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Abstract

This paper studies the performance of nonparametric quantile regres-
sion as a tool to predict Value at Risk (VaR). The approach is flexible as
it requires no assumptions on the form of return distributions. A mono-
tonized double kernel local linear estimator is applied to estimate moder-
ate (1%) conditional quantiles of index return distributions. For extreme
(0.1%) quantiles, where particularly few data points are available, we pro-
pose to combine nonparametric quantile regression with extreme value
theory. The out-of-sample forecasting performance of our methods turns
out to be clearly superior to different specifications of the Conditionally
Autoregressive VaR (CAViaR) models.
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1 INTRODUCTION 1

1 Introduction

Risk management regulations require banks to estimate market risk measures

based on quantiles of loss distributions. According to the Market Risk Amend-

ment to the Basel II Capital Accord of 2004, issued by the Bank for Interna-

tional Settlements, Value at Risk (VaR) is to be calculated daily, using a ’99th

percentile, one-tailed confidence interval’.1 Banks are free to choose which

VaR model they use, but the recent turbulences on financial markets raise the

question to what extent conventional VaR models, e.g. based on historical

simulation or estimates of variance-covariance matrices of asset returns, are

appropriate.

The aim of this paper is to assess the performance of nonparametric quantile

regression as a tool for VaR estimation. The approach requires no assumptions

on the form of financial return distributions. We show that in terms of out-

of-sample forecasting performance, a monotonized double kernel local linear

estimator clearly outperforms competing models on the 1% VaR level. Our

benchmarks are different specifications of the Conditionally Autoregressive

Value at Risk (CAViaR) models of Engle and Manganelli (2004). By refining

nonparametric quantile regression methods with extreme value theory (EVT),

we are able to model extreme quantiles (0.1%) accurately.

Several studies exist that compare the forecast performances of different VaR

models. See, among others, Kuester et al. (2006), Manganelli and Engle (2001)

and Nieto and Ruiz (2008). They take into account a broad variety of models,

but nonparametric quantile regression as a tool for VaR estimation is rarely

considered. One reason might be the fact that due to regulatory requirements

and internal risk management purposes, quantiles associated with low prob-

abilities such as p = 0.01 and below are of particular practical interest. For

fully nonparametric models, however, the number of data points available to

estimate tail quantiles is often not sufficient. Cai and Wang (2008) suggest to

estimate VaR and Expected Shortfall using a new nonparametric VaR estima-

tor, combining the Weighted Nadaraya Watson (WNW) estimator of Cai (2002)

and the Double Kernel Local Linear (DKLL) estimator of Yu and Jones (1998).

In the empirical application, however, only 5% quantile curves are estimated

1Amendment to the Capital Accord to incorporate market risks, paragraph B.4(b).



1 INTRODUCTION 2

and no forecasts are computed. Chen and Tang (2005) investigate nonpara-

metric VaR estimation, when no regressors are present. Taylor (2008) proposes

to combine double kernel quantile regression with exponential smoothing of

the dependent variable in the time domain. 1% and 99% VaRs are predicted

from the model along with some benchmarks, but extreme quantiles are not

considered. Within the framework presented here, nonparametric regression

can be utilized to estimate VaR on any probability level of interest.

In recent years, computing power has increased substantially. Thus, estimat-

ing nonparametric quantile models induces only little higher computation costs

compared to parametric models. But the gain in flexibility is substantial, be-

cause nonparametric estimates can also be used as benchmarks to parametric

models, which may help to reduce model risk. Therefore, we argue that, also

in practice, nonparametric quantile regression should be considered as a seri-

ous alternative to common VaR estimation approaches.

Generally, the price to be paid for the flexibility of nonparametric models

is slower convergence than in the case of parametric regression. Therefore,

when using nonparametric methods to estimate VaR, one major concern is

data sparseness in the tails of the return distribution. We address this issue

by combining three techniques.

Firstly, the nonparametric technique of double smoothing is applied, i.e. esti-

mation of a distribution by localizing both regressor- and dependent variable

observations in order to ease distortions arising from data sparseness. Two

candidate double kernel estimators are available, which have similar asymp-

totic properties. On the basis of a small simulation study, the Double Kernel

Local Linear (DKLL) estimator is chosen for the VaR application.

However, investigating in-sample fits obtained from the DKLL estimator, re-

veals that despite the double smoothing, not all distortions can be eliminated,

so that curves that should be smoothly increasing are nonmonotone and have

bumps. Therefore, secondly, we adapt the method of monotonization by re-

arrangement, which has been proposed by Chernozhukov et al. (2009a). To

the best of our knowledge, implementing this method is new to the VaR litera-

ture. The theoretical finding, that rearrangement weakly improves nonmono-

tone estimates of monotone functions, is confirmed by our VaR estimation and

forecasting results.
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Thirdly, since data sparseness is even more severe in case of extreme quantiles,

e.g. corresponding to a probability of p = 0.001, we apply EVT to estimate

quantiles of the standardized nonparametric quantile residuals. The estima-

tion performance of the model on our data set is promising. In a small simula-

tion study, we confirm that the procedure leads to accurate VaR estimates.

The remainder of the paper is structured as follows. Section 2 briefly describes

the basic setup of conditional quantile models, including CAViaR models. A

new CAViaR specification is introduced, which is directly motivated from the

GARCH literature. Section 3.1 outlines the two candidate double kernel esti-

mators. Their finite sample fits are compared via simulation in 3.2. Section 3.3

contains the modelling idea for extreme quantiles, combining nonparametric

quantile regression and EVT. The investigated data sets and the backtesting

method are summarized in section 4. The empirical results on 1% and 0.1%

VaR of four time series of index returns are summarized in section 5. Section 6

concludes.

2 Quantile regression approaches to VaR estimation

2.1 Conditional quantiles

Let {Yt}
n
t=1 be a strictly stationary time series of portfolio returns and let Xt

be a d-dimensional vector of regressors. The pth conditional quantile of Yt,

denoted by qp(x), is defined as

qp(x) = inf {y ∈ R : F (y|x) ≥ p} ≡ F−1(p|x), (2.1)

or, equivalently, as the argument that solves

min
q(Xt)

E
[(

p − I(Yt < q(Xt))
)(

Yt − q(Xt)
)
|Xt = x

]
. (2.2)

Both formulations are widely used in the literature. In the seminal paper by

Koenker and Bassett (1978) a sample equivalent of (2.2) where q(Xt) = X
′
tβ,

also including the special case Xt = 1, is established. β is a vector of unknown

parameters and has dimension d + 1. The linear quantile model is extended

to conditionally heteroskedastic processes in Koenker and Zhao (1996). In En-
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gle and Manganelli (2004) conditionally autoregressive quantile functions are

estimated using (2.2) with q(Xt) possibly being nonlinear in parameters, see

section 2.2 for some examples. In a number of papers, localized kernel ver-

sions of (2.2) are estimated, leading to a nonparametric fit: Yu and Jones (1997)

compare the goodness of fit of local constant and local linear models. A vary-

ing coefficients and a partially varying coefficients approach are covered in

Cai and Xu (2008). On the other hand, Cai (2002), Yu and Jones (1998), Cai

and Wang (2008) propose nonparametric methods to estimate the distribution

function in (2.1), which, in a second step, is inverted. Section 3.1 contains more

details on the three approaches. Wu et al. (2007) model (2.1) without regres-

sors, and Chernozhukov and Umantsev (2001) operationalize a linear version

of (2.1).

Following the convention of expressing VaR as a positive number, it is defined

as

V aRt
p(·) = −qt

p(·),

where qt
p is the quantile of the return distribution corresponding to probability

p, at time t. V aRt
p denotes a generic VaR measure which may depend on x

and/or a vector of parameters β. To simplify notation, index t is suppressed

in contexts where it does not cause confusion.

2.2 Conditionally autoregressive VaR (CAViaR) Models

The class of Conditional Autoregressive Value at Risk (CAViaR) models, first

introduced by Engle and Manganelli (2004), is used to benchmark the forecast

performance of the nonparametric VaR estimators considered here. Several

comparison studies have done so, for example Kuester et al. (2006) or Taylor

(2008). CAViaR models are dynamic VaR models describing the quantile of a

random variable at time t, e.g. the return on a financial portfolio, as possibly

nonlinear function of its own lags and, in addition, of a vector of observable

variables, Xt:

V aRt
p(β,Xt) = β0 +

r1∑

i=1

βiV aRt−i
p (β,Xt−i) +

r2∑

j=1

βjf(Xt−j),
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where r = r1 + r2 + 1 is the dimension of β, the parameter vector that solves

min
β

1

n

n∑

t=1

[
p − I

(
Yt < −V aRt

p(β,X t)
)]

(Yt + V aRt
p(β,Xt)). (2.3)

To simplify notation, the Xt in parentheses will be dropped in the following. A

straightforward choice for Xt is lagged returns. Following the original article,

the specifications used here include the first lagged value of V aRp(·) and the

first lagged value of Yt, therefore Xt = Yt−1.

Well-known stylized facts on asset returns are, firstly, that they exhibit volatil-

ity clustering. It carries over to VaR: if high variation is observed in returns

of the recent past, it is likely to continue, and risk is therefore high as well.

Secondly, quantiles (or volatility) might react differently according to the sign

of past returns. This possibility is captured by the Asymmetric Slope specifi-

cation

V aRt
p(β) = β1 + β2V aRt−1

p (β) + β3(Yt−1)
+ + β4(Yt−1)

−, (2.4)

where (x)+ = max(x, 0) and (x)− = −min(x, 0), but not by the Indirect GARCH(1,1)

specification

V aRt
p(β) =

√
β1 + β2(V aRt−1

p )2(β) + β3Y 2
t−1. (2.5)

On the other hand, the Asymmetric Slope CAViaR imposes a piecewise linear

structure on VaR, although the true functional form might be nonlinear. As

pointed out in Kuester et al. (2006), financial returns may also have an autore-

gressive mean, which is neglected by the above CAViaR specifications. For

these reasons we introduce a new specification, called Indirect Autoregressive

Threshold GARCH (AR-TGARCH(1,1)) CAViaR:

V aRt
p(β) = β1Yt−1 +

(
β2 + β3(V aRt−1

p )2(β) + β4Y
2
t−1 + β5(Yt−1)

2I(Yt−1 < 0)
) 1

2 ,

(2.6)

Including the AR term introduces the possibility for a nonzero autoregressive

mean, asymmetry is present if β5 6= 0 and the square root allows for a nonlinear

functional form.
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3 Nonparametric VaR models

3.1 Modelling 1% VaR

In general, estimating nonparametric models requires large amounts of data.

Since VaR corresponds to a quantile at the tail of the return distribution, suit-

able nonparametric quantile estimators should be able to deal with areas where

data are sparse. Therefore, from the variety of nonparametric quantile estima-

tors, the Double Kernel Local Linear (DKLL) estimator of Yu and Jones (1998)

and the Weighted Double Kernel Local Linear (WDKLL) estimator introduced

by Cai and Wang (2008) are considered for the VaR application, because they

localize the data in both x- and y-direction, which leads to smoother estimates.

For more details, regularity assumptions and asymptotic properties, see the

original articles by Cai and Wang (2008) and Yu and Jones (1998).

For notational convenience, observations {(Xt, Yt)}
n
t=1 are assumed to be drawn

from underlying bivariate distribution F (x, y) with density f(x, y). The ex-

tension to the multivariate case is straightforward, but requires more tedious

notation. Both estimators are defined as inverses of conditional distribution

functions as in (2.1). Throughout this section, quantiles of return distributions

are discussed, so that VaR corresponds to the negative quantile.

A generic nonparametric method of estimating a conditional distribution F (y|x)

is

F̌ (y|x) =
n∑

t=1

wt(x)I(Yt ≤ y), (3.1)

where I(A) denotes the indicator on the set A and the weights wt(x) are posi-

tive and sum up to one. Choosing equal weights w = 1/n yields the empirical

distribution function. Using instead a kernel function with bandwidth param-

eter h, in the following sometimes abbreviated by Kh(·) = 1
h
K(·/h), which

is often chosen to be a symmetric probability density function, results in the

Nadaraya Watson estimator for conditional distribution

F̌NW (y|x) =
n∑

t=1

Kh(x − Xt)∑n
t=1 Kh(x − Xt)︸ ︷︷ ︸

wt(x)

I(Yt ≤ y)
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see for example Li and Racine (2007). It attaches a smooth set of weights to the

data, and is known to be monotone increasing and bounded between zero and

one. However, it suffers from boundary distortion, as shown by Fan and Gij-

bels (1996). They advocate the use of local polynomial estimators, the simplest

of which is the local linear estimator.

One way to reduce distortions that arise due to a limited number of observa-

tions is to smooth not only the observations of the regressor variable Xt, but

also the observations of the dependent variable Yt. This requires the intro-

duction of a second symmetric kernel Wh2
(·). Its kernel distribution, which is

defined by ∫ y

−∞

Wh2
(Yt − u)du = Ω

(
y − Yt

h2

)
, (3.2)

with h2 < h1, can be viewed as a smooth, differentiable version of the indicator

function.

In case of the DKLL estimator, as a next step, the conditional distribution value

of y is approximated by a linear Taylor expansion around x. The estimate

F̃ (y|x) = β̂0 is obtained from

(β̂0, β̂1) = arg min
β0,β1

n∑

t=1

(
Ω

(
y − Yt

h2

)
− β0 − β1(Xt − x)

)2

Kh1
(x − Xt) . (3.3)

Solving for β̂0 yields the explicit expression for the conditional distribution

function estimator,

F̃ (y|x) =
n∑

t=1

Kh1
(x − Xt) [S2 − (x − Xt)S1]∑n

t=1 Kh1
(x − Xt) [S2 − (x − Xt)S1]︸ ︷︷ ︸

wt(x)

Ω

(
y − Yt

h2

)
, (3.4)

where

Sl =
n∑

i=1

K

(
x − Xt

h1

)
(x − Xi)

l, l = 1, 2.

(3.4) is a version of (3.1) where the kernel distribution function Ω(·) in (3.2) re-

places the indicator. The DKLL quantile estimator q̃p(x), the sample analogue

to (2.1), is then defined by

q̃p(x) = inf
{

y ∈ ℜ : F̃ (y|x) ≥ p
}
≡ F̃−1(p|x). (3.5)
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with F̃ from (3.4). In finite samples, F̃ (y|x) might not always be monotoni-

cally increasing. In such cases, however, the inverse is not defined. Yu and

Jones (1998) suggest the following implementation scheme: For q̃1/2(x), any

value satisfying (3.5) is chosen; for p > 1/2, the largest, and for p < 1/2, the

smallest solutions to (3.5) are taken as quantile estimates.

In this paper, a stronger procedure is applied, avoiding to delete estimated

values. Chernozhukov et al. (2009a) show that any nonmonotone estimate of

a monotone function can be improved in terms of common metrics, such as

the Lp-norm, by rearranging. For the case of a monotone increasing (decreas-

ing) function, the point estimates are sorted in ascending (descending) order.

Making use of the results derived in Chernozhukov et al. (2009a), nonmono-

tone distribution estimates are rearranged before inverting. We will utilize

this useful method more extensively in section 5.2 to monotonize conditional

VaR curves. In the present context of monotonizing the estimated distribution

function, a further effect is that quantile crossing is circumvented, as pointed

out in Chernozhukov et al. (2009b). Estimated values greater than one are dis-

carded.

The Weighted Double Kernel Local Linear (WDKLL) of Cai and Wang (2008)

estimator is a combination of the DKLL estimator and the Weighted Nadaraya

Watson (WNW) estimator of Cai (2002). The indicator in (3.1) is replaced by

distribution function (3.2). Additionally, in order to avoid boundary distor-

tions known to occur for standard Nadaraya Watson type estimators, a set of

weight functions pt(x) is multiplied to the kernel values. The weight functions

depend on the data X1, ..., Xn and on locations x. Here they are chosen to ful-

fill the discrete moment conditions of the simplest local polynomial estimator,

the local linear, which are

n∑

t=1

pt(x) = 1 and
n∑

t=1

pt(x)(Xt − x)Kh(Xt − x) = 0. (3.6)

Fan and Gijbels (1996) show that as a consequence of these conditions, design

dependent local polynomial estimators automatically adjust at the boundary

of the support of x, and that they can adapt to different designs.

Functions pt(x) fulfilling (3.6) are not unique. One possibility to identify them

is to use the idea underlying empirical likelihood: The product, or equivalently
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the sum of the logarithms of all pt(x) is maximized subject to the constraints

(3.6). The corresponding (Lagrange) objective function is

L =
n∑

t=1

log [pt(x)] + λ1

(
n∑

t=1

pt(x) − 1

)
+ λ2

(
n∑

n=1

(Xt − x)pt(x)Kh(x − Xt)

)
.

(3.7)

By taking derivatives and solving the first order conditions, pt(x; λ) can be

derived as

pt(x; λ) = n−1 [1 + λ(Xt − x)Kh(x − Xt)] (3.8)

Plugging (3.8) back into the objective function gives

L =
1

nh

n∑

t=1

log [1 + λ(Xt − x)Kh(x − Xt] , (3.9)

which is maximized by finding the root of L′(λ) = 0 numerically, e.g. by New-

ton’s Method. The obtained parameter λ0 is used in (3.8), which gives the

unique weights.

Putting everything together, the WDKLL conditional distribution estimator is

defined by

F̂ (y|x) =
n∑

t=1

pt(x)Kh1
(Xt − x)∑n

t=1 pt(x)Kh1
(Xt − x)

Ω

(
y − Yt

h2

)
, (3.10)

and the corresponding WDKLL estimate of the pth conditional quantile func-

tion is

q̂p(x) = inf{y ∈ ℜ : F̂ (y|x) ≥ p} ≡ F̂−1(p|x) (3.11)

It always exists because F̂ (y|x) is, by construction, between zero and one and

monotone in y (see Cai (2002)). In Cai and Wang (2008) it is shown that both

conditional distribution and quantile estimators are design adaptive, a feature

that is not shared by ordinary Nadaraya Watson type estimators. In particular,

no boundary correction is necessary. The replacement of the indicator entails

additional smoothness, especially at the outer regions of the support.
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3.2 Comparing DKLL and WDKLL estimator

From a theoretical point of view, the WDKLL estimator is slightly superior

to the DKLL estimator, because it ensures monotonicity and does not require

rearrangement. Furthermore, it is explicitly set up for time series data. Still,

since the aim of this paper is to find the estimator which is best suited for esti-

mation of VaR, i.e. tail quantiles, a small simulation is carried out comparing

DKLL and WDKLL estimators. An ARCH(1) process with starting value 0 is

generated according to

Yt = −0.4Xt +
√

0.4(1 + X2
t )

︸ ︷︷ ︸
σ(Xt)

ǫt, (3.12)

where Xt = Yt−1, and the error term ǫt ∼ iidN(0, 1). Conditional quantiles

are estimated using both WDKLL (q̂(x)) and DKLL (q̃(x)) estimators for three

different sample sizes, n = 200, n = 500 and n = 1000, conditional on two

values of Xt, x = −0.75 and x = 1.25. For both local constant fit of the WDKLL

estimator and local linear fit of the DKLL estimator, the Gaussian kernel is

used, while the uniform kernel is used for smoothing the dependent variable.

Table 3.1 contains results on estimates of the Integrated Square Error (ISE)

x = −0.75

5% ISE 25% ISE Median ISE 75% ISE 95% ISE
WDKLL 0.009 0.012 0.015 0.018 0.024
DKLL 0.014 0.018 0.021 0.024 0.032

x = 1.25

5% ISE 25% ISE Median ISE 75% ISE 95% ISE
WDKLL 0.033 0.048 0.059 0.074 0.100
DKLL 0.025 0.035 0.043 0.053 0.070

Table 3.1: Quantiles of ÎSE for n = 1000.

as goodness of fit measure, which is defined for some function f(x) and an

estimate f̂(x), as

ISE =

∫ (
f̂(x) − f(x)

)2

dx.

Here, ISE measures the squared distance between estimate and true quan-
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tile curve. It can be estimated by discretizing the integral using the trapezoid

formula

ÎSE =
m−1∑

i=2

(f̂(xi)−f(xi))2∆+
1

2
(f̂(x1)−f(x1))2∆+

1

2
(f̂(xm)−f(xm))2∆, (3.13)

where x1 < ... < xm is a grid of x-values and ∆ = xi − xi−1 is the same for all

i = 2, ...m. Here, median, 5%, 25%, 75% and 95% quantiles of ÎSE are com-

puted. All results are derived using 500 replications. Interestingly, for the grid

point relatively close to the process mean, x = −0.75, the WDKLL estimator

has smaller ÎSE, but for = 1.25, where less data are available, the fit of the

DKLL estimator is slightly better. As the differences are small, both estimators

are considered to be well suited for our application. However, based on the

simulation result we choose the DKLL estimator for the estimation of index

return VaR in section 5.2.

3.3 Modelling 0.1% VaR

For extreme quantiles, usually very few data points are available, so that fully

nonparametric regression does not yield reliable estimates. Extreme value

theory (EVT) is an alternative to model extreme quantiles. In the following

a method of incorporating extreme value theory into CAViaR models, which

was introduced by Manganelli and Engle (2001), is adapted to obtain VaR es-

timates for p = 0.001 from a nonparametric model.

The strategy is to first calculate the standardized quantile residuals,

ǫ̂t
θ

q̂t
θ

=
Yt − q̂t

θ

q̂t
θ

=
Yt

q̂t
θ

− 1.

Under the assumption that the implemented model is correct, they should be

i.i.d., which is a necessary condition for applying standard extreme value es-

timators. McNeil and Frey (2000) employ a similar technique to estimate VaR

for p = 0.01 from a GARCH residual series. p denotes the (very low) probabil-

ity of interest, and θ corresponds to a moderately low probability for which the

quantile can be estimated nonparametrically, for example θ = 0.01 or θ = 0.05.

Reformulating the definition of the pth quantile of portfolio returns in terms of
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the θth quantile yields

P [Yt < qt
p] = P

[
Yt < qt

θ − qt
θ + qt

p

]

= P

[
Yt

qt
θ

− 1 >
qt
p

qt
θ

− 1

]
= p.

The inequality sign is switched assuming that qt
p is a negative number. Let

qt
p

qt
θ

− 1 ≡ zp

denote the pth quantile of the standardized residuals. Finally, the pth quantile

of the original time series of portfolio returns can be estimated with EVT:

q̂t
p

q̂t
θ

− 1 = ẑp ⇔ q̂t
p = q̂t

θ(ẑp + 1). (3.14)

with EVT methods, and some rearranging.

Again, V̂ aR
t

p = −q̂t
p. In the remainder of this section, the basic idea of the stan-

dard peaks over threshold (POT) method, which is used to obtain ẑp in (3.14),

is described very briefly, following Embrechts et al. (1997).

Large observations which exceed a high threshold can be approximated rea-

sonably well by the generalized Pareto distribution with distribution function

Gξ,β(x) =

{
−(1 + ξx/β)1/ξ for ξ 6= 0

1 − ex/β for ξ = 0
(3.15)

with shape parameter ξ and scale parameter β > 0. The support is x ≥ 0

when ξ ≥ 0 and 0 ≤ x ≤ −β
ξ

if ξ < 0. The parameters can be consistently

estimated if the threshold exceedances are independent, regardless of the true

underlying distribution, see Smith (1987). In general, given a high threshold

u and a random variable Y , the probability of Y exceeding u at most by x is

given by

Fu(x) = P [Y − u ≤ x|Y > u] =
F (x + u) − F (u)

1 − F (u)
. (3.16)
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Balkema and de Haan (1974) and Pickands (1975) show that for a large class of

distribution functions F it is possible to find a positive function β(u) such that

lim
u→y0

sup
0≤x<y0−u

∣∣Fu(x) − Gξ,β(u)(x)
∣∣ = 0 (3.17)

with y0 corresponding to the right endpoint of F . Rearranging (3.16) and using

Fu(·) ≈ Gξ,β(·), it holds that

1 − F (u + x) ≈ [1 − F (u)][1 − Gξ,β(x)].

Then, 1−Gξ,β(x) can be obtained by estimating the GPD parameters by maxi-

mum likelihood. Let Nu denote the number of exceedances over threshold u. A

common way of estimating S(u) := 1−F (u) is to use the empirical distribution

function Nu

n
. Subsituting the estimates,

̂S(u + x) =
Nu

n

(
1 + ξ̂

(
x

β̂

))− 1

ξ̂

. (3.18)

The quantile can be estimated by inverting (3.18), employing a change of vari-

ables y = u + x and fixing the distribution value at the probability of interest:

F (y) = p. Therefore, the quantile estimator q̂p is obtained from

1 − p =
Nu

n

(
1 + ξ̂

(
y − u

β̂

))− 1

ξ̂

⇔ q̂p = u +

[(
(1 − p)

Nu

n

)−ξ̂

− 1

]
·
β̂

ξ̂
. (3.19)

4 Data and backtesting method

We analyze four data sets of daily index returns. The longest available time se-

ries of each are used to compute in-sample fits, leaving out 1000 observations

for out-of-sample forecasting. Table 4 summarizes the data. The end date of

the in-sample period is 04/05/2004.

Realizations of quantiles cannot be observed. Therefore, backtesting of the

models is carried out using the dynamic quantile (DQ) out-of-sample test de-

veloped in Engle and Manganelli (2004) to test and compare the performance
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DAX FTSE 100 EuroSTOXX S&P 500
start date 01/05/1965 01/03/1984 01/02/1987 06/26/1969
no. of observations 9954 4999 4216 8787
mean 0.0167 0.0259 0.0205 0.0246
median 0 0.0195 0.0567 0.0019
0.5% quantile -4.0200 -3.4698 -4.9243 -3.003
99.5% quantile 3.6530 3.2573 4.1567 3.2247
skewness -0.41 -0.79 -0.33 -1.41
kurtosis 11.28 13.57 8.41 38.21

Table 4.1: Data summary. All returns in percent.

of CAViaR models. Define the hit function

Hitt ≡ I(Yt < −V aRt
p) − p (4.1)

which equals −p if the return is below the forecasted quantile and (1 − p) if

VaR is exceeded. If the chosen model is correct,

1. E[Hitt|Ωt] = 0, where Ωt is any information known at t, and conse-

quently,

2. Hitt is uncorrelated with its own lags and

3. P (Yt < −V aRt
p) = p, i.e. the unconditional probability of VaR exceedance

equals p.

Thus, VaR is estimated correctly, if for each day independently, the probability

of exceeding it equals p. For the DQ test, a regression equation

Hitt = X
′
tθ + ut, ut =

{
−p with prob. 1 − p

1 − p with prob. p
(4.2)

is estimated, where Xt is an r-dimensional vector containing any variables

potentially correlated with Hitt. The null hypothesis

H0 : θ1 = ... = θr = 0
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can be tested by a Wald test for joint significance. Therefore, the test statistic is

DQ =
1

n
·
Hit

′
X[X′

X]X′
Hit

p(1 − p)
∼ χ2

r as n, nIS → ∞,

where n denotes the number of out-of sample forecasts, nIS is the number of

observations used for estimating the model, and Hit and X are the vectors

containing observations of the dependent variable and the regressor matrix,

respectively.

Following, for example, Engle and Manganelli (2004), Kuester et al. (2006) and

Taylor (2008), the information set consists of a constant, four lagged values of

Hitt and the respective estimate of V aRt−1
p .

5 Application to stock index returns

5.1 1% CAViaR

For estimating the parameters of the CAViaR models, an algorithm similar to

the one proposed in the original paper is applied, see Engle and Manganelli

(2004). A grid search is conducted by generating a large number of random

vectors, the dimension of which corresponds to the number of model parame-

ters. The five vectors which lead to the lowest values of the objective function

(2.3) are selected and fed into a simplex optimization algorithm. The final pa-

rameter vector is chosen to be the one minimizing (2.3).

Table 5.1 reports the results on the evaluation of the Asymmetric Slope, GARCH

and AR-TGARCH CAViaR models. They perform similarly. All in-sample cov-

erages, i.e. the shares of VaR exceedances in the estimation period, are very

close to 1%. This is not surprising since the objective function ensures that the

parameters are chosen in this way. Except for the DAX, out-of-sample cover-

ages are in an acceptable range as well. However, almost all p-values of the DQ

test are close to zero, i.e. the null hypothesis of independent VaR exceedances

has to be rejected on common significance levels in almost all cases.

Comparing forecast accuracy, it turns out that the the results obtained from the

new AR-TGARCH CAViaR model are similar to the results from the Asymmet-

ric Slope model. However, the news impact curves shown in figure 5.1, i.e. the
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DAX
Asymmetric Slope GARCH AR-TGARCH

in-sample (%) 0.995 1.025 0.975
out-of sample (%) 5.0 5.3 05.1
DQ p-value 0.0 0.0 0.0

FTSE 100
Asymmetric Slope GARCH AR-TGARCH

in-sample (%) 1.020 1.000 0.980
out-of sample (%) 1.0 0.8 1.1
DQ p-value 0.0 0.0 0.0

EuroSTOXX 50
Asymmetric Slope GARCH AR-TGARCH

in-sample (%) 0.997 1.020 0.996
out-of sample (%) 1.8 1.7 1.9
DQ p-value 0.000061 0.021 0.000067

S&P 500
Asymmetric Slope GARCH AR-TGARCH

in-sample (%) 1.002 1.013 1.001
out-of sample (%) 0.6 0.7 0.6
DQ p-value 0.000029 0.0022 0.000027

Table 5.1: DQ test results for CAViaR models as well as in-sample and out-of
sample share (coverage) of VaR exceedances (in percent).

reactions of VaR to different magnitudes of the lagged return, reveal that the

new specification resembles the nonparametric VaR estimate better than the

other two models. Nevertheless, from the DQ test results it must be concluded

that none of the considered CAViaR specifications captures the dynamics un-

derlying the VaR processes.
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Figure 5.1: News impact curves of TGARCH(1,1) CAViaR (green) together
with DKLL estimate (blue), of Asymmetric Slope and GARCH(1,1) CAViaR,
for S&P 500

5.2 Nonparametric 1% VaR

When forecasting from a nonparametric model, one has to balance two effects

occuring at the boundary areas: The support from which predictions of the

dependent variable can be computed is limited to the range in which the esti-

mated function is located. This means that for outlying lagged returns, which

are not in the support of the estimated curve, no forecasts for VaR exist. On the

other hand, often only few data points are available at boundary areas, so that

outliers have more influence and the resulting curve may show distortions.

Therefore, one has to decide carefully about the range of the grid at which the
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function is evaluated, balancing possible distortions against a limited range of

regressor values to compute forecasts from.

For forecasting 1% quantiles of a conditional distribution, the DKLL estima-

tor is used due to its double smoothing property, which eases distortions and

leads to smoother quantile curves. Furthermore, in our simulation, it obtained

a slightly superior finite sample fit compared to the WDKLL estimator (see

section 3.1).

However, the performance of the DKLL estimator can be improved even fur-

ther by making use of the monotonization method proposed by Chernozhukov

et al. (2009a). Whenever curves are not monotonically decreasing on the left of

the minimum and monotonically increasing on the right, estimated values are

rearranged in descending and ascending order, respectively. Chernozhukov

et al. (2009a) shows that this procedure of rearranging point estimates weakly

reduces the estimation error for any nonmonotone estimate of a monotone

function. To illustrate possible changes in the in-sample fit, figures 5.2 and 5.3
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Figure 5.2: Original and rearranged DKLL estimates of 1% conditional DAX
VaR curve

show the original as well as the rearranged 1% VaR curves of DAX and Eu-

rostoxx. All curves cover 99% of the data.

The backtesting results of original DKLL and rearranged DKLL estimates are

summarized in table 5.2. It reports in-sample and out-of-sample coverages,

i.e. the shares of VaR exceedances in the estimation and forecasting periods,

respectively, as well as the p-value of the out-of-sample DQ test described in
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subsection 4. Whenever values in the columns are different, they are supe-

rior for the rearranged estimates: In-sample and out-of-sample coverages are

closer to 1% in case of the FTSE return series. Furthermore, the DQ test p-

value is higher, indicating that the null hypothesis of independent hits is fur-

ther away from rejection than for the original DKLL model. For EuroSTOXX,

in-sample coverage is closer to 1% as well. The results for DAX and S&P 500,

on the other hand, were not affected by the rearrangement. Therefore, our es-

timation results confirm the findings of Chernozhukov et al. (2009a).

The conclusions drawn from backtesting the nonparametric model are simi-
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Figure 5.3: Original and rearranged DKLL estimates of 1% conditional Eu-
rostoxx VaR curve

lar for FTSE, EuroSTOXX and S&P 500. Table 5.2 reveals that there seems to

be a slight tendency to overestimate VaR, so that exceedances stay below the

expected amount. The DQ test p-values, on the other had, indicate that no se-

vere clustering of exceedances is present. The large number of observations

justifies the choice of a test significance level of 1%, so that the null hypothesis

of independent hits is not rejected even for S&P 500.

The picture is different in the case of DAX VaR. Table 5.3 contains a direct com-

parison of results obtained from the rearranged DKLL model and, due to their

similarity, from only two of the CAViaR specifications. The two CAViaR mod-

els clearly underestimate VaR in the forecasting period, and the null hypothe-

sis of independent hits has to be rejected on any significance level. The latter

is true for the rearranged DKLL model, too, although the p-value is slightly
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DAX FTSE
DKLL orig. DKLL rearr. DKLL orig. DKLL rearr.

in-sample (%) 0.804 0.804 0.900 0.940
out-of-sample (%) 1.2 1.2 0.4 0.5
DQ p-value 0.00014 0.00014 0.10 0.48

EuroSTOXX S&P500
DKLL orig. DKLL rearr. DKLL orig. DKLL rearr.

in-sample (%) 0.807 0.830 0.945 0.945
out-of-sample (%) 0.5 0.5 0.3 0.3
DQ p-value 0.53 0.53 0.012 0.012

Table 5.2: DQ test results for original and rearranged DKLL models as well as
in-sample and out-of sample share (coverage) of VaR exceedances (in percent).

greater than zero. However, the out-of-sample coverage obtained by the model

is close to 1%. Thus, the model fits obtained from the rearranged DKLL esti-

mator are clearly superior to the results from the different CAViaR models.

DKLL rearr. A.S. CAV. GARCH CAV.
in-sample (%) 0.804 0.995 1.025
out-of-sample (%) 1.2 5.0 5.3
DQ p-value 0.00014 0.0 0.0

Table 5.3: DAX: DQ test results as well as in-sample and out-of sample share
(coverage) of VaR exceedances (in percent).

5.3 Nonparametric EVT-augmented 0.1% VaR estimates

Following the procedure described in section 3.3, standardized residuals are

computed from the rearranged DKLL estimate and the time-varying 0.1% quan-

tile of time series Yt is calculated according to (3.14). For completeness, the re-

sults from the EVT-augmented Asymmetric Slope- and GARCH CAViaR spec-

ifications are computed as well, following Manganelli and Engle (2001).

Table 5.4 contains both in-sample and out-of-sample share of DAX-VaR ex-

ceedances for the four considered models. The choice of DAX is motivated by

the fact that forecasts of DAX VaR in the investigated time period seems to be



5 APPLICATION TO STOCK INDEX RETURNS 21

DKLL & EVT DKLL EVT-A.S.-CAV. EVT-GARCH-CAV.
in-sample (%) 0.13 0.09 0.10 0.16
out-of sample (%) 0.1 0 1.4 1.9

Table 5.4: In-sample and out-of sample shares (coverages) of VaR exceedances
for 0.1% VaR (in percent).

particularly challenging, as it turned out in section 5.2. Only the DKLL esti-

mator achieved the correct out-of-sample coverage, but the DQ test indicated

that it failed to produce a time series of independent VaR exceedances.

Table 5.4 shows that the model performances are similar to the results on 1%

VaR forecasting: The CAViaR models underestimate VaR. This finding is not

surprising, as for computation of the standardized residuals the quantile resid-

uals from the 1% VaR model are used. Therefore, the goodness of fit of the

model corresponding to the ’moderate’ probability carries over to the extreme

quantile.

On the other hand, the fractions of VaR exceedances are very close to the

underlying probabilities for both pure and EVT-augmented DKLL estimates.

This similarity of results is surprising. One would expect more stable results

for the EVT-augmented estimates, because only few observations are avail-

able in the extreme tails. Due to the shortness of the time horizon, no DQ test

p-values are reported.2

In order to assess whether the EVT-augmented DKLL model leads to an im-

proved forecast performance over the basic DKLL model, a small simulation

is done where 60000 observations are generated from the ARCH(1) model

Yt = 0.1Yt−1 +
√

10−7 + 0.3ǫ2
t−1 · ǫt, ǫt ∼ t(4).

Each model is estimated using the first 10000 observations. Two forecast hori-

zons N=20000 and N=50000 are considered. Table 5.5 contains the results on

coverage and DQ test p-values. In case of the shorter forecasting period both

models perform similarly, but the p-value obtained for the extended forecast

horizon clearly indicates that the EVT-augmented DKLL estimator describes

the extreme conditional VaR more accurately than the basic DKLL estimator.

2In case of the DKLL estimate, no exceedances are achieved, so that there is no variation in
one column of the regressor matrix, and the p-value is not defined.
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N=20000 N=50000
DKLL & EVT DKLL DKLL & EVT DKLL

In-sample 0.11 0.1 0.08 0.1
Out-of sample 0.115 0.125 0.08 0.12
DQ p-value 0.0000088 0.000002 0.85 7.3 · 10−12

Table 5.5: Backtesting results: 0.1% VaR forecasts for simulated time series (in
percent). N corresponds to the number of forecast periods.

Thus, it can be concluded that the combination of standardized nonparamet-

ric residuals and extreme value theory forms a solid alternative to estimate

extreme VaRs. The method is therefore a valuable complement to the rear-

ranged DKLL estimator which we suggest to use for quantiles corresponding

to moderately low probabilities such as p = 0.01.

6 Conclusion

In this paper, we propose a way to nonparametrically estimate conditional

Value at Risk that is associated with very small probabilities such as p = 0.01

and p = 0.001. A rearranged Double Kernel Local Linear VaR estimator as

well as a version of the latter augmented by extreme value theory are inves-

tigated and applied to index return time series. Forecasts are benchmarked

against the widely used CAViaR models. In terms of generating a condition-

ally independent sequence of VaR exceedances over the forecasting period, the

performance of all considered CAViaR models is poor, while the rearranged

DKLL estimates performs well. Furthermore, refining nonparametric quantile

regression by extreme value theory yields promising results.
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