Ascari, Guido; Merkl, Christian

Working Paper

Real wage rigidities and the cost of disinflations: A comment on Blanchard and Galí

Kiel Working Paper, No. 1312

Provided in Cooperation with:
Kiel Institute for the World Economy (IfW)

Suggested Citation: Ascari, Guido; Merkl, Christian (2007) : Real wage rigidities and the cost of disinflations: A comment on Blanchard and Galí, Kiel Working Paper, No. 1312, Kiel Institute for the World Economy (IfW), Kiel

This Version is available at:
http://hdl.handle.net/10419/3956

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Real Wage Rigidities and the Cost of Disinflations: A Comment on Blanchard and Galí

by Guido Ascari and Christian Merkl

February 2007
Kiel Institute for the World Economy
Duesternbrooker Weg 120
24105 Kiel (Germany)

Kiel Working Paper No. 1312

Real Wage Rigidities and the Cost of Disinflations: A Comment on Blanchard and Galí

by

Guido Ascari and Christian Merkl

February 2007

The responsibility for the contents of the working papers rests with the authors, not the Institute. Since working papers are of a preliminary nature, it may be useful to contact the authors of a particular working paper about results or caveats before referring to, or quoting, a paper. Any comments on working papers should be sent directly to the authors.
Abstract

This paper analyzes the cost of disinflation under real wage rigidities in a micro-founded New Keynesian model. Unlike Blanchard and Galí (2007) who carried out a similar analysis in a linearized framework, we take non-linearities into account. We show that the results change dramatically, both qualitatively and quantitatively, for the steady states and for the dynamic adjustment paths. In particular, a disinflation implies a prolonged slump without any need for real wage rigidities.

JEL classification: E31, E52.

Keywords: Disinflation, Sticky Prices, Real Rigidities
1 Introduction

In a very insightful paper Blanchard and Galí (2007) (BG henceforth) advocate the introduction of real wage rigidities in the standard new Keynesian (NK) model. They show that real wage rigidities would generate both more realistic policy trade-offs, by breaking what BG called the *divine coincidence*, and a more realistic empirical behavior of inflation, by generating inflation inertia.

In order to show an example of these two previous features brought about by the introduction of real wage rigidities, in Section 4, BG look at the cost of a classical monetary policy experiment: a disinflation (from 4% to zero).

In this note, we show that, like others in the literature, the analysis of the real effects of a disinflation in BG is flawed because it abstracts from non-linearities, being based on the log-linear formulation of the standard NK model. Such a procedure is clearly not suited for analyzing the response of the model after a disinflation, because the standard NK model is non-linear, giving rise to non-superneutrality of money. A disinflation experiment is therefore a movement from one steady state to a different one and cannot be analyzed by log-linearizing the model around one of the two steady states.

It may be argued that a log-linear analysis is valid in an approximated sense if the model is "almost" linear. This paper demonstrates that this is not the case. Indeed, we show that the results in Section 4 in BG are inaccurate both qualitatively and quantitatively.

2 The Model

The model is as in BG, that is, a standard NK model where:

(i) Firms produce a differentiated product using the following production function\(^1\)

\[Y_t = F^\alpha N_t^{1-\alpha} \quad (1) \]

where \(Y \) is output, and \(F \) and \(N \) are non-produced\(^2\) and labor inputs, respectively;

\(^1\)Throughout the paper, capital letters refer to levels, whereas small letters denote the logarithm of a variable.

\(^2\)We deviate slightly from the notation by BG who use the letter \(M \) for the non-produced good, which we reserved for money.
(ii) Firms’ pricing is described by the usual Calvo mechanism, where θ is the fraction of firms not adjusting their price in any given period.

(iii) Households have the following instantaneous and separable utility function

$$U \left(C_t, M_t, N_t \right) = \frac{C_t^{1-\sigma}}{1-\sigma} + d_m \frac{(M_t/P_t)^{1-\nu}}{1-\nu} - d_n N_t^{1+\varphi}$$

where C is composite consumption (with elasticity of substitution between different types of goods equal to ε).

(iv) BG assume the following partial adjustment model for the real wage: $w_t/p_t = \gamma (w_{t-1}/p_{t-1}) + (1-\gamma) mrs_t$, where mrs_t is the marginal rate of substitution between consumption and labor supply in logarithms and w_t/p_t is the real wage in logarithms. Accordingly, we add the same real wage rigidities to the model, but in a non-linear fashion, that is

$$\frac{W_t}{P_t} = \left(\frac{W_{t-1}}{P_{t-1}} \right)^\gamma (MRS_t)^{1-\gamma}.$$

The Technical Appendix describes all model equations in detail. Note that we add real money balances in the utility function because a disinflation describes a path for the money supply and therefore we do need money demand. Finally, the benchmark calibration is as in BG, and the money demand parameters are calibrated accordingly to Chari et al. (2000) (CKM, henceforth).³

3 Disinflation

3.1 Steady State Effects

The obvious starting point to analyze a disinflation experiment is to look at the steady state, since the standard NK model is non-linear and non-superneutrality arises. In this respect BG write:

³The benchmark calibration is explained thoroughly in the Technical Appendix. That is: $\beta = 0.99$, $\theta = 0.5$, $\alpha = 0.025$, $\varphi = 1$, $\gamma = 0.9$; the elasticity of substitution in consumption between different types of goods is set to 10; in order to match the empirical estimates of money demand in CKM $\sigma = \nu = 2.564$, $d_m = 0.063832$, while d_n is calibrated so that N is equal to 0.33 in a zero inflation steady state. We also experimented with log-utility in consumption as in BG with no substantial difference in the results. The qualitative results of this paper do not depend in any way on the chosen calibration, unless stated.
BG Statement 1 "As is well known, the standard NKPC implies the presence of a long-run trade-off, however small, between inflation and the output gap. (...) in the standard NK model, disinflation implies a permanently lower-level output." (p. 47)

BG use the standard linearized Phillips curve to make their point:

\[\pi_t = \beta \pi_{t+1} + \kappa y_t \]

(4)

Dropping the time indices implies a positive long-run trade-off between inflation and output: \(y = \frac{1 - \beta}{\kappa} \pi \). This conclusion is an artifact of the model being linearized around zero inflation, as shown in Figure 1.\(^4\) Indeed, while it is true that the tangent of the curve in the graph at zero inflation exhibits a positive slope equal to \(\frac{1 - \beta}{\kappa} \), the relationship between steady state output and inflation is non-linear. The effects of non-linearities are quite powerful and turn up very quickly, inverting the relationship from positive to negative (see Ascari and Rankin, 2002, Ascari, 2004 and Yun, 2005).\(^5\)

Quite obviously the strength of the steady state effects due to the non-linearities depends on the parameters governing them, and in particular \(\alpha, \theta \) and \(\varphi \). In this respect, we show the graphs for the two values of \(\alpha \) (the degree of decreasing returns to labor) used by BG, and for \(\theta = 0.5 \) (probability of not re-setting the prices), as in BG and Bils and Klenow (2004), as well as as \(\theta = 0.75 \), by far the value most commonly used in the literature, see e.g. Galí (2003).

Our simulations show that non-linearities make the steady state relationship between inflation and output more complex than described by BG. Indeed, it may be positive only for very small level of inflation, if \(\alpha = 0.025 \); or it can instead reach a maximum for sizeable positive inflation levels, if \(\alpha = 0.33 \) (7.1% if \(\theta = 0.5 \), 3.2% if \(\theta = 0.75 \)). It follows that the long-run effects of the BG disinflation experiment, i.e., from 4% to zero, are ambiguous and can be sizeable, depending on the calibration chosen. Finally, it is worth noting that the long-run effects depend very much on the particular starting

\(^4\)In Figure 1, steady state output at zero inflation was normalized to one, and quarterly inflation rates are annualized.

\(^5\)In the language of Graham and Snower (2004), BG only take the "time discounting effect" into account, whereas they ignore the "employment cycling" (product cycling for sticky prices) and "labor supply smoothing" (production smoothing for sticky prices) effects.
Steady state output changes are very different when disinflating from 8% to 4%, rather than from 4% to zero.

Some authors may argue that at least in analyzing the steady state properties of the standard NK model one should allow for indexation. Partial indexation would flatten and move the output peak somewhat to the right. However, only full indexation to steady state inflation would be reconcilable with BG’s linearized equations (see Ascari, 2004). But complete indexation to steady state inflation would lead to an entirely vertical (flat in our Figure 1) long-run Phillips curve, thus wiping out any trade-off.

3.2 Disinflation Dynamics

3.2.1 Standard NK Model

BG Statement 2 Qualitatively: "Hence, at the time of disinflation (period 0) output declines by \(dy(0) = -((1 - \beta)/\kappa) \pi^* \), remaining at the lower level thereafter, with no additional transitional dynamics coming into play." (p. 47) Quantitatively: "In the standard NK model, the real effects of disinflations mentioned above tend to be small, at least for plausible parameter values." (p. 47)

\(^6\)Indeed, in what follows, we also consider the case where non-resetting firms automatically index their prices to the steady state inflation rate. This is motivated by the fact that full indexation is the only way to obtain the standard New Keynesian Phillips curve (i.e., \(\pi_t = \beta E_t \pi_{t+1} + \kappa y_t \), as used by BG) by log-linearizing the model around the steady state, independently of the steady state inflation rate. See the Appendix.
Figure 2: Output response after a disinflation from 4% to 0

BG’s assessment of the effects of a disinflation in a standard NK model is based on a specific log-linearized version of the model. Figure 2 shows the output dynamics (in percentage deviation) in the fully non-linear standard NK model, following a sudden decrease in the rate of growth of money from 4% to zero, as in BG. From a qualitative point of view, it is evident that transitional dynamics comes into play, and they do not necessarily seem to be at odds with empirical observations: output drops on impact and then sluggishly returns to its new steady state value after roughly two and a half years. From a quantitative point of view, the effects are quite big: the slump on impact is about 3.5% of the starting output level, and output remains below the steady state value all along the adjustment path. It is worth stressing that this path is obtained for the standard microfounded NK model and standard calibration values.

Two channels induces the slump in output. First, a microfounded money demand implies a higher level of real balances in the new steady state after the disinflation. Thus, the price level has to slow down more than the money supply during the adjustment phase, and this requires output to fall (see, e.g., Blanchard and Fischer, 1989, chp. 10, Ascari and Rankin, 2002 and references therein). Second, a state variable emerges when considering the full non-linear model: the price dispersion term, as shown by Schmitt-

\[\text{In Figure 2, we thus set } \gamma = 0 \text{ and use the benchmark calibration of footnote 3. Moreover, we plot two paths for two different cases: no indexation (} \chi = 0 \text{) and full indexation (} \chi = 1 \text{) to the steady state rate growth rate of money. The paths displayed in Figure 2 and onwards are obtained using the software DYNARE developed by Juillard (1996) and others at CEPREMAP.}

\[\text{For a thorough analysis of the effects of disinflations in various versions of the NK model see Ascari and Ropele (2006).} \]
Grohé and Uribe (2007). Price dispersion, indeed, has a backward-looking dynamics, hence delivering adjustment dynamics following a disinflation (see equations (49) and (47) in the Appendix).

To sum up, BG write that the standard NK model cannot capture the empirical evidence of the negative effects of a disinflation. Again, we instead claim that the linearization is responsible for this feature, and thus not the NK model per se.

Remark: In Figure 2 we plot two paths for two different cases: no indexation ($\chi = 0$) and full indexation ($\chi = 1$) to the steady state rate growth rate of money. For the benchmark calibration, the two paths are almost identical, showing that our result does not depend on the degree of indexation. The reader should in any case keep in mind that indexation would matter more, whenever effects arising from non-linearities are stronger. Indeed, given the benchmark calibration in Figure 2, the old and new steady states are very close. However, whenever the long-run effects are instead sizeable (because of different starting inflation values and/or different calibration), indexation would obviously also matter for the dynamic adjustment path. This is an important point, exemplifying how long-run effects and short-run dynamics interrelate with each other in a full non-linear model. Just as an illustration, Figure 3 shows the output dynamics following a disinflation from 8% to 4% when $\theta = 0.75$, under the two cases of no and full indexation (see Ascari and Ropele, 2006).

![Output Dynamics from 8% to 4%, $\theta = 0.75$](image-url)
3.2.2 Real Wage Rigidities

BG Statement 3 "Hence, a permanent reduction in inflation of 4 percentage points in (annualized) inflation lowers the level of output by roughly 50 basis points in the quarter the policy is implemented, an effect about 10 times larger than in the standard model." (p. 48)

BG claim that real wage rigidities: (i) are necessary to obtain a dynamic response of output after a disinflation, and (ii) they increase the impact effect on output and thus the overall costs of a disinflation manifold. We already saw that a dynamic path for output is obtained in the standard model without the need for any real rigidities.

Figure 4 shows that BG’s assessment of the role that real rigidities play for the dynamic adjustment after a disinflation is qualitatively right.\(^9\) Indeed, real wage rigidities cause stronger and more persistent effects on output. From a quantitative point of view, however, the effects are by no means of the order of magnitude suggested by BG. In the extreme case assumed by BG, i.e., \(\gamma = 0.9\), the impact effect is only twice as large as in the standard model. Moreover, during the adjustment, output oscillates and the sudden slump is followed by a prolonged boom that partly compensates the initial output loss, with respect to the case without real wage rigidities, where convergence is instead monotonic. Moreover, Figure 4 does not suggest a "relatively fast convergence to the new steady state."

Finally it is worth noting that only very extreme values of \(\gamma\) tend to have sizeable effects on the output response, since for values smaller than 0.5, the quantitative effects of real rigidities are small (more on that in the next subsection).

BG stress the importance of real rigidities for inflation dynamics. Indeed, in Section 6 of their article, BG show that real wage rigidities are able to generate inflation inertia and give raise to a log-linearized Phillips curve equation which is very similar to the ad hoc specification used in the empirical literature. This point can be visualized by plotting the dynamic response of inflation, as in Figure 5. Inflation indeed displays more inertia for higher values of \(\gamma\). Moreover, for the calibration chosen by BG, i.e., \(\gamma = 0.9\), inflation exhibits a hump-shaped response. However, (i) again only extreme values of

\(^9\) In Figure 4 and in the following ones, we assume full indexation, benchmark calibration and again 4% to zero disinflation experiment. Note that the steady state values do not depend on \(\gamma\). The paths for output would be almost identical if we had assumed no indexation.
Figure 4: The effect of real rigidities on the output response to a disinflation

Figure 5: The effect of real rigidities on the inflation response to a disinflation

\(\gamma \) tend to have significant effects; (ii) the numbers are rather disconcerting. Inflation falls immediately with little inertia whatsoever in any case: the first quarter after the disinflation, inflation is -50% (in annualized terms) if \(\gamma = 0 \), and -24% if \(\gamma = 0.9 \).

3.2.3 Returns to Scale

BG Statement 4
"Finally, it is worth noticing that [...] the quantitative results above change significantly if we assume the presence of decreasing returns. Hence, under our alternative calibration with decreasing returns, the loss of output at the outset of the disinflation is multiplied by a factor of 4 relative to the case with no real rigidities (compared with a factor of 10 in the case of constant returns). The smaller initial impact coexists with a larger persistence." (p. 49)
Figure 6: Decreasing returns to scale to labor and the effect of real rigidities

Figure 7: DRTS and output response after a disinflation from 4% to 0 ($\gamma = 0.9$)

Figure 6 shows clearly that assuming stronger decreasing returns to scale to labor (DRTS) cause: (i) a higher persistence in the output response; (ii) a downward rescaling of the effect of real rigidities. From a quantitative point of view, however, the effects are not of the size described by BG: actually assuming DRTS makes real rigidities virtually devoid of importance for the output response to a disinflation.

Finally, it is worth visualizing the different paths of the output response for the BG preferred calibration (i.e., $\gamma = 0.9$) under almost constant and DRTS. With DRTS not only persistence, but also the impact effect is larger. Note that simply by differentiating (25) at p. 48 in BG with respect to α, it is easy to check that BG equations would actually imply the opposite: an increase in α would lower the impact effect of a disinflation.
4 Conclusions

In a stimulating paper BG study the effects of introducing real wage rigidities in a standard NK model. In Section 4, BG look at disinflations. They claim this feature to be crucial for this class of models to explain the cost of disinflation.

In this paper, we show that, like others in the literature, the analysis in BG is flawed because it abstracts from non-linearities, being based on the log-linear formulation of the standard NK model. Indeed, we show that the results in their Section 4 are inaccurate both qualitatively and quantitatively, once the full microfounded and non-linear model is taken into account.

This paper sounds a cautionary note about the log-linearized model as a tool to analyze disinflation experiments theoretically. More generally, we want to advocate the explicit consideration of the effects of non-linearities, whenever necessary and possible.

5 References

Blanchard, Olivier, and Gál, Jordi (2007): "Real Wage Rigidity and the New

Technical Appendix

1. Household

Given the separable utility function

\[U \left(C_t \left(h \right), \frac{M_t \left(h \right)}{P_t}, N_t \left(h \right) \right) = C_t^{1-\sigma} \left(\frac{M_t \left(h \right)}{P_t} \right)^{1-\nu} + d_m \frac{N_t^{1+\varphi} \left(h \right)}{1+\varphi}. \]

subject to the budget constraint

\[P_tC_t + (1 + \iota_t)^{-1} B_t + M_t = W_t N_t - T_t + \Pi_t + B_{t-1} + M_{t-1} \]

where \(\iota_t \) is the nominal interest rate, \(B_t \) are one-period bond holdings, \(M_t \) is the nominal money supply, \(W_t \) is the nominal wage rate, \(N_t \) is the labor input, \(T_t \) are lump sum taxes, and \(\Pi_t \) is the profit income. The representative consumer maximizes the intertemporal utility (using the discount factor \(\beta \))

\[\max_{\{C_t, W_t, B_t, M_t\}} E_0 \sum_{t=0}^{\infty} \beta^t U \left(C_t \left(h \right), \frac{M_t \left(h \right)}{P_t}, N_t \left(h \right) \right), \]

yielding the following first order conditions:

Money demand equation:

\[\frac{U_m}{U_C} = \frac{d_m C_t^{\sigma}}{m_t^{1-\sigma}} = \frac{\iota_t}{1 + \iota_t} \]

Labor supply equation:

\[\frac{W_t}{P_t} = -\frac{U_N}{U_C} = \frac{\exp(\xi) d_n N_t^{\varphi}}{1/C_t^{\sigma}} = \exp(\xi) d_n N_t^{\varphi} C_t^{\sigma} \]

We introduce real wage rigidities in the same way as BG, that is

\[\frac{W_t}{P_t} = \left(\frac{W_{t-1}}{P_{t-1}} \right)^{\gamma} MRS_t^{1-\gamma} = \left(\frac{W_{t-1}}{P_{t-1}} \right)^{\gamma} \left(-\frac{U_N}{U_C} \right)^{1-\gamma} \]

\[\frac{W_t}{P_t} = \left(\frac{W_{t-1}}{P_{t-1}} \right)^{\gamma} \left(\exp(\xi) d_n N_t^{\varphi} C_t^{\sigma} \right)^{1-\gamma} \]

Euler equation:

\[\frac{1}{C_t^{\sigma}} = \beta E_t \left[\left(\frac{P_t}{P_{t+1}} \right) (1 + \iota_t) \left(\frac{1}{C_{t+1}^{\sigma}} \right) \right] \]
2. Firms’ pricing

Final good producers use the following technology

\[Y_t = \left[\int_0^1 Y_{t,t}^{-\varepsilon} \, di \right]^{\frac{\varepsilon}{\varepsilon - 1}} \]

(13)

Their demand for intermediate inputs is therefore equal to

\[Y_{i,t+j} = (P_{i,t}/P_{t+j})^{-\varepsilon} Y_{t+j} \]

(14)

1. No indexation

The problem of a price-resetting firm can be formulated as

\[
\max_{P_{i,t}} E_t \sum_{j=0}^{\infty} \theta^j \Delta_{t,t+j} \left[\frac{P_{i,t}}{P_{t+j}} Y_{i,t+j} - T C^*_t (Y_{i,t+j}) \right]
\]

s.t. \[Y_{i,t+j} = \left(\frac{P_{i,t}}{P_{t+j}} \right)^{-\varepsilon} Y_{t+j} \]

(15)

where \(P_{i,t} \) denotes the new optimal price of producer \(i \) and \(T C^*_t (Y_{i,t+j}) \) the real total cost function and \(\Delta_{t,t+j} \) is the stochastic discount factor (from period \(t \) to period \(t+j \)).

The solution to this problem yields the familiar formula for the standard optimal resetted price in a Calvo setup

\[
P_{i,t} = \left(\frac{\varepsilon}{\varepsilon - 1} \right) \frac{E_t \sum_{j=0}^{\infty} \theta^j \Delta_{t,t+j} \left[\frac{P_{i,t+j}}{P_{t+j}} Y_{t+j} \frac{MC^i_{t+j}}{Y_{t+j}} \right]}{E_t \sum_{j=0}^{\infty} \theta^j \Delta_{t,t+j} \left[\frac{P_{i,t+j}^{\varepsilon-1}}{P_{t+j}} Y_{t+j} \right]} \]

(17)

where \(MC^i_{t,t+j} \) denotes the real marginal costs function.

This can be rewritten as

\[
\frac{P_{i,t}}{P_t} = \left(\frac{\varepsilon}{\varepsilon - 1} \right) \left(\frac{\psi_t}{\phi_t} \right) \]

(18)

where

\[
\psi_t = E_t \sum_{j=0}^{\infty} (\theta \beta)^j U_C (t+j) \left(\frac{P_{i,t+j}}{P_t} \right)^{\varepsilon} Y_{t+j} \frac{MC^i_{t+j}}{Y_{t+j}} \]

(19)

\[
\phi_t = E_t \sum_{j=0}^{\infty} (\theta \beta)^j U_C (t+j) \left(\frac{P_{i,t+j}}{P_t} \right)^{\varepsilon-1} Y_{t+j} \]

(20)

The denominator can also be written as:

\[
\phi_t = U_C (t) Y_t + E_t \sum_{j=1}^{\infty} (\theta \beta)^j \left(\frac{P_{i,t+j}}{P_t} \right)^{\varepsilon-1} U_C (t+j) Y_{t+j} \]

(21)
Next, considering the definition for ϕ_{t+1} and collecting the term $\left(\frac{P_{t+1}}{P_t}\right)^{\varepsilon-1}$ yields the following expression for ϕ_t

$$\phi_t = UC(t)Y_t + \theta\beta E_t\left(\pi_{t+1}^{\varepsilon-1}\phi_{t+1}\right)$$ \hspace{1cm} (22)

where $\pi_{t+1} = \frac{P_{t+1}}{P_t}$.

Doing exactly the same steps for the numerator gives rise to the following expression for ψ_t

$$\psi_t = UC(t)Y_tMC_{t,t} + \theta\beta E_t\left(\pi_{t+1}^{\varepsilon}\psi_{t+1}\right)$$ \hspace{1cm} (23)

The aggregate price level evolves according to

$$P_t = \left[\int_0^1 P_{t+1}^{1-\varepsilon} \, di \right]^{\frac{1}{1-\varepsilon}}$$ \hspace{1cm} (24)

$$1 = \left[\theta\pi_t^{\varepsilon-1} + (1-\theta)\left(\frac{P_{t+1}}{P_t}\right)^{1-\varepsilon}\right]^{\frac{1}{1-\varepsilon}}$$ \hspace{1cm} (25)

2. Partial indexation to long-run inflation (LRI)

Under this assumption, a firm that cannot re-optimize its price updates the price according to this simple rule:

$$P_{i,t} = \pi P_{i,t-1}$$ \hspace{1cm} (26)

where π is the steady state inflation level and $\chi \in [0, 1]$ is a parameter that measures the degree of indexation. If $\chi = 1$, there is full indexation, if $\chi = 0$ there is no indexation and the problem is the same one as in the previous case. The problem of a price-resetting firm then becomes the following

$$\max_{p_t(i)} \quad E_t \sum_{j=0}^{\infty} \theta^j \Delta_{t,t+j} \left[\frac{P_{i,t+1}}{P_{t+j}} Y_{i,t+j} - TC_{t+j}(Y_{i,t+j})\right]$$

s.t. $Y_{i,t+j} = \left[\frac{P_{i,t+1}}{P_{t+j}}\right]^{-\varepsilon} Y_{i,t+j}$ \hspace{1cm} (27)

and the first order condition (FOC) is

$$P_{i,t} = \frac{\varepsilon E_t \sum_{j=0}^{\infty} \theta^j \beta_{i,t,t+j} \left[P_{i,t+1}^{\varepsilon} Y_{i,t+j}MC_{i,t+j}(\pi)^{-\varepsilon}\right]}{\varepsilon - 1} E_t \sum_{j=0}^{\infty} \theta^j \beta_{i,t,t+j} \left[P_{i,t+1}^{\varepsilon-1} Y_{i,t+j}(1-\varepsilon)\right]$$ \hspace{1cm} (28)

This can be rewritten again as
\[
P_{t,t} \left(\frac{\varepsilon}{\varepsilon - 1} \right) \left(\frac{\psi_t}{\phi_t} \right) \tag{29}\]

\[
\psi_t = E_t \sum_{j=0}^{\infty} (\theta \beta)^j U_C(t+j) \left[\left(\frac{P_{t+j}}{P_t} \right)^{\varepsilon} Y_{t+j} MC_{t,t+j}^{\pi - \varepsilon \chi_j} \right] \tag{30}\]

\[
\phi_t = E_t \sum_{j=0}^{\infty} (\theta \beta)^j U_C(t+j) \left[\left(\frac{P_{t+j}}{P_t} \right)^{\varepsilon-1} Y_{t+j}^{\pi(1-\varepsilon)\chi_j} \right] \tag{31}\]

Employing similar substitution as above these two equations can be written as

\[
\psi_t = E_t \sum_{j=0}^{\infty} (\theta \beta)^j U_C(t+j) \left[\left(\frac{P_{t+j}}{P_t} \right)^{\varepsilon} Y_{t+j} MC_{t,t+j}^{\pi - \varepsilon \chi_j} \right] \tag{32}\]

\[
\psi_t = U_C(t) \left[Y_t MC_{t,t}^{\pi} \right] + \theta \beta \pi^{-\varepsilon} E_t \left(\pi^{\varepsilon}_{t+1} \psi_{t+1} \right) \tag{33}\]

and similarly

\[
\phi_t = E_t \sum_{j=0}^{\infty} (\theta \beta)^j U_C(t+j) \left[\left(\frac{P_{t+j}}{P_t} \right)^{\varepsilon-1} Y_{t+j}^{\pi(1-\varepsilon)\chi_j} \right] \tag{34}\]

\[
\phi_t = u_c(t) Y_t + \theta \beta \pi^{(1-\varepsilon)\chi} E_t \left(\pi^{\varepsilon-1}_{t+1} \phi_{t+1} \right) \tag{35}\]

The aggregate price level now evolves according to

\[
P_t = \left[\int_0^{t} P_{t,t}^{1-\varepsilon} \, dt \right]^{\frac{1}{1-\varepsilon}} = \left[\theta \pi^{(1-\varepsilon)\chi} P_{t-1}^{1-\varepsilon} + (1-\theta) P_{t}^{1-\varepsilon} \right]^{\frac{1}{1-\varepsilon}} \Rightarrow \tag{36}\]

\[
1 = \left[\theta \pi^{(1-\varepsilon)\chi} \pi^{\varepsilon-1}_{t} + (1-\theta) \left(\frac{P_{t,t}}{P_t} \right)^{1-\varepsilon} \right]^{\frac{1}{1-\varepsilon}} \tag{37}\]

3. Technology

Production function:

\[
Y_{i,t} = F_t^\alpha N_{i,t}^{1-\alpha}. \tag{38}\]

For simplicity, we omit \(F_t^\alpha\) (since we are not explicitly interested in a cost push shock).

The labor demand and the real marginal cost of firm \(i\) is therefore

\[
N_{i,t}^{d} = [Y_{i,t}]^{\frac{1}{1-\alpha}}. \tag{39}\]
Note that now marginal costs depend upon the quantity produced by the single firm, given the decreasing returns to scale. In other words, different firms charging different prices would produce different levels of output and hence have different marginal costs.

Express $MC_{i,t}^r$ as

$$MC_{i,t}^r = \frac{1}{1 - \alpha} \frac{W_i}{P_t} Y_{i,t}^{\frac{\alpha}{1 - \alpha}}. \quad (40)$$

4. Aggregation and price dispersion

The aggregate resource constraint is now simply given by

$$Y_t = C_t \quad (42)$$

and the link between aggregate labour demand and aggregate output is provided by

$$N_t^d = \int_0^1 N_{i,t}^d \, di = \int_0^1 \left[\left(\frac{P_{i,t}}{P_t} \right)^{-\varepsilon} Y_t \right]^{\frac{1}{1 - \varepsilon}} \, di = [Y_t]^{\frac{1}{1 - \varepsilon}} \int_0^1 \left(\frac{P_{i,t}}{P_t} \right)^{-\varepsilon} \, \frac{1}{1 - \varepsilon} \, di = s_t \, [Y_t]^{\frac{1}{1 - \varepsilon}} \quad (43)$$

where

$$s_t = \int_0^1 \left[\left(\frac{P_{i,t}}{P_t} \right)^{-\varepsilon} \right]^{\frac{1}{1 - \varepsilon}} \, di \quad (44)$$

is a sort of tax due to price distortions (and the non-linearity of the aggregator). Schmitt-Grohé and Uribe (2007) show that s_t is bounded below at one, so that s_t represents the resource costs due to relative price dispersion under the Calvo mechanism with long-run inflation. Indeed, the higher s_t, the more labor is needed to produce a given level of output. Note that s_t can also be rewritten as a ratio between two different price indexes P_t and \tilde{P}_t

$$s_t = \left(\frac{P_t}{\tilde{P}_t} \right)^{\varepsilon} \quad \text{where} \quad \tilde{P}_t = \left[\int_0^1 P_t (i)^{-\varepsilon} \, di \right]^{-1/\varepsilon}, \quad (45)$$
as in Ascari (2004). Whenever there is price dispersion these two indexes evolve differently from each other, determining a certain dynamics for \(s_t \), that affects the level of production negatively. \(s_t \) would not affect the real variables up to first order whenever there is no trend inflation (i.e., \(\bar{\pi} = 1 \)) or whenever the resetted price is fully indexed to any variable whose steady state level grows at the rate \(\bar{\pi} \).

To close the model we just need to solve for the dynamic of \(s \) using (44). This would depend on the indexation.

1. No indexation

\[
s_t = \int_0^1 \left[\left(\frac{P_{t,t}}{P_t} \right)^{\frac{\theta}{\alpha}} \right]^{\frac{1}{\alpha}} di
\]

\[
s_t = (1 - \theta) \left[\frac{P_{t,t}}{P_t} \right]^{\frac{\theta}{\alpha}} + \theta \pi_t^{\frac{\theta}{1-\alpha}} s_{t-1}
\]

(47)

2. Long-run indexation

\[
s_t = \int_0^1 \left[\frac{P_{t,t}}{P_t} \right]^{\frac{\theta}{\alpha}} di
\]

\[
s_t = (1 - \theta) \left[\frac{P_{t,t}}{P_t} \right]^{\frac{\theta}{\alpha}} + \theta \left(\frac{\pi_t}{\bar{\pi}} \right)^{\frac{\theta}{1-\alpha}} s_{t-1}
\]

(49)

5. System of Equations

The following systems of equations are simulated non-linearly:

1. No Indexation

Equations (8), (9), (12), (18), (22), (23), (25), (39), (40), and (47).

2. Indexation

Equations (8), (9), (12), (18), (33), (35), (37), (39), (40), and (49).

In both cases, the money supply identity equation closes the system

\[
m_{t-1}rgm_t = m_t \pi_t,
\]

where \(rgm_t \) is the rate of growth of money which is reduced under a disinflation.

In the presence of a real wage rigidity, equation (9) is replaced by equation (11).

6. Calibration

We calibrate the money demand in the same way as in CKM (pp. 1160 f.). While they have a non-separable utility function, we used a separable form as in BG.
Given the money demand

\[d_m C_t^\sigma (1 + i_t) = i_t m_t' \] (51)

and taking the logarithm

\[\ln m_t = \frac{\ln d_m}{\nu} + \frac{\sigma}{\nu} \ln C_t - \frac{1}{\nu} \ln \left(\frac{i_t}{1 + i_t} \right) \] (52)

we obtain the same analytical form as CKM (p. 1161, see equation (25)):

\[\ln \frac{M(s')}{P(s')} = -\eta \ln \frac{\omega}{1 - \omega} + \ln c(s') - \eta \ln \left(\frac{R(s') - 1}{R(s')} \right) \] (53)

To obtain the same interest rate elasticity of money demand, we set \(\nu = 2.5641 \) (CKM: \(\eta = 0.39 \)). To obtain the same output elasticity, we set \(\sigma = 2.5641 \) as well (CKM: \(\omega = 0.94 \)). Furthermore, \(d_m \) is set to 0.063832.

As in CKM, \(d_n \) is calibrated in such a way that people devote one third of their time to work (under zero steady state inflation). The elasticity of substitution between different product types (\(\varepsilon \)) is set to 10.

Furthermore, we use a standard quarterly discount rate of one percent (\(\beta = 0.99 \)) and a quadratic disutility of labor (\(\varphi = 1 \)), see e.g. Galí (2003). The quarterly probability of not re-setting the prices (\(\theta \)) is either set to 50 percent (see Bils and Klenow, 2004) or to 75 percent, as in most of the calibrations in the literature. The degree of decreasing returns to labor (\(1 - \alpha \)) is either 0.975 (BG write that the share of oil in production is roughly 2.5 percent) or 0.67 (as in CKM) in our calibration.