Groß-Klußmann, Axel; Hautsch, Nikolaus

Working Paper
Quantifying high-frequency market reactions to real-time news sentiment announcements

SFB 649 discussion paper, No. 2009,063

Provided in Cooperation with:
Collaborative Research Center 649: Economic Risk, Humboldt University Berlin

Suggested Citation: Groß-Klußmann, Axel; Hautsch, Nikolaus (2009) : Quantifying high-frequency market reactions to real-time news sentiment announcements, SFB 649 discussion paper, No. 2009,063, SFB 649, Economic Risk, Berlin

This Version is available at:
http://hdl.handle.net/10419/39334

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Quantifying High-Frequency Market Reactions to Real-Time News Sentiment Announcements

Axel Groß-Klußmann*
Nikolaus Hautsch*

* Humboldt-Universität zu Berlin, Germany

This research was supported by the Deutsche Forschungsgemeinschaft through the SFB 649 "Economic Risk".

http://sfb649.wiwi.hu-berlin.de
ISSN 1860-5664

SFB 649, Humboldt-Universität zu Berlin
Spandauer Straße 1, D-10178 Berlin
Quantifying High-Frequency Market Reactions to Real-Time News Sentiment Announcements *

Axel Groß-Klußmann†
Quantitative Products Laboratory
Humboldt-Universität zu Berlin

Nikolaus Hautsch‡
Humboldt-Universität zu Berlin, CASE, CFS
Quantitative Products Laboratory

This version: December 2009

Abstract

We examine intra-day market reactions to news in stock-specific sentiment disclosures. Using pre-processed data from an automated news analytics tool based on linguistic pattern recognition we extract information on the relevance as well as the direction of company-specific news. Information-implied reactions in returns, volatility as well as liquidity demand and supply are quantified by a high-frequency VAR model using 20 second intervals. Analyzing a cross-section of stocks traded at the London Stock Exchange (LSE), we find market-wide robust news-dependent responses in volatility and trading volume. However, this is only true if news items are classified as highly relevant. Liquidity supply reacts less distinctly due to a stronger influence of idiosyncratic noise. Furthermore, evidence for abnormal high-frequency returns after news in sentiments is shown.

*For helpful comments and discussions we thank Boris Drovetsky, Lada Kyj, Roel Oomen, and the participants of workshops at Humboldt-Universität zu Berlin and at the Quantitative Products Laboratory. This research is supported by the Deutsche Bank AG via the Quantitative Products Laboratory and the Deutsche Forschungsgemeinschaft (DFG) via the Collaborative Research Center 649 "Economic Risk".

†Quantitative Products Laboratory (QPL), Berlin and Institute for Statistics and Econometrics, Humboldt-Universität zu Berlin. Email: axel.gross-klussmann@db.com. Address: Alexander Str. 5, D-10178 Berlin, Germany.

‡Institute for Statistics and Econometrics and Center for Applied Statistics and Economics (CASE), Humboldt-Universität zu Berlin as well as Quantitative Products Laboratory (QPL), Berlin, and Center for Financial Studies (CFS), Frankfurt. Email: nikolaus.hautsch@wiwi.hu-berlin.de. Address: Spandauer Str. 1, D-10178 Berlin, Germany.
Introduction

Trading on financial markets is ultimately driven by news. However, news are difficult to observe and to identify. Due to the enormous amount of information continuously released by modern electronic communication media it is virtually impossible to process all information associated with a certain financial asset. In particular, it is problematic to distinguish between relevant and less relevant news and to interpret them accordingly. Because of these difficulties nearly all empirical studies examine the impact of news by solely focusing on specific news events, such as scheduled macroeconomic announcements, political interventions, or certain firm-specific news such as earnings announcements which are in most cases easily identifiable.

This paper addresses the challenge of linking a virtually continuous asset-specific news flow to high-frequency market activity. The news flow consists of messages from an automated news sentiment engine. This engine performs a linguistic pre-processing of stock-specific public news. It transforms the news content into items indicating news’ relevance and the author’s sentiment of the underlying story. Exploiting this source we link stock-specific news arrivals to high-frequency returns, volatility, trading intensity, trade sizes, spreads and market depth.

The question of how news is incorporated into asset prices is analyzed by a wide range of studies. The predominant part of this literature focuses on macroeconomic news and company-specific earnings announcements. Starting with Beaver (1968), numerous studies have quantified the link between abnormal volatility and trading volume induced by the disclosure of earnings information, see, e.g., Malatesta and Thompson (1985), Landsman and Maydew (2002) or Graham et al. (2006). Comparable results are found for macroeconomic news, see, e.g., Ederington and Lee (1993), DeGennaro and Shriever (1997), Fleming and Remolona (1999), Hautsch and Hess (2002) and Andersen et al. (2003). However, only very few studies try to link asset prices and trading activities to an intraday flow of information. This is due to the fact that high-frequency news items are difficult to record and are typically considered to be too noisy due to the interference with other sources of information. As a consequence, Berry and Howe (1994) and Mitchell and Mulherin (1994) construct aggregated news measures and document a positive relationship between the amount of news and market activity.
Kalev et al. (2004) use the number of public news items as an explanatory variable in a GARCH specification to test the influence of the news arrival rate on stock market volatility. Ranaldo (2008) is the only study examining the impact of single firm-specific news items on intra-day trading processes. Still, a major problem of his analysis is the vast amount of virtually non-informative news. As a result, the estimated news impact is comparably low, particularly, if earnings announcements are discarded. These results indicate that the distinction between relevant and irrelevant news as well as the filtering of noise is very crucial.

To our best knowledge, the present study is the first one exploiting data from an automated news engine. We use the Reuters NewsScope Sentiment Engine which classifies firm-specific news according to positive and negative author sentiments and provides an indicator for news’ relevance. Each sentiment and relevance measure is derived from a linguistic pattern analysis of the respective news story. Supposing that the news engine captures a major part of intraday news arrivals in a pre-filtered and structured way, it opens up a new direction to examine the effects of a continuous news flow on intraday trading. Using this data we aim to answer the following research questions: (i) Can we identify significant reactions in returns, volatility and liquidity induced by the arrival of a news item? (ii) Does the magnitude of the reactions depend on the indicated relevance and sign of news? (iii) Are the results robust across different stocks or are they overlaid by stock-specific noise? (iv) Are news in sentiments anticipated or known by the market prior to publication? (v) Is there a different reaction to sentiments on days of earnings announcements?

Using 20 second aggregates of transaction data from 35 liquid stocks traded at the London Stock Exchange (LSE), we study news’ impact on abnormal returns, squared returns, cumulated trading volume, spreads and market depth. Particularly the behavior of liquidity supply and demand around news announcements is still widely unexplored. To our knowledge only Fleming and Remolona (1999) provide a systematic analysis of trading intensities, volumes and spreads around scheduled (macroeconomic) news releases. While many studies analyze news effects based on fixed windows around the event dates, we model the complete underlying trading process. To avoid spurious regression results due to neglected dynamics and cross-dependencies between the variables, we employ a high-frequency Vector Autoregressive (VAR) model which is augmented by news-specific explanatory variables and explicitly accounts for the naturally high proportion of zero variables arising from non-trading in a 20-second interval.

A major finding of our analysis is that high-frequency trading activity significantly reacts to news items which are identified as relevant. Conversely, for less relevant news
no significant responses can be quantified. In this sense, the sentiment relevance indicator carries information that is obviously taken into account by the market. Most distinct news effects are shown for volatility and trading volume which react strongly and fast. While volume and volatility reactions are widely stable across the market and are robust with respect to dynamics and cross-dependencies, for bid-ask spreads and market depth less distinct news effects are shown. For these variables, we observe stronger market-wide variations and generally weaker responses to news as soon as multivariate trading dynamics are taken into account. This finding is attributed to a higher impact of idiosyncratic noise and a stronger dependence on general market dynamics and thus spillovers from other trading variables. Moreover, we find evidence for significant abnormal returns after the arrival of relevant news items. This is particularly true on days of company earnings announcements. Finally, there are significant above-average market activities before the publication of an information item indicating the existence of other sources of news and an overall clustering thereof.

The remainder of the paper is organized as follows. In the next section, we describe the underlying data set and present descriptive statistics. Section 3 reports evidence for unconditional news impacts without explicitly controlling for time series dynamics in the processes. In Section 4, the econometric framework and corresponding results based on a high-frequency VAR model are given. Section 5 concludes.

2 Data

To facilitate the processing of new information, several news vendors offer software environments capturing particular characteristics of information in real time. These tools electronically analyze available information using linguistic pattern recognition algorithms. Words, word patterns, the novelty of a news item, its type and other characteristics are translated into indicators of the relevance as well as of the tone of the item.

We use pre-processed news data from a news-analytics tool of the Reuters company, the Reuters NewsScope Sentiment Engine. The data contain all 2007 news headlines as observed on traders’ screens. Each news item provides a sentiment and relevance indicator. These indicators are produced based on pattern recognition algorithms. The sentiment attributes of the news are coded +1, 0 and -1 for a positive, neutral and negative tone of the underlying story, respectively. Relevance is indicated by a number in the [0, 1] interval. News arrival is recorded based on time stamps up to a micro-second precision.
Figure 1: Distribution of news over a day and over the year. Smoothed via kernel regression.

Figure 2: Distribution of the Relevance Indicator.
Table 1: Descriptive Statistics

<table>
<thead>
<tr>
<th>Name / RIC</th>
<th>Money Value</th>
<th>Price Change</th>
<th>Average Spread</th>
<th># of Trades</th>
<th># of News</th>
<th># of Rel. News</th>
<th># of Rel. Positive</th>
<th># of Rel. Negative</th>
<th>News on Days of EA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAL</td>
<td>166</td>
<td>0.24</td>
<td>2.11</td>
<td>7300</td>
<td>631</td>
<td>267</td>
<td>93</td>
<td>114</td>
<td>9</td>
</tr>
<tr>
<td>AV</td>
<td>60.7</td>
<td>-0.18</td>
<td>0.67</td>
<td>3587</td>
<td>248</td>
<td>119</td>
<td>57</td>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td>AZN</td>
<td>136</td>
<td>-0.21</td>
<td>1.51</td>
<td>5325</td>
<td>379</td>
<td>216</td>
<td>78</td>
<td>102</td>
<td>32</td>
</tr>
<tr>
<td>BATS</td>
<td>61.8</td>
<td>0.38</td>
<td>1.41</td>
<td>3455</td>
<td>119</td>
<td>55</td>
<td>32</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>BA</td>
<td>42.7</td>
<td>-0.42</td>
<td>0.51</td>
<td>3407</td>
<td>560</td>
<td>292</td>
<td>130</td>
<td>129</td>
<td>14</td>
</tr>
<tr>
<td>BARC</td>
<td>218</td>
<td>-0.31</td>
<td>0.57</td>
<td>7608</td>
<td>1303</td>
<td>699</td>
<td>357</td>
<td>230</td>
<td>14</td>
</tr>
<tr>
<td>BG</td>
<td>74.1</td>
<td>0.65</td>
<td>0.75</td>
<td>3977</td>
<td>197</td>
<td>91</td>
<td>44</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>BP</td>
<td>303</td>
<td>0.08</td>
<td>0.52</td>
<td>6075</td>
<td>1280</td>
<td>722</td>
<td>249</td>
<td>339</td>
<td>47</td>
</tr>
<tr>
<td>BT</td>
<td>72.3</td>
<td>-0.09</td>
<td>0.30</td>
<td>3519</td>
<td>241</td>
<td>125</td>
<td>79</td>
<td>33</td>
<td>24</td>
</tr>
<tr>
<td>CBRY</td>
<td>50.9</td>
<td>0.14</td>
<td>0.72</td>
<td>3054</td>
<td>197</td>
<td>112</td>
<td>45</td>
<td>53</td>
<td>5</td>
</tr>
<tr>
<td>DGE</td>
<td>62.6</td>
<td>0.07</td>
<td>0.92</td>
<td>3488</td>
<td>117</td>
<td>49</td>
<td>31</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>EMG</td>
<td>51.0</td>
<td>0.08</td>
<td>0.70</td>
<td>3304</td>
<td>88</td>
<td>53</td>
<td>22</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>GSK</td>
<td>177</td>
<td>-0.04</td>
<td>1.09</td>
<td>5399</td>
<td>567</td>
<td>209</td>
<td>63</td>
<td>87</td>
<td>18</td>
</tr>
<tr>
<td>HBOS</td>
<td>117</td>
<td>-0.36</td>
<td>0.91</td>
<td>5171</td>
<td>398</td>
<td>175</td>
<td>55</td>
<td>75</td>
<td>11</td>
</tr>
<tr>
<td>HSBA</td>
<td>305</td>
<td>-0.09</td>
<td>0.54</td>
<td>6178</td>
<td>1100</td>
<td>554</td>
<td>200</td>
<td>135</td>
<td>20</td>
</tr>
<tr>
<td>IMT</td>
<td>45.0</td>
<td>0.32</td>
<td>2.08</td>
<td>3087</td>
<td>202</td>
<td>109</td>
<td>74</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>LLOY</td>
<td>98.5</td>
<td>-0.17</td>
<td>0.55</td>
<td>4382</td>
<td>254</td>
<td>124</td>
<td>44</td>
<td>51</td>
<td>20</td>
</tr>
<tr>
<td>MKS</td>
<td>55.9</td>
<td>-0.22</td>
<td>0.71</td>
<td>3059</td>
<td>177</td>
<td>85</td>
<td>42</td>
<td>31</td>
<td>6</td>
</tr>
<tr>
<td>NG</td>
<td>50.1</td>
<td>0.13</td>
<td>0.69</td>
<td>3096</td>
<td>152</td>
<td>103</td>
<td>39</td>
<td>44</td>
<td>6</td>
</tr>
</tbody>
</table>
Table 1: Descriptive Statistics (Cont’d)

<table>
<thead>
<tr>
<th>Name / RIC</th>
<th>Money Value</th>
<th>Price Change</th>
<th>Spread</th>
<th># of Trades</th>
<th># of News</th>
<th># of Rel. News</th>
<th># of Rel. Positive</th>
<th># of Rel. Negative</th>
<th>News on Days of EA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NXT</td>
<td>42.9</td>
<td>-0.11</td>
<td>2.01</td>
<td>3229</td>
<td>117</td>
<td>82</td>
<td>44</td>
<td>32</td>
<td>9</td>
</tr>
<tr>
<td>PRU</td>
<td>77.3</td>
<td>0.01</td>
<td>0.70</td>
<td>3985</td>
<td>191</td>
<td>111</td>
<td>65</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>BG</td>
<td>27.8</td>
<td>0.14</td>
<td>0.69</td>
<td>2503</td>
<td>175</td>
<td>137</td>
<td>76</td>
<td>43</td>
<td>17</td>
</tr>
<tr>
<td>BLT</td>
<td>210</td>
<td>0.66</td>
<td>0.68</td>
<td>7464</td>
<td>187</td>
<td>121</td>
<td>41</td>
<td>61</td>
<td>9</td>
</tr>
<tr>
<td>FP</td>
<td>24.7</td>
<td>-0.29</td>
<td>0.46</td>
<td>2212</td>
<td>165</td>
<td>104</td>
<td>59</td>
<td>31</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>24.6</td>
<td>-0.07</td>
<td>1.37</td>
<td>2158</td>
<td>165</td>
<td>65</td>
<td>35</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>ITV</td>
<td>18.8</td>
<td>-0.18</td>
<td>0.18</td>
<td>1763</td>
<td>159</td>
<td>95</td>
<td>27</td>
<td>57</td>
<td>5</td>
</tr>
<tr>
<td>RBS</td>
<td>207</td>
<td>-0.78</td>
<td>0.73</td>
<td>7692</td>
<td>975</td>
<td>406</td>
<td>198</td>
<td>140</td>
<td>10</td>
</tr>
<tr>
<td>RIO</td>
<td>228</td>
<td>0.97</td>
<td>2.29</td>
<td>7847</td>
<td>495</td>
<td>169</td>
<td>95</td>
<td>44</td>
<td>4</td>
</tr>
<tr>
<td>SAB</td>
<td>41.2</td>
<td>0.22</td>
<td>1.49</td>
<td>2754</td>
<td>144</td>
<td>89</td>
<td>50</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>SL</td>
<td>11.9</td>
<td>-0.15</td>
<td>0.66</td>
<td>1471</td>
<td>131</td>
<td>86</td>
<td>46</td>
<td>29</td>
<td>6</td>
</tr>
<tr>
<td>STAN</td>
<td>86.3</td>
<td>0.24</td>
<td>1.45</td>
<td>4329</td>
<td>371</td>
<td>171</td>
<td>104</td>
<td>35</td>
<td>15</td>
</tr>
<tr>
<td>TSCO</td>
<td>88.7</td>
<td>0.18</td>
<td>0.33</td>
<td>4217</td>
<td>303</td>
<td>158</td>
<td>77</td>
<td>58</td>
<td>10</td>
</tr>
<tr>
<td>ULVR</td>
<td>65.6</td>
<td>0.34</td>
<td>1.40</td>
<td>3005</td>
<td>159</td>
<td>76</td>
<td>40</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td>VOD</td>
<td>235</td>
<td>0.33</td>
<td>0.15</td>
<td>6284</td>
<td>948</td>
<td>421</td>
<td>249</td>
<td>109</td>
<td>16</td>
</tr>
<tr>
<td>XTA</td>
<td>155</td>
<td>0.38</td>
<td>2.49</td>
<td>6508</td>
<td>484</td>
<td>201</td>
<td>97</td>
<td>76</td>
<td>9</td>
</tr>
</tbody>
</table>

Note: RIC denotes the Reuters Identifier Code. Money Value (traded) is computed as the trade size times the respective price (turnover total in 2007 in million). Price Change is the % price change from 01/03/07 to 12/31/07. Spread and Nr. of trades are averages per trading day. The News column refers to the number of news items per firm in 2007 without overnight news and identical updates. Relevant news items are classified to be the ones with a relevance indicator greater than .5. Rel. Positive and Rel. Negative give the numbers of relevant positive and negative items, respectively. The last column gives the number of news on days of earnings announcements (EA).
We select 40 stocks from the FTSE 100 Index which are most active in terms of the number of published news items. As we require data availability for 230 trading days, the sample is ultimately cut down to 35 stocks. The fact that the selected stocks are also very actively traded (see Table 1) allows us to study market dynamics based on a high frequency.

The underlying transaction data is aggregated to 20 second intervals. We consider this aggregation level to be a good compromise between exploiting a maximum of information on the one hand and making the analysis still computationally tractable (given a year of data). To reduce the impact of market opening and closing effects, we discard the first ten and last ten minutes of a trading day. Intraday returns, volatility and liquidity are captured by the following variables computed over 20 second intervals:

(i) cumulated trade size,
(ii) average trade size, defined as the cumulated trade size divided by the corresponding number of trades per interval,
(iii) bid-ask spread evaluated at the endpoint of each interval,
(iv) mid-quote returns over each interval,
(v) money value traded, defined as trade sizes in the intervals weighted by the corresponding mid-quotes,
(vi) depth, defined as as the volume pending at the best bid and ask level, evaluated at the endpoint of each interval,
(vii) volatility, defined as the sum of squared mid-quote transaction returns over each interval.

All volatility and liquidity variables exhibit pronounced intraday trading patterns. Figure 3 shows the widely documented daily U-shape pattern for cumulated trade sizes. As shown in the Appendix, similar shapes are also revealed for the other variables. To capture these patterns, we standardize all processes by the yearly average of the corresponding underlying 20 seconds interval, i.e.,

\[x_{jd} = \frac{x_{jd}}{1/n \sum_{d=1}^{n} x_{jd}}, \]

where \(j \) denotes the specific interval of the trading day \(d \) and \(x \) represents the corresponding variable.
Under the assumption that updates of a news story do not carry much extra information compared to the initial one, we only employ the first message from a sequence of news updates. Subsequent updates with identical headlines as the initial one are deleted from the sample. In addition, we only focus on the news flow within a trading day and do not exploit overnight news. Incorporating the latter would considerably increase the complexity of the study.

After pre-filtering, the number of news range from a minimum of 117 to a maximum of 1303 disclosures per stock in 2007 (see Table 1). We observe that news tend to cluster in the first half of a day. Figure 1 a) shows the average number of news per 5-minute interval during a trading day. It turns out that the news intensity peaks at the beginning of the trading period but is relatively stable during the rest of the day. Figure 1 b) gives the average number of news items per day through the year 2007. Similarly to the intra-day shape there is no pronounced yearly pattern.

We distinguish between different types of news. First, we separate between scheduled and non-scheduled news by identifying days on which company-specific earnings estimates are released. Second, we distinguish between relevant and less relevant news. Since we expect the reported relevance indicator to be a relatively noisy measure, we classify news items with an indicator value above or at (below) 0.6 as relevant (irrelevant) (see Figure 2).

![Intraday Pattern for Cumulated Trade Sizes](image)

Figure 3: Intraday seasonality pattern of the cumulated trading volume. Smoothed via kernel regression.
3 Unconditional News Impacts

3.1 Impact on Volatility and Liquidity

In this section, we study the unconditional impact of the news flow without explicitly controlling for market dynamics and cross-dependencies between the variables. Such an analysis already provides important insights and serves as a basis for the econometric modelling in Section 4. Here, we analyze 400 20-second intervals around news arrivals capturing 100 intervals before each disclosure and 300 thereafter.

![Figure 4: Intervals around News Arrival](image)

Figure 4 illustrates the timing of the intervals. I_0 denotes the specific 20-second interval around the news item, whereas T_1 and T_2 are the numbers of intervals before and after the news period, respectively. For each stock, we compute the average market reaction and corresponding standard errors over all event windows. For sake of brevity, we refrain from showing results for individual stocks but report pooled averages over the cross-section of stocks. Correspondingly, by denoting the market reaction of variable X to news item i during interval I_j as X_{iI_j}, the pooled average across all news events and all stocks is computed as $\overline{X}_{I_j} = \frac{1}{n} \sum_{i=1}^{n} X_{iI_j}$, where n is the total number of news for all stocks. Given that the stocks have quite similar empirical characteristics (see Table 1), this proceeding allows us to highlight the results common to all stocks. Assuming (approximative) normally distributed reactions, the 95% confidence intervals of \overline{X}_{I_j} are computed as two times the standard errors of \overline{X}_{I_j}. Since these standard errors reflect variations across all event windows as well as across the market they capture overall news responses and statistical confidence thereof. Two robustness checks underscore the validity of the inference. First, the confidence intervals closely match those obtained from a parametric bootstrap. Second, to account for the fact that stocks with a high number of news naturally have a stronger weight in \overline{X}_{I_j}, we perform a robustness check using a group-means estimator instead of a pooled average. The results are qualitatively identical.

Figures 5 to 10 show the money value traded, realized volatility, spreads, market depth, average trade sizes and cumulated trade sizes around news arrivals of differ-

1 See in the Appendix for more details on the computation of standard errors.
ent types. Note that by construction of the seasonality adjustment the mean of each series equals one. We differentiate between relevant news on days with earnings announcements (henceforth EA), relevant news on days without earnings announcements (henceforth noEA) and less relevant news which virtually always occur on noEA days.

The following findings can be summarized: First, during the analyzed time window each of the variables is significantly above its mean. For instance, money value traded is on a level of more than 50% above its mean. For most variables, above-average activities start already more than thirty minutes before the item arrival. This finding is a strong hint for market participants having different and more timely sources of information and for news itself being clustered.

Second, though prior information seems to be present, relevant news items still induce significant reactions at the event time. In contrast, less relevant information does not cause any distinct market response. Hence, we find convincing evidence for the fact that market participants seem to distinguish between important and less important news and thus extract information from the sentiment ticker.

Third, we observe significant responses in volatility, bid-ask spreads and money value traded. As shown by Figure [7], spreads are significantly increased indicating that liquidity providers tend to post less competitive quotes and protect themselves against possible informational disadvantage and adverse selection. Interestingly, such behavior is not accompanied by changes in the corresponding market depth which remains relatively stable and widely unaffected by news arrivals. On the other hand, liquidity demand, as measured by the money value traded and cumulated trade sizes, significantly peaks around the event time. Interestingly, this reaction is predominantly induced by faster trading but not by higher trade sizes (see Figures [9] and [10]). Moreover, we observe strong reactions in high-frequency volatility and trading volumes. Both are obviously closely related. Overall, trading activity remains on an above-average level for at least 60 minutes after news arrival.

Fourth, we observe a stronger news response on EA days than on noEA days. This might be due to the fact that news on EA days convey more information or markets are simply more sensitive.

In order to test for the existence of possible asymmetric market reactions in dependence of the sign of news, we define a sentiment indicator to have a distinct direction (positive or negative) whenever the probability p measuring the assessment’s confidence exceeds 0.7. This allows us to filter out noisy and unreliable information. Figure [11] (a) shows the volatility reaction to positive and negative news items on days without earnings announcements. Figure [11] (b) depicts the volatility response to news items in-
Figure 5: Money Value around News Arrivals. Smoothed via kernel regression.

Figure 6: Realized Volatility around News Arrivals. Smoothed via kernel regression.
Figure 7: Spread around News Arrivals. Smoothed via kernel regression.

Figure 8: Cumulated Ask and Bid Depth around News Arrivals. Smoothed via kernel regression.
Figure 9: Average Trade Size around News Arrivals. Smoothed via kernel regression.

Figure 10: Cumulated Trade Size around News Arrivals. Smoothed via kernel regression.
indicating changes of sentiments. Here, we select news items only if their sign is contrary to that of a sequence of at least three previous news items with identical signs. The underlying idea is that a negative (positive) news disclosure might have a stronger impact when the recent market sentiment has been positive (negative). As depicted by both figures, we observe virtually no evidence for market reactions in volatility depending on the sign of news. This is in contrast to corresponding results based on macroeconomic announcements as reported, e.g., by Hautsch and Hess (2002) and might be explained by the existence of too much idiosyncratic noise in company-specific news. Similar findings are also obtained for the other variables.

3.2 Return Behavior

To test for abnormal returns we employ the event study framework as outlined in Campbell et al. (1997). As a model for 'normal' returns we assume the market model

$$R_{it} = \alpha_i + \beta_i R_{mt} + \varepsilon_{it}, \quad \varepsilon_{it} \sim (0, \sigma_i^2), \quad (1)$$

where t denotes the underlying (20 second) intervals, R_{mt} is the market return, computed as the return of the FTSE 100 index, and R_{it} is the return for stock i. Model
Figure 12: Cumulated Abnormal Returns after Positive and Negative News (High Relevance on NoEA Days). Smoothed via kernel regression.

Figure 13: Cumulated Abnormal Returns after Positive and Negative News (News on EA Days). Smoothed via kernel regression.
is estimated based on the complete 20-second return time series without including the event windows. Using the resulting parameter estimates, we compute the abnormal returns $\hat{AR}_{it} := R_{it} - \hat{\alpha}_i - \hat{\beta}_i R_{mt}$ during the event windows. Let \hat{AR}_i^k denote the $((T_2 + 1) \times 1)$ vector of abnormal returns for event k of stock i computed between time points I_0 and I_{T_2} in Figure 4. Let γ_j be a $(j \times 1)$ vector consisting of j ones, $1 \leq j \leq T_2 + 1$. Then, we define the cumulated abnormal return for interval j after the event time as

$$\hat{CAR}_{ij}^k := \gamma_j^T \hat{AR}_i^k. \quad (2)$$

Averaging \hat{CAR}_{ij}^k yields

$$\overline{CAR}_j = \frac{1}{n} \left(\sum_i \sum_k \hat{CAR}_{ij}^k \right), \quad (3)$$

where n is the total number of events over all stocks. Assuming (asymptotic) normality, 95% confidence intervals are computed as two times the standard deviation of the estimates \overline{CAR}_j.

Figure 14 shows the averaged cumulated abnormal returns (ACAR) \overline{CAR} employing the relevant noEA news set. We observe significantly positive cumulated abnormal returns after positive news arrivals. In case of negative relevant news arrivals ACARs
are surprisingly still positive, but less significant and lower in magnitude. A more
distinct pattern is observed for the EA news set (Figure 13). Here, price movements
are significant and in line with news’ direction. This finding indicates the specific
information content of news related to earnings announcements compared to other
news items. Not surprisingly, less relevant news (noEA) do not induce significant
abnormal returns (see Figure 14). The overall stronger reactions after positive news
might be explained by the fact that during 2007 stock markets have been generally
bearish making positive news items more striking than negative news.

4 Market Dynamics around News

4.1 Econometric Methodology

The unconditional analysis of the previous section provides strong indications for
information-driven market reactions to news disclosures. However, as shown by Figures
15 to 17 (for a representative sample of stocks), we observe significant autocorrelations
as well as cross-correlations in volatility and trading activity (see in the Appendix for
the cross- and autocorrelations of the other variables). In order to avoid spurious re-
sults, these interdependencies have to be explicitly taken into account. Therefore, we
suggest a four-dimensional model for the realized variance, the money value traded,
the bid-ask spread and market depth. Money value traded is highly correlated with
cumulated and average trade sizes and thus sufficiently captures the overall trading
intensity. Moreover, as high-frequency volatility and liquidity are only weakly related
to (signed) returns, we refrain from including the latter in the model. Accordingly, the
vector of endogenous variables is

\[
y_t = \begin{pmatrix} y_{1t} \\ y_{2t} \\ y_{3t} \\ y_{4t} \end{pmatrix} := \begin{pmatrix} \text{money value traded} \\ \text{realized volatility} \\ \text{bid–ask spread} \\ \text{market depth} \end{pmatrix}.
\] (4)

The fact that even for liquid stocks there is not necessarily a transaction in every
20 second interval induces a non-trivial fraction of zero observations for money value
traded and realized volatility (see Figure 18). To account for these effects, we suggest
explicitly differentiating between the cases of trading, \(y_{1t} > 0 \), and no trading, \(y_{1t} = 0 \),
Figure 15: Autocorrelation Plots for Money Value Traded

Figure 16: Autocorrelation Plots for Volatility
Figure 17: Cross-Correlations for the AAL stock

Figure 18: Histograms for Money Value and Volatility for AAL (upper two: unconditional, lower two: \(y_t | y_t > 0 \))
in interval t. Correspondingly, the log likelihood function is given by

$$
\ln \mathcal{L}(y; \theta_1, \theta_2, \theta_3) = \sum_{t=1}^{T} \left\{ \ln f(y_t|y_{1t} > 0; \theta_1) + \ln P(y_{1t} > 0; \theta_2) \right\} \cdot \mathbb{I}(y_{1t} > 0) \\
+ \sum_{t=1}^{T} \left\{ \ln P(y_{1t} = 0; \theta_2) + \ln f(y_t|y_{1t} = 0; \theta_3) \right\} \cdot \mathbb{I}(y_{1t} = 0),
$$

where θ_1, θ_2 and θ_3 denote corresponding parameter sets.

As long as the parameter sets θ_1, θ_2 and θ_3 are disjoint, the likelihood components can be maximized separately. Since $f(y_t|y_{1t} = 0; \theta_3)$ is not in the core of our interest, we leave it unspecified. To parameterize $f(y_t|y_{1t} > 0; \theta_1)$, we suggest a VAR specification given by

$$
y_t|y_{1t} > 0 = c + \sum_{i=1}^{p} (\Gamma_i y_{t-i} + \Psi_i Z_{t-i}) + \Xi \cdot D^{x}_t + \varepsilon_t, \quad \varepsilon_t \sim N(0, \Omega),
$$

where Γ_i and Ξ denote (4×4) and $(4 \times (p_1 + p_2 + 1))$ coefficient matrices. Lags of the dummy $Z_t := \mathbb{I}(y_{1t}=0)$ capture previous periods of nontrading with corresponding (4×1) coefficient vectors Ψ_i. In order to capture the time-dependent impact of news we define appropriate dummy variables

$$
d^r_t = 1 \quad \text{in case of relevant (noEA) news in t and zero otherwise},
$$
$$
d^l_t = 1 \quad \text{in case of less relevant (noEA) news in t and zero otherwise},
$$
$$
d^{ea}_t = 1 \quad \text{in case of EA news in t and zero otherwise}.
$$

Then, $D^{x}_t := (d^r_{t+p_1}, \ldots, d^r_{t-p_2})'$ with $x \in \{r, l, ea\}$ is a vector of time dummies indicating the different types of news and covering p_1 intervals before and p_2 intervals after news arrival. Model (5) can be consistently (though not necessarily efficiently) estimated equation by equation using ordinary least squares.

The conditional probabilities for the occurrence of zero observations (i.e., no trading) in period t, $P(y_{1t} = 0; \theta_2)$, are parameterized in terms of a probit specification for the money value equation. Let x_t contain all right-hand side variables of equation (5), i.e., $x_t := [y'_{t-1} \ldots y'_{t-p} Z'_{t-1} \ldots Z'_{t-p} D^{x}_t]$. Assuming a normally distributed

2Alternatively, one could use a multivariate multiplicative error model (MEM) as proposed by Manganelli (2005). However, since a MEM can be re-written in terms of a V(ARMA) model both frameworks are ultimately not very different.
latent process $y_{1t}^* \sim N(x'_t \theta_2, 1)$ underlying the trading ”decision”, we have

$$P(y_{1t}^* > 0) = \Phi(x'_t \theta_2), \quad \text{if } y_{1t}^* > 0 \iff y_{1t} > 0,$$

(6)

$$P(y_{1t}^* \leq 0) = 1 - \Phi(x'_t \theta_2), \quad \text{if } y_{1t}^* \leq 0 \iff y_{1t} = 0,$$

(7)

for the binary decision $y_{1t} > 0$ vs. $y_{1t} = 0$. The probit model is straightforwardly estimated by maximum likelihood.

The model is applied to each stock in our sample. In order to obtain equal lag structures in all equations which eases cross-sectional comparisons and the computation of cross-sectional averages, we choose a universal lag length of 10 for all stocks. This lag length is sufficiently close to the individually optimal lag length according to the Bayes Information Criterion and does not restrict the validity of the results discussed below. In the following we show the cross-sectional averages of point estimates and corresponding standard errors.

4.2 Estimation Results

In order to keep the model computationally tractable and parsimonious, the three types of news dummies D^*_t, D^t_1 and D^{eA}_t are included separately. Since the VAR dynamics in the individual specifications are very similar, we concentrate on the estimates of the model including the noEA dummy set associated with high relevance (D^*_t). Depending on the number of underlying trading days, the individual time series for the 35 stocks in the sample contain up to 369,000 observations. Table 2 reports the corresponding averaged estimates. For sake of brevity, we do not show coefficients for lags of the dependent variables greater than two. Likewise, coefficient estimates for the dummies Z_t are not reported. News dummies cover 40 seconds before the disclosure and 100 seconds thereafter.

Analyzing the dynamics of volatility and liquidity, we can summarize the following findings: First, all variables reveal significantly positive own dynamics. This is strongly expected given the underlying autocorrelations reported above. Second, we observe a significantly positive relationship between money value traded and volatility. Hence, volatility and trading activity are closely dependent not only on a daily level as suggested by Clark (1973) and Tauchen and Pitts (1983), among others, but obviously also on a high-frequency level (see, e.g., Hautsch (2008)). Third, bid-ask spreads are higher in periods of high liquidity demand and volatility but are lower in periods of high liquidity supply (represented by the depth). Similarly, depth is lower if recent

3These results are available upon request from the authors.
Table 2: Average VAR Results: Dynamics \((y|y_{1t} > 0) \)

| Variable | VAR \((y_t|y_{1t} > 0) \) | Probit Model \(\mathbb{I}(y_{1t} > 0) \) |
|------------|-----------------------------|---|
| | Money Value | |
| | Volatility | |
| | Spread | |
| | Depth | |
| \(c \) | -1,749*** | 0,731*** |
| | (0,307) | (0,297) |
| \(mv_{t-1} \) | 0,183*** | 0,082*** |
| | (0,003) | (0,007) |
| \(mv_{t-2} \) | 0,094*** | 0,035*** |
| | (0,002) | (0,004) |
| \(rv_{t-1} \) | 0,013*** | 0,016*** |
| | (0,001) | (0,003) |
| \(rv_{t-2} \) | 0,008*** | 0,008*** |
| | (0,001) | (0,000) |
| \(spr_{t-1} \) | 1,724*** | 0,762*** |
| | (0,323) | (0,200) |
| \(spr_{t-2} \) | -1,742*** | -0,985*** |
| | (0,337) | (0,090) |
| \(dpth_{t-1} \) | -2,002*** | -1,088*** |
| | (0,283) | (0,259) |
| \(dpth_{t-2} \) | 2,594*** | 0,463*** |
| | (0,314) | (0,060) |
Table 2: Average VAR Results: NoEA News Dummies (high relevance) (Cont’d)

Model	Variable	D_t^r for VAR ($y_t	y_{t-1} > 0$)	Probit Model		
		Money Value	Volatility	Spread	Depth	Money Value $I (y_{t-1} > 0)$
Dummy Leads	d_{t+2}	0.525	0.156	0.007	-0.029	0.012
		(0.203)	(0.240)	(0.027)	(0.025)	(0.010)
	d_{t+1}	0.328	0.108	0.029	-0.034	0.045
		(0.128)	(0.211)	(0.016)	(0.018)	(0.000)
Item Dummy	d_t	0.564*	0.940	0.091	0.017	0.079
		(0.135)	(0.304)	(0.027)	(0.015)	(0.030)
	d_{t-1}	1.173***	1.326***	0.019	-0.022	0.076
		(0.271)	(0.333)	(0.015)	(0.020)	(0.003)
	d_{t-2}	0.999**	1.241**	0.029	-0.010	0.077
		(0.292)	(0.390)	(0.015)	(0.024)	(0.010)
	d_{t-3}	0.730	0.913	0.062	0.033	0.004
		(0.205)	(0.310)	(0.024)	(0.018)	(0.003)
	d_{t-4}	0.444	0.616	-0.006	0.003	0.061
		(0.101)	(0.319)	(0.020)	(0.017)	(0.014)
	d_{t-5}	0.646	0.739	0.043	0.015	0.355
		(0.170)	(0.273)	(0.018)	(0.018)	(0.106)

Note: The first four columns show OLS estimation results of system (5) with relevant noEA news dummies D_t^r. The last column shows the ML estimation results of the corresponding probit model (6) with the same set of news dummies. Reported coefficients are averages of the estimates for each individual stock. Significance is reported based on average t-statistics. (Cross-sectional) standard errors of the averaged coefficients are given in parentheses below. ($***$) denotes significance of the average coefficient estimates at the 1 % level, ($**$) at the 5 % level, and ($*$) at the 10 % level.
Table 3: Average VAR Results for EA News Dummies and NoEA Low Relevance News Dummies ($y_t|y_{1t} > 0$)

Model	Variable	D^t_1 for VAR ($y_t	y_{1t} > 0$)	D^t_2 for VAR ($y_t	y_{1t} > 0$)				
		Money Value	Volatility	Spread	Depth	Money Value	Volatility	Spread	Depth
Dummy	Leads								
	d_{t+2}	0.224	0.293	0.015	0.010	1.077	0.222	0.076	0.024
		(0.081)	(0.139)	(0.009)	(0.013)	(0.436)	(0.400)	(0.119)	(0.073)
	d_{t+1}	0.031	0.031	-0.005	-0.016	2.056**	0.282	0.207	0.081
		(0.071)	(0.105)	(0.010)	(0.014)	(0.563)	(0.476)	(0.172)	(0.091)
Item	Dummy								
	d_t	0.151	0.013	0.005	0.017	1.280	0.500	0.059	-0.050
		(0.071)	(0.089)	(0.012)	(0.018)	(0.431)	(0.592)	(0.091)	(0.055)
Dummy	Lags								
	d_{t-1}	0.227	0.372	-0.003	0.010	1.069	0.520	-0.070	0.149
		(0.065)	(0.119)	(0.013)	(0.015)	(0.394)	(0.647)	(0.060)	(0.094)
	d_{t-2}	0.186	0.156	-0.015	-0.006	1.800*	1.260	0.101	0.011
		(0.093)	(0.125)	(0.010)	(0.009)	(0.446)	(0.521)	(0.103)	(0.057)
	d_{t-3}	0.018	-0.098	0.005	0.009	1.030	0.591	-0.024	0.081
		(0.061)	(0.091)	(0.011)	(0.010)	(0.438)	(0.674)	(0.056)	(0.092)
	d_{t-4}	0.316	0.074	-0.014	0.017	1.151	0.684	0.039	-0.001
		(0.122)	(0.102)	(0.008)	(0.010)	(0.455)	(0.816)	(0.065)	(0.064)
	d_{t-5}	0.174	0.210	0.005	-0.002	1.286	0.610	-0.117	-0.026
		(0.099)	(0.085)	(0.011)	(0.009)	(0.356)	(0.349)	(0.077)	(0.051)

Note: The columns show OLS estimates for the news dummies of two VAR estimations using the model (5). The left-hand columns show coefficient estimates for the news dummies D^t_1, whereas the right-hand columns refers to D^t_2. Reported coefficients are averages of the estimates for each individual stock. Significance is reported based on average t-statistics. (Cross-sectional) standard errors of the averaged coefficients are given in parentheses below. (***), (**), (*) denote significance of the average coefficient estimates at the 1 % level, (**) at the 5 % level, and (*) at the 10 % level.
Figure 19: Proportions of significant news dummies in the spread equation (5 % level) based on relevant noEA news. All coefficient signs are positive.

Figure 20: Numbers of significant dummy variables in the intervals around the news disclosure (relevant noEA partition).
trading activity and volatility have been high. Fourth, virtually no causalities from spreads and market depth on volatilities and volumes are observed. While liquidity demand and volatility stimulate liquidity supply, the converse relationship is thus not necessarily true.

Quantifying the average impact of news, we observe that the market reaction starts immediately after news disclosures. Due to the persistence in market dynamics information effects are carried over to subsequent periods. It is therefore not surprising that the direct impact of news as captured by the dummy variables dies out relatively quickly. It turns out that only the volatility and the trading volume are significantly (directly) affected by news. Conversely, we do not find corresponding effects for spreads and depths. These results are different to the unconditional estimates obtained in Section 3 and indicate that reactions of these variables during announcement periods are strongly induced by spill-overs from volatility and volume but do not necessarily arise from news in sentiments solely. Moreover, as shown by Table 3 depicting the corresponding results for EA news and noEA news with low relevance (indicator ≤ 0.5), we conclude that significant responses are generally only observable after the occurrence of relevant news.

Estimation results for the probit model widely confirm those for the VAR model. However, the fact that all news dummy variables are insignificant indicates that the probability for the occurrence of a trade in a 20-sec interval is not driven by news arrivals.

Though the averaged estimates capture the major features common to all assets, most stocks still reveal idiosyncratic responses to news. Figure 19 depicts the proportions of (5%) significant spread reactions to relevant noEA news for each stock in the sample. Though the average spread reaction is insignificant, we still observe significant individual spread responses for 27 out of 35 stocks in the sample. Similar results are shown (not depicted here) for market depth, whereas stock-specific effects for volatility and money value traded are more stable and in line with the average results shown above. Figure 20 reflects that the significant (positive) dummies for most stocks center around the item arrival interval. Accordingly, we can conclude that there is evidence for news-implied reactions in spreads and depth, which are, however, diffuse across the stock universe.

4.3 Impulse Response Analysis

To quantify the long-run market response to the arrival of a news item we perform an impulse response analysis. A ‘news shock’ is defined by a change in the news dummies.
As the arrival of news generally stimulates trading activity, it is sufficient to conduct the analysis given there is trading activity throughout the post-announcement periods, i.e. \(y_{j|y_{1j}} > 0 \) for all \(j = t, \ldots, t + s \).

Then, the response after \(s \) periods to a news arrival in \(t \) is computed as

\[
\Delta_s(\theta_1) := E[y_{t+s}|\Omega_{t-1}, d_t^\pi = 1; \theta_1] - E[y_{t+s}|\Omega_{t-1}, d_t^\pi = 0; \theta_1], \quad x \in \{r, l, ea\}, \quad (8)
\]

where \(\Omega_{t-1} \) represents the history of the multivariate process at \(t \) and the second term \((*)\) removes the effect of constants and initial values on the response function. Let \(p_1 = 0, p_2 > 0 \) and \(\hat{\Xi}_i \) denote the \(i \)-th column of \(\hat{\Xi} \). Coefficients in the second to \(p_2 \)-th columns of \(\hat{\Xi} \) that are not significantly different from zero at the 5% level are assumed to be zero throughout. Initially we have

\[
\Delta_0 = E[y_{t}|\Omega_{t-1}, d_t^\pi = 1; \theta_1] - E[y_{t}|\Omega_{t-1}, d_t^\pi = 0; \theta_1] = \hat{\mathbf{c}} + \sum_{i=1}^{p} (\hat{\Gamma}_i y_{t-i} + \hat{\Psi}_i Z_{t-i}) + \hat{\Xi}_1 - \left(\hat{\mathbf{c}} + \sum_{i=1}^{p} (\hat{\Gamma}_i y_{t-i} + \hat{\Psi}_i Z_{t-i}) \right) = \hat{\Xi}_1.
\]

Since the initial conditions, constants and \(Z_t \) cancel out, the responses in \(t + s, s = 1, 2, \ldots \), to the dummy impulse in \(t \) are given as

\[
\Delta_1 = \hat{\mathbf{r}}_1 \Delta_0 + \hat{\Xi}_2, \quad \Delta_2 = \hat{\mathbf{r}}_1 \Delta_1 + \hat{\mathbf{r}}_2 \Delta_0 + \hat{\Xi}_3, \ldots
\]

Standard errors of the response function are derived using the delta method. Accordingly, \(\Delta_s \) is asymptotically distributed as

\[
\Delta_s(\hat{\theta}_1) \xrightarrow{d} N(\Delta_s(\theta_1), (1/T)G_s(\Omega \otimes Q^{-1})G_s'),
\]

where \(Q = E[\mathbf{x}_t \mathbf{x}_t'] \) and \(G_s = \frac{\partial \Delta_s(\theta_1)}{\partial \theta_1} \). Estimates for \(\Omega \) and \(Q \) are readily available from the VAR estimates. Following Hamilton (1994), we construct the columns of \(G_s \) based on finite differences according to

\[
\frac{\partial \Delta_s(\hat{\theta}_1)}{\partial \theta_{1i}} \approx \frac{\Delta_s(\hat{\theta}_1 + e_i h) - \Delta_s(\hat{\theta}_1)}{h},
\]

where \(h \) is some small number, \(\theta_{1i} \) denotes the \(i \)-th element of \(\theta_1 \) and \(e_i \) is the \(i \)-th unity vector.

Figures [21] to [23] show the impulse response to news-induced dummy variable changes based on the averaged VAR estimates. The depicted reaction to relevant
Figure 21: Response Analysis of a Change in the highly relevant noEA News Dummies (95% confidence intervals as dotted lines)

Figure 22: Response Analysis of a Change in the EA News Dummies (95% confidence intervals as dotted lines)
noEA news mimics the unconditional market responses of volatility and money value traded quite well (cf. Figures 5 and 6). Nevertheless, while the reaction of money value traded is barely significant after the first minute after news arrival, the volatility response is more persistent and lasts until the fifth minute after the event. Moreover, as shown in Figures 22 and 23, market reactions to less relevant news and EA news are not statistically different from zero.

Overall, we can conclude that the dynamic analysis widely confirms the unconditional effects shown above. Obviously, volatility and trading volume are most sensitive to news arrival. Weaker reactions and a stronger impact of idiosyncratic effects are observed in spreads and depth. In order to check the robustness of our results, we have estimated several alternative specifications, in particular (i) a simple VAR model based on 20 second aggregates (without explicitly accounting for zero observations), (ii) the corner-solution model by Cragg (1971) for the conditional density based on 20 second aggregates, and (iii) simple VAR specifications based on 5 minute aggregates. For sake of brevity we refrain from reporting the corresponding estimates in the paper. It turns out that our findings are qualitatively quite stable across the individual specifications.
5 Conclusions

Motivated by the ongoing surge in the amount of electronic news, this study analyzes the impact of firm-specific news flow on the trading activity at the London Stock Exchange (LSE). The arrival of stock-specific news items is linked to liquidity, volatility and returns for a representative sample of stocks. While previous studies dominantly focus only on a part of published firm-specific news (typically earnings announcements), this study attempts covering the complete information flow provided by a news vendor.

Recording and analyzing the overall news flow for a specific asset is challenging since the amount of news, the number of news sources and the speed of information dissemination is rapidly increasing over time. Induced by the huge amount of information permanently published in all modern media, news are overlaid by substantial noise caused by irrelevant information. To reduce the impact of noise, we make use of data provided by an automated news analytics tool of the Reuters company which allows us to disentangle relevant news from irrelevant ones and to identify the sign of news. These identifications are based on indicators from linguistic pattern recognition algorithms. Until now this kind of news data has never been systematically studied in the literature. Consequently, the induced effects on intraday trading activity, volatility and liquidity are widely unknown. This paper addresses this question and explores the impact of news on high-frequency returns, trading volume, volatility, depth and spreads by means of a high-frequency VAR model.

Based on our empirical results we can summarize the following results. First, we find significant unconditional reactions in returns, volatility and liquidity. For trading volumes and volatilities these effects remain stable even if dynamics and cross-dependencies between the variables are taken into account. For market depth and spreads, news implied effects deteriorate and are less distinct in a multivariate framework. Second, market responses to information can only be identified for relevant news items. Conversely, less relevant news seems to be overlaid by noise. In this sense, our analysis confirms the usefulness of an automated linguistic pattern analysis. Third, it turns out that news impacts for individual stocks are influenced by considerable stock-specific noise. This is particularly true for the response of spreads and depth for which we find varying effects across the market. Fourth, the news impact on days of earnings announcements is different from the impact on other trading days. On these days, headlines on quarterly company earnings seem to be the dominating news reducing the importance of other information. Finally, we find evidence for market participants employing also other (sometimes more timely) news sources and for a general clustering
of information. This is reflected by market activity being already significantly above average before the arrival of news on sentiments.

References

6 Appendix

A Note on the Computation of Standard Errors of Across-Market Averages

In the following we describe two ways of computing the mean reactions and their standard errors. The pooled average used in Section 3 is based on the model

\[X_i = \mu + \epsilon_i, \quad \epsilon_i \sim i.i.d. N(0, \sigma^2), \quad i = 1, \ldots, n, \]

(9)

where we have suppressed the \(I_j\) index for the respective interval around the news item. Inference is based on the pooled estimator for the mean, \(\bar{X} = 1/n \sum_{i=1}^n X_i\), where 95% confidence intervals are given as \(\bar{X} \pm 2 \ast \hat{\sigma}/\sqrt{n}\) with \(\hat{\sigma}^2 = e'e/(n-1)\).

To account for the fact that the stocks have very different numbers of news items (see Table 1), we alternatively used group-specific means. Let \(n_s\) denote the number of news for stock \(s\) and let \(X_{sj}\) be the reaction of a certain (trading) variable of stock \(s\) to item \(j\). For the average reaction of each of the \(n_n\) stocks (the group mean), \(\bar{X}_s = 1/n_s \sum_{j=1}^{n_s} X_{sj}\), we assume

\[\bar{X}_s = \mu + \epsilon_s, \quad \epsilon_s \sim i.i.d. N(0, \sigma^2), \quad s = 1, \ldots, n_n. \]

(10)

Then, inference is based on the estimator for the mean, \(\bar{X} = 1/n_n \sum_{s=1}^{n_n} \bar{X}_s\), where 95% confidence intervals are given as \(\bar{X} \pm 2 \ast \hat{\sigma}/\sqrt{n_n}\) with \(\hat{\sigma}^2 = e'e/(n_n-1)\).

Both approaches have their advantages. While the latter smoothes out the effect of a large number of news, it does not account for the within-group variation, which is captured by (9). Hence, confidence intervals are slightly more conservative using (10). Nevertheless, all results of Section 3 hold using both procedures. Plots of the group-means are available upon request from the authors.
Figures

Figure 24: Intraday Pattern of Money Value Traded. Smoothed via kernel regression.

Figure 25: Intraday Pattern of Volatility. Smoothed via kernel regression.
Figure 26: Intraday Pattern of Bid-Ask Spreads. Smoothed via kernel regression.

Figure 27: Intraday Pattern of Market Depth. Smoothed via kernel regression.
Figure 28: Intraday Pattern of Average Trade Sizes. Smoothed via kernel regression.

Figure 29: Autocorrelation Pattern of Spreads.
Figure 30: Autocorrelation Pattern of Depth.

Figure 31: Cross-Correlations for the AAL stock
For a complete list of Discussion Papers published by the SFB 649, please visit http://sfb649.wiwi.hu-berlin.de.

001 "Implied Market Price of Weather Risk" by Wolfgang Härdle and Brenda López Cabrera, January 2009.

003 "Localized Realized Volatility Modelling" by Ying Chen, Wolfgang Karl Härdle and Uta Pigorsch, January 2009.

004 "New recipes for estimating default intensities" by Alexander Baranovski, Carsten von Lieres and André Wilch, January 2009.

006 "Regulatory Risk under Optimal Incentive Regulation" by Roland Strausz, January 2009.

007 "Combination of multivariate volatility forecasts" by Alessandra Amendola and Giuseppe Storti, January 2009.

008 "Mortality modeling: Lee-Carter and the macroeconomy" by Katja Hanewald, January 2009.

009 "Stochastic Population Forecast for Germany and its Consequence for the German Pension System" by Wolfgang Härdle and Alena Mysickova, February 2009.

010 "A Microeconomic Explanation of the EPK Paradox" by Wolfgang Härdle, Volker Krätschmer and Rouslan Moro, February 2009.

011 "Defending Against Speculative Attacks" by Tijmen Daniëls, Henk Jager and Franc Klaassen, February 2009.

012 "On the Existence of the Moments of the Asymptotic Trace Statistic" by Deniz Dilan Karaman Örsal and Bernd Droge, February 2009.

013 "CDO Pricing with Copulae" by Barbara Choros, Wolfgang Härdle and Ostap Okhrin, March 2009.

014 "Properties of Hierarchical Archimedean Copulas" by Ostap Okhrin, Yarema Okhrin and Wolfgang Schmid, March 2009.

017 "The Importance of Two-Sided Heterogeneity for the Cyclicality of Labour Market Dynamics" by Ronald Bachmann and Peggy David, March 2009.

018 "Transparency through Financial Claims with Fingerprints – A Free Market Mechanism for Preventing Mortgage Securitization Induced Financial Crises" by Helmut Gründl and Thomas Post, March 2009.

019 "A Joint Analysis of the KOSPI 200 Option and ODAX Option Markets Dynamics" by Ji Cao, Wolfgang Härdle and Julius Mungo, March 2009.

021 "Spectral estimation of the fractional order of a Lévy process" by Denis Belomestny, April 2009.

022 "Individual Welfare Gains from Deferred Life-Annuities under Stochastic Lee-Carter Mortality" by Thomas Post, April 2009.
SFB 649 Discussion Paper Series 2009

For a complete list of Discussion Papers published by the SFB 649, please visit http://sfb649.wiwi.hu-berlin.de.

023 "Pricing Bermudan options using regression: optimal rates of convergence for lower estimates" by Denis Belomestny, April 2009.
024 "Incorporating the Dynamics of Leverage into Default Prediction" by Gunter Löffler and Alina Maurer, April 2009.
025 "Measuring the effects of geographical distance on stock market correlation" by Stefanie Eckel, Gunter Löffler, Alina Maurer and Volker Schmidt, April 2009.
026 "Regression methods for stochastic control problems and their convergence analysis" by Denis Belomestny, Anastasia Kolodko and John Schoenmakers, May 2009.
028 "Optimal Smoothing for a Computationally and Statistically Efficient Single Index Estimator" by Yingcun Xia, Wolfgang Härdle and Oliver Linton, May 2009.
030 "Non-constant Hazard Function and Inflation Dynamics" by Fang Yao, May 2009.
031 "De copulis non est disputandum - Copulae: An Overview" by Wolfgang Härdle and Ostap Okhrin, May 2009.
032 "Weather-based estimation of wildfire risk" by Joanne Ho and Martin Odening, June 2009.
033 "TFP Growth in Old and New Europe" by Michael C. Burda and Battista Severgnini, June 2009.
034 "How does entry regulation influence entry into self-employment and occupational mobility?" by Susanne Prantl and Alexandra Spitz-Oener, June 2009.
035 "Trade-Off Between Consumption Growth and Inequality: Theory and Evidence for Germany" by Runli Xie, June 2009.
037 "The Impact of the European Monetary Union on Inflation Persistence in the Euro Area" by Barbara Meller and Dieter Nautz, July 2009.
038 "CDO and HAC" by Barbara Choroś, Wolfgang Härde and Ostap Okhrin, July 2009.
039 "Regulation and Investment in Network Industries: Evidence from European Telecoms" by Michał Grajek and Lars-Hendrik Röller, July 2009.
040 "The Political Economy of Regulatory Risk" by Roland Strausz, August 2009.
041 "Shape invariant modelling pricing kernels and risk aversion" by Maria Grith, Wolfgang Härde and Juhyun Park, August 2009.
042 "The Cost of Tractability and the Calvo Pricing Assumption" by Fang Yao, September 2009.
For a complete list of Discussion Papers published by the SFB 649, please visit http://sfb649.wiwi.hu-berlin.de.

044 "Modelling and Forecasting Liquidity Supply Using Semiparametric Factor Dynamics" by Wolfgang Karl Härdle, Nikolaus Hautsch and Andrija Mihoci, September 2009.
045 "Quantifizierbarkeit von Risiken auf Finanzmärkten" by Wolfgang Karl Härdle and Christian Wolfgang Friedrich Kirchner, October 2009.
046 "Pricing of Asian temperature risk" by Fred Benth, Wolfgang Karl Härdle and Brenda López Cabrera, October 2009.
048 "Migration of the Highly Skilled: Can Europe catch up with the US?" by Lydia Mechtenberg and Roland Strausz, October 2009.
049 "A blocking and regularization approach to high dimensional realized covariance estimation" by Nikolaus Hautsch, Lada M. Kyj and Roel C.A. Oomen, October 2009.
050 "Generalized single-index models: The EFM approach" by Xia Cui, Wolfgang Karl Härdle and Lixing Zhu, October 2009.
052 "On economic evaluation of directional forecasts" by Oliver Blaskowitz and Helmut Herwartz, October 2009.
053 "Monetary Policy Implementation and Overnight Rate Persistence" by Dieter Nautz and Jan Scheithauer, November 2009.
054 "Depression Econometrics: A FAVAR Model of Monetary Policy During the Great Depression" by Pooyan Amir Ahmadi and Albrecht Ritschl, November 2009.
055 "Representations for optimal stopping under dynamic monetary utility functionals" by Volker Krätschmer and John Schoenmakers, November 2009.
056 "Product policy and the East-West productivity gap" by Bernd Görzig, Martin Gornig, Ramona Voshage and Axel Werwatz, November 2009.
057 "Real and Nominal Rigidities in Price Setting: A Bayesian Analysis Using Aggregate Data" by Fang Yao, November 2009.
058 "Polar sets of anisotropic Gaussian random fields" by Jakob Söhl, November 2009.
059 "Der Einfluss von Exporten auf die betriebliche Entwicklung" by Stefan Mangelsdorf, November 2009.
060 "Renting versus Owning and the Role of Income Risk: The Case of Germany" by Rainer Schulz, Martin Wersing and Axel Werwatz, December 2009.
061 "Is cross-category brand loyalty determined by risk aversion?" by Nadja Silberhorn and Lutz Hildebrandt, December 2009.
062 "Interest Rate Dynamics and Monetary Policy Implementation in Switzerland" by Puriya Abbassi, Dieter Nautz and Christian J. Offermanns, December 2009.
SFB 649 Discussion Paper Series 2009

For a complete list of Discussion Papers published by the SFB 649, please visit http://sfb649.wiwi.hu-berlin.de.

SFB 649, Spandauer Straße 1, D-10178 Berlin
http://sfb649.wiwi.hu-berlin.de

This research was supported by the Deutsche Forschungsgemeinschaft through the SFB 649 "Economic Risk".