Iara, Anna; Traistaru, Iulia

Working Paper
How flexible are wages in EU accession countries?

Provided in Cooperation with:
ZEI - Center for European Integration Studies, University of Bonn

Suggested Citation: Iara, Anna; Traistaru, Iulia (2003) : How flexible are wages in EU accession countries?, ZEI working paper, No. B 25-2003, ZEI, Bonn

This Version is available at:
http://hdl.handle.net/10419/39446

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Anna Iara, Iulia Traistaru

How Flexible are Wages in EU Accession Countries?
How Flexible are Wages in EU Accession Countries?*

Anna Iara** and Iulia Traistaru
Center for European Integration Studies (ZEI), University of Bonn

Abstract

The transition to a market economy and increased economic integration have fostered regional disparities in Central and Eastern European countries. This paper investigates whether and to what extent wages could act as an equilibrating mechanism in these countries by adjusting to local market conditions. Using regional data for the 1990s, we estimate static and dynamic wage curve models for Bulgaria, Hungary, Poland and Romania. We find empirical evidence for a wage curve in Bulgaria, Hungary and Poland suggesting that wages could help equilibrate labour markets following labour demand shocks. In the case of Romania, the unemployment elasticity of pay is not significantly different from zero.

Keywords: wage flexibility, panel data, EU accession countries

JEL classification: C23, J30, J60

* This research was undertaken with financial support from the European Community’s 5th Framework Programme. We are grateful for helpful comments and suggestions to Eric Crampton, Mihails Hazans, Peter Huber, Simonetta Longhi, Ron Moomaw, Gabriele Tondl, and Guntram Wolff. We also benefited from discussions with the participants in the seminars and workshops held at the Center for European Integration Studies, University of Bonn and University of Budapest. This paper uses a data set generated in the framework of the project “Regional Labour Market Adjustment in EU Accession Candidate Countries”. The data are available upon request from the authors.

** Corresponding author. Center for European Integration Studies, Walter-Flex-Str. 3, D-53113 Bonn, Germany; Tel. +49-228-731831; Fax +49-228-731809; E-mail: anna.iara@uni-bonn.de.
1 INTRODUCTION

The transition to a market economy in Central and Eastern European countries (CEECs) and increasing integration with Western economies have resulted in significant labour demand changes across both sectors and regions, leading to rising unemployment and falling employment and participation rates (EBRD, 2000). Furthermore, there is growing evidence of a strong regional dimension of the restructuring process, with regional disparities increasing in most CEECs (Boeri and Scarpetta, 1996, Petrakos, 1996 and 2000). In particular, there are increasing regional differentials in labour market performance, which raises the question about possible equilibrating mechanisms such as inter-regional labour mobility and regional wage flexibility. That these mechanisms function well will gain importance with the upcoming accession of CEECs to the EU and later to the Economic and Monetary Union. Without flexible nominal exchange rates and with low interregional mobility, wage flexibility could play an important role in helping labour markets adjust to labour supply and demand shocks.

In this paper, we assess whether and to what extent wages represent an equilibrating mechanism in CEECs. In particular, we investigate the responsiveness of regional average earnings to local labour market conditions in Bulgaria, Hungary, Poland and Romania. We contribute to the literature on labour markets in EU accession countries in two ways. First, we provide empirical evidence on wage responsiveness to local market conditions in the above mentioned countries using a unique data set. Second, we go beyond the standard static models and address three critical concerns raised in the related literature: potential
endogeneity in the relationship between regional wages and unemployment, bias in dynamic panel models and spatial dependence in relationships across regions.

To uncover the responsiveness of wages to local labour market conditions, we follow the literature flowing from Blanchflower and Oswald (1994) in estimating wage curve models using panel data for these countries for the last decade. The wage curve model relates wage levels to local unemployment rates. Blanchflower and Oswald (1994) argue that there seems to be a high responsiveness of wages to local market conditions and, moreover, that countries have similar unemployment elasticities of pay, around –0.10, despite their different institutions. In contrast to the macroeconomic Phillips curve that describes the aggregate relationship between changes in money wages and unemployment, the wage curve uncovers a mechanism for local labour market equilibration.

We first estimate standard static models with fixed regional and time effects, allowing for comparisons with results from existing literature. Given the simultaneous determination of wages and unemployment on the one hand, and the possibility of wage inertia, on the other (see for example, Büttner, 1999a, and Baltagi and Blien, 1998), the results of the static panel models are likely to be biased and inconsistent (Baltagi, 2001). Taking this fact into account, we further estimate dynamic panel models suggested by Arellano and Bond (1991).

As pointed out by a growing literature, regions are likely to be interdependent due to production and trade linkages, as well as to technology spillovers (Fingleton, 1999, Quah, 1996). Büttner (1999a), Elhorst et al. (2002) and Longhi et al. (2002) demonstrate that neglecting spatial dependence can bias downwards the unemployment rate effect on wages. We therefore correct for spatial dependence using a filtering procedure based on Getis and Ord (1992) and Getis (1995). We find empirical support for the wage curve in Bulgaria, Hungary
and Poland. At –0.12, unemployment elasticity of pay in Bulgaria was highest in our sample and close to that found in advanced economies (–0.10). Hungarian and Polish elasticities, -0.05 and –0.04 respectively, were only half of advanced economy elasticities. Spatial dependence was important in Hungary but had no effect in the other countries. In Hungary, only the dynamic specification with spatially filtered variables revealed the wage curve. In the case of Romania, we find no empirical support for a wage curve.

The remainder of this paper is organised as follows. Section 2 discusses previous results on wage curves in transition countries and selected Western economies. In section 3 we present our data followed by a brief discussion of summary statistics of regional unemployment rates and average earnings in Bulgaria, Hungary, Poland and Romania. Section 4 outlines our estimation strategy. The estimates for the regional earnings’ responsiveness to local market conditions are discussed in section 5. Section 6 concludes.
2 STYLISED FACTS

Conventional economic theory going back to Adam Smith holds that regional wages are positively related to regional unemployment rates. This result was formalised by Harris and Todaro (1970) and supported during the 1970s and 1980s by empirical evidence from both individual and aggregated regional data (Hall, 1970 and 1972; Reza, 1978; Adams, 1985; Marston, 1985).

The consensus on a positive relationship between regional wages and unemployment rates was challenged by empirical work uncovering a negative relationship between these variables in the late 1980s and the 1990s. The new work, including contributions by Blackaby and Manning (1987), Freeman (1988), and Card (1990), uses regional data and controls for regional fixed effects. Blanchflower and Oswald (1994) called this negative relationship between regional wages and local unemployment rates a genuine “empirical law in economics”, the wage curve. They brought a considerable amount of empirical evidence from large numbers of individuals in the US, UK and other developed countries supporting not only the negative unemployment elasticity of pay but also that this elasticity is the same in all cases, around –0.10. This result implies that a doubling of the unemployment rate reduces contemporaneous regional wages by ten percent. The publication in 1994 of their book, “The Wage Curve”, generated a large amount of research on the wage curve for different countries, including developing and transition economies. We discuss next the main stylised facts coming out from existing studies on transition countries and selected Western countries for comparison.
Many of the existing studies on transition countries use individual micro data and estimate standard static models with regional and time fixed effects, similar to Blanchflower and Oswald (1994). Micro datasets have the advantage of allowing the use of control variables specific to standard wage equations à la Mincer, such as gender, education, and experience. On the other hand, using micro data has disadvantages as well. Micro data usually exclude specific groups such as those with high earnings (see Partridge and Rickman, 1997, for the case of the US and Büttner, 1999a, for the case of Germany). One way to solve this problem is to aggregate individual data at regional level. Another option is using aggregate regional data. In this latter case, however, changes in the composition of the labour pool and of the unemployed cannot be controlled for.

In many cases, wages are proxied by earnings. As pointed out by Card (1995), the elasticity of earnings to unemployment rates is determined by the elasticity of hourly wages to unemployment and the elasticity of hours worked with respect to unemployment. However, most studies do not control for the numbers of hours worked. This implies that the magnitude of the unemployment elasticity of wages is overestimated.

A number of existing studies estimated wage curves in transition countries during the 1990s and found unemployment elasticities of pay close to the standard result of −0.10. For example, Kertesi and Köllő (1997 and 1999) found unemployment elasticities of pay in Hungary in the range of −0.09 to −0.11 using individual micro data matched with data from 170 labour office districts. In the case of Poland, Duffy and Walsh (2001) used individual data from labour force surveys and data for 49 regions and found unemployment elasticities of pay in the range of −0.08 to −0.11. In the case of Eastern Germany, Elhorst et al. (2002) obtained an unemployment elasticity of pay of −0.112 using individual data for 114 districts. Kállai and
Traistaru (2001) use aggregate regional data from 41 regions in Romania and found an unemployment elasticity of pay of –0.09.

Furthermore, Blanchflower (2001) estimates standard wage curves for a number of 15 transition countries, including the nine EU accession countries and six successors of former Soviet Union, using both individual micro data and aggregate regional data sets. He finds unemployment elasticities of pay ranging from –0.02 to –0.46 in regressions without fixed effects, and 0.003 to –0.52 in regressions with fixed effects. These results imply that controlling for unobserved time invariant regional characteristics yields a higher responsiveness of earnings to unemployment rates. This conclusion is supported by the findings of Kállai and Traistaru (2001) and Pannenberg and Schwarze (1998a).

For Western European countries, typically lower unemployment elasticities of pay than for transition countries have been found, ranging from –0.01 to –0.07 (see for example, Winter-Ebmer, 1996, for the case of Austria, Baltagi and Blien, 1998, Büttnner, 1999a, Longhi et al., 2002, for the case of Western Germany, Jimeno and Bentolila, 1998, and Bajo, Rabadán and Salas, 1999, for the case of Spain, and Bell et al. 2002 for Great Britain). In contrast, a recent paper by Montuenga et al. (2003) finds higher unemployment elasticities of pay for the United Kingdom, France and Spain, at –0.24, –0.29 and –0.30, respectively.

A frequent criticism of the wage curve estimations points to the potential endogeneity of the unemployment rates (see for example, Baltagi and Blien, 1998, Longhi et al., 2002, Jimeno and Bentolila, 1998, and Montuenga et al., 2003). To address this problem, a number of studies use lagged unemployment rates as instruments for unemployment rates (see for }

1 The cross-country comparability of these results is impeded by the different size of the regions. While spatial dependence may induce bias especially in the case of small regions that may not be exactly separable into distinct
example Duffy and Walsh, 2001, and Pannenberg and Schwarze, 1998a). However, instrumenting unemployment rates by own lagged values yields inconsistent and biased results from panel estimators. Consequently, other authors use estimation techniques robust to the lack of strict exogeneity of unemployment rates, such as Arellano-Bond GMM (Jimeno and Bentolila, 1998) and FD-2SLS (Baltagi and Blien, 1998).

A growing literature also points to the need to control and correct for spatial dependence in regressions using regional data. Neglecting spatial correlations between labour market characteristics of neighbouring regions could result in biased estimates. For example, Longhi et al. (2002) address this concern and find that, in the case of Western Germany, correcting for spatial dependence gives a higher unemployment elasticity of pay in comparison to the standard estimation. In contrast, using a different spatial model, Büttnner (1999a) finds that controlling for spatial correlation in unemployment rates of neighbouring regions lowers estimates of unemployment elasticity of pay.

Our paper fills a gap in the literature by providing transition country wage curve estimates that correct for potential endogeneity of unemployment rates and spatial dependence in regional data. We exploit a unique regional dataset for Bulgaria, Hungary, Poland and Romania that allows us to correct for both endogeneity and spatial dependence in a dynamic panel model.

labour market areas, aggregation to larger regions may hide cross-sectional variation in the data. Kertesi and Köllö (1999) find that higher aggregation of a single dataset lowers the estimated elasticity of pay by 0.02.
3 THE DATA AND SUMMARY STATISTICS

In this paper we use a unique data set\(^2\) that includes annual regional labour market data at NUTS 3 level for Bulgaria, Hungary, Poland and Romania for the period 1992-1999.\(^3\) The average size of regions varies in the four countries as shown in Table 1, with average numbers of inhabitants ranging from 300,000 (in Bulgaria) to 790,000 (in Poland).

Insert Table 1 about here

The data were collected from national statistical offices. The regional data used in our analysis include:

- regional average monthly earnings in 1995 prices in the respective national currency
- regional unemployment rates based on end-year numbers of registered unemployed
- sectoral employment shares including agriculture, industry and services

The latter are used as control variables. Given differences in data collection and availability, the datasets are not fully comparable across countries. More detailed information on the variables is given in Table 2.

Insert Table 2 about here

Compared to wage curve studies using micro individual data, this data set does not allow us to control for hours worked or for composition effects in terms of individual characteristics of

\(^2\) This data set was generated in the framework of the research project "Regional Labour Market Adjustment in the Accession Candidate Countries" undertaken with financial support from the European Commission’s RTD 5\(^{th}\) Framework Programme.
workers and the unemployed. In addition, regional variation in real earnings data is not fully reflected by our data since regional price indices could not be used. For these reasons, our estimates of the unemployment elasticity of pay may be biased upward\(^4\).

Our panel exhibits substantial variation in unemployment rates, both cross-sectionally and over time (Figures 1a-d). In the 1990s, unemployment was relatively low in Hungary and Romania, with unemployment rates between 7 to 12 percent, while Poland and Bulgaria experienced rather high unemployment, with average regional unemployment rates ranging from 8 to 18 percent. The coefficients of variation of unemployment rates suggest that regional disparities with respect to unemployment rates were high in Hungary but less important in Bulgaria, Romania and Poland.

\[\text{Insert Figures 1a-d about here}\]

As shown in Figures 2a-d, average unemployment rates in 1998 were lower than the comparable 1993 figures in all countries investigated.

\[\text{Insert Figures 2a-d about here}\]

Regional disparities with respect to earnings were the highest in Hungary and the lowest in Romania, as shown in Figures 3a-d.

\[\text{Insert Figures 3a-d about here}\]

\(^3\) The respective spatial units in the countries considered are: oblast (Bulgaria), megye (Hungary), województwa (Poland), and judet (Romania). For Poland, due to administrative reform, appropriate data are no longer available for 1999, while for Bulgaria, our dataset also includes data from 1991.

\(^4\) Blanchflower and Oswald (1995) found that the wage curve estimates for the United Kingdom were robust to the use of regional price indices. Although this may not directly translate to the countries included into our study, bias from using a national price deflator can be considered small.
Real average monthly earnings increased by about 30 percent in Hungary and Poland over the period from 1993 to 1998, but decreased slightly in Romania and decreased strongly in Bulgaria over the same period (see Figures 4a-d).

Insert Figures 4a-d about here
4 MODEL SPECIFICATIONS

The existing literature on transition economies’ wage curves typically estimate the unemployment elasticity of pay using a standard static panel model which includes regional and time fixed effects (the Least Square Dummy Variables, LSDV estimator). However, this estimator has a number of shortcomings.

Static panel models may fail to capture characteristics specific to the relationship between wages and unemployment for a number of reasons. First, regional unemployment rates and wages may be simultaneously determined. This calls for a panel estimation methodology which is robust to the endogeneity of regressors. Second, the possibility of wage inertia needs to be allowed for (see e.g. Büttner, 1999a), which requires a dynamic model. As Nickell (1981) and Kiviet (1995) point out, the LSDV estimator is biased and inconsistent in the case of dynamic panels (see also Baltagi, 2001). While the bias may be not too large in very large samples, it is a significant problem in small samples. Third, wages may react to unemployment with delay, or unemployment hysteresis may be present in the wage curve (see for example Jimeno and Bentolila, 1998, for the Spanish wage curve exhibiting hysteresis) which implies that lagged values of the unemployment rate variable should be included in the regression. To appropriately address these concerns, we estimate the wage curve in an autoregressive distributed lag model framework, using the estimator proposed by Arellano and Bond (1991).

5 Blanchflower and Oswald (1994) argue that static wage curves do not suffer from simultaneity bias. However, Baltagi and Blien (1998) find evidence against the strict exogeneity of unemployment rates with respect to wages in Western Germany in the 1980s.
6 For example, Judson and Owen (1999) find that even when T = 30, the size of the bias could be around 20 per cent of the true value of the estimated coefficient.
Previous studies also fail to account for spatial dependence. As mentioned above, spatial dependence may arise from correlations in labour market characteristics of neighbouring regions. As pointed out by Büttner (1999a), one can distinguish between three types of spatial dependence. In the first type, unobserved regional characteristics, such as labour market accessibility, may be spatially correlated (see also Elhorst et al., 2002). A second type of spatial dependence arises from common shocks to contiguous regions, causing error autoregression. Finally, spatial dependence might exist in the dependent variable or the regressors resulting from the similarity of employment conditions in neighbouring districts.

For example, Longhi et al. (2002) point to regions’ wage levels raising because of higher alternative wages in surrounding regions. With respect to wage curves, Büttner (1999a), Longhi et al. (2002) and Elhorst et al. (2002) found that neglecting spatial effects leads to an underestimation of the unemployment elasticity of pay.

In this paper, we estimate wage curves for Bulgaria, Hungary, Romania and Poland using first a standard static fixed effects model and then a dynamic fixed effects model. We then account for spatial dependence and re-estimate the dynamic panel model with spatially filtered variables.\(^7\)

In order to allow comparability with previous studies and the assessment of the bias from neglecting the dynamic nature of the relationship between unemployment and earnings, we first estimate the following standard static fixed effects model:

\[
\log w_{rt} = \beta \log U_{rt} + \gamma X'_{rt} + \mu_r + \lambda_t + \epsilon_{rt}
\]

\(^7\) As concerns the data on Bulgaria which cover the years 1991-1999, for cross-country comparability the 1991 observations are left out in the estimations of the static model, while we made use of them in the dynamic panel data estimations to be able to allow for a higher-order lag structure. On the other hand, for Poland no data are available for 1999.
where

\[\log w_{rt} = \sum_k \alpha_k \log w_{r,t-k} + \sum_l \beta_l \log U_{r,t-l} + \sum_m \gamma_m X'_{r,t-m} + \mu_r + \lambda_t + \varepsilon_{rt} \, . \]

(4)

The transition economics literature points to two phases in CEEC transition to market economies. In the first years of transition (up to 1994), market institutions were put in place while the second phase of transition consists of structural reforms. One can expect that the relationship between earnings and unemployment rates was different in the first transition phase than in the second phase. To take account of this fact, we estimate separate wage curves for each transition phase in each country.

Next, we estimate a dynamic panel model with fixed effects as suggested by Arellano and Bond (1991). The estimated dynamic model has the following form:

The Arellano-Bond GMM procedure includes the following estimation steps. The model is first-differenced in order to remove the fixed effects. The differenced equation is then estimated using instrumental variables. As instruments, for each year, all available lags of the
variables in levels are used. Since these are correlated with differenced variables, but uncorrelated with differenced error terms (unless the error terms in levels display serial correlation), they provide a set of valid instruments. While first order autocorrelation in the first-differenced residuals complies with the estimator’s consistency requirements, it is necessary that the differenced error terms are free of second order correlation (Arellano and Bond, 1991).

We choose the most appropriate specification of the dynamic wage curve model for each country by the following procedure. We start with a model specification where each variable is included with up to its third lag among the regressors. When the third year lagged variables are not significant we start with the two years lagged specification. In order to decide whether the unemployment rate is exogenous or predetermined we use the Sargan test statistics. Then, in the chosen model, we gradually reduce the number of regressors by dropping insignificant lagged variables. For each of these models, we report the one-step GMM estimator with robust standard errors. Since the standard errors from the two-step GMM are frequently found downward biased (Arellano and Bond 1991), for inference on single variables’ coefficients we rely on the one-step estimator. For the choice between specifications, however, we use the Sargan test of over-identifying restrictions after the corresponding two-step GMM estimator. Since consistency of the estimator requires the absence of second-order autocorrelation in the

8 As elements of X we employ the shares of employment in industry and services in the cases of Bulgaria, Poland and Romania, and the shares of employment in agriculture and industry in the case of Hungary (see Table 2). In each case the sector pair selected exhibited the lowest correlation with each other.

9 Due to the low number of time periods available for our data, more lags would substantially reduce the quality of statistical inference from our estimations. Therefore, we do not consider the possibility of further lags.

10 Arellano and Bond (1991) recommend the one-step GMM estimator for inference on coefficients’ significance, since according to their findings, standard errors from the two-step estimator tend to contain substantial downward bias in small samples.

11 No robust Sargan test using one-step residuals is available.
differenced residuals, we consider only specifications that fulfill this criterion. This is checked by the respective tests developed by Arellano and Bond (1991).

The dynamic wage curve model with one lag corresponds to the Phillips curve. This model is often used in contrast to the wage curve with the aim to understand whether the wage equation is a relationship between unemployment and wage levels, as suggested by the wage curve, or wage changes, as suggested by the Phillips curve (see Bell et al., 2002). To assess whether a Phillips curve interpretation of the regional labour market dynamics in the four countries included in our study rather holds, we re-estimate our dynamic wage curve model with the restriction that the dependent variable enters with the first lag only (for more details, see Büttner, 1999b). The estimated model is the following:

\[
\begin{align*}
\log w_{rt} &= \alpha \log w_{r,t-1} + \sum \beta_l \log U_{r,t-l} + \sum \gamma_m X'_{r,t-m} + \mu_r + \lambda_t + \epsilon_{r,t}.
\end{align*}
\]

This specification includes a test of the Phillips curve nested into the wage curve model. In particular, if \(\alpha=1\), one gets the familiar result that the wage change is determined by unemployment, whereas \(\alpha=0\) indicates a static wage curve. Intermediate values point to the presence of both an error correction mechanism and nominal wage inertia (Pannenberg and Schwarze, 1998b).

As discussed above, the fixed effects included in the wage curve models are likely to show spatial autocorrelation due to regional interaction and the presence of spillover effects (Longhi et al, 2002). We first check for spatial autocorrelation using the Lagrange multiplier (LM) calculated on the basis of Moran’s I statistics. The Moran’s I coefficients are calculated as follows:

\[
I = [(x-\mu)' W (x-\mu)] / [(x-\mu)'(x-\mu)]
\]

(6),
where \(x \) is the variable to be checked for spatial autocorrelation, \(\mu \) is its mean, and \(W \) is a row-standardized weights matrix. The elements of the weights matrix represent the inverse distances between pairs of regions’ capitals (in km on public roads). The LM statistics is asymptotically \(\chi^2 \)-distributed with one degree of freedom,\(^{12}\) and it is obtained as follows:

\[
LM = (N I)^2 / [\text{tr} (W'W + W^2)]
\]

...(7),

where \(N \) is the number of observations and \(W \) is the spatial weights matrix as described above.

As pointed out by Badinger et al. (2002), an estimation procedure for a spatial dynamic panel model incorporating spatially lagged regressors or an error process with spatial autocorrelation is not yet available. Therefore, in order to control for spatial effects, they use a two-step procedure: first, spatial autocorrelation is removed from the variables by a filter based on a spatial association measure put forward by Getis and Ord (1992) and Getis (1995). Then, the model is re-estimated with standard techniques using the filtered variables\(^ {13}\). The filtering methodology is defined as follows:

\[
x^F_i = x_i [\sum_j w_{ij}(\delta) / (N-1)] / G_i(\delta),
\]

...(8)

with

\[
G_i(\delta) = \sum_j w_{ij}(\delta) x_j / \sum_j x_j, \quad i \neq j.
\]

...(9),

where \(w_{ij} \) are elements of the spatial weights matrix \(W \), and \(\delta \) is a distance parameter indicating the extent to which further distant observations are downweighted. Following the approach of Badinger et al. (2002), we repeat the estimation procedure described above with

\(^{12}\) For details on this methodology, see Longhi et al. (2002).
variables from which spatial correlation is eliminated by filtering. Here, we again use the above mentioned spatial weights matrix without assigning over-proportionally decreasing importance to farther distant observations, i.e. we assume \(w_{ij}(\delta)=(d_{ij})^{\delta} \) with \(\delta=1 \), where \(d_{ij} \) denotes the road distance between county capitals.

\[\]

\[\]

\[\]

\[\]

13 The Getis-Ord filter is also used by Badinger and Url (2002) to estimate determinants of regional unemployment in Austria in 1991.
5 EMPIRICAL RESULTS

Results of the wage curve estimations for Bulgaria, Hungary, Poland and Romania are described below.14

Table 3 shows the results of the standard wage curve static model with time and region fixed effects following the model specification described by (3).

\textit{Insert Table 3 about here}

We find that, over the whole period, average earnings were negatively and significantly associated with regional unemployment rates in Bulgaria and Poland as suggested by the wage curve literature. The unemployment elasticity of pay was around –0.05 percent in Bulgaria and –0.06 in Poland. These results are close to the findings of Blanchflower (2001) for the case of Bulgaria and Duffy and Walsh (2001) for the case of Poland. In the cases of Hungary and Romania, the coefficients of regional unemployment rates are negative but not significant, suggesting no clear pattern in the relationship between regional real earnings and unemployment rates.

As discussed above, we expect a structural difference between early and late phases of transition. Consequently, we re-estimate the static wage curve model for two sub-periods, namely, 1992-1994 and 1995-1999. The estimation results are displayed in Table 4.

\textit{Insert Table 4 about here}

14Estimations were obtained using the STATA version 7 software.
In the case of Bulgaria we find a significant and negative relationship between average real regional earnings and regional unemployment rates in the early transition period, with an unemployment elasticity of pay of −0.07, but no clear pattern of this relationship in the later transition phase. In contrast, Poland exhibits a wage curve in the second sub-period, with an unemployment elasticity of pay similar in magnitude to that of Bulgaria, -0.07. In the cases of Hungary and Romania, unemployment elasticities of pay were not significantly different from zero. The F statistics indicate that the hypothesis of equal coefficients for the two sub-periods can be rejected with the exception of the case of Hungary.

As mentioned above, the standard static LSDV estimator does not capture the dynamic relationship between wages and unemployment. In addition, wages and unemployment are likely to be endogenous. To address these concerns, we estimate the wage curve using a dynamic panel model as suggested by Arellano and Bond (1991). The model specification is described by (4). The estimation results are shown in Table 5.

Insert Table 5 about here

The Sargan test indicates that, with the exception of Poland, unemployment rates are predetermined. We find that in Bulgaria and Poland, regional unemployment rates are negatively and significantly related to average real regional earnings. While in Bulgaria the responsiveness of earnings is high, -0.12, and contemporaneous, in the case of Poland real earnings adjust to changes in regional unemployment rates with a one year delay, and the elasticity is low, -0.04.

We further calculate the long-run effect of changing regional unemployment rates on regional real earnings captured by the long-run multiplier calculated on the basis of the obtained coefficients for the lagged regional real earnings and unemployment rates. In the case of
Bulgaria, the size of the calculated long-run multiplier is −0.18, suggesting that, in the long run, a doubling of local unemployment rates results in a declining of real regional earnings by 18 percent. In Poland, such a doubling would only reduce earnings by 3 percent. The long-term relationship between regional unemployment rates and real earnings appears positive in Hungary, with a long-run multiplier amounting to 0.06. The long-run multiplier is significant for all the three countries at the 5 percent (Bulgaria, Poland) and 10 percent (Hungary) level, respectively.

In the next step, we compare our results obtained from the unrestricted dynamic wage curve model with the Phillips curve. Table 6 shows the results of the corresponding model specification given in (5).

Insert Table 6 about here

The obtained short-term unemployment elasticities of pay in the Phillips curve specification are close to the previous results obtained with the dynamic wage curve model with the exception of Hungary. In this latter case, we find a negative and significant coefficient for one year lagged regional unemployment rate suggesting that average real regional earnings adjust with a one year delay to a change in local market conditions. The unemployment elasticity of pay is −0.05.

We further check for spatial dependence using the LM test given in (6). The results of the LM statistics on spatial autocorrelation are shown in Table 7.

Insert Table 7 about here

We find no evidence of spatial autocorrelation in the case of regional real earnings. In contrast, our results suggest that, with the exception of Bulgaria, regional unemployment rates
are affected by spatial autocorrelation in specific years: over the period 1994-1998, in the case of Hungary; 1992-1993, in Poland; and 1992, 1995, and 1996, in the case of Romania. The control variables are spatially autocorrelated only in Poland. Taking these results into account we apply the spatial filtering procedure explained in the previous section and re-estimate the dynamic wage curve model with the resulting spatially filtered variables.

Table 8 shows the results of the estimated dynamic model with spatially filtered variables.

Insert Table 8 about here

As shown above, the estimated unemployment elasticities of pay are close to those obtained with the non-filtered variables with the exception of Hungary. After correcting for spatial dependence we find that regional real earnings are negatively and significantly related to the two year lagged local unemployment rates. A doubling of the unemployment rate results in a decline of regional real earnings by 5 percent two years later.

The calculated long run effect of unemployment rates on regional real earnings is \(-0.20\) in Bulgaria and \(-0.04\) in Poland and Hungary. For the latter, however, the long run effect is not significant. Consequently, we can conclude that in Hungary, earnings respond to unemployment in the short run only, while in the long run, this effect is annihilated by the dynamics of the adjustment process.
6 CONCLUSIONS

If wages are responsive to unemployment at the regional level, regional wage adjustment can allow markets characterized by low interregional migration and inflexible exchange rates to adjust to labour demand shocks. This is important in transition countries given the growing regional disparities in labour market performance and the need to adjust to potential external shocks following their accession to the European Union and later to the Economic and Monetary Union.

Previous studies found that in many transition countries regional wages seem to respond to local labour market conditions. The estimated unemployment elasticity of pay is typically close to the standard result of the literature on the wage curve, -0.10. However, most of these studies use static estimators and do not account for potential endogeneity and spatial dependence.

Using improved econometric techniques we bring new empirical evidence about the relationship between regional wages and unemployment rates in Bulgaria, Hungary, Poland and Romania. We first estimate a standard static fixed effects model allowing for comparisons with results from existing literature. Further, we account for endogeneity in a dynamic wage curve model. In addition, we check and correct for the presence of spatial dependence in the regional variables.

We find evidence on the adjustment of average regional real earnings over the past decade in Bulgaria, Hungary and Poland. The unemployment elasticity of pay was the highest in Bulgaria, -0.12, while in Hungary and Poland it was lower, -0.05 and -0.04 respectively. While in Bulgaria the regional earnings adjustment to local labour market conditions took
place contemporaneously, in Hungary and Poland this adjustment took place with a two years and one year delay, respectively. The spatial effects played an important role in Hungary. In the case of Romania, we find no evidence for the adjustment of regional earnings to local labour market conditions.

Our results indicate that wages could act as adjustment mechanism in equilibrating regional labour markets in the accession EU member states. This adjustment is likely to take place however with a certain delay which implies that labour market disequilibria might persist.
REFERENCES

Adams, J.D., 1985, Permanent differences in unemployment and permanent wage differentials, Quarterly Journal of Economics 100, 29-56.

Freeman, R.B., 1988, Evaluating the European view that the United States has no unemployment problem, American Economic Review Papers and Proceedings 78, 294-299.

TABLES AND FIGURES

Table 1: Data Set Characteristics

<table>
<thead>
<tr>
<th>Country</th>
<th>No. of regions</th>
<th>Average size, sqkm</th>
<th>Average population 1996, 1000s</th>
<th>Data available</th>
<th>No. of obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulgaria</td>
<td>28</td>
<td>3965</td>
<td>298</td>
<td>1991-99</td>
<td>252</td>
</tr>
<tr>
<td>Hungary</td>
<td>20</td>
<td>4651</td>
<td>511</td>
<td>1992-99</td>
<td>160</td>
</tr>
<tr>
<td>Poland</td>
<td>49</td>
<td>6381</td>
<td>789</td>
<td>1992-98</td>
<td>343</td>
</tr>
<tr>
<td>Romania</td>
<td>41</td>
<td>5876</td>
<td>551</td>
<td>1992-99</td>
<td>328</td>
</tr>
</tbody>
</table>

Table 2: Variable Definitions

<table>
<thead>
<tr>
<th>Country</th>
<th>Earnings in 1995 prices (CPI), national currency (in logarithms)</th>
<th>Unemployment rates (in logarithms)</th>
<th>Sectoral employment shares</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Variable labels</td>
<td>lrwage</td>
<td>lurate</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>Average net monthly earnings of persons employed</td>
<td>Official unemployment rates</td>
<td>industry (mining, manufacturing, electricity, gas, water, and construction)</td>
</tr>
<tr>
<td>Hungary</td>
<td>Average gross monthly earnings of employees</td>
<td>Official unemployment rates, end-year</td>
<td>agriculture (incl. hunting, forestry, and fishing)</td>
</tr>
<tr>
<td>Poland</td>
<td>Average gross monthly wages and salaries</td>
<td>Official unemployment rates, end-year</td>
<td>industry (mining, manufacturing, electricity, gas, water, and construction)</td>
</tr>
<tr>
<td>Romania</td>
<td>Average gross monthly salary of employees</td>
<td>Official unemployment rates, end-year</td>
<td>industry (mining, manufacturing, electricity, gas, water, and construction)</td>
</tr>
</tbody>
</table>
Figures 1a-d: Regional Unemployment Rates: Average and Coefficient of Variation

Bulgaria

 Hungray

 Poland

 Romania
Figure 2a: Regional Unemployment Rates 1993 and 1998, Bulgaria

$y = 3.91 + 0.59 \times$

Figure 2b: Regional Unemployment Rates 1993 and 1998, Hungary

$y = -2.67 + 0.98 \times$
Figure 2c: Regional Unemployment Rates 1993 and 1998, Poland

Figure 2d: Regional Unemployment Rates 1993 and 1998, Romania
Figures 3a-d: Regional Monthly Average Earnings: Average and Coefficient of Variation
Figure 4a: Regional Average Earnings 1993 and 1998, Bulgaria

Regional Average Earnings 1993 and 1998: Bulgaria

\[y = -5998 + 0.63 \, x \]

Figure 4b: Regional Average Earnings 1993 and 1998, Hungary

Regional Average Earnings 1993 and 1998: Hungary

\[y = -11270 + 1.28 \, x \]
Figure 4c: Regional Average Earnings 1993 and 1998, Poland

Regional Average Earnings 1993 and 1998: Poland

\[y = -70.3 + 1.30 \times \]

Figure 4d: Regional Average Earnings 1993 and 1998, Romania

Regional Average Earnings 1993 and 1998: Romania

\[y = 14167 + 0.89 \times \]
Table 3: Estimation Results: Static Fixed Effects Model

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lurate</td>
<td>-0.05***</td>
<td>-0.01</td>
<td>-0.06***</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.03)</td>
<td>(0.02)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>sempl1</td>
<td>0.60***</td>
<td>-0.06</td>
<td>0.10</td>
<td>-0.33</td>
</tr>
<tr>
<td></td>
<td>(0.22)</td>
<td>(0.24)</td>
<td>(0.08)</td>
<td>(0.21)</td>
</tr>
<tr>
<td>sempl2</td>
<td>0.13</td>
<td>0.23*</td>
<td>-0.09**</td>
<td>-0.89***</td>
</tr>
<tr>
<td></td>
<td>(0.20)</td>
<td>(0.08)</td>
<td>(0.04)</td>
<td>(0.17)</td>
</tr>
<tr>
<td>N obs.</td>
<td>784</td>
<td>160</td>
<td>343</td>
<td>328</td>
</tr>
<tr>
<td>R²</td>
<td>0.86</td>
<td>0.15</td>
<td>0.38</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Regressors include time dummies and regional fixed effects. Robust standard errors are reported in parentheses. ***, **, * indicate significance at 1, 5, 10 percent level respectively.

Table 4: Estimation Results: Static Fixed Effects Model, Two Subperiods

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lurate</td>
<td>-0.07***</td>
<td>-0.03</td>
<td>-0.003</td>
<td>-0.01</td>
<td>-0.002</td>
<td>-0.07***</td>
<td>-0.01</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td>(0.05)</td>
<td>(0.02)</td>
<td>(0.03)</td>
<td>(0.05)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>sempl1</td>
<td>0.17</td>
<td>-0.08</td>
<td>-0.24</td>
<td>*-0.94</td>
<td>0.17</td>
<td>0.11</td>
<td>0.23</td>
<td>-0.53</td>
</tr>
<tr>
<td></td>
<td>(0.17)</td>
<td>(0.28)</td>
<td>(0.24)</td>
<td>(0.52)</td>
<td>(0.20)</td>
<td>(0.09)</td>
<td>(0.21)</td>
<td>(0.34)</td>
</tr>
<tr>
<td>sempl2</td>
<td>0.47***</td>
<td>-0.43</td>
<td>0.30</td>
<td>0.10</td>
<td>-0.02</td>
<td>-0.23*</td>
<td>-0.09</td>
<td>-1.12***</td>
</tr>
<tr>
<td></td>
<td>(0.20)</td>
<td>(0.29)</td>
<td>(0.24)</td>
<td>(0.08)</td>
<td>(0.05)</td>
<td>(0.07)</td>
<td>(0.25)</td>
<td>(0.27)</td>
</tr>
<tr>
<td>N obs.</td>
<td>140</td>
<td>84</td>
<td>60</td>
<td>100</td>
<td>147</td>
<td>196</td>
<td>123</td>
<td>205</td>
</tr>
<tr>
<td>overall R²</td>
<td>0.78</td>
<td>0.40</td>
<td>0.03</td>
<td>0.25</td>
<td>0.18</td>
<td>0.24</td>
<td>0.48</td>
<td>0.10</td>
</tr>
<tr>
<td>lurates F</td>
<td>0.47</td>
<td>0.04</td>
<td>0.04</td>
<td>4.02</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr>F</td>
<td>0.49</td>
<td>0.84</td>
<td>0.05</td>
<td>0.05</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>all variables F / Pr>F</td>
<td>2.44</td>
<td>0.56</td>
<td>3.29</td>
<td>0.02</td>
<td>2.62</td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
</tbody>
</table>

Regressors include time dummies and regional fixed effects. Robust standard errors are reported in parentheses. ***, **, * indicate significance at 1, 5, 10 percent level respectively. F test on equality of coefficients β_1 and β_2 in two subperiods – $H_0: \beta_1-\beta_2=0$.
Table 5: Estimation Results: 1-step GMM

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lrwage_t</td>
<td>0.75***</td>
<td>0.51***</td>
<td>0.31</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
<td>(0.09)</td>
<td>(0.20)</td>
<td>(0.13)</td>
</tr>
<tr>
<td>lrwage_t-1</td>
<td>-0.19***</td>
<td>0.13*</td>
<td>-0.25***</td>
<td>-0.16**</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
<td>(0.07)</td>
<td>(0.08)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>lurate_t</td>
<td>-0.12***</td>
<td>-0.01</td>
<td>-0.04**</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.01)</td>
<td>(0.02)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>lurate_t-1</td>
<td>0.04</td>
<td>-0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lurate_t-2</td>
<td>0.04*</td>
<td>-0.04</td>
<td>-0.25***</td>
<td>-0.16**</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.03)</td>
<td>(0.08)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>lurate_t-3</td>
<td></td>
<td>0.02*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_empl1_t</td>
<td></td>
<td>0.43**</td>
<td>0.14**</td>
<td>-0.69**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.21)</td>
<td>(0.06)</td>
<td>(0.32)</td>
</tr>
<tr>
<td>s_empl1_t-1</td>
<td></td>
<td></td>
<td>0.33**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.18)</td>
<td></td>
</tr>
<tr>
<td>s_empl2_t</td>
<td></td>
<td>0.19***</td>
<td>-0.14***</td>
<td>-1.18***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.06)</td>
<td>(0.04)</td>
<td>(0.20)</td>
</tr>
<tr>
<td>s_empl2_t-1</td>
<td></td>
<td>-0.12***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lurate_long-run multiplier</td>
<td>-0.18</td>
<td>0.06</td>
<td>-0.03</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Wald χ^2</th>
<th>$P>\chi^2$</th>
<th>α χ^2</th>
<th>$P>\alpha\chi^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>predet.</td>
<td>lurate</td>
<td>lurate</td>
<td>--</td>
<td>lurate</td>
</tr>
<tr>
<td>No. of obs.</td>
<td>168</td>
<td>80</td>
<td>196</td>
<td>164</td>
</tr>
<tr>
<td>Wald χ^2</td>
<td>4078.45</td>
<td>15701.86</td>
<td>109.21</td>
<td>5851.65</td>
</tr>
<tr>
<td>ARI errors z</td>
<td>-3.45</td>
<td>-2.96</td>
<td>-1.26</td>
<td>-1.78</td>
</tr>
<tr>
<td>$P>\chi^2$</td>
<td>0.001</td>
<td>0.003</td>
<td>0.21</td>
<td>0.07</td>
</tr>
<tr>
<td>AR2 errors z</td>
<td>0.67</td>
<td>0.40</td>
<td>1.31</td>
<td>0.30</td>
</tr>
<tr>
<td>$P>\chi^2$</td>
<td>0.51</td>
<td>0.69</td>
<td>0.19</td>
<td>0.76</td>
</tr>
<tr>
<td>Sargan χ^2</td>
<td>14.97</td>
<td>6.07</td>
<td>1.02</td>
<td>33.27</td>
</tr>
<tr>
<td>$P>\chi^2$</td>
<td>1.00</td>
<td>1.00</td>
<td>0.31</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Variables are in first differences. Regressors include time dummies. Robust standard errors are reported in parentheses. ***, **, * indicate significance at 1, 5, 10 percent level respectively. Tests: Wald test on significance of long-run multiplier – H_0: The long-run multiplier calculated from the individually significant coefficients is insignificant. Arellano-Bond test on average order 1 autocovariance in residuals (AR1 errors) – H_0: The residuals are not autocorrelated. Arellano-Bond test on average order 1 autocovariance in residuals (AR1 errors) – H_0: The residuals are not autocorrelated. Sargan test of over-identifying restrictions (results from 2-step GMM with standard errors not corrected for heteroskedasticity) - H_0: The over-identifying restrictions are valid.
Table 6: Estimation Results: 1-step GMM, Phillips Curve Specification

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lrwage_t</td>
<td>0.65***</td>
<td>0.55***</td>
<td>0.25*</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.07)</td>
<td>(0.14)</td>
<td>(0.12)</td>
</tr>
<tr>
<td>lrwage_t-1</td>
<td>-0.12***</td>
<td>-0.005</td>
<td>-0.03**</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>lrwage_t-2</td>
<td>0.05</td>
<td>-0.05*</td>
<td>-0.03**</td>
<td>-0.59***</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.03)</td>
<td>(0.04)</td>
<td>(0.27)</td>
</tr>
<tr>
<td>lrwage_t-3</td>
<td>0.05**</td>
<td>-0.03</td>
<td>-0.03**</td>
<td>-1.14***</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.03)</td>
<td>(0.02)</td>
<td>(0.19)</td>
</tr>
<tr>
<td>sempl1_t</td>
<td>0.40</td>
<td>0.13***</td>
<td></td>
<td>-0.59***</td>
</tr>
<tr>
<td></td>
<td>(0.25)</td>
<td>(0.04)</td>
<td></td>
<td>(0.27)</td>
</tr>
<tr>
<td>sempl1_t-1</td>
<td>0.32*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.18)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sempl1_t-2</td>
<td>0.18***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.56)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sempl1_t-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sempl2_t</td>
<td>-0.13***</td>
<td></td>
<td>-0.09***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td></td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>sempl2_t-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lrwage long-run multiplier</td>
<td>-0.19</td>
<td>-0.06</td>
<td>-0.05</td>
<td>--</td>
</tr>
<tr>
<td>Wald χ²</td>
<td>2.78</td>
<td>0.73</td>
<td>3.87</td>
<td></td>
</tr>
<tr>
<td>Pr>χ²</td>
<td>0.09</td>
<td>0.39</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>predet.</td>
<td>lrwage</td>
<td>lrwate</td>
<td>--</td>
<td>lrwate</td>
</tr>
<tr>
<td>No. of obs.</td>
<td>168</td>
<td>80</td>
<td>245</td>
<td>246</td>
</tr>
<tr>
<td>Wald χ²</td>
<td>2388.84</td>
<td>11774.65</td>
<td>347.63</td>
<td>3534.92</td>
</tr>
<tr>
<td>AR1 errors z</td>
<td>-3.05</td>
<td>-2.61</td>
<td>-1.49</td>
<td>-2.67</td>
</tr>
<tr>
<td>Pr>z</td>
<td>0.002</td>
<td>0.01</td>
<td>0.14</td>
<td>0.01</td>
</tr>
<tr>
<td>AR2 errors z</td>
<td>-0.84</td>
<td>1.20</td>
<td>-2.12</td>
<td>-1.39</td>
</tr>
<tr>
<td>Pr>z</td>
<td>0.40</td>
<td>0.23</td>
<td>0.03</td>
<td>0.16</td>
</tr>
<tr>
<td>Sargan χ²</td>
<td>18.75</td>
<td>7.27</td>
<td>9.10</td>
<td>31.99</td>
</tr>
<tr>
<td>Pr>χ²</td>
<td>1.00</td>
<td>1.00</td>
<td>0.82</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Variables are in first differences. Regressors include time dummies. Robust standard errors are reported in parentheses. ***, **, * indicate significance at 1, 5, 10 percent level respectively. On the tests reported, see Notes to Table 5.
Table 7: Spatial Autocorrelation in the Variables

<table>
<thead>
<tr>
<th></th>
<th>lrwage</th>
<th>lurate</th>
<th>s_empl1</th>
<th>s_empl2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LM</td>
<td>Pr>LM</td>
<td>LM</td>
<td>Pr>LM</td>
</tr>
<tr>
<td>Bulgaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>0.0050</td>
<td>0.94</td>
<td>1.1804</td>
<td>0.28</td>
</tr>
<tr>
<td>1993</td>
<td>0.0340</td>
<td>0.85</td>
<td>0.1528</td>
<td>0.70</td>
</tr>
<tr>
<td>1994</td>
<td>0.0670</td>
<td>0.80</td>
<td>0.0528</td>
<td>0.82</td>
</tr>
<tr>
<td>1995</td>
<td>0.0003</td>
<td>0.99</td>
<td>0.1948</td>
<td>0.66</td>
</tr>
<tr>
<td>1996</td>
<td>0.1715</td>
<td>0.68</td>
<td>0.5922</td>
<td>0.44</td>
</tr>
<tr>
<td>1997</td>
<td>0.1437</td>
<td>0.70</td>
<td>0.7642</td>
<td>0.38</td>
</tr>
<tr>
<td>1998</td>
<td>0.0005</td>
<td>0.98</td>
<td>0.9337</td>
<td>0.33</td>
</tr>
<tr>
<td>1999</td>
<td>0.0303</td>
<td>0.86</td>
<td>1.3618</td>
<td>0.24</td>
</tr>
<tr>
<td>Hungary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>0.0592</td>
<td>0.81</td>
<td>1.6607</td>
<td>0.20</td>
</tr>
<tr>
<td>1993</td>
<td>0.0008</td>
<td>0.98</td>
<td>2.2632</td>
<td>0.13</td>
</tr>
<tr>
<td>1994</td>
<td>0.2266</td>
<td>0.63</td>
<td>2.8646</td>
<td>0.09</td>
</tr>
<tr>
<td>1995</td>
<td>0.1388</td>
<td>0.71</td>
<td>2.7132</td>
<td>0.10</td>
</tr>
<tr>
<td>1996</td>
<td>0.3404</td>
<td>0.56</td>
<td>3.1808</td>
<td>0.07</td>
</tr>
<tr>
<td>1997</td>
<td>0.8689</td>
<td>0.35</td>
<td>2.7409</td>
<td>0.10</td>
</tr>
<tr>
<td>1998</td>
<td>0.6365</td>
<td>0.42</td>
<td>2.8495</td>
<td>0.09</td>
</tr>
<tr>
<td>1999</td>
<td>0.8371</td>
<td>0.36</td>
<td>1.9154</td>
<td>0.17</td>
</tr>
<tr>
<td>Poland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>0.1646</td>
<td>0.68</td>
<td>3.6663</td>
<td>0.06</td>
</tr>
<tr>
<td>1993</td>
<td>0.2687</td>
<td>0.60</td>
<td>4.2243</td>
<td>0.04</td>
</tr>
<tr>
<td>1994</td>
<td>0.4166</td>
<td>0.52</td>
<td>1.9126</td>
<td>0.17</td>
</tr>
<tr>
<td>1995</td>
<td>0.5720</td>
<td>0.45</td>
<td>1.2581</td>
<td>0.26</td>
</tr>
<tr>
<td>1996</td>
<td>0.6188</td>
<td>0.43</td>
<td>0.9060</td>
<td>0.34</td>
</tr>
<tr>
<td>1997</td>
<td>0.8126</td>
<td>0.37</td>
<td>0.1499</td>
<td>0.70</td>
</tr>
<tr>
<td>1998</td>
<td>0.6637</td>
<td>0.42</td>
<td>0.0088</td>
<td>0.93</td>
</tr>
<tr>
<td>Romania</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>0.0226</td>
<td>0.88</td>
<td>3.1051</td>
<td>0.08</td>
</tr>
<tr>
<td>1993</td>
<td>0.0653</td>
<td>0.80</td>
<td>0.9988</td>
<td>0.32</td>
</tr>
<tr>
<td>1994</td>
<td>0.2751</td>
<td>0.60</td>
<td>2.0767</td>
<td>0.15</td>
</tr>
<tr>
<td>1995</td>
<td>0.0881</td>
<td>0.77</td>
<td>3.3467</td>
<td>0.07</td>
</tr>
<tr>
<td>1996</td>
<td>0.0448</td>
<td>0.83</td>
<td>3.5424</td>
<td>0.06</td>
</tr>
<tr>
<td>1997</td>
<td>0.0075</td>
<td>0.93</td>
<td>2.2205</td>
<td>0.14</td>
</tr>
<tr>
<td>1998</td>
<td>0.6295</td>
<td>0.43</td>
<td>1.2585</td>
<td>0.26</td>
</tr>
<tr>
<td>1999</td>
<td>0.4778</td>
<td>0.49</td>
<td>1.0421</td>
<td>0.31</td>
</tr>
</tbody>
</table>

LM test on spatial autocorrelation in the variables – H₀: The variable is not spatially autocorrelated.
Table 8: Estimation Results: 1-step GMM, Spatially Filtered Variables

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lrwage _t-1</td>
<td>0.67***</td>
<td>0.48***</td>
<td>0.35*</td>
<td>0.08</td>
</tr>
<tr>
<td>lrwage _t-2</td>
<td>-0.27***</td>
<td></td>
<td>-0.25***</td>
<td>-0.15**</td>
</tr>
<tr>
<td>lurate__t</td>
<td>-0.12**</td>
<td>-0.003</td>
<td>-0.04**</td>
<td>0.01</td>
</tr>
<tr>
<td>lurate__t-1</td>
<td></td>
<td>-0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lurate__t-2</td>
<td>-0.05*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lurate__t-3</td>
<td>0.03**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_empl1__t</td>
<td></td>
<td></td>
<td></td>
<td>-0.63*</td>
</tr>
<tr>
<td>s_empl1__t-1</td>
<td></td>
<td></td>
<td>0.15***</td>
<td></td>
</tr>
<tr>
<td>s_empl1__t-2</td>
<td></td>
<td>0.28*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_empl2__t</td>
<td>0.16***</td>
<td>-0.13***</td>
<td>-1.17***</td>
<td></td>
</tr>
<tr>
<td>s_empl2__t-1</td>
<td></td>
<td>-0.14***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lurate long-run multiplier</td>
<td>-0.20</td>
<td>-0.04</td>
<td>-0.04</td>
<td>--</td>
</tr>
<tr>
<td>Wald \chi^2</td>
<td>4.73</td>
<td>0.50</td>
<td>5.91</td>
<td></td>
</tr>
<tr>
<td>Pr>\chi^2</td>
<td>0.03</td>
<td>0.48</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>predet.</td>
<td>lurate</td>
<td>lurate</td>
<td>--</td>
<td>lurate</td>
</tr>
<tr>
<td>N obs.</td>
<td>168</td>
<td>80</td>
<td>196</td>
<td>164</td>
</tr>
<tr>
<td>Wald \chi^2</td>
<td>4203.17</td>
<td>12193.81</td>
<td>104.28</td>
<td>6420.19</td>
</tr>
<tr>
<td>AR1 errors z</td>
<td>-3.26</td>
<td>-2.61</td>
<td>-1.43</td>
<td>-1.67</td>
</tr>
<tr>
<td>Pr>z</td>
<td>0.001</td>
<td>0.01</td>
<td>0.15</td>
<td>0.10</td>
</tr>
<tr>
<td>AR2 errors z Pr>z</td>
<td>0.62</td>
<td>1.29</td>
<td>1.40</td>
<td>-0.27</td>
</tr>
<tr>
<td></td>
<td>0.54</td>
<td>0.20</td>
<td>0.16</td>
<td>0.78</td>
</tr>
<tr>
<td>Sargan \chi^2</td>
<td>20.70</td>
<td>9.31</td>
<td>7.30</td>
<td></td>
</tr>
<tr>
<td>Pr>\chi^2</td>
<td>1.00</td>
<td>1.00</td>
<td>0.64</td>
<td></td>
</tr>
</tbody>
</table>

Variables are in first differences. Regressors include time dummies. Robust standard errors are reported in parentheses. ***, **, * indicate significance at 1, 5, 10 percent level respectively. On the tests reported, see Notes to Table 5.
2008
B01-08 Euro-Diplomatie durch gemeinsame „Wirtschaftsregierung“
Martin Seidel

2007
B03-07 Löhne und Steuern im Systemwettbewerb der Mitgliedstaaten der Europäischen Union
Martin Seidel
B02-07 Konsolidierung und Reform der Europäischen Union
Martin Seidel
B01-07 The Ratification of European Treaties - Legal and Constitutional Basis of a European Referendum.
Martin Seidel

2006
B03-06 Financial Frictions, Capital Reallocation, and Aggregate Fluctuations
Jürgen von Hagen, Haiping Zhang
B02-06 Financial Openness and Macroeconomic Volatility
Jürgen von Hagen, Haiping Zhang
B01-06 A Welfare Analysis of Capital Account Liberalization
Jürgen von Hagen, Haiping Zhang

2005
B11-05 Das Kompetenz- und Entscheidungssystem des Vertrages von Rom im Wandel seiner Funktion und Verfassung
Martin Seidel
B10-05 Die Schutzklauseln der Beitrittsverträge
Guntram B. Wolff
B09-05 Measuring Tax Burdens in Europe
Gabriel González-König
B08-05 Remittances as Investment in the Absence of Altruism
Christian Volpe Martincus, Jennifer Pédussel Wu
B07-05 Economic Integration in a Multicone World?
Jürgen von Hagen, Valeriya Dzinger
B06-05 Banking Sector (Under?)Development in Central and Eastern Europe
Jürgen von Hagen, Iulia Traistaru
B05-05 Regulatory Standards Can Lead to Predation
Stefan Lutz
B04-05 Währungspolitik als Sozialpolitik
Martin Seidel
B03-05 Public Education in an Integrated Europe: Studying to Migrate and Teaching to Stay?
Panu Poutvaara
B02-05 Voice of the Diaspora: An Analysis of Migrant Voting Behavior
Jan Fidrmuc, Orla Doyle
B01-05 Macroeconomic Adjustment in the New EU Member States
Jürgen von Hagen, Iulia Traistaru

2004
B33-04 The Effects of Transition and Political Instability On Foreign Direct Investment Inflows: Central Europe and the Balkans
Josef C. Brada, Ali M. Kutan, Tamer M. Yigit
B32-04 The Choice of Exchange Rate Regimes in Developing Countries: A Multinominal Panal Analysis
Jürgen von Hagen, Jizhong Zhou
B31-04 Fear of Floating and Fear of Pegging: An Empirical Analysis of De Facto Exchange Rate Regimes in Developing Countries
Jürgen von Hagen, Jizhong Zhou
B30-04 Der Vollzug von Gemeinschaftsrecht über die Mitgliedstaaten und seine Rolle für die EU und den Beitrittsprozess
Martin Seidel
B29-04 Deutschlands Wirtschaft, seine Schulden und die Unzulänglichkeiten der einheitlichen Geldpolitik im Eurosystem
Dieter Spethmann, Otto Steiger
B28-04 Fiscal Crises in U.S. Cities: Structural and Non-structural Causes
Guntram B. Wolff
B27-04 Firm Performance and Privatization in Ukraine
Galya Grygorenko, Stefan Lutz
B26-04 Analyzing Trade Opening in Ukraine: Effects of a Customs Union with the EU
Oksana Harbuziyuk, Stefan Lutz
B25-04 Exchange Rate Risk and Convergence to the Euro
Lucjan T. Orlowski
B24-04 The Endogeneity of Money and the Eurosystem
Otto Steiger
B23-04 Which Lender of Last Resort for the Eurosystem?
Otto Steiger
B22-04 Non-Discretionary Monetary Policy: The Answer for Transition Economies?
Elham-Mafi Kreft, Steven F. Kreft
B21-04 The Effectiveness of Subsidies Revisited: Accounting for Wage and Employment Effects in Business R+D
Volker Reinthaler, Guntram B. Wolff
B20-04 Money Market Pressure and the Determinants of Banking Crises
Jürgen von Hagen, Tai-kuang Ho
B19-04 Die Stellung der Europäischen Zentralbank nach dem Verfassungsvertrag
Martin Seidel
B18-04 Transmission Channels of Business Cycles Synchronization in an Enlarged EMU Iulia Traistaru
B17-04 Foreign Exchange Regime, the Real Exchange Rate and Current Account Sustainability: The Case of Turkey Sübidey Togan, Hasan Ersel
B15-04 Do Economic Integration and Fiscal Competition Help to Explain Local Patterns? Christian Volpe Martincus
B14-04 Euro Adoption and Maastricht Criteria: Rules or Discretion? Jiri Jonas
B13-04 The Role of Electoral and Party Systems in the Development of Fiscal Institutions in the Central and Eastern European Countries Sami Yläoutinen
B12-04 Measuring and Explaining Levels of Regional Economic Integration Jennifer Pédussel Wu
B11-04 Economic Integration and Location of Manufacturing Activities: Evidence from MERCOSUR Pablo Sanguinetti, Iulia Traistaru, Christian Volpe Martincus
B10-04 Economic Integration and Industry Location in Transition Countries Laura Resmini
B08-04 European Integration, Productivity Growth and Real Convergence Taner M. Yigit, Ali M. Kutan
B06-04 Rural Urban Inequality in Africa: A Panel Study of the Effects of Trade Liberalization and Financial Deepening Mina Baliamoune-Lutz, Stefan H. Lutz
B05-04 Money Rules for the Eurozone Candidate Countries Lucjan T. Orłowski
B04-04 Who is in Favor of Enlargement? Determinants of Support for EU Membership in the Candidate Countries’ Referenda Orla Doyle, Jan Fidrmuc
B03-04 Over- and Underbidding in Central Bank Open Market Operations Conducted as Fixed Rate Tender Ulrich Bindseil
B02-04 Total Factor Productivity and Economic Freedom Implications for EU Enlargement Ronald L. Moomaw, Euy Seok Yang
B01-04 Die neuen Schutzklauseln der Artikel 38 und 39 des Beitrittvertrages: Schutz der alten Mitgliedstaaten vor Störungen durch die neuen Mitgliedstaaten Martin Seidel

2003
B29-03 Macroeconomic Implications of Low Inflation in the Euro Area Jürgen von Hagen, Boris Hofmann
B28-03 The Effects of Transition and Political Instability on Foreign Direct Investment: Central Europe and the Balkans Josef C. Brada, Ali M. Kutan, Taner M. Yigit
B26-03 Sovereign Risk Premia in the European Government Bond Market (überarbeitete Version zum Herunterladen) Kerstin Bernoth, Juergen von Hagen, Ludger Schulte
B25-03 How Flexible are Wages in EU Accession Countries? Anna Iara, Iulia Traistaru
B24-03 Monetary Policy Reaction Functions: ECB versus Bundesbank Bernd Hayo, Boris Hofmann
B23-03 Economic Integration and Manufacturing Concentration Patterns: Evidence from Mercosur Iulia Traistaru, Christian Volpe Martincus
B22-03 Reformzwänge innerhalb der EU angesichts der Osterweiterung Martin Seidel
B21-03 Reputation Flows: Contractual Disputes and the Channels for Inter-Firm Communication William Pyle
B20-03 Urban Primacy, Gigantism, and International Trade: Evidence from Asia and the Americas Ronald L. Moomaw, Mohammed A. Alwosabi
B19-03 An Empirical Analysis of Competing Explanations of Urban Primacy Evidence from Asia and the Americas Ronald L. Moomaw, Mohammed A. Alwosabi
The Effects of Regional and Industry-Wide FDI Spillovers on Export of Ukrainian Firms

Determinants of Inter-Regional Migration in the Baltic States

South-East Europe: Economic Performance, Perspectives, and Policy Challenges

Employed and Unemployed Search: The Marginal Willingness to Pay for Attributes in Lithuania, the US and the Netherlands

The IS Curve and the Transmission of Monetary Policy: Is there a Puzzle?

What Makes Regions in Eastern Europe Catching Up? The Role of Foreign Investment, Human Resources, and Geography

Die Weisungs- und Herrschaftsmacht der Europäischen Zentralbank im europäischen System der Zentralbanken - eine rechtliche Analyse

Foreign Direct Investment and Perceptions of Vulnerability to Foreign Exchange Crises: Evidence from Transition Economies

The European Central Bank and the Eurosystem: An Analysis of the Missing Central Monetary Institution in European Monetary Union

The Determination of Capital Controls: Which Role Do Exchange Rate Regimes Play?

Nach Nizza und Stockholm: Stand des Binnenmarktes und Prioritäten für die Zukunft

Fiscal Discipline and Growth in Euroland. Experiences with the Stability and Growth Pact

Reconsidering the Evidence: Are Eurozone Business Cycles Converging?

Do Ukrainian Firms Benefit from FDI?

Europäische Steuerkoordination und die Schweiz

Commuting in the Baltic States: Patterns, Determinants, and Gains

Die Wirtschafts- und Währungsunion im rechtlichen und politischen Gefüge der Europäischen Union

An Adverse Selection Model of Optimal Unemployment Assurance

Trade Agreements as Self-protection

Growth and Business Cycles with Imperfect Credit Markets

Inequality, Politics and Economic Growth

Poverty Traps and Growth in a Model of Endogenous Time Preference

Monetary Convergence and Risk Premiums in the EU Candidate Countries

Trade Policy: Institutional Vs. Economic Factors

The Effects of Quotas on Vertical Intra-industry Trade

Legal Aspects of European Economic and Monetary Union

Der Staat als Lender of Last Resort - oder: Die Achillesverse des Eurosystems

Nominal and Real Stochastic Convergence Within the Transition Economies and to the European Union: Evidence from Panel Data

The Impact of News, Oil Prices, and International Spillovers on Russian Financial Markets

Stefan H. Lutz, Oleksandr Talavera, Sang-Min Park

Mihails Hazans

Iulia Traistaru, Jürgen von Hagen

Jos van Ommeren, Mihails Hazans

Charles Goodhart, Boris Hofmann

Charles Goodhart, Boris Hofmann

Gabriele Tondl, Goran Vuksic

Martin Seidel

Josef C. Brada, Vladimír Tomšík

Gunnar Heinsohn, Otto Steiger

Jürgen von Hagen, Jizhong Zhou

Martin Seidel

Jürgen von Hagen

Michael Massmann, James Mitchell

Stefan H. Lutz, Oleksandr Talavera

Stefan H. Lutz

Mihails Hazans

Martin Seidel

Marcus Hagedorn, Ashok Kaul, Tim Mennel

Jennifer Pédussel Wu

Debajyoti Chakrabarty

Debajyoti Chakrabarty

Debajyoti Chakrabarty

Lucjan T. Orłowski

Stefan Lutz

Stefan Lutz

Martin Seidel

Otto Steiger

Ali M. Kutan, Taner M. Yigit

Bernd Hayo, Ali M. Kutan
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>B19-02</td>
<td>East Germany: Transition with Unification, Experiments and Experiences</td>
<td>Jürgen von Hagen, Rolf R. Strauch, Guntram B. Wolff</td>
</tr>
<tr>
<td>B18-02</td>
<td>Regional Specialization and Employment Dynamics in Transition Countries</td>
<td>Iulia Traistaru, Guntram B. Wolff</td>
</tr>
<tr>
<td>B17-02</td>
<td>Specialization and Growth Patterns in Border Regions of Accession Countries</td>
<td>Laura Resmini</td>
</tr>
<tr>
<td>B16-02</td>
<td>Regional Specialization and Concentration of Industrial Activity in Accession Countries</td>
<td>Iulia Traistaru, Peter Nijkamp, Simonetta Longhi</td>
</tr>
<tr>
<td>B15-02</td>
<td>Does Broad Money Matter for Interest Rate Policy?</td>
<td>Matthias Brückner, Andreas Schaber</td>
</tr>
<tr>
<td>B14-02</td>
<td>The Long and Short of It: Global Liberalization, Poverty and Inequality</td>
<td>Christian E. Weller, Adam Hersch</td>
</tr>
<tr>
<td>B13-02</td>
<td>De Facto and Official Exchange Rate Regimes in Transition Economies</td>
<td>Jürgen von Hagen, Jizhong Zhou</td>
</tr>
<tr>
<td>B12-02</td>
<td>Argentina: The Anatomy of A Crisis</td>
<td>Jiri Jonas</td>
</tr>
<tr>
<td>B11-02</td>
<td>The Eurosystem and the Art of Central Banking</td>
<td>Gunnar Heinsohn, Otto Steiger</td>
</tr>
<tr>
<td>B09-02</td>
<td>Monetary Policy in the Euro Area - Lessons from the First Years</td>
<td>Volker Clausen, Bernd Hayo</td>
</tr>
<tr>
<td>B08-02</td>
<td>Has the Link Between the Spot and Forward Exchange Rates Broken Down? Evidence From Rolling Cointegration Tests</td>
<td>Ali M. Kutan, Su Zhou</td>
</tr>
<tr>
<td>B07-02</td>
<td>Perspektiven der Erweiterung der Europäischen Union</td>
<td>Martin Seidel</td>
</tr>
<tr>
<td>B06-02</td>
<td>Is There Asymmetry in Forward Exchange Rate Bias? Multi-Country Evidence</td>
<td>Su Zhou, Ali M. Kutan</td>
</tr>
<tr>
<td>B05-02</td>
<td>Real and Monetary Convergence Within the European Union and Between the European Union and Candidate Countries: A Rolling Cointegration Approach</td>
<td>Josef C. Brada, Ali M. Kutan, Su Zhou</td>
</tr>
<tr>
<td>B04-02</td>
<td>Asymmetric Monetary Policy Effects in EMU</td>
<td>Volker Clausen, Bernd Hayo</td>
</tr>
<tr>
<td>B03-02</td>
<td>The Choice of Exchange Rate Regimes: An Empirical Analysis for Transition Economies</td>
<td>Jürgen von Hagen, Jizhong Zhou</td>
</tr>
<tr>
<td>B02-02</td>
<td>The Euro System and the Federal Reserve System Compared: Facts and Challenges</td>
<td>Karlheinz Ruckriegel, Franz Seitz</td>
</tr>
<tr>
<td>B01-02</td>
<td>Does Inflation Targeting Matter?</td>
<td>Manfred J. M. Neumann, Jürgen von Hagen</td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B29-01</td>
<td>Is Kazakhstan Vulnerable to the Dutch Disease?</td>
<td>Karlygash Kuralbayeva, Ali M. Kutan, Michael L. Wyzan</td>
</tr>
<tr>
<td>B26-01</td>
<td>Regional Effects of Terrorism on Tourism: Evidence from Three Mediterranean Countries</td>
<td>Konstantinos Drakos, Ali M. Kutan</td>
</tr>
<tr>
<td>B25-01</td>
<td>Monetary Convergence of the EU Candidates to the Euro: A Theoretical Framework and Policy Implications</td>
<td>Lucjan T. Orlowski</td>
</tr>
<tr>
<td>B24-01</td>
<td>Disintegration and Trade</td>
<td>Jarko and Jan Fidrmuc</td>
</tr>
<tr>
<td>B23-01</td>
<td>Migration and Adjustment to Shocks in Transition Economies</td>
<td>Jan Fidrmuc</td>
</tr>
<tr>
<td>B22-01</td>
<td>Strategic Delegation and International Capital Taxation</td>
<td>Matthias Brückner</td>
</tr>
<tr>
<td>B20-01</td>
<td>An Empirical Inquiry of the Efficiency of Intergovernmental Transfers for Water Projects Based on the WRDA Data</td>
<td>Anna Rubinchik-Pessach</td>
</tr>
</tbody>
</table>
B18-01 Monetary Policy in Unknown Territory. The European Central Bank in the Early Years
Jürgen von Hagen, Matthias Brückner

B17-01 Executive Authority, the Personal Vote, and Budget Discipline in Latin American and Carribean Countries
Mark Hallerberg, Patrick Marier

B16-01 Sources of Inflation and Output Fluctuations in Poland and Hungary: Implications for Full Membership in the European Union
Selahattin Dibooglu, Ali M. Kutan

B15-01 Programs Without Alternative: Public Pensions in the OECD
Christian E. Weller

B14-01 Formal Fiscal Restraints and Budget Processes As Solutions to a Deficit and Spending Bias in Public Finances - U.S. Experience and Possible Lessons for EMU
Rolf R. Strauch, Jürgen von Hagen

B13-01 German Public Finances: Recent Experiences and Future Challenges
Jürgen von Hagen, Rolf R. Strauch

B12-01 The Impact of Eastern Enlargement On EU-Labour Markets. Pensions Reform Between Economic and Political Problems
Deutsch-Französisches Wirtschaftspolitisches Forum

B11-01 Inflationary Performance in a Monetary Union With Large Wage Setters
Lilia Cavallar

B10-01 Integration of the Baltic States into the EU and Institutions of Fiscal Convergence: A Critical Evaluation of Key Issues and Empirical Evidence
Ali M. Kutan, Niina Pautola-Mol

B09-01 Democracy in Transition Economies: Grease or Sand in the Wheels of Growth?
Jan Fidrmuc

B08-01 The Functioning of Economic Policy Coordination
Jürgen von Hagen, Susanne Mundschenk

B07-01 The Convergence of Monetary Policy Between Candidate Countries and the European Union
Josef C. Brada, Ali M. Kutan

B06-01 Opposites Attract: The Case of Greek and Turkish Financial Markets
Konstantinos Drakos, Ali M. Kutan

B05-01 Trade Rules and Global Governance: A Long Term Agenda. The Future of Banking.
Deutsch-Französisches Wirtschaftspolitisches Forum

B04-01 The Determination of Unemployment Benefits
Rafael di Tella, Robert J. MacCulloch

B03-01 Preferences Over Inflation and Unemployment: Evidence from Surveys of Happiness
Rafael di Tella, Robert J. MacCulloch, Andrew J. Oswald

B02-01 The Konstanz Seminar on Monetary Theory and Policy at Thirty
Michele Fratianni, Jürgen von Hagen

B01-01 Divided Boards: Partisanship Through Delegated Monetary Policy
Etienne Farvaque, Gael Lagadec

2000

B20-00 Breakin-up a Nation, From the Inside
Etienne Farvaque

B19-00 Income Dynamics and Stability in the Transition Process, general Reflections applied to the Czech Republic
Jens Hölscher

B18-00 Budget Processes: Theory and Experimental Evidence
Karl-Martin Ehrhart, Roy Gardner, Jürgen von Hagen, Claudia Keeser, Martin Seidel

B17-00 Rückführung der Landwirtschaftspolitik in die Verantwortung der Mitgliedsstaaten? - Rechts- und Verfassungsfragen des Gemeinschaftsrechts
Christa Randzio-Plath, Tomasso Padoa-Schioppa

B16-00 The European Central Bank: Independence and Accountability
Jürgen von Hagen, Ralf Hepp

B15-00 Regional Risk Sharing and Redistribution in the German Federation
Selahattin Dibooglu, Ali M. Kutan

B14-00 Sources of Real Exchange Rate Fluctuations in Transition Economies: The Case of Poland and Hungary
Nauro F. Campos

B13-00 Back to the Future: The Growth Prospects of Transition Economies Reconsidered
B10-00 The Importance of Domestic Political Institutions: Why and How Belgium Qualified for EMU
Marc Hallerberg

B09-00 Rational Institutions Yield Hysteresis
Rafael Di Tella, Robert MacCulloch

B08-00 The Effectiveness of Self-Protection Policies for Safeguarding Emerging Market Economies from Crises
Kenneth Kletzer

B07-00 Financial Supervision and Policy Coordination in The EMU
Deutsch-Französisches Wirtschaftspolitisches Forum

B06-00 The Demand for Money in Austria
Bernd Hayo

B05-00 Liberalization, Democracy and Economic Performance during Transition
Jan Fidrmuc

B04-00 A New Political Culture in The EU - Democratic Accountability of the ECB
Christa Randzio-Plath

B03-00 Integration, Disintegration and Trade in Europe: Evolution of Trade Relations during the 1990’s
Jarko Fidrmuc, Jan Fidrmuc

B02-00 Inflation Bias and Productivity Shocks in Transition Economies: The Case of the Czech Republic
Josef C. Brada, Arthur E. King, Ali M. Kutan

B01-00 Monetary Union and Fiscal Federalism
Kenneth Kletzer, Jürgen von Hagen

1999

Stefan Lutz, Alessandro Turrini

B25-99 Micro and Macro Determinants of Public Support for Market Reforms in Eastern Europe
Bernd Hayo

B24-99 What Makes a Revolution?
Rafael Di Tella, Robert MacCulloch

B23-99 Informal Family Insurance and the Design of the Welfare State
Rafael Di Tella, Robert MacCulloch

B22-99 Partisan Social Happiness
Rafael Di Tella, Robert MacCulloch

B21-99 The End of Moderate Inflation in Three Transition Economies?
Josef C. Brada, Ali M. Kutan

B20-99 Subnational Government Bailouts in Germany
Helmut Seitz

B19-99 The Evolution of Monetary Policy in Transition Economies
Ali M. Kutan, Josef C. Brada

B18-99 Why are Eastern Europe’s Banks not failing when everybody else’s are?
Christian E. Weller, Bernard Morrow

B17-99 Stability of Monetary Unions: Lessons from the Break-Up of Czechoslovakia
Jan Fidrmuc, Julius Horvath and Jarko Fidrmuc

B16-99 Multinational Banks and Development Finance
Christian E. Weller and Mark J. Scher

B15-99 Financial Crises after Financial Liberalization: Exceptional Circumstances or Structural Weakness?
Christian E. Weller

B14-99 Industry Effects of Monetary Policy in Germany
Bernd Hayo and Birgit Uhlenbrock

B13-99 Financial Fragility or What Went Right and What Could Go Wrong in Central European Banking?
Christian E. Weller and Jürgen von Hagen

B12 -99 Size Distortions of Tests of the Null Hypothesis of Stationarity: Evidence and Implications for Applied Work
Mehmet Caner and Lutz Kilian

B11-99 Financial Supervision and Policy Coordination in the EMU
Deutsch-Französisches Wirtschaftspolitisches Forum
Christian Weller

B10-99 Financial Liberalization, Multinational Banks and Credit Supply: The Case of Poland

B09-99 Monetary Policy, Parameter Uncertainty and Optimal Learning
Volker Wieland

B08-99 The Connection between more Multinational Banks and less Real Credit in Transition Economies
Christian Weller