Chakrabarty, Debajyoti

Working Paper
Growth and business cycles with imperfect credit markets

Provided in Cooperation with:
ZEI - Center for European Integration Studies, University of Bonn

This Version is available at:
http://hdl.handle.net/10419/39521

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Debajyoti Chakrabarty

Growth and Business Cycles with Imperfect Credit Markets
Growth and Business Cycles with Imperfect Credit Markets

Debajyoti Chakrabarty†

November 2002

Abstract

We study the process of growth and business cycles in an open economy which has access to international financial markets. The financial market imperfection originates from costly state verification and a positive probability of default on loans. The degree of credit market imperfection is endogenously derived. The results show that developed economies are able to borrow on easier terms than emerging countries. The credit market imperfection may cause some economies to fall into a development trap if the initial endowment of capital is too low. The financial market frictions also generate interesting business cycle dynamics. Financial market imperfections help in replicating the empirical fact that output growth shows positive autocorrelation at short horizons. The model also predicts that a poorer economy will experience a more severe and persistent effect on investment and output due to an exogenous shock.

Keywords: Costly state verification, Credit markets, Growth, Business Cycles
JEL classification: G14, D82, G21, O16

* I am thankful to Stephanie Schmitt-Grohe and seminar participants at Center for European Integration Studies, Mid-west Macroeconomics Conference and University of Cologne for several helpful comments and discussions.

†Center for European Integration Studies (ZEI), University of Bonn, Walter-Flex-Str. 3, 53113 Bonn, Germany, e-mail: dchakrab@uni-bonn.de, phone +49 228 1821, fax +49 228 1809.
1 Introduction

This paper develops a framework to study the role of credit market imperfections in the process of growth and business cycles in an economy. Economists have long regarded the credit market as key to understanding economic development and to transmitting cyclical shocks through modern industrial economies.

The literature on the connection between credit markets and the macroeconomy has developed in two directions. The growth branch of this literature started with Gurley and Shaw([14]) who noted that economic growth is almost always accompanied by financial deepening, i.e., by more extensive use of external finance in investment and the gradual easing of distortions of the credit market. Subsequent papers in this literature have focused on the role of credit markets as efficient allocators of savings into productive investment opportunities. Bencivenga and Smith([3]) studied the growth effects of financial intermediation in an overlapping generation economy with agents characterized by uncertain liquidity needs. Intermediation enhances growth because banks are efficient providers of liquidity which frees the individuals from the need to hold low yield liquid assets. Greenwood and Jovanovic([12]) also derive similar results. For a summary of the work in this area see Greenwood and Smith([13]).

The cyclical fluctuation branch of the literature focuses on the connection between credit markets and business cycles. The main focus of attention is how the credit market propagates and amplifies external shocks through the economy. This general sentiment dates back to Fisher and, Friedman and Schwartz, who argued that adverse conditions in financial markets may have worsened the effects of prewar recessions, including the Great Depression. Much of business cycle research investigates the informational role played by the credit markets. A seminal contribution in this line of research was made by Brenanke and Gertler([4]). They developed a general equilibrium model where agency costs arise endogenously. An important insight of their model is the theoretical possibility that agency costs will enhance the propagation of productivity shocks. Carlstrom and Fuerst([6]) built on the Bernanke-Gertler paper by constructing a computable general equilibrium model. They try to quantitatively capture the effect of agency costs on business cycles.

A related attempt to model credit market imperfection is provided by Keotaki and
Moore([15]). They analyze the contracting problem between borrowers and lenders in an environment where value of a project cannot be extracted by the lender due to inalienability of human capital. The result is that borrowing is so tightly constrained by the value of collateral that default never occurs in equilibrium.

We follow Bernanke-Gertler approach and adopt costly state verification model of Townsend([17]). Our model differs from the earlier papers in the literature in three important respects. Firstly, we study the effect of agency costs in an economy which has access to international financial markets. Unlike Bernanke & Gertler, and Carlstrom & Fuerst, the economy does not face an absolute borrowing constraint from domestic savings. Secondly, the agency cost problem exists in the production of final good and not in the production of intermediate goods alone. Finally, the inter-temporal preferences are determined endogenously. This makes the evolution of the economy dependant on its history. It also provides us with an insight as to why economies differ in terms of their credit market institutions over a long period of time.

The paper is organized as follows. The next section describes the production technology and the interaction between investment and international credit market. The inter-temporal optimization problem of the economy is presented in section 3. In section 4, we characterize the steady states and their stability properties. In section 5, we simulate the behavior of an economy whose characteristics are similar to a standard real business cycle economy and study the effect of exogenous shocks on it. Section 6 concludes.

2 The Model

A: The Production technology

Consider an economy with two production sectors. Both the production sectors produce the same homogeneous product, which can be used for consumption or investment. For tractability we will name the production sectors as household \((H)\) and industrial \((I)\). The household sector of the economy is characterized by a simple but primitive technology, which requires only labor for production. The production function in this sector is given by
\[Y^H = aL^H, \]

where \(L^H \) denotes the labor input and \("a" \) denotes the marginal productivity of labor.

The industrial sector uses capital \((K) \) and labor \((L) \) simultaneously. Production in the industrial sector can be thought of as a project or an endeavor to come up with a new technology. If the project is successful then production is high but if the project is unsuccessful then output is zero. The production function in the industrial sector is given by

\[Y^I = \begin{cases} F(L^I) & \text{with probability } \pi(K^I) \\ 0 & \text{with probability } 1 - \pi(K^I) \end{cases} \]

where \(L^I \) and \(K^I \) are the amount of labor and capital inputs respectively. The probability of success of the project is an increasing function of the amount of capital invested.

B: Industrial Sector Investment and the International credit market

The international credit market revolves around a risk free asset which yields a gross return \(R^* \geq 1 \) which we will call the world interest rate. The international credit market consists of a large number of potential lenders so all lenders on average earn \(R^* \) on their loans.

Let us begin with the case when an industrial sector firm decides to borrow capital from the international market. Suppose the firm is endowed with \(K \) units of capital. The firm has the option of investing in its own industrial sector project or the risk free asset. In addition he can also borrow capital from international market at a lending rate of interest \(R^l \). The firm can invest \(K^I \) units of capital out of its endowment in the industrial sector project and earn \(R^* \) on the remaining capital. The amount \(K^I \) is the owners equity in the project and is observed by everyone. Suppose the firm borrows \(B \) from the international credit market. The firm could in theory use \(B^I \) for the industrial project and invest the remaining amount in the risk free asset. This allocation of borrowed funds is not ex-ante observed by the international lender.

The optimal contract between the firm and the international lender is a standard debt contract where the firm repays the lender a gross interest rate of \(R^l \) on each unit of borrowed capital if the firm announces that the project was successful. If the agent
announces that the project was unsuccessful the lender must take over the project and verify that the firms’s announcement was truthful. The takeover of project and subsequent verification of the status of the project is essential to prevent strategic defaulting. Let the verification cost to the lender on a loan size of B be mB^1. On takeover of the project the lender is able to retrieve the amount of borrowed capital, which the firm had diverted into the risk-free asset $R^*(B - B^1)$. The limited liability clause in the debt contract prevents the lender from attaching other sources the agent’s income on the takeover of the project. Hence the zero profit condition for the lenders in the international market can be written as

$$\pi(K^I + B^I) R^I B + (1 - \pi(K^I + B^I)) [R^*(B - B^I) - mB] = R^*B.$$

(3)

Simple manipulation of equation (3) yields

$$R^I = R^* \left[1 + \frac{1 - \pi(K^I + B^I)}{\pi(K^I + B^I)} \left(\frac{B^I}{B^I} \right) \right] + \left[\frac{1 - \pi(K^I + B^I)}{\pi(K^I + B^I)} \right] m.$$

(4)

Thus the economy can borrow capital from the international credit market as long as they pay the break-even interest rate to the lenders $R^I > R^*$. Given the contractual setup the only situation when the agent is going to declare bankruptcy is when the project has been unsuccessful. The difference between the lending rate and the risk-free interest rate is the interest premium. Let us now study the borrowing and investment decision of the domestic agent.

Assumption 1: The functions $F(.)$ and $\pi(.)$ are increasing and strictly concave in their arguments. In addition $\lim_{L \to 0} F'(.) = \infty$, and $\lim_{K \to 0} \pi'(.) = \infty$; where $F'(.)$ and $\pi'(.)$ denote the derivatives of functions $F(.)$ and $\pi(.)$ respectively.

Assumption 1 ensures some amount of investment in the industrial sector firm is worthwhile in the sense that it yields positive expected return.

Proposition 1 If the industrial sector firm borrows in the international credit market then the entire borrowing is invested in the industrial project.

Proof: See the appendix. ■

\(^1\)This means that monitoring cost is constant for every unit of loan. We make this assumption as this is the usual assumption in the literature. Relaxing this assumption however, will not alter our results significantly.
Once the lenders internalize this fact they will be willing to lend at a rate given by

$$R_l = \frac{R^*}{\pi(K^I + B)} + \left[\frac{1 - \pi(K^I + B)}{\pi(K^I + B)} \right] m. \quad (5)$$

Proposition 2 The firm will never borrow and lend simultaneously in the international credit market. All debt contracts exhibit maximum equity participation i.e., $K^I = K$.

Proof: See the appendix. ■

The intuition behind the above result is that the benefit to the firm from investing the entire capital in the project in terms of being able to borrow at a lower interest rate outweighs the gain in income from the risk-free asset. Thus proposition 2 establishes that the economy will save in the risk-free asset if it does not need to borrow from the international credit market. The borrowing interest rate in the international credit market is given by

$$R_l = \frac{R^*}{\pi(K + B)} + \left[\frac{1 - \pi(K + B)}{\pi(K + B)} \right] m. \quad (6)$$

Having derived some basic results concerning the working of the credit market let us now see how the aggregate economy behaves. Suppose the economy consists of a continuum of identical industrial sector firms of unit measure. The economy consists of a representative agent who is endowed with \mathcal{L} units of labor in every period. The agent invests his capital equally among the industrial sector firms and at the end of each period receives dividends from the successful firms. In each period $\pi(.)$ proportion of the firms will be successful. The proportion of the successful firms in each period depends on the amount of investment in the industrial sector project. Depending on the amount of capital the agent brings into period t the economy will either borrow or lend in the credit market. This decision will in turn determine the inter-temporal budget constraint of the agent and then determine the long run output of the economy. Let K_t denote the amount of capital brought into period t by the agent. The aggregate production function of the economy is

$$Y(K_t) = \pi(K^I_t + B_t)[F(L^I_t) - R^*_t B_t] + a(\mathcal{L} - L^I_t) + R^*(K_t - K^I_t).$$

Proposition 3 Let $K^* = \text{solution to } \pi'(K)F(L^I) = R^*$. If $K_t \in [0, K^*)$ then $K^I_t = K_t$ and $B_t > 0$. If $K_t \in [K^*, \infty)$ then $K^I_t \leq K_t$ and $B_t = 0$.

Proof: See the appendix. ■
When the capital brought into period t by the agent is sufficiently small the agent will borrow from the credit market. Also, from equation (6) we can see that if the capital endowment of the agent is high the interest premium is lower. This corresponds well with the fact that industrialized economies find it easier to borrow funds in comparison to emerging economies. Once the return from investment in the industrial sector project falls below the rate of return on the risk free asset the agent will become a lender in the international credit market.

The domestic agent when faced with a lending rate R_l^t will borrow until

$$\frac{\pi'(K_t + B_t)F(L_t^I)}{\pi(K_t + B_t) + \pi'(K_t + B_t)B_t} = R_l^t.$$ \hspace{1cm} (7)

Equation (7)\(^2\) implies the level of investment in the industrial project is decreasing in the lending rate. The amount of investment in the industrial project when the agent has to borrow from the international credit market is less than the first-best\(^3\).

In any period t, the agent also decides on the amount of labor and the capital to employ in the industrial sector, and weather to borrow or lend in the international credit market. From assumption 1, the optimal allocation of labor across the industrial and household sector will satisfy

$$\pi(K_t^I + B_t)F'(L_t^I) = a$$

if $L_t^I < \bar{L}$. Hence, L_t^I is an increasing function of the amount of investment in the industrial sector $(K_t^I + B_t)$. Let us write the labor employed in the industrial sector as $L_t^I(K_t + B_t)$. From Proposition 3 we know that the economy will borrow if $K_t < K^*$ and the entire capital stock will be invested in the industrial sector. Therefore from equation (7) we can write B_t as a function of K_t. Once the economy attains K^* units of capital it will stop borrowing from the international credit market and invest any additional amount of capital i.e., $(K_t - K^*)$ in the risk free asset. To save on notation, in the subsequent analysis L_t^I and B_t will refer to the optimal choice of labor and borrowing given the level of capital.

\(^2\)For detailed derivation of this condition see Appendix: Proof of Proposition 3.

\(^3\)The first best level of investment will be given by the solution to $\pi'(K_t + B_t)F(L_t^I) = R^*$. According to equation (7) the demand for credit from the agent satisfies $\frac{\pi'(K_t + B_t)F(L_t^I)}{\pi(K_t + B_t) + \pi'(K_t + B_t)B_t} = R_l^t$. $R_l^t > R^*$ and $\frac{\pi'(K_t + B_t)F(L_t^I)}{\pi(K_t + B_t) + \pi'(K_t + B_t)B_t} < \pi'(K_t + B_t)F(L_t^I)$, hence the level of investment is less than first best.
Proposition 4 If $K_t \in [0, K^*)$ then total investment in the industrial sector is increasing in K_t.

Proof: See the appendix. ■

When an economy is a borrower in the international credit market, the lending rate of interest will decrease as the capital stock of the economy increases. As a result the level of investment in the industrial sector increases with the level of capital.

3 Inter-temporal optimization

Now we study the inter-temporal problem faced by the economy. In order to ensure the existence of at least one steady state equilibrium we assume the agent’s preferences are characterized by endogenous rate of time preference. One way of interpreting these preferences is to view the discount factors as an agent’s probability of surviving to the next period. The agent given the initial endowment of capital, has to decide his consumption and savings. The discount factor between periods t and $t+1$($\rho_{t,t+1}$) is a continuous function of consumption at time t in the following way:

$$\rho_{t,t+1} = \beta(C_t)$$ \hspace{1cm} (8)

where $0 < \beta(C_t) < 1$.

Let the period utility function of the agent be $U(C_t)$. The maximization problem faced by the agent is

$$\max E_0 \sum_{t=0}^{\infty} \rho_{0,t} U(C_t),$$

subject to

$$K_{t+1} = Y(K_t) - C_t,$$ \hspace{1cm} (9)

$$Y(K_t) = \max_{K'_t, L'_t} \pi(K'_t + B_t)[F(L'_t) - R'_t B_t] + a(L'_t - L_t) + R^*(K_t - K'_t),$$ \hspace{1cm} (10)

\(^4\)For a detailed discussion of the preferences used below see Chakrabarty([7]).
and a transversality condition

\[\lim_{t \to \infty} \rho_{0,t} K_t \geq 0. \]

(TC)

At this point we make some assumptions concerning the functions \(U(.) \) and \(\beta(.) \) to ensure that the necessary conditions for maximum are also sufficient.

Assumption 2: \(U(C_t) > 0, U'(C_t) > 0, U''(C_t) < 0 \), and \(\beta''(C_t) < 0 < \beta'(C_t) \) for all \(C_t \).

Let \(R_t \) denote the rate of return on capital in period \(t \). From Proposition 3, we have

\[
R_t = \begin{cases}
R^* + [1 - \pi(K_t + B_t)]m & \text{if } K_t \in [0, K^h), \\
R^* & \text{if } K_t \in [K^h, \infty).
\end{cases}
\]

The solution to the economy’s optimization problem will satisfy the following difference equations

\[\frac{U'(C_t) + \beta'(C_t) \phi_{t+1}}{\beta(C_t)[U''(C_{t+1}) + \beta'(C_{t+1}) \phi_{t+2}]} = \beta(C_t) R_{t+1}, \]

(11)

\[\phi_t = U(C_t) + \beta(C_t) \phi_{t+1} \quad \text{for all } t \geq 1, \]

(12)

and (9). The variable \(\phi_{t+1} \) is the present discounted value of future consumption from period \(t + 1 \) onwards.\(^6\)

Definition 1 A rational expectation equilibrium (REE) of this economy are sequences

\[\{C_t\}_{t=0}^{\infty}, \{K_{t+1}\}_{t=0}^{\infty}, \{K^I_t\}_{t=0}^{\infty}, \{L^I_t\}_{t=1}^{\infty}, \{\phi_t\}_{t=1}^{\infty}, \{B_t\}_{t=1}^{\infty} \] such that (9), (11), (12) and TC hold for a given \(K_0 \).

Equation (9) is the inter-temporal budget constraint of the agent. Equation (11) tells us that the loss in welfare due to foregoing consumption in period \(t \) has to equal the discounted value of gain in welfare from period \(t + 1 \) onwards. This condition is commonly referred to as the Fisher equation.

\(^5\)See the appendix for a detailed derivation.

\(^6\)\(\phi_{t+1} = \sum_{s=t+1}^{\infty} \rho_{t+1,s} U(C_s) \)
4 Steady-State Equilibria and Stability

Let us first study the steady state solutions to the difference equations (9), (11), (12).

In a steady state, equations (9), (11) and (12) reduce to

\[C = Y(K) - K, \quad (BC) \]

\[\beta(C)R(K) = 1, \quad (RR) \]

and

\[\phi = \frac{U(C)}{1 - \beta(C)}, \quad (13) \]

where \(R(K) = \max\{R^* + [1 - \pi(K + B)]m, R^*\} \). Equation (RR) is the steady state counterpart of the Fisher’s inter-temporal optimum. Equation (BC) gives us the locus of points along which the agent’s consumption and capital stock are constant and satisfy the budget constraint. The (BC) curve is increasing in the level of capital\(^7\). The slope of RR curve in consumption-capital plane is given by \(-\frac{R^*(K)\beta(C)^2}{\beta(C)}\) which is positive when \(K \in [0, K^*) \). When \(K \in [K^*, \infty) \) the (RR) curve is a horizontal line. Now we characterize the steady states and their stability properties.

Proposition 5 If \(\beta^{-1}\left(\frac{1}{Y(0)}\right) < Y(0) \) and \(\beta^{-1}\left(\frac{1}{R^*}\right) > Y(K^*) - K^* \) then there exists at least one steady state level of capital stock \(K \in [0, K^*) \) which is locally unique.

Proof: See the appendix. \(\blacksquare \)

The proposition above establishes a sufficient condition for the existence of at least one stable steady state equilibrium. The condition in the proposition means that when an economy has no capital the discount factor should be sufficiently high to induce the economy to save and accumulate capital. Note that it is possible that there may be more than one stable steady state equilibria.

\(^7\)Using the envelope theorem, the slope of BC curve is \(\pi'(K + B)R^l - 1 \) if \(K \in [0, K^*) \) and \(R^* - 1 \) if \(K \in [K^*, \infty) \). Hence the slope of the BC curve is always positive.
5 Simulation

In this section we study the behavior of a simulated economy whose characteristics are similar to a standard international business cycle model except for the credit market imperfection. We assume that the period utility and discount factor are of the following functional forms:

\[U(C) = \frac{C^{1-\sigma}}{1-\sigma}, \quad \sigma > 1, \]
\[\beta(C) = \overline{\beta} - (\overline{\beta} - \beta)e^{-\delta C}, \quad \text{where } \overline{\beta} > \beta > 0 \text{ and } \delta > 0. \]

The production functions in the industrial and household sectors are

\[F(L) = AL^\theta \quad \text{and} \quad Y^H = aL \]

respectively. The probability of success of an industrial sector project is

\[\pi(K + B) = \begin{cases} \tau(K + B)^{\alpha} & \text{if } 0 < K + B < \tau^{-\frac{\alpha}{1-\sigma}} \\ 1 & \text{if } K + B > \tau^{-\frac{\alpha}{1-\sigma}} \end{cases} \]

where \(\tau < 1 \). From the first-order condition for optimal allocation of labor, the amount of labor employed in the industrial sector is given by

\[L^I = \begin{cases} \left(\frac{\Delta\alpha}{\alpha}\right)(K + B)^{\frac{\alpha}{1-\sigma}} & \text{if } K < \overline{L}, \\ \frac{\alpha}{\overline{\beta}} & \text{otherwise}. \end{cases} \]

The level of capital when the economy starts lending in the international credit market

\[K^* = \left(\frac{c}{\overline{\beta}}\right)^{\frac{1-\sigma}{\alpha}}, \quad \text{where } c = \alpha \tau A\left(\frac{\Delta\alpha}{\alpha}\right)^{\frac{\alpha}{1-\sigma}}. \]

Note that as long as \(K^* < \tau^{-\frac{\alpha}{1-\sigma}} \) the economy which borrows from the international credit market will have to pay an interest premium.

These functional forms yield us a Cobb-Douglas production function for the industrial sector. We now simulate the economy using certain parameter values which are presented in Table 1. The relationship between capital stock of the economy and the lending rate is given in Figure 1a. The corresponding optimal level of borrowing is shown in Figure 1b.

The solution to inter-temporal maximization problem of the economy shows the possibility of two stable steady state equilibria. The function \(g(K) = \beta(Y(K) - K)R(K) - 1 \) is shown in figure 2. If the initial endowment of capital of the economy is less than \(K_u \) the economy converges to the poverty trap steady state \(K_p \). If the initial endowment of capital exceeds \(K_u \) the economy converges to the high level steady state \(K_h \). Some characteristics of the two steady states are summarized in Table 2. Understandably the poverty trap steady
state shows a lower share of industrial sector in GDP. The debt-equity ratio \((B/K)\) is higher for \(K_p\). We now study the impact of a small productivity and interest rate shock on these economies. These shocks are assumed to follow the following processes:

\[
\hat{R}_t = 0.9 \hat{R}_{t-1} + v_R, \\
\hat{A}_t = 0.95 \hat{A}_{t-1} + v_A,
\]

around their steady state values, where \(v_R\) and \(v_A\) are serially uncorrelated shocks to world interest rate and productivity respectively.

The impulse response functions for capital and output due to a 1% productivity shock are shown in Figures 3a and 3b. Both the steady state economies experience amplification and persistence. This is due to the credit market friction. Figures 4a and 4b are the deviation in capital and output from their steady state values due to a 1% shock to the world interest rate. Interestingly the effect on the poverty trap steady state is more severe and persistent.

This behavior of the impulse response functions is similar to Carlstrom and Fuerst([6]). However, in their model an economic expansion is associated with an increase in risk premium and bankruptcy rates. Our model predicts a lowering of risk premium and bankruptcy rates during periods of expansion. This is due to the fact that in our model economies can borrow from the foreign markets and are not constrained by domestic savings.

6 Conclusion

We develop a model of imperfect credit markets where an economy has access to foreign capital markets and potentially can borrow unlimited amount of funds. On a purely theoretical level this adds to the present literature by allowing the economy to borrow beyond domestic savings. In conjunction with endogenous rate of time preference this paper explains why history of an economy matters in the process of development. The model also predicts hump shaped impulse response functions: a well established empirical fact (see for example Cogley and Nason([8])).

In future work we would like to carefully calibrate the parameters of the model to quantitatively evaluate the predictions of the model. In this paper we have played down
the role of the banking system. Explicit modeling of the banking system will not alter our results as there is no aggregate uncertainty in the economy. Introduction of aggregate uncertainty in the production process may lead to phenomenon such as banking crisis and self fulfilling expectations. The role of banking system would become important in such a scenario. Such issues are left for future research.

Appendix

Proof of Proposition 1:
We want to show that if $B > 0$ then $B^I = B$. If the firm decides to borrow funds from the international capital market it maximizes expected income i.e.,

$$\max_{B, B^I, K^I} \pi(K^I + B^I)[F(L^I) + R^*(B - B^I) - R^I(B)] + R^*(K - K^I),$$

with respect to B and B^I. If $B > 0$ and $B^I < B$, then it is possible to increase the expected income of the agent by reducing B since $R^I > R^*$ which is a contradiction.

Proof of Proposition 2:
We want to show that if $B > 0$ then $K^I = K$. Incorporating the previous proposition we can re-write the expected income of the agent as

$$\max_{B, B^I, K^I} \pi(K^I + B)[F(L^I) - R^I(B)] + R^*(K - K^I).$$

If $B > 0$ then $\pi'(K^I + B)[F(L^I) - R^I(B)] - \pi(K^I + B) R^I \geq 0$. Suppose $K^I < K$ then $\pi'(K^I + B)F(L^I) = R^*$. Substituting this in the previous inequality we get that $R^* - R^I(B - \pi(K^I + B)) \geq 0$. Substituting (6) and carrying out simple manipulation we get that for the $B > 0$ and $K^I < K$ to hold simultaneously $-R^I(B - [1 - \pi(K^I + B)]m$ has to be non-negative which is a contradiction.

Proof of Proposition 3:
The expected income of the domestic agent in period t is

$$Y(K_t) = \pi(K^I_t + B_t)[F(L^I_t) - R^I_t B_t] + a(L_t - L^I_t) + R^*(K_t - K^I_t).$$

First order conditions for optimum with respect to L^I_t yields

$$\pi(K^I_t + B_t)F'(L^I_t) \geq a.$$

$L^I_t > 0$ from our assumptions and is increasing in $(K^I_t + B_t)$ as long as $L^I_t < L$. Therefore we can write $L^I_t = L(K^I_t + B_t)$; where $L'(.) > 0$ if $L^I_t < L$ and $L'(.) = 0$ otherwise. Let K^*
be solution to \(\pi'(K)F(L^t) = R^* \). We want to show if \(K_t \geq K^* \) then \(B_t = 0 \). If \(K_t \geq K^* \)
then \(\pi'(K_t + B_t)F(L_t^t) - \pi(K_t + B_t)B_t - \pi(K_t + B_t)R_t^t \leq R^* - \pi'(K_t + B_t)B_t - \pi(K_t + B_t)R_t^t < 0 \)
implying borrowing will lower expected income. Hence \(B_t = 0 \) when \(K_t \geq K^* \). Using
Proposition 2, optimal choice of \(B_t \) after some manipulations can be written as

\[
\frac{\pi'(K_t + B_t)F(L_t^t)}{\pi(K_t + B_t) + \pi'(K_t + B_t)B_t} - R_t^t \geq 0 \text{ if } B_t > 0.
\]

Notice the first order condition for maximum is also sufficient since \(\pi''(K_t + B_t)[F(L_t^t) - R_t^t] - 2\pi'(K_t + B_t)R_t^t < 0 \). Define \(z(B, K_t) = \frac{\pi'(K_t + B_t)F(L_t^t)}{\pi(K_t + B_t) + \pi'(K_t + B_t)B_t} - R_t^t \). If \(K_t < K^* \) then
\(z(0, K_t) = \frac{\pi'(K_t)F(L_t^t)}{\pi(K_t)} - R^* > 0 \). Hence optimal \(B_t > 0 \).

Proof of Proposition 4:

The optimal level of borrowing by an economy with capital less than \(K^* \) solves

\[
\pi'(K_t + B_t)F(L_t^t) - \pi'(K_t + B_t)B_t - \pi(K_t + B_t)R_t^t = 0.
\]

The condition above gives the borrowing function \(B_t = B(K_t) \). \(B'(K) = \frac{dB}{dK} \)

\[
= \frac{\pi''(K+B)|F(L^t)-R^tB| - \pi'(K_t+B_t)R_t^t}{\pi'(K+B)|F(L^t)-R^tB| - 2\pi'(K_t+B_t)R_t^t} > -1.
\]

Therefore total investment \(K_t + B_t \) is increasing in \(K_t \).

Inter-temporal Optimization problem of the economy:

The Lagrangian for the agent’s problem can be written as

\[
\mathcal{L} = \sum_{t=0}^{\infty} \left\{ \rho_{0,t} U(C_t) + \tilde{\lambda}_t [Y_t - C_t - K_{t+1}] \right\}.
\]

The first-order conditions for maximum are

\[
\rho_{0,t}U'(C_t) + \sum_{s=t+1}^{\infty} \frac{\partial \rho_{0,s}}{\partial C_t} U(C_s) = \tilde{\lambda}_t,
\]

\[
\tilde{\lambda}_t = \tilde{\lambda}_{t+1} R_{t+1},
\]

and the transversality condition holding with equality. Let \(\left(\frac{\tilde{\lambda}_t}{\rho_{0,t}} \right) = \lambda_t \) and \(\sum_{s=t+1}^{\infty} \rho_{k+1,s} U(C_s) = \phi_{t+1} \), where \(\phi_{t+1} \) is the present discounted value of future consumption from period \(t+1 \)
onwards. The first order conditions can now be re-written as

\[
U'(C_t) + \beta'(C_t) \phi_{t+1} = \lambda_t,
\]

(14)
\[\lambda_t = \lambda_{t+1} \beta(C_t) R_{t+1}, \]
(15)

and

\[K_{t+1} = Y_t - C_t. \]
(16)

Substituting (14) in (15) we get,

\[
\frac{U'(C_t) + \beta'(C_t) \phi_{t+1}}{\beta(C_t)[U'(C_{t+1}) + \beta'(C_{t+1}) \phi_{t+1}]} = \beta(C_t) R_{t+1}
\]
(17)

Notice that the variable \(\phi_t \), the present discounted value of utilities from period \(t \) onwards, evolves in the following fashion:

\[\phi_t = U(C_t) + \beta(C_t) \phi_{t+1} \quad \text{for all } t \geq 1. \]
(18)

Proof of Proposition 5:

Define \(g(K) = \beta(C) R(K) - 1 \). Substituting (13) for \(C \), \(g(0) = \beta(Y(0)) R(0) - 1 > 0 \) if \(\beta^{-1}(\frac{1}{R(0)}) > Y(0) \) and \(g(K^*) = \beta(Y(K^*) - K^*) R^* - 1 < 0 \) if \(\beta^{-1}(\frac{1}{R^*}) < Y(K^*) - K^* \).

Then there must exist a \(K_s \in [0, K^*) \) such that \(g(K_s) = 0 \). Moreover the derivative of the function \(g(.) \) along that steady state is \(g'(K_s) = \beta'(C)(R(K_s)(R(K_s) - 1) + \beta(C) R'(K_s)) < 0 \).

To study the stability properties of the steady state, we first log-linearize equation (9), (12) and (11) around steady state which yields

\[
\hat{K}_{t+1} = \beta^{-1} \hat{K}_t + s_1 \hat{C}_t,
\]
(19)

where \(\cdot \) denotes percentage deviation of the variable from its steady state value and \(s_1 = -C/K \) at steady state. Log-linearization of (12) gives us

\[
\hat{\phi}_{t+1} = - - \beta^{-1} \Delta_2 \hat{C}_t + -\beta^{-1} \hat{\phi}_t
\]
(20)

where \(\epsilon_\beta(C) = \left(\frac{\beta'(C)}{\beta(C)} \right) > 0 \), \(\epsilon_U(C) = \left(\frac{U'(C)}{U(C)} \right) > 0 \) and \(\Delta_2 = (1 - \beta) \epsilon_U(C) + \beta \epsilon_\beta(C) > 0 \). We rewrite the above equation as
\[\hat{\phi}_{t+2} - \hat{\phi}_{t+1} = -\beta^{-1} \Delta_2 \hat{C}_{t+1} + (\beta^{-1} - 1) \hat{\phi}_{t+1}, \quad (21) \]
to simplify our analysis in future. From (14), we have
\[
[s_2 \sigma(C) + s_3 \eta_\beta(C) \phi] \hat{C}_t + s_3 \hat{\phi}_{t+1} = \hat{\lambda}_t,
\]
where \(\sigma(C) = \frac{(U''(C) C)}{U'(C)} \) < 0 and \(\eta_\beta(C) = \frac{(\beta''(C) C)}{\beta'(C)} \) < 0. \(s_2 = \frac{(U'(C)}{\lambda} \) and \(s_3 = 1 - s_2 \). We write the above equation more compactly as
\[
\Delta_1 \hat{C}_t + s_3 \hat{\phi}_{t+1} = \hat{\lambda}_t, \quad (22)
\]
where \(\Delta_1 = [s_2 \sigma(C) + s_3 \eta_\beta(C) \phi] \) < 0, from our previous assumptions.
From (15) we have
\[
\hat{\lambda}_t - \bar{\lambda}_{t+1} = \epsilon_\beta(C) \hat{C}_t + R'(K)\tilde{K}_{t+1}, \quad (23)
\]
We can now use equations (19), (20), (21), (22) and (23) to write a system of difference equations in \(\hat{C}_t, \hat{\phi}_t \) and \(\tilde{K}_t \) where the dynamical system can be expressed as
\[
\begin{bmatrix}
\hat{C}_{t+1} \\
\hat{\phi}_{t+1} \\
\tilde{K}_{t+1}
\end{bmatrix} = M
\begin{bmatrix}
\hat{C}_t \\
\hat{\phi}_t \\
\tilde{K}_t
\end{bmatrix}, \quad (24)
\]
where
\[
M = \begin{bmatrix}
M_{11} & M_{12} & M_{13} \\
-\beta^{-1} \Delta_2 & \beta^{-1} & 0 \\
s_1 & 0 & \beta^{-1}
\end{bmatrix}
\]
\[
M_{11} = \left(\frac{\epsilon_\beta(2 - \beta^{-1}) + s_1 R'(K) K - \Delta_1}{\epsilon_\beta - \Delta_1} \right), \quad M_{12} = \left(\frac{\epsilon_\beta(\beta^{-1} - 1) \Delta_1^{-1}}{\epsilon_\beta - \Delta_1} \right) \text{ and } \quad M_{13} = \left(\frac{\epsilon_\beta K \beta^{-1}}{\epsilon_\beta - \Delta_1} \right).
\]
The eigenvalues of matrix \(M \) are going to determine the local behavior of the system.
The roots of the polynomial \(\text{det}[M - \mu I] = 0 \), will determine the behavior of the above system.
\[
\text{det}[M - \mu I] = (\beta^{-1} - \mu) [(M_{11} - \mu)(\beta^{-1} - \mu) + M_{12} \beta^{-1} \Delta_2 - s_1 M_{13}].
\]
Therefore \(\mu_1 = \beta^{-1} \) is one of the roots of the polynomial. The other two roots of \(\det[M - \mu I] \) are the roots of the polynomial,

\[
P(\mu) = \mu^2 - (M_{11} + \beta^{-1})\mu + (M_{11}\beta^{-1} + M_{12}\beta^{-1}\Delta_2 - s_1 M_{13}).
\]

Consider \((M_{11}\beta^{-1} + M_{12}\beta^{-1}\Delta_2 - s_1 M_{13}) = \beta^{-1} \)

\[
\frac{\epsilon_\beta + \epsilon_\beta(1-\beta^{-1})+s_1 R'(K)K-\Delta_1+\epsilon_\beta(\beta^{-1}-1)-s_1 R(K)K}{\epsilon_\beta - \Delta_1} = \beta^{-1}. \text{ Therefore } P(0) = \beta^{-1} > 1.
\]

\[P(1) = 1 - M_{11} - \beta^{-1} + \beta^{-1} = 1 - M_{11} = \frac{\epsilon_\beta(\beta^{-1}-1)-s_1 R'(K)K}{\epsilon_\beta - \Delta_1} < 0 \text{ if } \epsilon_\beta(\beta^{-1}-1)-s_1 R'(K)K < 0. \]

Note that if \(g'(K_s) = \beta'(C)R(K_s)(R(K_s) - 1) + \beta'(C)R'(K_s) < 0 \) it implies that \(\epsilon_\beta(\beta^{-1}-1) - s_1 R'(K)K < 0 \). Hence there exists at least one root of the polynomial \(\det[M - \mu I] \) which is less than one. It is easy to show that the third root is strictly greater than unity in absolute value. Hence the steady state is a saddle path and locally unique.

References

Table 1: Simulation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^*</td>
<td>1.025</td>
<td>World interest rate (per annum)</td>
</tr>
<tr>
<td>m</td>
<td>0.005</td>
<td>Average monitoring Cost</td>
</tr>
<tr>
<td>τ</td>
<td>0.1</td>
<td>Shift parameter for probability of success of industrial sector projects</td>
</tr>
<tr>
<td>α</td>
<td>0.53</td>
<td>Elasticity of “probability of success” with respect to investment in the industrial sector</td>
</tr>
<tr>
<td>θ</td>
<td>0.26</td>
<td>Elasticity of output with respect to labor in the industrial sector</td>
</tr>
<tr>
<td>A</td>
<td>34</td>
<td>Shift parameter in the industrial sector production function</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>Labor productivity in household sector</td>
</tr>
<tr>
<td>β</td>
<td>0.40</td>
<td>Lower bound of the discount factor</td>
</tr>
<tr>
<td>$\bar{\beta}$</td>
<td>0.99</td>
<td>Upper bound of the discount factor</td>
</tr>
<tr>
<td>δ</td>
<td>0.03</td>
<td>$-[\beta''(C)/\beta'(C)]$</td>
</tr>
<tr>
<td>σ</td>
<td>1.5</td>
<td>Elasticity of marginal utility</td>
</tr>
</tbody>
</table>

Table 2: Some steady state characteristics

<table>
<thead>
<tr>
<th></th>
<th>B/K</th>
<th>\dot{Y}/Y</th>
<th>$R^*B/F(L^i)$</th>
<th>C/Y</th>
<th>$\beta(C)$</th>
<th>R^d</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_p</td>
<td>70.22</td>
<td>75.93</td>
<td>17.64</td>
<td>77.39</td>
<td>0.89</td>
<td>1.10</td>
</tr>
<tr>
<td>K_h</td>
<td>21.99</td>
<td>87.04</td>
<td>8.56</td>
<td>63.80</td>
<td>0.90</td>
<td>1.05</td>
</tr>
</tbody>
</table>
Figure 2: Steady States
Figure 3a: IRF for capital due to a 1% productivity shock

Figure 3b: IRF for output due to a 1% productivity shock
Figure 4a: IRF for capital due to a interest rate shock

![Figure 4a: IRF for capital due to a interest rate shock](image)

Figure 4b: IRF for output due to a interest rate shock

![Figure 4b: IRF for output due to a interest rate shock](image)
2008
B01-08 Euro-Diplomatie durch gemeinsame „Wirtschaftsregierung“ Martin Seidel

2007
B03-07 Löhne und Steuern im Systemwettbewerb der Mitgliedstaaten der Europäischen Union Martin Seidel
B02-07 Konsolidierung und Reform der Europäischen Union Martin Seidel
B01-07 The Ratification of European Treaties - Legal and Constitutional Basis of a European Referendum. Martin Seidel

2006
B03-06 Financial Frictions, Capital Reallocation, and Aggregate Fluctuations Jürgen von Hagen, Haiping Zhang
B02-06 Financial Openness and Macroeconomic Volatility Jürgen von Hagen, Haiping Zhang
B01-06 A Welfare Analysis of Capital Account Liberalization Jürgen von Hagen, Haiping Zhang

2005
B11-05 Das Kompetenz- und Entscheidungssystem des Vertrages von Rom im Wandel seiner Funktion und Verfassung Martin Seidel
B10-05 Die Schutzklauseln der Beitrittsverträge Martin Seidel
B09-05 Measuring Tax Burdens in Europe Guntram B. Wolff
B08-05 Remittances as Investment in the Absence of Altruism Gabriel González-König
B07-05 Economic Integration in a Multicone World? Christian Volpe Martincus, Jennifer Pédussel Wu
B06-05 Banking Sector (Under?)Development in Central and Eastern Europe Jürgen von Hagen, Valeriya Dinger
B05-05 Regulatory Standards Can Lead to Predation Stefan Lutz
B04-05 Währungspolitik als Sozialpolitik Martin Seidel
B03-05 Public Education in an Integrated Europe: Studying to Migrate and Teaching to Stay? Panu Poutvaara
B02-05 Voice of the Diaspora: An Analysis of Migrant Voting Behavior Jan Fidrmuc, Orla Doyle
B01-05 Macroeconomic Adjustment in the New EU Member States Jürgen von Hagen, Iulia Traistaru

2004
B33-04 The Effects of Transition and Political Instability On Foreign Direct Investment Inflows: Central Europe and the Balkans Josef C. Brada, Ali M. Kutan, Tamer M. Yigit
B32-04 The Choice of Exchange Rate Regimes in Developing Countries: A Multinominal Panal Analysis Jürgen von Hagen, Jizhong Zhou
B31-04 Fear of Floating and Fear of Pegging: An Empirical Anaysis of De Facto Exchange Rate Regimes in Developing Countries Jürgen von Hagen, Jizhong Zhou
B30-04 Der Vollzug von Gemeinschaftsrecht über die Mitgliedstaaten und seine Rolle für die EU und den Beitrittsprozess Martin Seidel
B29-04 Deutschlands Wirtschaft, seine Schulden und die Unzulänglichkeiten der einheitlichen Geldpolitik im Eurosystem Dieter Spethmann, Otto Steiger
B28-04 Fiscal Crises in U.S. Cities: Structural and Non-structural Causes Guntram B. Wolff
B27-04 Firm Performance and Privatization in Ukraine Galyna Grygorenko, Stefan Lutz
B26-04 Analyzing Trade Opening in Ukraine: Effects of a Customs Union with the EU Oksana Harbuzyuk, Stefan Lutz
B25-04 Exchange Rate Risk and Convergence to the Euro Lucjan T. Orlowski
B24-04 The Endogeneity of Money and the Eurosystem Otto Steiger
B23-04 Which Lender of Last Resort for the Eurosystem? Otto Steiger
B21-04 The Effectiveness of Subsidies Revisited: Accounting for Wage and Employment Effects in Business R+D Volker Reinthaler, Guntram B. Wolff
B20-04 Money Market Pressure and the Determinants of Banking Crises Jürgen von Hagen, Tai-kuang Ho
B19-04 Die Stellung der Europäischen Zentralbank nach dem Verfassungsvertrag Martin Seidel
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>B18-04</td>
<td>Transmission Channels of Business Cycles Synchronization in an Enlarged EMU</td>
<td>Iulia Traistaru</td>
</tr>
<tr>
<td>B17-04</td>
<td>Foreign Exchange Regime, the Real Exchange Rate and Current Account Sustainability: The Case of Turkey</td>
<td>Sübidey Togan, Hasan Ersel</td>
</tr>
<tr>
<td>B15-04</td>
<td>Do Economic Integration and Fiscal Competition Help to Explain Local Patterns?</td>
<td>Christian Volpe Martincus</td>
</tr>
<tr>
<td>B14-04</td>
<td>Euro Adoption and Maastricht Criteria: Rules or Discretion? The Role of Electoral and Party Systems in the Development of Fiscal Institutions in the Central and Eastern European Countries</td>
<td>Jiri Jonas</td>
</tr>
<tr>
<td>B13-04</td>
<td>Measuring and Explaining Levels of Regional Economic Integration</td>
<td>Jennifer Pédussel Wu</td>
</tr>
<tr>
<td>B12-04</td>
<td>Economic Integration and Location of Manufacturing Activities: Evidence from MERCOSUR</td>
<td>Pablo Sanguinetti, Iulia Traistaru, Christian Volpe Martincus</td>
</tr>
<tr>
<td>B11-04</td>
<td>Economic Integration and Industry Location in Transition Countries</td>
<td>Laura Resmini</td>
</tr>
<tr>
<td>B09-04</td>
<td>European Integration, Productivity Growth and Real Convergence</td>
<td>Taner M. Yigit, Ali M. Kutan</td>
</tr>
<tr>
<td>B06-04</td>
<td>Money Rules for the Eurozone Candidate Countries</td>
<td>Lucjan T. Orlowski</td>
</tr>
<tr>
<td>B05-04</td>
<td>Who is in Favor of Enlargement? Determinants of Support for EU Membership in the Candidate Countries’ Referenda</td>
<td>Orla Doyle, Jan Fidrmuc</td>
</tr>
<tr>
<td>B04-04</td>
<td>Over- and Underbidding in Central Bank Open Market Operations Conducted as Fixed Rate Tender</td>
<td>Ulrich Bindseil</td>
</tr>
<tr>
<td>B03-04</td>
<td>Total Factor Productivity and Economic Freedom Implications for EU Enlargement</td>
<td>Ronald L. Moomaw, Euy Seok Yang</td>
</tr>
<tr>
<td>B01-04</td>
<td>Die neuen Schutzklauseln der Artikel 38 und 39 des Beitrittsvertrages: Schutz der alten Mitgliedstaaten vor Störungen durch die neuen Mitgliedstaaten</td>
<td>Martin Seidel</td>
</tr>
</tbody>
</table>

2003

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>B29-03</td>
<td>Macroeconomic Implications of Low Inflation in the Euro Area</td>
<td>Jürgen von Hagen, Boris Hofmann</td>
</tr>
<tr>
<td>B28-03</td>
<td>The Effects of Transition and Political Instability on Foreign Direct Investment: Central Europe and the Balkans</td>
<td>Josef C. Brada, Ali M. Kutan, Taner M. Yigit</td>
</tr>
<tr>
<td>B25-03</td>
<td>How Flexible are Wages in EU Accession Countries?</td>
<td>Anna Iara, Iulia Traistaru</td>
</tr>
<tr>
<td>B24-03</td>
<td>Monetary Policy Reaction Functions: ECB versus Bundesbank</td>
<td>Bernd Hayo, Boris Hofmann</td>
</tr>
<tr>
<td>B23-03</td>
<td>Economic Integration and Manufacturing Concentration Patterns: Evidence from Mercosur</td>
<td>Iulia Traistaru, Christian Volpe Martincus</td>
</tr>
<tr>
<td>B22-03</td>
<td>Reformzwänge innerhalb der EU angesichts der Osterweiterung</td>
<td>Martin Seidel</td>
</tr>
<tr>
<td>B21-03</td>
<td>Reputation Flows: Contractual Disputes and the Channels for Inter-Firm Communication</td>
<td>William Pyle</td>
</tr>
<tr>
<td>B20-03</td>
<td>Urban Primacy, Gigantism, and International Trade: Evidence from Asia and the Americas</td>
<td>Ronald L. Moomaw, Mohammed A. Alwosabi</td>
</tr>
<tr>
<td>B19-03</td>
<td>An Empirical Analysis of Competing Explanations of Urban Primacy Evidence from Asia and the Americas</td>
<td>Ronald L. Moomaw, Mohammed A. Alwosabi</td>
</tr>
</tbody>
</table>
B19-02 East Germany: Transition with Unification, Experiments and Experiences
Jürgen von Hagen, Rolf R. Strauch, Guntram B. Wolff

B18-02 Regional Specialization and Employment Dynamics in Transition Countries
Iulia Traistaru, Guntram B. Wolff

B17-02 Specialization and Growth Patterns in Border Regions of Accession Countries
Laura Resmini

B16-02 Regional Specialization and Concentration of Industrial Activity in Accession Countries
Iulia Traistaru, Peter Nijkamp, Simonetta Longhi

B15-02 Does Broad Money Matter for Interest Rate Policy?
Matthias Brückner, Andreas Schaber

B14-02 The Long and Short of It: Global Liberalization, Poverty and Inequality
Christian E. Weller, Adam Hersch

B13-02 De Facto and Official Exchange Rate Regimes in Transition Economies
Jürgen von Hagen, Jizhong Zhou

B12-02 Argentina: The Anatomy of A Crisis
Jiri Jonas

B11-02 The Eurosystem and the Art of Central Banking
Gunnar Heinsohn, Otto Steiger

Martin Seidel

B09-02 Monetary Policy in the Euro Area - Lessons from the First Years
Volker Clausen, Bernd Hayo

B08-02 Has the Link Between the Spot and Forward Exchange Rates Broken Down? Evidence From Rolling Cointegration Tests
Ali M. Kutan, Su Zhou

B07-02 Perspektiven der Erweiterung der Europäischen Union
Martin Seidel

B06-02 Is There Asymmetry in Forward Exchange Rate Bias? Multi-Country Evidence
Su Zhou, Ali M. Kutan

B05-02 Real and Monetary Convergence Within the European Union and Between the European Union and Candidate Countries: A Rolling Cointegration Approach
Josef C. Brada, Ali M. Kutan, Su Zhou

B04-02 Asymmetric Monetary Policy Effects in EMU
Volker Clausen, Bernd Hayo

B03-02 The Choice of Exchange Rate Regimes: An Empirical Analysis for Transition Economies
Jürgen von Hagen, Jizhong Zhou

B02-02 The Euro System and the Federal Reserve System Compared: Facts and Challenges
Karlheinz Ruckriegel, Franz Seitz

B01-02 Does Inflation Targeting Matter?
Manfred J. M. Neumann, Jürgen von Hagen

2001
B29-01 Is Kazakhstan Vulnerable to the Dutch Disease?
Karlygash Kuralbayeva, Ali M. Kutan, Michael L. Wyzan

B28-01 Political Economy of the Nice Treaty: Rebalancing the EU Council. The Future of European Agricultural Policies
Deutsch-Französisches Wirtschaftspolitisches Forum

B27-01 Investor Panic, IMF Actions, and Emerging Stock Market Returns and Volatility: A Panel Investigation
Bernd Hayo, Ali M. Kutan

B26-01 Regional Effects of Terrorism on Tourism: Evidence from Three Mediterranean Countries
Konstantinos Drakos, Ali M. Kutan

B25-01 Monetary Convergence of the EU Candidates to the Euro: A Theoretical Framework and Policy Implications
Lucjan T. Orlowski

B24-01 Disintegration and Trade
Jarko and Jan Fidrmuc

B23-01 Migration and Adjustment to Shocks in Transition Economies
Jan Fidrmuc

B22-01 Strategic Delegation and International Capital Taxation
Matthias Brückner

B21-01 Balkan and Mediterranean Candidates for European Union Membership: The Convergence of Their Monetary Policy With That of the Europena Central Bank
Josef C. Brada, Ali M. Kutan

B20-01 An Empirical Inquiry of the Efficiency of Intergovernmental Transfers for Water Projects Based on the WRDA Data
Anna Rubinchik-Pessach

B19-01 Detrending and the Money-Output Link: International Evidence
R.W. Hafer, Ali M. Kutan
B18-01 Monetary Policy in Unknown Territory. The European Central Bank in the Early Years
Jürgen von Hagen, Matthias Brückner

B17-01 Executive Authority, the Personal Vote, and Budget Discipline in Latin American and Carribean Countries
Mark Hallerberg, Patrick Marier

B16-01 Sources of Inflation and Output Fluctuations in Poland and Hungary: Implications for Full Membership in the European Union
Selahattin Dibooglu, Ali M. Kutan

B15-01 Programs Without Alternative: Public Pensions in the OECD
Christian E. Weller

B14-01 Formal Fiscal Restraints and Budget Processes As Solutions to a Deficit and Spending Bias in Public Finances - U.S. Experience and Possible Lessons for EMU
Rolf R. Strauch, Jürgen von Hagen

B13-01 German Public Finances: Recent Experiences and Future Challenges
Jürgen von Hagen, Rolf R. Strauch

B12-01 The Impact of Eastern Enlargement On EU-Labour Markets. Pensions Reform Between Economic and Political Problems
Deutsch-Französisches Wirtschaftspolitisches Forum

B11-01 Inflationary Performance in a Monetary Union With Large Wage Setters
Lilia Cavallar

B10-01 Integration of the Baltic States into the EU and Institutions of Fiscal Convergence: A Critical Evaluation of Key Issues and Empirical Evidence
Ali M. Kutan, Niina Pautola-Mol

B09-01 The Functioning of Economic Policy Coordination
Jürgen von Hagen, Susanne Mundschenk

B08-01 The Convergence of Monetary Policy Between Candidate Countries and the European Union
Josef C. Brada, Ali M. Kutan

B07-01 Opposites Attract: The Case of Greek and Turkish Financial Markets
Konstantinos Drakos, Ali M. Kutan

B06-01 Trade Rules and Global Governance: A Long Term Agenda. The Future of Banking.
Deutsch-Französisches Wirtschaftspolitisches Forum

B05-01 The Determination of Unemployment Benefits
Rafael di Tella, Robert J. MacCulloch

B04-01 Preferences Over Inflation and Unemployment: Evidence from Surveys of Happiness
Rafael di Tella, Robert J. MacCulloch, Andrew J. Oswald

B03-01 The Konstanz Seminar on Monetary Theory and Policy at Thirty
Michele Fratianni, Jürgen von Hagen

B02-01 Divided Boards: Partisanship Through Delegated Monetary Policy
Etienne Farvaque, Gael Lagadec

2000

B20-00 Breakin-up a Nation, From the Inside
Etienne Farvaque

B19-00 Income Dynamics and Stability in the Transition Process, general Reflections applied to the Czech Republic
Jens Hölscher

B18-00 Budget Processes: Theory and Experimental Evidence
Karl-Martin Ehrhart, Roy Gardner, Jürgen von Hagen, Claudia Keser

B17-00 Rückführung der Landwirtschaftspolitik in die Verantwortung der Mitgliedsstaaten? - Rechts- und Verfassungsfragen des Gemeinschaftsrechts
Martin Seidel

B16-00 The European Central Bank: Independence and Accountability
Christa Randzio-Plath, Tomasso Padoa-Schioppa

B15-00 Regional Risk Sharing and Redistribution in the German Federation
Jürgen von Hagen, Ralf Hepp

B14-00 Sources of Real Exchange Rate Fluctuations in Transition Economies: The Case of Poland and Hungary
Selahattin Dibooglu, Ali M. Kutan

B13-00 Back to the Future: The Growth Prospects of Transition Economies Reconsidered
Nauro F. Campos
B12-00 Rechtsetzung und Rechtsangleichung als Folge der Einheitlichen Europäischen Währung
Martin Seidel

B11-00 A Dynamic Approach to Inflation Targeting in Transition Economies
Lucjan T. Orlowski

B10-00 The Importance of Domestic Political Institutions: Why and How Belgium Qualified for EMU
Marc Hallerberg

B09-00 Rational Institutions Yield Hysteresis
Rafael Di Tella, Robert MacCulloch

B08-00 The Effectiveness of Self-Protection Policies for Safeguarding Emerging Market Economies from Crises
Kenneth Kletzer

B07-00 Financial Supervision and Policy Coordination in The EMU
Deutsch-Französisches Wirtschaftspolitisches Forum

B06-00 The Demand for Money in Austria
Bernd Hayo

B05-00 Liberalization, Democracy and Economic Performance during Transition
Jan Fidrmuc

B04-00 A New Political Culture in The EU - Democratic Accountability of the ECB
Christa Randzio-Plath

B03-00 Integration, Disintegration and Trade in Europe: Evolution of Trade Relations during the 1990's
Jarko Fidrmuc, Jan Fidrmuc

B02-00 Inflation Bias and Productivity Shocks in Transition Economies: The Case of the Czech Republic
Josef C. Barda, Arthur E. King, Ali M. Kutan

B01-00 Monetary Union and Fiscal Federalism
Kenneth Kletzer, Jürgen von Hagen

1999

Stefan Lutz, Alessandro Turrini

B25-99 Micro and Macro Determinants of Public Support for Market Reforms in Eastern Europe
Bernd Hayo

B24-99 What Makes a Revolution?
Rafael Di Tella, Robert MacCulloch

B23-99 Informal Family Insurance and the Design of the Welfare State
Rafael Di Tella, Robert MacCulloch

B22-99 Partisan Social Happiness
Rafael Di Tella, Robert MacCulloch

B21-99 The End of Moderate Inflation in Three Transition Economies?
Josef C. Brada, Ali M. Kutan

B20-99 Subnational Government Bailouts in Germany
Helmut Seitz

B19-99 The Evolution of Monetary Policy in Transition Economies
Ali M. Kutan, Josef C. Brada

B18-99 Why are Eastern Europe's Banks not failing when everybody else's are?
Christian E. Weller, Bernard Morzuch

B17-99 Stability of Monetary Unions: Lessons from the Break-Up of Czechoslovakia
Jan Fidrmuc, Julius Horvath and Jarko Fidrmuc

B16-99 Multinational Banks and Development Finance
Christian E. Weller and Mark J. Scher

B15-99 Financial Crises after Financial Liberalization: Exceptional Circumstances or Structural Weakness?
Christian E. Weller

B14-99 Industry Effects of Monetary Policy in Germany
Bernd Hayo and Birgit Uhlenbrock

B13-99 Financial Fragility or What Went Right and What Could Go Wrong in Central European Banking?
Christian E. Weller and Jürgen von Hagen

B12-99 Size Distortions of Tests of the Null Hypothesis of Stationarity: Evidence and Implications for Applied Work
Mehmet Caner and Lutz Kilian

B11-99 Financial Supervision and Policy Coordination in the EMU
Deutsch-Französisches Wirtschaftspolitisches Forum

B10-99 Financial Liberalization, Multinational Banks and Credit Supply: The Case of Poland
Christian Weller

B09-99 Monetary Policy, Parameter Uncertainty and Optimal Learning
Volker Wieland

B08-99 The Connection between more Multinational Banks and less Real Credit in Transition Economies
Christian Weller
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>Labour Market + Tax Policy in the EMU</td>
<td>Deutsch-Französisches Wirtschaftspolitisches Forum</td>
</tr>
<tr>
<td></td>
<td>Can Taxing Foreign Competition Harm the Domestic Industry?</td>
<td>Stefan Lutz</td>
</tr>
<tr>
<td></td>
<td>Free Trade and Arms Races: Some Thoughts Regarding EU-Russian Trade</td>
<td>Rafael Reuveny and John Maxwell</td>
</tr>
<tr>
<td></td>
<td>Fiscal Policy and Intranational Risk-Sharing</td>
<td>Jürgen von Hagen</td>
</tr>
<tr>
<td></td>
<td>Price Stability and Monetary Policy Effectiveness when Nominal Interest Rates are Bounded at Zero</td>
<td>Athanasios Orphanides and Volker Wieland</td>
</tr>
<tr>
<td></td>
<td>Die Bewertung der "dauerhaft tragbaren öffentlichen Finanzlage" der EU Mitgliedstaaten beim Übergang zur dritten Stufe der EWWU</td>
<td>Rolf Strauch</td>
</tr>
<tr>
<td></td>
<td>Exchange Rate Regimes in the Transition Economies: Case Study of the Czech Republic: 1990-1997</td>
<td>Julius Horvath and Jiri Jonas</td>
</tr>
<tr>
<td></td>
<td>Der Wettbewerb der Rechts- und politischen Systeme in der Europäischen Union</td>
<td>Martin Seidel</td>
</tr>
<tr>
<td></td>
<td>U.S. Monetary Policy and Monetary Policy and the ESCB</td>
<td>Robert L. Hetzel</td>
</tr>
<tr>
<td></td>
<td>Money-Output Granger Causality Revisited: An Empirical Analysis of EU Countries (überarbeitete Version zum Herunterladen)</td>
<td>Bernd Hayo</td>
</tr>
<tr>
<td></td>
<td>Designing Voluntary Environmental Agreements in Europe: Some Lessons from the U.S. EPA’s 33/50 Program</td>
<td>John W. Maxwell</td>
</tr>
<tr>
<td></td>
<td>Monetary Union, Asymmetric Productivity Shocks and Fiscal Insurance: an Analytical Discussion of Welfare Issues</td>
<td>Kenneth Kletzer</td>
</tr>
<tr>
<td></td>
<td>Estimating a European Demand for Money (überarbeitete Version zum Herunterladen)</td>
<td>Bernd Hayo</td>
</tr>
<tr>
<td></td>
<td>The EMU’s Exchange Rate Policy</td>
<td>Deutsch-Französisches Wirtschaftspolitisches Forum</td>
</tr>
<tr>
<td></td>
<td>Central Bank Policy in a More Perfect Financial System</td>
<td>Jürgen von Hagen</td>
</tr>
<tr>
<td></td>
<td>Trade with Low-Wage Countries and Wage Inequality</td>
<td>Jaleel Ahmad</td>
</tr>
<tr>
<td></td>
<td>Budgeting Institutions for Aggregate Fiscal Discipline</td>
<td>Jürgen von Hagen</td>
</tr>
<tr>
<td>1997</td>
<td>Macroeconomic Stabilization with a Common Currency: Does European Monetary Unification Create a Need for Fiscal Insurance or Federalism?</td>
<td>Kenneth Kletzer</td>
</tr>
<tr>
<td></td>
<td>Employment and EMU</td>
<td>Deutsch-Französisches Wirtschaftspolitisches Forum (a Forum organized by ZEI)</td>
</tr>
</tbody>
</table>