</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. Britain</td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td></td>
<td>**</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>Ireland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td>**</td>
<td>*</td>
<td>**</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luxembourg</td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td></td>
</tr>
</tbody>
</table>

Note: **"** denotes significance at 5% level; *" at 10% level. The *" in the upper panel in row Canada and column Italy means that the residuals from the regression of Canada’s efficiency levels on Italy’s efficiency levels do not exhibit a unit root, i.e., they are I(0). However, the same is not true for the reverse case of the regression of Italy’s efficiency levels on Canada’s efficiency levels.
Table 6: Results from Johansen Cointegration Tests; DEA

Data Envelopment Analysis

G-7: Canada, Germany, Italy, Japan

<table>
<thead>
<tr>
<th>Eigenvalues</th>
<th>Trace Test</th>
<th>Max. EV Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H₀ vs. H₁</td>
<td>Statistic</td>
</tr>
<tr>
<td>0.6134</td>
<td>r = 0 vs. r = 4</td>
<td>44.13*</td>
</tr>
<tr>
<td>0.3601</td>
<td>r ≤ 1 vs. r = 4</td>
<td>21.32</td>
</tr>
<tr>
<td>0.2630</td>
<td>r ≤ 2 vs. r = 4</td>
<td>10.61</td>
</tr>
<tr>
<td>0.1280</td>
<td>r ≤ 3 vs. r = 4</td>
<td>3.29</td>
</tr>
</tbody>
</table>

EU: Austria, Belgium, Denmark, Finland, Germany, Italy, Luxembourg, Spain

<table>
<thead>
<tr>
<th>Eigenvalues</th>
<th>Trace Test</th>
<th>Max. EV Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H₀ vs. H₁</td>
<td>Statistic</td>
</tr>
<tr>
<td>1.0000</td>
<td>r = 0 vs. r = 8</td>
<td>1031.78**</td>
</tr>
<tr>
<td>0.9492</td>
<td>r ≤ 1 vs. r = 8</td>
<td>283.36**</td>
</tr>
<tr>
<td>0.9475</td>
<td>r ≤ 2 vs. r = 8</td>
<td>211.84**</td>
</tr>
<tr>
<td>0.9115</td>
<td>r ≤ 3 vs. r = 8</td>
<td>141.00**</td>
</tr>
<tr>
<td>0.7904</td>
<td>r ≤ 4 vs. r = 8</td>
<td>82.90**</td>
</tr>
<tr>
<td>0.6736</td>
<td>r ≤ 5 vs. r = 8</td>
<td>45.40**</td>
</tr>
<tr>
<td>0.5236</td>
<td>r ≤ 6 vs. r = 8</td>
<td>18.53**</td>
</tr>
<tr>
<td>0.0300</td>
<td>r ≤ 7 vs. r = 8</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Note: r denotes the number of cointegrating relationships. Critical values are from Osterwald-Lenum (1992), p. 468, table 1. ** denotes significance at 5% level, * at 10% level.
Table 7: Results from Johansen Cointegration Tests; SFA

Stochastic Frontier Analysis

G-7: Canada, France, Germany, Great Britain, Italy, USA

<table>
<thead>
<tr>
<th>Eigenvalues</th>
<th>Trace Test</th>
<th>Max. EV Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H_0 vs. H_1</td>
<td>Statistic</td>
</tr>
<tr>
<td>0.9648</td>
<td>$r = 0$ vs. $r = 6$</td>
<td>168.91**</td>
</tr>
<tr>
<td>0.8036</td>
<td>$r \leq 1$ vs. $r = 6$</td>
<td>88.61**</td>
</tr>
<tr>
<td>0.5925</td>
<td>$r \leq 2$ vs. $r = 6$</td>
<td>49.54*</td>
</tr>
<tr>
<td>0.4467</td>
<td>$r \leq 3$ vs. $r = 6$</td>
<td>28.00*</td>
</tr>
<tr>
<td>0.3054</td>
<td>$r \leq 4$ vs. $r = 6$</td>
<td>13.79</td>
</tr>
<tr>
<td>0.1887</td>
<td>$r \leq 5$ vs. $r = 6$</td>
<td>5.05</td>
</tr>
</tbody>
</table>

EU: Belgium, Finland, France, Germany, Great Britain, Greece, Ireland, Italy, Luxembourg, Portugal, Spain

<table>
<thead>
<tr>
<th>Eigenvalues</th>
<th>Trace Test</th>
<th>Max. EV Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H_0 vs. H_1</td>
<td>Statistic</td>
</tr>
<tr>
<td>1.0000</td>
<td>$r = 0$ vs. $r = 11$</td>
<td>7226.08**</td>
</tr>
<tr>
<td>1.0000</td>
<td>$r \leq 1$ vs. $r = 11$</td>
<td>6536.76**</td>
</tr>
<tr>
<td>1.0000</td>
<td>$r \leq 2$ vs. $r = 11$</td>
<td>5833.90**</td>
</tr>
<tr>
<td>1.0000</td>
<td>$r \leq 3$ vs. $r = 11$</td>
<td>5064.13**</td>
</tr>
<tr>
<td>1.0000</td>
<td>$r \leq 4$ vs. $r = 11$</td>
<td>4294.35**</td>
</tr>
<tr>
<td>1.0000</td>
<td>$r \leq 5$ vs. $r = 11$</td>
<td>3573.40**</td>
</tr>
<tr>
<td>1.0000</td>
<td>$r \leq 6$ vs. $r = 11$</td>
<td>2852.46**</td>
</tr>
<tr>
<td>1.0000</td>
<td>$r \leq 7$ vs. $r = 11$</td>
<td>2096.07**</td>
</tr>
<tr>
<td>1.0000</td>
<td>$r \leq 8$ vs. $r = 11$</td>
<td>1362.46**</td>
</tr>
<tr>
<td>1.0000</td>
<td>$r \leq 9$ vs. $r = 11$</td>
<td>689.31**</td>
</tr>
<tr>
<td>0.7367</td>
<td>$r \leq 10$ vs. $r = 11$</td>
<td>32.03*</td>
</tr>
</tbody>
</table>

Note: r denotes the number of cointegrating relationships. Critical values are from Osterwald-Lenum (1992), p. 468, table 1. ** denotes significance at 5% level, * at 10% level.
Table 8: Estimation of Convergence Regressions

<table>
<thead>
<tr>
<th>Sample:</th>
<th>G-7</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations:</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>-0.0123</td>
<td>0.0399^{**}</td>
</tr>
<tr>
<td></td>
<td>(0.0452)</td>
<td>(0.0096)</td>
</tr>
<tr>
<td>$\text{TE}_{4,1995}$</td>
<td>0.0239</td>
<td>-0.0482^{**}</td>
</tr>
<tr>
<td></td>
<td>(0.0639)</td>
<td>(0.0126)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.005</td>
<td>0.708</td>
</tr>
<tr>
<td>SEE</td>
<td>0.007</td>
<td>0.005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample:</th>
<th>G-7</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations:</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>0.0252^{**}</td>
<td>0.0238^{**}</td>
</tr>
<tr>
<td></td>
<td>(0.0071)</td>
<td>(0.0062)</td>
</tr>
<tr>
<td>$\text{TE}_{4,1995}$</td>
<td>-0.0250^{**}</td>
<td>-0.0239^{**}</td>
</tr>
<tr>
<td></td>
<td>(0.0079)</td>
<td>(0.0077)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.714</td>
<td>0.516</td>
</tr>
<tr>
<td>SEE</td>
<td>0.002</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Note: Standard errors are in parentheses. ** denotes significance at 5% level. Composition of the country groups: DEA: the G-7 group consists of Canada, Germany, Italy, and Japan; the EU group consists of Austria, Belgium, Denmark, Finland, Germany, Italy, Luxembourg, and Spain; SFA: the G-7 group consists of Canada, France, Germany, Great Britain, Italy, and the USA; the EU group consists of Belgium, Finland, France, Germany, Great Britain, Greece, Ireland, Italy, Luxembourg, Portugal, and Spain.
2008
B01-08 Euro-Diplomatie durch gemeinsame „Wirtschaftsregierung“
Martin Seidel

2007
B03-07 Löhne und Steuern im Systemwettbewerb der Mitgliedstaaten der Europäischen Union
Martin Seidel
B02-07 Konsolidierung und Reform der Europäischen Union
Martin Seidel
B01-07 The Ratification of European Treaties - Legal and Constitutional Basis of a European Referendum.
Martin Seidel

2006
B03-06 Financial Frictions, Capital Reallocation, and Aggregate Fluctuations
Jürgen von Hagen, Haiping Zhang
B02-06 Financial Openness and Macroeconomic Volatility
Jürgen von Hagen, Haiping Zhang
B01-06 A Welfare Analysis of Capital Account Liberalization
Jürgen von Hagen, Haiping Zhang

2005
B11-05 Das Kompetenz- und Entscheidungssystem des Vertrages von Rom im Wandel seiner Funktion und Verfassung
Martin Seidel
B10-05 Die Schutzklauseln der Beitrittsverträge
Martin Seidel
B09-05 Measuring Tax Burdens in Europe
Guntram B. Wolff
B08-05 Remittances as Investment in the Absence of Altruism
Gabriel González-König
B07-05 Economic Integration in a Multicone World?
Christian Volpe Martincus, Jennifer Pédussel Wu
B06-05 Banking Sector (Under?)Development in Central and Eastern Europe
Jürgen von Hagen, Valeriya Dinger
B05-05 Regulatory Standards Can Lead to Predation
Stefan Lutz
B04-05 Währungspolitik als Sozialpolitik
Martin Seidel
B03-05 Public Education in an Integrated Europe: Studying to Migrate and Teaching to Stay?
Panu Poutvaara
B02-05 Voice of the Diaspora: An Analysis of Migrant Voting Behavior
Jürgen von Hagen, Iulia Traistaru
B01-05 Macroeconomic Adjustment in the New EU Member States
Jürgen von Hagen, Iulia Traistaru

2004
B33-04 The Effects of Transition and Political Instability On Foreign Direct Investment Inflows: Central Europe and the Balkans
Josef C. Brada, Ali M. Kutan, Tanner M. Yigit
B32-04 The Choice of Exchange Rate Regimes in Developing Countries: A Multinominal Panal Analysis
Jürgen von Hagen, Jizhong Zhou
B31-04 Fear of Floating and Fear of Pegging: An Empirical Anaysis of De Facto Exchange Rate Regimes in Developing Countries
Jürgen von Hagen, Jizhong Zhou
B30-04 Der Vollzug von Gemeinschaftsrecht über die Mitgliedstaaten und seine Rolle für die EU und den Beitrittsprozess
Martin Seidel
B29-04 Deutschlands Wirtschaft, seine Schulden und die Unzulänglichkeiten der einheitlichen Geldpolitik im Eurosystem
Dieter Spethmann, Otto Steiger
B28-04 Fiscal Crises in U.S. Cities: Structural and Non-structural Causes
Guntram B. Wolff
B27-04 Firm Performance and Privatization in Ukraine
Galyna Grygorenko, Stefan Lutz
B26-04 Analyzing Trade Opening in Ukraine: Effects of a Customs Union with the EU
Oksana Harbuzyuk, Stefan Lutz
B25-04 Exchange Rate Risk and Convergence to the Euro
Lucjan T. Orlowski
B24-04 The Endogeneity of Money and the Eurosystem
Otto Steiger
B23-04 Which Lender of Last Resort for the Eurosystem?
Otto Steiger
B22-04 Non-Discretonary Monetary Policy: The Answer for Transition Economies?
Elham-Mafi Kreft, Steven F. Kreft
B21-04 The Effectiveness of Subsidies Revisited: Accounting for Wage and Employment Effects in Business R+D
Volker Reinheller, Guntram B. Wolff
B20-04 Money Market Pressure and the Determinants of Banking Crises
Jürgen von Hagen, Tai-kuang Ho
B19-04 Die Stellung der Europäischen Zentralbank nach dem Verfasungsvertrag
Martin Seidel
B18-04 Transmission Channels of Business Cycles Synchronization in an Enlarged EMU
Iulia Traistaru

B17-04 Foreign Exchange Regime, the Real Exchange Rate and Current Account Sustainability: The Case of Turkey
Sübidey Togan, Hasan Ersel

Harry P. Bowen, Jennifer Pédussel Wu

B15-04 Do Economic Integration and Fiscal Competition Help to Explain Local Patterns?
Christian Volpe Martincus

B14-04 Euro Adoption and Maastricht Criteria: Rules or Discretion?
Jiri Jonas

B13-04 The Role of Electoral and Party Systems in the Development of Fiscal Institutions in the Central and Eastern European Countries
Sami Yläoutinen

B12-04 Measuring and Explaining Levels of Regional Economic Integration
Jennifer Pédussel Wu

B11-04 Economic Integration and Location of Manufacturing Activities: Evidence from MERCOSUR
Pablo Sanguinetti, Iulia Traistaru, Christian Volpe Martincus

B10-04 Economic Integration and Industry Location in Transition Countries
Laura Resmini

Ayse Y. Evrensel, Ali M. Kutan

B08-04 European Integration, Productivity Growth and Real Convergence
TaNer M. Yigit, Ali M. Kutan

B07-04 The Contribution of Income, Social Capital, and Institutions to Human Well-being in Africa
Mina Baliamoune-Lutz, Stefan H. Lutz

B06-04 Rural Urban Inequality in Africa: A Panel Study of the Effects of Trade Liberalization and Financial Deepening
Mina Baliamoune-Lutz, Stefan H. Lutz

B05-04 Money Rules for the Eurozone Candidate Countries
Lucjan T. Orlowski

B04-04 Who is in Favor of Enlargement? Determinants of Support for EU Membership in the Candidate Countries’ Referenda
Orla Doyle, Jan Fidrmuc

B03-04 Over- and Underbidding in Central Bank Open Market Operations Conducted as Fixed Rate Tender
Ulrich Bindseil

B02-04 Total Factor Productivity and Economic Freedom Implications for EU Enlargement
Ronald L. Moomaw, Euy Seok Yang

B01-04 Die neuen Schutzklauseln der Artikel 38 und 39 des Beitrittsvertrages: Schutz der alten Mitgliedstaaten vor Störungen durch die neuen Mitgliedstaaten
Martin Seidel

2003

B29-03 Macroeconomic Implications of Low Inflation in the Euro Area
Jürgen von Hagen, Boris Hofmann

B28-03 The Effects of Transition and Political Instability on Foreign Direct Investment: Central Europe and the Balkans
Joseph C. Brada, Ali M. Kutan, Taner M. Yigit

B27-03 The Performance of the Euribor Futures Market: Efficiency and the Impact of ECB Policy Announcements (Electronic Version of International Finance)
Kerstin Bernoth, Juergen von Hagen

B26-03 Sovereign Risk Premia in the European Government Bond Market (überarbeitete Version zum Herunterladen)
Kerstin Bernoth, Juergen von Hagen, Ludger Schulknecht

B25-03 How Flexible are Wages in EU Accession Countries?
Anna Iara, Iulia Traistaru

B24-03 Monetary Policy Reaction Functions: ECB versus Bundesbank
Bernd Hayo, Boris Hofmann

B23-03 Economic Integration and Manufacturing Concentration Patterns: Evidence from Mercosur
Iulia Traistaru, Christian Volpe Martincus

B22-03 Reformzwänge innerhalb der EU angesichts der Osterweiterung
Martin Seidel

B21-03 Reputation Flows: Contractual Disputes and the Channels for Inter-Firm Communication
William Pyle

B20-03 Urban Primacy, Gigantism, and International Trade: Evidence from Asia and the Americas
Ronald L. Moomaw, Mohammed A. Alwosabi

B19-03 An Empirical Analysis of Competing Explanations of Urban Primacy Evidence from Asia and the Americas
Ronald L. Moomaw, Mohammed A. Alwosabi
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>B18-03</td>
<td>The Effects of Regional and Industry-Wide FDI Spillovers on Export of Ukrainian Firms</td>
<td>Stefan H. Lutz, Oleksandr Talavera, Sang-Min Park</td>
</tr>
<tr>
<td>B17-03</td>
<td>Determinants of Inter-Regional Migration in the Baltic States</td>
<td>Mihails Hazans</td>
</tr>
<tr>
<td>B16-03</td>
<td>South-East Europe: Economic Performance, Perspectives, and Policy Challenges</td>
<td>Iulia Traistaru, Jürgen von Hagen</td>
</tr>
<tr>
<td>B15-03</td>
<td>Employed and Unemployed Search: The Marginal Willingness to Pay for Attributes in Lithuania, the US and the Netherlands</td>
<td>Jos van Ommeren, Mihails Hazans</td>
</tr>
<tr>
<td>B14-03</td>
<td>FCI and Economic Activity: Some International Evidence</td>
<td>Charles Goodhart, Boris Hofmann</td>
</tr>
<tr>
<td>B13-03</td>
<td>The IS Curve and the Transmission of Monetary Policy: Is there a Puzzle?</td>
<td>Charles Goodhart, Boris Hofmann</td>
</tr>
<tr>
<td>B12-03</td>
<td>What Makes Regions in Eastern Europe Catching Up? The Role of Foreign Investment, Human Resources, and Geography</td>
<td>Gabriele Tondl, Goran Vuksic</td>
</tr>
<tr>
<td>B11-03</td>
<td>Die Weisungs- und Herrschaftsmacht der Europäischen Zentralbank im europäischen System der Zentralbanken - eine rechtliche Analyse</td>
<td>Martin Seidel</td>
</tr>
<tr>
<td>B10-03</td>
<td>Foreign Direct Investment and Perceptions of Vulnerability to Foreign Exchange Crises: Evidence from Transition Economies</td>
<td>Josef C. Brada, Vladimír Tomsik</td>
</tr>
<tr>
<td>B09-03</td>
<td>The European Central Bank and the Eurosystem: An Analysis of the Missing Central Monetary Institution in European Monetary Union</td>
<td>Gunnar Heinsohn, Otto Steiger</td>
</tr>
<tr>
<td>B08-03</td>
<td>The Determination of Capital Controls: Which Role Do Exchange Rate Regimes Play?</td>
<td>Jürgen von Hagen, Jizhong Zhou</td>
</tr>
<tr>
<td>B07-03</td>
<td>Nach Nizza und Stockholm: Stand des Binnenmarktes und Prioritäten für die Zukunft</td>
<td>Martin Seidel</td>
</tr>
<tr>
<td>B06-03</td>
<td>Fiscal Discipline and Growth in Euroland. Experiences with the Stability and Growth Pact</td>
<td>Jürgen von Hagen</td>
</tr>
<tr>
<td>B05-03</td>
<td>Reconsidering the Evidence: Are Eurozone Business Cycles Converging?</td>
<td>Michael Massmann, James Mitchell</td>
</tr>
<tr>
<td>B04-03</td>
<td>Do Ukrainian Firms Benefit from FDI?</td>
<td>Stefan H. Lutz, Oleksandr Talavera</td>
</tr>
<tr>
<td>B03-03</td>
<td>Europäische Steuerkoordination und die Schweiz</td>
<td>Stefan H. Lutz</td>
</tr>
<tr>
<td>B02-03</td>
<td>Commuting in the Baltic States: Patterns, Determinants, and Gains</td>
<td>Mihails Hazans</td>
</tr>
<tr>
<td>B01-03</td>
<td>Die Wirtschafts- und Währungsunion im rechtlichen und politischen Gefüge der Europäischen Union</td>
<td>Martin Seidel</td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B30-02</td>
<td>An Adverse Selection Model of Optimal Unemployment Assurance</td>
<td>Marcus Hagedorn, Ashok Kaul, Tim Mennel</td>
</tr>
<tr>
<td>B29B-02</td>
<td>Trade Agreements as Self-protection</td>
<td>Jennifer Pédussel Wu</td>
</tr>
<tr>
<td>B29A-02</td>
<td>Growth and Business Cycles with Imperfect Credit Markets</td>
<td>Debajyoti Chakrabarty</td>
</tr>
<tr>
<td>B28-02</td>
<td>Inequality, Politics and Economic Growth</td>
<td>Debajyoti Chakrabarty</td>
</tr>
<tr>
<td>B27-02</td>
<td>Poverty Traps and Growth in a Model of Endogenous Time Preference</td>
<td>Debajyoti Chakrabarty</td>
</tr>
<tr>
<td>B26-02</td>
<td>Monetary Convergence and Risk Premiums in the EU Candidate Countries</td>
<td>Lucjan T. Orlowski</td>
</tr>
<tr>
<td>B24-02</td>
<td>The Effects of Quotas on Vertical Intra-industry Trade</td>
<td>Stefan Lutz</td>
</tr>
<tr>
<td>B23-02</td>
<td>Legal Aspects of European Economic and Monetary Union</td>
<td>Martin Seidel</td>
</tr>
<tr>
<td>B22-02</td>
<td>Der Staat als Lender of Last Resort - oder: Die Achillesverse des Eurosystems</td>
<td>Otto Steiger</td>
</tr>
<tr>
<td>B21-02</td>
<td>Nominal and Real Stochastic Convergence Within the Transition Economies and to the European Union: Evidence from Panel Data</td>
<td>Ali M. Kutan, Taner M. Yigit</td>
</tr>
</tbody>
</table>
B19-02 East Germany: Transition with Unification, Experiments and Experiences
Jürgen von Hagen, Rolf R. Strauch, Guntram B. Wolff

B18-02 Regional Specialization and Employment Dynamics in Transition Countries
Iulia Traistaru, Guntram B. Wolff

B17-02 Specialization and Growth Patterns in Border Regions of Accession Countries
Laura Resmini

B16-02 Regional Specialization and Concentration of Industrial Activity in Accession Countries
Iulia Traistaru, Peter Nijkamp, Simonetta Longhi

B15-02 Does Broad Money Matter for Interest Rate Policy?
Matthias Brückner, Andreas Schaber

B14-02 The Long and Short of It: Global Liberalization, Poverty and Inequality
Christian E. Weller, Adam Hersch

B13-02 De Facto and Official Exchange Rate Regimes in Transition Economies
Jürgen von Hagen, Jizhong Zhou

B12-02 Argentina: The Anatomy of A Crisis
Jiri Jonas

B11-02 The Eurosystem and the Art of Central Banking
Gunnar Heinsohn, Otto Steiger

Martin Seidel

B09-02 Monetary Policy in the Euro Area - Lessons from the First Years
Volker Clausen, Bernd Hayo

B08-02 Has the Link Between the Spot and Forward Exchange Rates Broken Down? Evidence From Rolling Cointegration Tests
Ali M. Kutan, Su Zhou

B07-02 Perspektiven der Erweiterung der Europäischen Union
Martin Seidel

B06-02 Is There Asymmetry in Forward Exchange Rate Bias? Multi-Country Evidence
Su Zhou, Ali M. Kutan

B05-02 Real and Monetary Convergence Within the European Union and Between the European Union and Candidate Countries: A Rolling Cointegration Approach
Josef C. Brada, Ali M. Kutan, Su Zhou

B04-02 Asymmetric Monetary Policy Effects in EMU
Volker Clausen, Bernd Hayo

B03-02 The Choice of Exchange Rate Regimes: An Empirical Analysis for Transition Economies
Jürgen von Hagen, Jizhong Zhou

B02-02 The Euro System and the Federal Reserve System Compared: Facts and Challenges
Karlheinz Ruckriegel, Franz Seitz

B01-02 Does Inflation Targeting Matter?
Manfred J. M. Neumann, Jürgen von Hagen

2001

B29-01 Is Kazakhstan Vulnerable to the Dutch Disease?
Karlygash Kuralbayeva, Ali M. Kutan, Michael L. Wyzan

B28-01 Political Economy of the Nice Treaty: Rebalancing the EU Council. The Future of European Agricultural Policies
Deutsch-Französisches Wirtschaftspolitisches Forum

B27-01 Investor Panic, IMF Actions, and Emerging Stock Market Returns and Volatility: A Panel Investigation
Bernd Hayo, Ali M. Kutan

B26-01 Regional Effects of Terrorism on Tourism: Evidence from Three Mediterranean Countries
Konstantinos Drakos, Ali M. Kutan

B25-01 Monetary Convergence of the EU Candidates to the Euro: A Theoretical Framework and Policy Implications
Lucjan T. Orlowski

B24-01 Disintegration and Trade
Jarko and Jan Fidrmuc

B23-01 Migration and Adjustment to Shocks in Transition Economies
Jan Fidrmuc

B22-01 Strategic Delegation and International Capital Taxation
Matthias Brückner

B21-01 Balkan and Mediterranean Candidates for European Union Membership: The Convergence of Their Monetary Policy With That of the Euro Area Central Bank
Josef C. Brada, Ali M. Kutan

B20-01 An Empirical Inquiry of the Efficiency of Intergovernmental Transfers for Water Projects Based on the WRDA Data
Anna Rubinchik-Pessach

B19-01 Detrending and the Money-Output Link: International Evidence
R.W. Hafer, Ali M. Kutan
<table>
<thead>
<tr>
<th>Paper</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>B18-01</td>
<td>Monetary Policy in Unknown Territory. The European Central Bank in the Early Years</td>
<td>Jürgen von Hagen, Matthias Brückner</td>
</tr>
<tr>
<td>B17-01</td>
<td>Executive Authority, the Personal Vote, and Budget Discipline in Latin American and Carribean Countries</td>
<td>Mark Hallerberg, Patrick Marier</td>
</tr>
<tr>
<td>B16-01</td>
<td>Sources of Inflation and Output Fluctuations in Poland and Hungary: Implications for Full Membership in the European Union</td>
<td>Selahattin Dibooglu, Ali M. Kutan</td>
</tr>
<tr>
<td>B15-01</td>
<td>Programs Without Alternative: Public Pensions in the OECD</td>
<td>Christian E. Weller</td>
</tr>
<tr>
<td>B14-01</td>
<td>Formal Fiscal Restraints and Budget Processes As Solutions to a Deficit and Spending Bias in Public Finances - U.S. Experience and Possible Lessons for EMU</td>
<td>Rolf R. Strauch, Jürgen von Hagen</td>
</tr>
<tr>
<td>B13-01</td>
<td>German Public Finances: Recent Experiences and Future Challenges</td>
<td>Jürgen von Hagen, Rolf R. Strauch</td>
</tr>
<tr>
<td>B12-01</td>
<td>The Impact of Eastern Enlargement On EU-Labour Markets. Pensions Reform Between Economic and Political Problems</td>
<td>Deutsch-Französisches Wirtschaftspolitisches Forum</td>
</tr>
<tr>
<td>B11-01</td>
<td>Inflationary Performance in a Monetary Union With Large Wage Setters</td>
<td>Lilia Cavallar</td>
</tr>
<tr>
<td>B09-01</td>
<td>Democracy in Transition Economies: Grease or Sand in the Wheels of Growth?</td>
<td>Jan Fidrmuc</td>
</tr>
<tr>
<td>B08-01</td>
<td>The Functioning of Economic Policy Coordination</td>
<td>Jürgen von Hagen, Susanne Mundschek</td>
</tr>
<tr>
<td>B07-01</td>
<td>The Convergence of Monetary Policy Between Candidate Countries and the European Union</td>
<td>Josef C. Brada, Ali M. Kutan</td>
</tr>
<tr>
<td>B06-01</td>
<td>Opposites Attract: The Case of Greek and Turkish Financial Markets</td>
<td>Konstantinos Drakos, Ali M. Kutan</td>
</tr>
<tr>
<td>B05-01</td>
<td>Trade Rules and Global Governance: A Long Term Agenda. The Future of Banking.</td>
<td>Deutsch-Französisches Wirtschaftspolitisches Forum</td>
</tr>
<tr>
<td>B04-01</td>
<td>The Determination of Unemployment Benefits</td>
<td>Rafael di Tella, Robert J. McCulloch, Andrew J. Oswald</td>
</tr>
<tr>
<td>B03-01</td>
<td>Preferences Over Inflation and Unemployment: Evidence from Surveys of Happiness</td>
<td>Michele Fratianni, Jürgen von Hagen</td>
</tr>
<tr>
<td>B02-01</td>
<td>The Konstanz Seminar on Monetary Theory and Policy at Thirty</td>
<td>Etienne Farvaque, Gael Lagadec</td>
</tr>
<tr>
<td>B01-01</td>
<td>Divided Boards: Partisanship Through Delegated Monetary Policy</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>B20-00</td>
<td>Breakin-up a Nation, From the Inside</td>
</tr>
<tr>
<td>B19-00</td>
<td>Income Dynamics and Stability in the Transition Process, general Reflections applied to the Czech Republic</td>
<td>Jens Hölscher</td>
</tr>
<tr>
<td>B18-00</td>
<td>Budget Processes: Theory and Experimental Evidence</td>
<td>Karl-Martin Ehrhart, Roy Gardner, Jürgen von Hagen, Claudia Keser, Martin Seidel</td>
</tr>
<tr>
<td>B17-00</td>
<td>Rückführung der Landwirtschaftspolitik in die Verantwortung der Mitgliedsstaaten? - Rechts- und Verfassungsfragen des Gemeinschaftsrechts</td>
<td>Christa Randzio-Plath, Tomasso Padoa-Schioppa, Jürgen von Hagen, Ralf Hepp</td>
</tr>
<tr>
<td>B16-00</td>
<td>The European Central Bank: Independence and Accountability</td>
<td>Selahattin Dibooglu, Ali M. Kutan</td>
</tr>
<tr>
<td>B15-00</td>
<td>Regional Risk Sharing and Redistribution in the German Federation</td>
<td>Nauro F. Campos</td>
</tr>
<tr>
<td>B14-00</td>
<td>Sources of Real Exchange Rate Fluctuations in Transition Economies: The Case of Poland and Hungary</td>
<td></td>
</tr>
</tbody>
</table>
B12-00 Rechtsetzung und Rechtsangleichung als Folge der Einheitlichen Europäischen Währung

Martin Seidel

B11-00 A Dynamic Approach to Inflation Targeting in Transition Economies

Lucjan T. Orlowski

B10-00 The Importance of Domestic Political Institutions: Why and How Belgium Qualified for EMU

Marc Hallerberg

B09-00 Rational Institutions Yield Hysteresis

Rafael Di Tella, Robert MacCulloch

B08-00 The Effectiveness of Self-Protection Policies for Safeguarding Emerging Market Economies from Crises

Kenneth Kletzer

B07-00 Financial Supervision and Policy Coordination in The EMU

Deutsch-Französisches Wirtschaftspolitisches Forum

B06-00 The Demand for Money in Austria

Bernd Hayo

B05-00 Liberalization, Democracy and Economic Performance during Transition

Jan Fidrmuc

B04-00 A New Political Culture in The EU - Democratic Accountability of the ECB

Christa Randzio-Plath

B03-00 Integration, Disintegration and Trade in Europe: Evolution of Trade Relations during the 1990’s

Jarko Fidrmuc, Jan Fidrmuc

B02-00 Inflation Bias and Productivity Shocks in Transition Economies: The Case of the Czech Republic

Josef C. Barda, Arthur E. King, Ali M. Kutan

B01-00 Monetary Union and Fiscal Federalism

Kenneth Kletzer, Jürgen von Hagen

1999

Stefan Lutz, Alessandro Turrini

B25-99 Micro and Macro Determinants of Public Support for Market Reforms in Eastern Europe

Bernd Hayo

B24-99 What Makes a Revolution?

Rafael Di Tella, Robert MacCulloch

B23-99 Informal Family Insurance and the Design of the Welfare State

Rafael Di Tella, Robert MacCulloch

B22-99 Partisan Social Happiness

Rafael Di Tella, Robert MacCulloch

B21-99 The End of Moderate Inflation in Three Transition Economies?

Josef C. Brada, Ali M. Kutan

B20-99 Subnational Government Bailouts in Germany

Helmut Seitz

B19-99 The Evolution of Monetary Policy in Transition Economies

Ali M. Kutan, Josef C. Brada

B18-99 Why are Eastern Europe’s Banks not failing when everybody else’s are?

Christian E. Weller, Bernard Morzuch

B17-99 Stability of Monetary Unions: Lessons from the Break-Up of Czechoslovakia

Jan Fidrmuc, Julius Horvath and Jarko Fidrmuc

B16-99 Multinational Banks and Development Finance

Christian E. Weller and Mark J. Scher

B15-99 Financial Crises after Financial Liberalization: Exceptional Circumstances or Structural Weakness?

Christian E. Weller

B14-99 Industry Effects of Monetary Policy in Germany

Bernd Hayo and Birgit Uhlenbrock

B13-99 Financial Fragility or What Went Right and What Could Go Wrong in Central European Banking?

Christian E. Weller and Jürgen von Hagen

B12-99 Size Distortions of Tests of the Null Hypothesis of Stationarity: Evidence and Implications for Applied Work

Mehmet Caner and Lutz Kilian

B11-99 Financial Supervision and Policy Coordination in the EMU

Deutsch-Französisches Wirtschaftspolitisches Forum

B10-99 Financial Liberalization, Multinational Banks and Credit Supply: The Case of Poland

Christian Weller

B09-99 Monetary Policy, Parameter Uncertainty and Optimal Learning

Volker Wieland

B08-99 The Connection between more Multinational Banks and less Real Credit in Transition Economies

Christian Weller
B07-99 Comovement and Catch-up in Productivity across Sectors: Evidence from the OECD
Christopher M. Cornwell and Jens-Uwe Wächter

B06-99 Productivity Convergence and Economic Growth: A Frontier Production Function Approach
Christopher M. Cornwell and Jens-Uwe Wächter

B05-99 Tumbling Giant: Germany's Experience with the Maastricht Fiscal Criteria
Jürgen von Hagen and Rolf Strauch

B04-99 The Finance-Investment Link in a Transition Economy: Evidence for Poland from Panel Data
Christian Weller

B03-99 The Macroeconomics of Happiness
Rafael Di Tella, Robert MacCulloch and Andrew J. Oswald

B02-99 The Consequences of Labour Market Flexibility: Panel Evidence Based on Survey Data
Robert B.H. Hauswald

1998

B16-98 Labour Market + Tax Policy in the EMU
Deutsch-Französisches Wirtschaftspolitisches Forum

B15-98 Can Taxing Foreign Competition Harm the Domestic Industry?
Rafael Reuveny and John Maxwell

B14-98 Free Trade and Arms Races: Some Thoughts Regarding EU-Russian Trade
Jürgen von Hagen

B13-98 Fiscal Policy and Intrainational Risk-Sharing
Athanasios Orphanides and Volker Wieland

B12-98 Price Stability and Monetary Policy Effectiveness when Nominal Interest Rates are Bounded at Zero
Rolf Strauch

B11A-98 Die Bewertung der "dauerhaft tragbaren öffentlichen Finanzlage" der EU Mitgliedstaaten beim Übergang zur dritten Stufe der EWWU
Julius Horvath and Jiri Jonas

B11-98 Exchange Rate Regimes in the Transition Economies: Case Study of the Czech Republic: 1990-1997
Martin Seidel

B10-98 Der Wettbewerb der Rechts- und politischen Systeme in der Europäischen Union
Robert L. Hetzel

B09-98 U.S. Monetary Policy and Monetary Policy and the ESCB
Bernd Hayo

B08-98 Money-Output Granger Causality Revisited: An Empirical Analysis of EU Countries (überarbeitete Version zum Herunterladen)
John W. Maxwell

B07-98 Designing Voluntary Environmental Agreements in Europe: Some Lessons from the U.S. EPA’s 33/50 Program
Kenneth Kletzer

B06-98 Monetary Union, Asymmetric Productivity Shocks and Fiscal Insurance: an Analytical Discussion of Welfare Issues
Bernd Hayo

B05-98 Estimating a European Demand for Money (überarbeitete Version zum Herunterladen)

B04-98 The EMU’s Exchange Rate Policy
Deutsch-Französisches Wirtschaftspolitisches Forum

B03-98 Central Bank Policy in a More Perfect Financial System
Jürgen von Hagen / Ingo Fender

B02-98 Trade with Low-Wage Countries and Wage Inequality
Jaleel Ahmad

B01-98 Budgeting Institutions for Aggregate Fiscal Discipline
Jürgen von Hagen

1997

B04-97 Macroeconomic Stabilization with a Common Currency: Does European Monetary Unification Create a Need for Fiscal Insurance or Federalism?
Kenneth Kletzer

Tom Lyon / John Mayo

B02-97 Employment and EMU
Deutsch-Französisches Wirtschaftspolitisches Forum (a Forum organized by ZEI)

B01-97 A Stability Pact for Europe