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Abstract

We characterize the equilibrium of the all-pay auction with general
convex cost of effort and sequential effort choices. We consider a set of
n players who are arbitrarily partitioned into a group of players who
choose their efforts ’early’ and a group of players who choose ’late’.
Only the player with the lowest cost of effort has a positive payoff
in any equilibrium. This payoff depends on his own timing vis-a-vis
the timing of others. We also show that the choice of timing can
be endogenized, in which case the strongest player typically chooses
’late’, whereas all other players are indifferent with respect to their
choice of timing. In the most prominent equilibrium the player with
the lowest cost of effort wins the auction at zero aggregate cost.

Keywords: Sequential all-pay auction, complete information, gen-
eralized cost, generalized Stackelberg game.

JEL classification code: D72, D74

1 Introduction

The analytics of the all-pay auction with complete information with simul-
taneous choices of efforts by several contestants is well understood. Hill-
man and Riley (1989) were first to characterize an equilibrium, and Baye,
Kovenock and de Vries (1996) provide a complete characterization of the set
of equilibria for the case in which contestants have linear cost of expending
effort. It is clear from the analysis in Kaplan, Luski and Wettstein (2003)
that the solution concept of the case with linear cost carries over to cases in
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which contestants have non-linear cost of expending effort. Other analyses
contributing to the solution of the all-pay auction with complete information
are Hillman and Samet (1987) who, among other aspects, consider the prob-
lem of entry fees or minimum contest efforts, and Baye, Kovenock and de
Vries (2005) who work out the complete analytic solution for all-pay auctions
with two players and various cost of effort functions, in which a player’s total
cost of effort may generally depend on the own effort expended, on the effort
that is expended by the rival player, and on the outcome of the contest. All
these analyses consider simultaneous effort choices.

Simultaneity of effort choices cannot be taken for granted for situations
in which all-pay auctions take place. Particularly when the conflict has some
asymmetry properties, sequential effort choices may emerge naturally from
the institutional environment, or even endogenously. Leininger (1991) models
a patent race between incumbent and entrant, who value the patent differ-
ently, as a sequential all-pay auction with possibly repeated bidding under
complete information. Konrad (2002) considers an all-pay auction with two
asymmetric players. He mostly concentrates on symmetric moves, but also
discusses the implications of sequential effort choices for the equilibrium out-
come in a specific analytic context, allowing for two types of incumbency
advantages. Jost and Kräkel (2005) also look at this specific problem and
compare the outcomes for sequential and simultaneous choices for the case
with two players. Moreover, they consider a contest success function with
noise. The more general case in which there is a set with more than two play-
ers who are partitioned in two disjoint subsets of which the members of one
subset choose effort prior to the members of the other subset has not been
considered. This paper solves for this generalized Stackelberg equilibrium,
and with a generalized cost function.

We also discuss the issue of endogenous sequentiality that emerges in a
contest environment. In the context of the Tullock (1980) contest, Baik and
Shogren (1992), Leininger (1993), Baik (1994, 2005) and Wärneryd (2000)
provide analyses of this problem. Suppose there are two points in time at
which contest effort can be expended. One point is called e(arly), the other
is called l(ate). In a stage prior to e, contestants can choose whether to
make their contest effort choices at e or at l. It turns out that, if the effort
choices at e are irreversibly made, the ”weaker” player has an incentive to
choose e and the ”stronger” player has an incentive to choose l. In the end,
both contestants are better off. We analyse in this paper how the result on
endogenous timing generalizes to a larger set of asymmetric players for the
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all-pay auction with complete information.

2 Equilibrium

A prize of given size V = 1 is allocated among a set N of players i = 1, ...n in
an all-pay auction with complete information. Let x = (x1, x2, ...xn) denote
the vector of players’ efforts. Each player chooses his effort irreversibly at a
particular point of time. The players in a subset E ⊂ N choose their efforts
simultaneously at a point e(arly) and players from set L = N − E choose
their efforts at point l(ate), where l occurs after e, such that players who are
in set L can observe the effort choices made by the players who are in set E.

Players are risk neutral. A player’s payoff is

πi(x) = pi(x)·1− Ci(xi). (1)

Here the cost Ci(xi) of expending a given effort xi is a function of this effort,
and we will assume throughout that Ci(0) = 0, C ′

i(xi) > 0, and C ′′
i (xi) ≥ 0.

The standard cases with linear cost, Ci(xi) = cixi, and with quadratic cost,
Ci(xi) = ci(xi)

2 are special cases. We assume that players are asymmetric
and can be sorted according to their effort cost. Without loss of generality
we consider them numbered such that, for two players i and j with i < j,
it holds that C ′

i( x) < C ′
j(x) for all x ∈ (0, K]. This global asymmetry

rules out a number of equilibria that may occur if some players are identical.
Note that, according to this sorting assumption, player 1 has the lowest cost
for expending a given effort, player 2 has the second lowest cost, etc. The
sorting of players in N according to their cost of effort also induces a similar
sorting of players in E and in L, and we re-number the players in E and L
according to their cost functions as e(1), e(2), ..., e(#E) with Ce(i)

(x) < Ce(j)
(x)

and l(1), l(2), ..., l(#L) with Cl(i)(x) < Cl(j)(x) for all i < j for all x > 0.
The probability that player i wins the prize is denoted as pi, and is a

function of x, as follows. Denote x̄ ≡ maxk∈N{xk}. If xi = x̄ > xj for all
j ∈ N − {i}, then pi = 1 and pj = 0 for all j 6= i. If there are several
players who have chosen the same, highest effort, x̄, we assume the following
tie-breaking rule. Let M be the set of players who choose x̄. If M ⊂ E,
or M ⊂ L, then each i ∈ M wins the prize with the same probability
equal to 1/#M , where #M is the cardinality of M . If M ∩ E 6= ∅ and
M ∩L 6= ∅ then the allocation of the prize among the players in M depends
on their cost of effort. If Ci(x̄) ≥ 1 for all i ∈ M ∩L, then pi = 1/#(M ∩E)
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for i ∈ M ∩E and zero for all other players. Denote (M ∩L)+(x̄) the subset
of (M ∩L) with players for which Ci(x̄) < 1 holds. If (M ∩L)+(x̄) 6= ∅, then
pi = 1/#(M ∩ L)+(x̄) for i ∈ (M ∩ L)+(x̄) and pi = 0 for all other players.

Strategies are defined as follows. For a player i ∈ E, a pure strategy
is an effort choice xi and the strategy set of player i is the set of feasible
efforts [0, K], with K being a finite number that is sufficiently large to be
never binding.1 We also define a mixed strategy Fi for player i ∈ E as an
element of the set of probability distributions over the effort levels from the
set [0, K]. A player i ∈ L observes the effort choices of all players j ∈ E. We
denote the vector of these effort choices by all players from E as xE. As it
turns out only x̄E, the maximal component of xE, is payoff relevant for the
game in period l. Hence we can denote a pure strategy of player i ∈ L as
a function xi(x̄E) : [0, K] → [0, K], and a mixed strategy of this player as a
function Fi(x̄E) : [0, K] → Σ[0,K] , where Σ[0,K] denotes the set of probability
distributions over the effort levels from the set [0, K].

Proposition 1 For any given sets L and E there exists a unique subgame
perfect equilibrium of the (sequential) all-pay auction. Equilibrium pay-offs
are given by:

πj = 0 for all j = 2, ...n, and (2)

π1 =


1 if L = {1}

1− C1(x̄l(2)) if 1 ∈ L and #L > 1

{
with x̄l(2) the solution

of Cl(2)(x̄l(2)) = 1

1− C1(x̄2) if 1 ∈ E with x̄2 the solution of C2(x̄2) = 1
(3)

Proof. Consider first stage l. Denote x̄E = maxe(i)∈E{xe(i)
} . Recall

that e(i) are the players of set E ordered along ascending cost functions. Let
L+(x̄E) be the set of players k ∈ L for which Ck(x̄E) < 1, and L−(x̄E) the
set of the players k ∈ L for which Ck(x̄E) ≥ 1.

Consider the following candidate equilibrium of the subgame at stage l.
(i) All players k ∈ L−(x̄E) choose xk(xE) = 0. (ii) For players k ∈ L+(x̄E),
if #L+(xE) = 1 then xk(xE) = x̄E. If #L+(xE) > 1, then xk(xE) = 0 for all
k ∈ L with k /∈ {l(1), l(2)},

Fl(1)(xE) =


0 for x ∈ [0, x̄E)

Cl(2)(x) for x ∈ [x̄E, x̄l(2) ]

1 for x > x̄l(2)

(4)

1For instance, it will be sufficient to define K as the solution of C1(K) = 1.
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and

Fl(2)(xE) =


1− Cl(1)(x̄l(2)) + Cl(1)(x̄E) for x ∈ [0, x̄E]

1− Cl(1)(x̄l(2)) + Cl(1)(x) for x ∈ (x̄E, x̄l(2) ]

1 for x > x̄l(2) .
(5)

To confirm that this constitutes an equilibrium we show that these strate-
gies are mutually optimal replies. (i) For given x̄E, xk = 0 uniquely maxi-
mizes the payoff of players k ∈ L−(x̄E), independent of the choices of other
players in L. (ii) Consider k ∈ L+(xE) with k /∈ {l(1), l(2)}. The payoff in
the candidate equilibrium is πk(0) = 0 and, given (4), πk(xk) < 0 for any
xk > 0. Thus xk = 0 is the unique best reply. Consider next l(1). The payoff
of this player given the candidate equilibrium strategies of other players is
πl(1)(0) = 0, πl(1)(x) = −Cl(1)(x) for x ∈ (0, x̄E) and

πl(1) = Fl(2)(x) · 1− Cl(1)(x) (6)

for xl(1) ≥ x̄E. This payoff is equal to 1 − Cl(1)(x̄l(2)) > 0 for all xl(1) ∈ [x̄E,
x̄l(2) ], because of (5), and smaller than this for all x outside this interval.
Consider finally the payoff of l(2). This payoff is πl(2) = 0 for xl(2) = 0,
πl(2)(x) = −Cl(2)(x) for x ∈ (0, x̄E), and

πl(2) = Fl(1)(x) · 1− Cl(2)(x) (7)

for xl(2) > x̄E. This payoff (7) is equal to zero for all xl(2) ∈ (x̄E, x̄l(2) ] ,
because of (4), and negative for all x outside this interval. Accordingly, any
x ∈ {0} ∪ (x̄E, x̄l(2) ] is an optimal reply for l(2).

Note that the equilibrium in the subgame among players from set L is
the equilibrium of a simultaneous all-pay auction with a minimum bid of
x̄E. The uniqueness of this equilibrium can be shown following the line of
arguments in Baye, Kovenock and de Vries (1996).

Consider now stage e. Define maxl(i)∈L{x̄l(i)} ≡ x̄L. An implication of the
subgame equilibrium is that a player from the set E who made the highest bid
x̄E among all players from this group wins the prize if and only if x̄E > x̄L.
Intuitively, in the characterization of the equilibrium strategies of players
from the set L, this x̄L plays a similar role for players from the set E when
they choose their efforts, as x̄E does in the subgame when players from the
set L make their choices. Note, that x̄L, unlike x̄E, is not determined by
the actual effort choices of players, but is uniquely determined by the cost
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structure of the players in L. Hence, somewhat surprisingly, the game among
players at stage e, too, has the structure of a simultaneous all-pay auction
with a minimum bid, which now is given by x̄L. x̄L results from foreseeing
the optimal behaviour of players moving at l. Uniqueness of this equilibrium
then again follows from Baye, Kovenock and de Vries (1996) for any set E
and any x̄L.

Let E+(x̄L) be the set of players k in E for which Ck(x̄L) < 1, and E−(x̄L)
the set of players k in E for which Ck(x̄L) > 1. Note that Ck(x̄L) = 1 for
k ∈ E is ruled out by Ck(x̄L) = 1 for some k ∈ L and the fact that all players
in N differ in their cost functions. We consider the following candidate
equilibrium for effort choices among players from the set E. (i) All players
k ∈ E−(x̄L) choose xk = 0. (ii) If #E+(x̄L) = 1, then this player k ∈ E+(x̄L)
chooses xk = x̄L. (iii) If #E+(x̄L) > 1, then all players e(k) ∈ E+(x̄L) with
k > 2 choose xe(k)

= 0, player k = e(1) chooses a mixed strategy that is
described by the cumulative distribution function

Fe(1)
=


0 for x ∈ [0, x̄L)

Ce(2)
(x) for x ∈ [x̄L, x̄e(2)

]

1 for x > x̄e(2)

(8)

and player k = e(2) chooses a mixed strategy that is described by the cumu-
lative distribution function

Fe(2)
=


1− Ce(1)

(x̄e(2)
) + Ce(1)

(x̄L) for x ∈ [0, x̄L]

1− Ce(1)
(x̄e(2)

) + Ce(1)
(x) for x ∈ (x̄L, x̄e(2)

]

1 for x > x̄e(2)

(9)

We show that this constitutes equilibrium strategies by showing that the
candidate equilibrium strategies are mutually optimal replies given the equi-
librium of the subgame among players in L. A key aspect of the subgame
equilibrium is that players from L will overbid any effort x made in stage e
that is smaller than x̄L. (i) Consider k ∈ E−(x̄L). A choice of xk = 0 yields
πk(0) = 0. Effort levels 0 < xe(i)

< x̄L yield a payoff πk = −Ck(xk) < 0
and effort levels xk ≥ x̄L have cost Ck(xk) that exceed the value of the prize
for k ∈ E−(x̄L), leading to a negative payoff, even if k wins the prize with
this effort choice. Note that this also holds for the possible effort choice
case xk = x̄L: by the definition of x̄L as the solution to Cl(1)(x̄L) = 1, the
definition of E−(x̄L) and the strict monotonicity of cost functions of all play-
ers in N , strict inequality Ce(i)

(x̄L) > 1 must hold for all e(i) ∈ E−(x̄L).
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Accordingly, xk = 0 is the unique optimal reply for k ∈ E−(x̄L). (ii) Con-
sider k ∈ E+(x̄L). If #E+(x̄L) = 1, the only player in this set has to be
player 1, i.e., the player with the lowest cost among all players in N . More-
over, #E+(x̄L) = 1 implies that the player with the second lowest cost is
in the set L, i.e., 2 = l(1) ∈ L. Therefore, x̄L = x̄2. Player 1’s payoff is
π1(x̄2) = 1 − C1(x̄2) > 0 if x1 = x̄2. Player 1’s payoff from x1 < x̄2 is equal
to −C1(x1) ≤ 0, and π1(x1) = 1 − C1(x1) < 1 − C1(x̄2) for x1 > x̄2. Ac-
cordingly, x1 = x̄2 is the optimal reply. (iii) Consider #E+(x̄L) > 1. The
payoff of player k ∈ E+(x̄L) with k /∈ {e(1), e(2)} is πk(0) = 0 for xk = 0,
πk(xk) = −Ck(xk) < 0 for all 0 < xk < x̄L, and, given (8), πk(xk) < 0 also for
all xk ≥ x̄L. Hence xl(k) = 0 is the optimal play. Note that #E+(x̄L) > 1 im-
plies that e(1) = 1 and e(2) = 2. Player 2’s payoff is equal to p2(x) ·1−C2(x2).
Using the candidate equilibrium strategies of all other players in E and the
properties of the unique equilibrium of the subgame, π2(0) = 0 for x2 = 0,
π2(x2) = −C2(x2) < 0 for 0 < x2 < x̄L, π2(x2) = 0 for x2 ∈ [x̄L, x̄2], and
π2(x2) = 1− C2(x2) < 0 for x2 > x̄2. Accordingly, any bid from the support
{0} ∪ (x̄L, x̄2] is an optimal reply for player 2. Finally, player 1’s payoff is
π1(x) = p1(x)·1−C1(x1). Given the candidate equilibrium strategies of other
players k ∈ E and the effort choices in the subgame perfect equilibrium this
payoff is equal to 1−C1(x̄2) > 0 for all x1 ∈ [x̄L, x̄2] and smaller for all other
x1. Accordingly, any bid from the interval [x̄L, x̄2] is an optimal reply for
player 1. Hence, the mixed strategies Fl(1) and Fl(2) are best replies to each
other.

In the candidate equilibrium, πk = 0 for all k 6= 1. Consider π1. If 1 ∈ L,
then xk = 0 for all k ∈ E. Hence, x̄E = 0. If L = {1}, then 1 wins with no
effort and has payoff π1 = 1. If #L > 1, then π1 = 1 − C1(x̄l(2)). If 1 ∈ E,
it has been shown that x1 = x̄2 is within player 1’s equilibrium support and
yields π1 = 1− C1(x̄2). This concludes the proof.

Proposition 1 shows, that - given our tie-breaking rule - for any partition
of players into the sets E and L, there is a unique subgame perfect equilib-
rium. Since the number of different partitions of n players into two sets is 2n,
we have characterized 2n possible equilibrium configurations. Note however
that these result in only n different equilibrium payoff vectors (π1, 0, .., 0),
where π1 can assume the values 1 and 1−C1(x̄i), i = 2, .., n. Adding another
player (n + 1) would double the number of feasible partitions (as this player
could ”join” any previous partition in either E or L), but add only one fur-
ther equilibrium payoff vector π = (1−C1(x̄n+1), 0, ..., 0) with a new positive
payoff for player 1. If the new player would not be the one with the highest
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cost of effort (and hence change our labelling of players), it would still be true
that the number of different equilibrium payoffs for player 1 only increases
by one to (n + 1). Moreover, n of those are identical to the previous ones
unless the new player happens to be the -new- strongest one with the lowest
cost of effort. In this latter case all n feasible equilibrium payoffs for player
1, which are smaller than 1, can be different from the previous feasible equi-
librium values with only n players. With just 2 players the equilibrium pay-
offs for three player partitions (E1, L1) = ({1}, {2}), (E2, L2) = ({1, 2}, {∅})
and (E3, L3) = ({∅}, {1, 2}) are identically equal to (1− C1(x̄2), 0), whereas
(E4, L4) = ({2}, {1}) yields the payoffs (1,0).

Proposition 1 also shows that the equilibrium of the generalized Stack-
elberg equilibrium has similar properties as the solution with two players.
Only the player with the strongest cost advantage has a positive payoff, and
this payoff is larger if this player chooses his effort last. An interesting aspect
is that the all-pay auction that takes place at stage l and the competition it
involves for those players, does not benefit the players who choose at stage
e compared to the situation in which there is only one player who chooses
late. The reason is that x̄L, the minimal bid for a player in E in order to
win, does not depend on actual behavior of players in the competition at
L, but their potential limit behavior in rational play. This largest possible
rational counter bid, however, is determined by exogenous data, namely the
cost parameters of the players moving at L. Also similar to the two-player
case, the player with the lowest cost is best off if he moves later than all
other players. For all other players, timing does not affect their payoff. They
all cannot expect to gain something from participating in the contest and
from making positive bids. These results do not depend in an essential way
on our choice of tie-breaking rule. This rule was chosen in order to arrive at
strict subgame perfect equilibria. Choice of other tie-breaking rules; i.e. the
probably more ”‘obvious”’ one, which stipulates the winning probability of
a player from M as always equal to 1

#M
regardless of his membership in E

or L, would only produce ε−equilibria. Moreover, these ε−equilibria would
all lie in ε−neighborhoods of our strict equilibria.

3 Endogenous timing

Let N continue to be the set of players, but consider a game that is ”enlarged”
by a decision stage 1 that occurs prior to stage e. In stage 1 each player k ∈ N
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chooses whether to choose effort at stage e or at stage l, and may randomize,
in which case qk ∈ [0, 1] denotes the probability by which k chooses e and
(1 − qk) the probability by which k chooses l. Once all players have chosen
their qk, the actual timing tk ∈ {e, l} of each player k’s effort choice is
determined and observed by all players. Let t = (t1, ...tn) denote the vector
describing this set of actual timing, which emerges as a draw from Q that
denotes the joint probability distribution over (independent) timing choices.

Note that a given t sorts the players into sets E(t) and L(t) which con-
stitute a partition of N , and that there is a one-to-one mapping between
feasible t and feasible partitions of N into two sets E and L.

At stage e, the history of the game is described by (Q and ) t. If tk = e,
then player k must choose his effort xk ∈ [0, K], and this choice can be
a function of this history. He may choose to randomize and choose effort
as a draw from a cumulative distribution function Fk as a function which
generally can be a function of the history at stage e. Players with tk 6= e
cannot take any action at this point. At the end of stage e, all players k with
tk = e have chosen their actions, and their actual efforts xk are observed by
all players. The vector xE describes these actual efforts.

The history of the game at stage l is characterized by (Q,FE,) t and xE,
(where FE denotes the joint distribution function from which actual effort
choices xE have been drawn independently.) Players k with tk = l must
choose an effort level xk ∈ [0, K] and may choose effort as a function of the
history. They may also randomize and choose according to a cumulative
distribution function Fk. Players k with tk 6= l cannot assume any action at
this point.

At the end of stage l the prize is awarded to the player who expended the
highest effort, and the same tie-breaking rule as in section 2 is used if several
players expended the same highest amount of effort.

Note that because of uniqueness of equilibrium at stage l given xE (and
t), it is irrelevant, which distributions Q resp. FE have generated these
realizations. I.e. a player cannot condition his behavior at l on Q resp. FE

given the realizations xE and t, which are observed by all players. The same
argument then applies for players at stage e: given t and given the knowledge,
that players at l cannot condition behavior on Q and their choices of FE, a
player at e cannot condition his strategy choice on Q as t already determines
the unique subgame perfect equilibrium in the continuation game (see the
proof of Proposition 1).

The following Proposition characterizes subgame-perfect equilibrium in
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the game with endogenous timing of effort decisions.

Proposition 2

i) q1 = 0 is an almost strictly dominant strategy for player 1; i.e. it is
the unique best reply to any choice of (q2, ..., qn) by players 2 to n, for
which q2 > 0. For any (q2, ..., qn) with q2 = 0 any choice of q1 ∈ [0, 1]
is a best reply for player 1.

ii) Let q1 = 0; then any choice of timing strategies from [0, 1] by play-
ers 2,...,n is (part of) a subgame perfect equilibrium in the game with
endogenous timing of effort decisions.

Proof. Note first that, by the one-to-one mapping between t and E(t)
and L(t), Q induces a probability distribution over partitions (E, L) of N .
Note further that the equilibrium that is characterized in the proof of Propo-
sition 1 for any given partition and with payoffs as in Proposition 1 for this
partition, is the subgame perfect equilibrium of the continuation game of the
”enlarged” game for which this partition emerges at the end of stage 1. And
only t (or, equivalently, the partition that is described by t) constitutes the
payoff-relevant history.

Hence players anticipate that the equilibrium that is characterized in
Proposition 1 is played in the continuation games for any partition of N into
E(t) and L(t). We now show that for a player k, k > 1, any qk ∈ [0, 1] is an
optimal choice regardless of the chosen ql by players l ∈ {1, ..., k − 1, k + 1, ..., n}.
We then show, that qk = 0 in turn is an optimal reply for player 1 to any of
these choices by players 2 to n, and uniquely so, if q2 > 0.

Consider first k > 1. Given any joint distribution over (t1, ..., tk−1,
tk+1, ..., tn), any qk leads to a probability distribution over partitions E and
L from which one actual partition results. The payoff of player k in the
subgame perfect equilibrium for each of these partitions is πk = 0 by Propo-
sition 1. Accordingly, any qk is an optimal reply to any joint distribution
over (t1, ..., tk−1, tk+1, ..., tn).

Turn now to k = 1. Define t−1 ≡ (t2, ..., tn). For a given t−1, let
jmin(t−1) = min[j ∈ {2, ..., n} |tj = l ]. Then the payoff of player 1 from
choosing q1 given t−1 is (1− q1)(1− C1(x̄jmin(t−1)) + q1(1− C1(x̄2)) and this
payoff is non-increasing in q1 and strictly decreasing if jmin(t−1) 6= 2. Player
1 is always strictly better off by choosing l instead of e, if player 2’s choice
q2 results in the realization of t2 = e. Player 1 is indifferent between e and
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l if and only if t2 = l. This, however, is ex ante; i.e. before the q’s are
(simultaneously) chosen, only assured, if q2 = 0. As soon as q2 leads with
positive probability to the realization t2 = l, player 1 is ex ante better off by
choosing l with certainty; i.e. q1 = 0.

The intuition for why other players are essentially indifferent about when
to choose their effort is straightforward. They have a payoff of zero in the
continuation game that starts with stage e, regardless of the partition of
players between E and L. This makes them indifferent regarding their own
choice of timing. This argument does not apply in general for player 1. If this
player chooses his effort late, he essentially competes only with the players
who also choose their effort late, as all players in E who choose their effort
early are induced to choose zero effort in the equilibrium that is characterized
in Proposition 1. However, if player 1 chooses his effort early, he essentially
competes with all other players, either simultaneously, or via the fact that
they can react to his bid and consider whether to make a higher bid. The
advantage of choosing late therefore is that all competitors who choose early
drop out of the competition, and this advantage is bigger if the group of
players who choose early includes the particularly strong players. In the
extreme case in which all players k 6= 1 belong to E and choose early, if
player 1 chooses late, there is no competitor left and player 1 receives the
prize without any effort, whereas, if he chooses early, he competes with the
whole group of other players. This may explain why player 1 has a preference
for moving late. The only case in which this preference is not strict is when
player 2 also chooses late. In this case the show-down between these two
strongest players is inevitable, and player 1 is indifferent whether to choose
early and preemt player 2, or whether he enters into a simultaneous all-pay
auction with this second-strongest player. But note that any offer of a small
”premium” payment ε > 0 for moving early -either by the rules of the game
or by player 1- would select the efficient equilibrium as the unique equilibrium
(for all tie-breaking rules).

4 Conclusions

The equilibrium in an all-pay auction with complete information has some
interesting properties if one allows for some generalizations that naturally
extend the results on the two-player all-pay auction with sequential bids.
We consider partitions of a larger group of players into two subsets. Play-
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ers in one subset choose their effort individually and simultaneously, prior
to the individual and simultaneous choices of members of the other group,
and we consider the endogenous formation of such groups and their tim-
ing of bids. Main results are: the sequential structure of bids favors the
strongest player, particularly if some of his strongest competitors have to
make their bids prior to him. For an appropriate partition of players the
prize is efficiently allocated to the strongest bidder, with aggregate bid cost
in this equilibrium of zero. Moreover, this partition of players into groups
can emerge as an equilibrium outcome if all players choose their timing of
bids simultaneously in a stage prior to the actual bidding stages. Hence our
simple redesign of the simultaneous all-pay auction as a Stackelberg game
yields an extremely efficient allocation mechanism for competitions, which
involve (partially) wasteful bids or effort choices. In the prominent equilib-
rium, in which player 1 is the only one to move late, the prize is allocated
efficiently with no ”rent dissipation” at all!
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