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Pricing of Asian temperature risk

Fred Benth, Wolfgang Karl Härdle, Brenda López Cabrera∗

Abstract

Weather derivatives (WD) are different from most financial derivatives because the underlying
weather cannot be traded and therefore cannot be replicated by other financial instruments. The market
price of risk (MPR) is an important parameter of the associated equivalent martingale measures used
to price and hedge weather futures/options in the market. The majority of papers so far have priced
non-tradable assets assuming zero MPR, but this assumption underestimates WD prices. We study
the MPR structure as a time dependent object with concentration on emerging markets in Asia. We
find that Asian Temperatures (Tokyo, Osaka, Beijing, Teipei) are normal in the sense that the driving
stochastics are close to a Wiener Process. The regression residuals of the temperature show a clear
seasonal variation and the volatility term structure of CAT temperature futures presents a modified
Samuelson effect. In order to achieve normality in standardized residuals, the seasonal variation is
calibrated with a combination of a fourier truncated series with a GARCH model and with a local
linear regression. By calibrating model prices, we implied the MPR from Cumulative total of 24-
hour average temperature futures (C24AT) for Japanese Cities, or by knowing the formal dependence
of MPR on seasonal variation, we price derivatives for Kaohsiung, where weather derivative market
does not exist. The findings support theoretical results of reverse relation between MPR and seasonal
variation of temperature process.

Keywords: Weather derivatives, continuous autoregressive model, CAT, CDD, HDD, risk premium
JEL classification: G19, G29, G22, N23, N53, Q59

1 Introduction

Global warming increases weather risk by rising temperatures and increasing between weather patterns.
PricewaterhouseCoopers (2005) releases the top 5 sectors in need of financial instruments to hedge weather
risk. An increasing number of business hedge risks with weather derivatives (WD): financial contracts
whose payments are dependent on weather-related measurements.

Chicago Mercantile Exchange (CME) offers monthly and seasonal futures and options contracts on tem-
perature, frost, snowfall or hurricane indices in 24 cities in the US., six in Canada, 10 in Europe, two in
Asia-Pacific and three cities in Australia. Notional value of CME Weather products has grown from 2.2
USD billion in 2004 to 218 USD billion in 2007, with volume of nearly a million contracts traded, CME
(2005). More than the half of the total weather derivative business comes from the energy sector, followed
by the construction, the retail and the agriculture industry, according to the Weather Risk Management
Association, PricewaterhouseCoopers (2005). The use of weather derivatives can be expected to grow
further.

Weather derivatives are different from most financial derivatives because the underlying weather cannot
be traded and therefore cannot be replicated by other financial instruments. The pricing of weather
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for Applications (CMA), and part-time researcher at University of Agder (UiA), Department of Economics and Business
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emails: fredb@math.uio.no, haerdle@wiwi.hu-berlin.de, lopezcab@wiwi.hu-berlin.de. The financial support from the Deutsche
Forschungsgemeinschaft via SFB 649 ”Ökonomisches Risiko”, Humboldt-Universität zu Berlin is gratefully acknowledged.
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derivatives has attracted the attention of many researchers. Dornier and Querel (2000) and Alaton,
Djehiche and Stillberger (2002) fitted Ornstein-Uhlenbeck stochastic processes to temperature data and
investigated future prices on temperature indices. Campbell and Diebold (2005) analyse heteroscedasticity
in temperature volatily and Benth (2003), Benth and Saltyte Benth (2005) and Benth, Saltyte Benth and
Koekebakker (2007) develop the non-arbitrage framework for pricing different temperature derivatives
prices.

The market price of risk (MPR) is an important parameter of the associated equivalent martingale mea-
sures used to price and hedge weather futures/options in the market. The majority of papers so far have
priced non-tradable assets assuming zero market price of risk (MPR), but this assumption underestimates
WD prices. The estimate of the MPR is interesting by its own and has not been studied earlier. We
study therefore the MPR structure as a time dependent object with concentration on emerging markets
in Asia. We find that Asian Temperatures (Tokyo, Osaka, Beijing, Teipei and Koahsiung) are normal
in the sense that the driving stochastics are close to a Wiener Process. The regression residuals of the
temperature show a clear seasonal variation and the volatility term structure of CAT temperature fu-
tures presents a modified Samuelson effect. In order to achieve normality in standardized residuals, the
seasonal dependence of variance of residuals is calibrated with a truncanted Fourier function and a Gener-
alized Autoregressive Conditional Heteroscedasticity GARCH(p,q). Alternatively, the seasonal variation
is smoothed with a Local Linear Regression estimator, that it is based on a locally fitting a line rather
than a constant. By calibrating model prices, we imply the market price of temperature risk for Asian
futures. Mathematically speaking this is an inverse problem that yields in estimates of MPR. We find
that the market price of risk is different from zero when it is assumed to be (non)-time dependent for dif-
ferent contract types and it shows a seasonal structure related to the seasonal variance of the temperature
process. The findings support theoretical results of reverse relation between MPR and seasonal variation
of temperature process, indicating that a simple parametrization of the MPR is possible and therefore,
it can be infered by calibration of the data or by knowing the formal dependence of MPR on seasonal
variation for regions where there is not weather derivative market.

This chapter is structured as follows, the next section we discuss the fundamentals of temperature deriva-
tives (future and options), their indices and we also describe the monthly temperature futures traded at
CME, the biggest market offering this kind of product. Section 3, - the econometric part - is devoted
to explaining the dynamics of temperature data by using a continuous autoregressive model (CAR). In
section 4, - the financial mathematics part - the weather dynamics are connected with pricing. In sec-
tion 5, the dynamics of Tokyo and Osaka temperature are studied and by using the implied MPR from
cumulative total of 24-hour average temperature futures (C24AT) for Japanese Cities or by knowing the
formal dependence of MPR on seasonal variation, new derivatives are priced, like C24AT temperatures
in Kaohsiung, where there is still no formal weather derivative market. Section 6 concludes the chapter.
All computations in this chapter are carried out in Matlab version 7.6. The temperature data and the
Weather Derivative data was provided by Bloomberg Professional service.

2 The temperature derivative market

The largest portion of futures and options written on temperature indices is traded on the CME, while
a huge part of the market beyond these indices takes place OTC. A call option is a contract that gives
the owner the right to buy the underlying asset for a fixed price at an agreed time. The owner is not
obliged to buy, but exercises the option only if this is of his or her advantage. The fixed price in the
option is called the strike price, whereas the agreed time for using the option is called the exercise time
of the contract. A put option gives the owner the right to sell the underlying. The owner of a call option
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written on futures F(τ,τ1,τ2) with exercise time τ ≤ τ1 and measurement period [τ1, τ2] will receive:

max
{
F(τ,τ1,τ2) −K, 0

}
(1)

where K is the strike price. Most trading in weather markets centers on temperature hedging using either
heating degree days (HDD), cooling degree days (CDD) and Cumulative Averages (CAT). The HDD
index measures the temperature over a period [τ1, τ2], usually between October to April, and it is defined
as:

HDD(τ1, τ2) =

∫ τ2

τ1

max(c− Tu, 0)du (2)

where c is the baseline temperature (typically 18◦C or 65◦F) and Tu is the average temperature on day
u. Similarly, the CDD index measures the temperature over a period [τ1, τ2], usually between April to
October, and it is defined as:

CDD(τ1, τ2) =

∫ τ2

τ1

max(Tu − c, 0)du (3)

The HDD and the CDD index are used to trade futures and options in 20 US cities (Cincinnati, Colorado
Springs, Dallas, Des Moines, Detroit, Houston, Jacksonville, Kansas City, Las Vegas, Little Rock, Los
Angeles, Minneapolis-St. Paul, New York, Philidelphia, Portland, Raleigh, Sacramento, Salt Lake City,
Tucson, Washington D.C), six Canadian cities (Calgary, Edmonton, Montreal, Toronto, Vancouver and
Winnipeg) and three Australian cities (Brisbane, Melbourne and Sydney).

The CAT index accounts the accumulated average temperature over a period [τ1, τ2] days:

CAT(τ1, τ2) =

∫ τ2

τ1

Tudu (4)

where Tu =
Tt,max−Tt,min

2 . The CAT index is the substitution of the CDD index for nine European
cities (Amsterdam, Essen, Paris, Barcelona, London, Rome, Berlin, Madrid, Oslo, Stockholm). Since
max(Tu − c, 0)−max(c− Tu, 0) = Tu − c, we get the HDD-CDD parity

CDD(τ1, τ2)−HDD(τ1, τ2) = CAT(τ1, τ2)− c(τ2 − τ1) (5)

Therefore, it is sufficient to analyse only HDD and CAT indices. An index similar to the CAT index is
the Pacific Rim Index, which measures the accumulated total of 24-hour average temperature (C24AT)
over a period [τ1, τ2] days for Japanese Cities (Tokyo and Osaka):

C24AT(τ1, τ2) =

∫ τ2

τ1

T̃udu (6)

where T̃u = 1
24

∫ 24
1 Tuidui and Tui denotes the temperature of hour ui.

The options at CME are cash settled i.e. the owner of a future receives 20 times the Degree Day Index
at the end of the measurement period, in return for a fixed price (the future price of the contract).
The currency is British pounds for the European Futures contracts, US dollars for the US contracts
and Japanese Yen for the Asian cities. The minimum price increment is one Degree Day Index point.
The degree day metric is Celsius and the termination of the trading is two calendar days following the
expiration of the contract month. The Settlement is based on the relevant Degree Day index on the first
exchange business day at least two calendar days after the futures contract month. The accumulation
period of each CAT/CDD/HDD/C24AT index futures contract begins with the first calendar day of the
contract month and ends with the calendar day of the contract month. Earth Satellite Corporation reports

3



Code First-trade Last-trade τ1 τ2 CME ˆC24AT

F9 20080203 20090202 20090101 20090131 200.2 181.0
G9 20080303 20090302 20090201 20090228 220.8 215.0
H9 20080403 20090402 20090301 20090331 301.9 298.0
J9 20080503 20100502 20090401 20090430 460.0 464.0
K9 20080603 20090602 20090501 20090531 592.0 621.0

Table 1: C24AT Contracts listed for Osaka at the beginning of the measurement period (τ1 − τ2) and CME and C24ATs
from temperature data. Source: Bloomberg

to CME the daily average temperature. Traders bet that the temperature will not exceed the estimates
from Earth Satellite Corporation.

At the CME, the measurement periods for the different temperature indices are standarized to be each
month of the year and two seasons: the winter (October - April) and summer season (April - October).
The notation for temperature futures contracts is the following: F for January, G for February, H for
March, J for April, K for May, M for June, N for July, Q for August, U for October, V for November
and X for December. J7 stands for 2007, J8 for 2008, etc. Table 1 describes the CME future data for
Osaka historical temperature data, obtained from Earth Satellite (EarthSat) corporation (the providers
of temperature derivative products traded at CME). The J9 contract corresponds to a contract with
the temperature measurement period from 20090401 (τ1) to 20090430 (τ2) and trading period (t) from
20080503 to 20080502. At trading day t, CME issues seven contracts (i = 1, · · · , 7) with measurement
period τ i1 ≤ t < τ i2 (usually with i = 1) or t ≤ τ i1 < τ i2 with i = 1, . . . , 7 (six months ahead from the
trading day t). Table 1 also shows the C24AT from the historical temperature data obtained from Osaka
Kansai International Airport. Both indices are notably differed and the raised question here is related to
weather modelling and forecasting.

The fair price of a temperature option contract, derived via a hedging strategy and the principle of no
arbitrage, requires a stochastic model for the temperature dynamics. In the next section, a continuous-
time process AR(p) (CAR(p)) is proposed for the temperature modelling.

3 Temperature Dynamics

Suppose that (Ω,F , P ) is a probability space with a filtration {Ft}0≤t≤τmax
, where τmax denotes a maximal

time covering all times of interest in the market. The various temperature forward prices at time t depends
explicitly on the state vector Xt. Let Xq(t) be the q’th coordinate of the vector Xt with q = 1, .., p. Here it
is claimed that Xt is namely the temperature at times t, t−1, t−2, t−3 . . .. Following this nomenclature,
the temperature time series at time t (q = 1):

Tt = Λt +X1(t) (7)

with Λt a deterministic seasonal function. Xq(t) can be seen as a discretization of a continuous-time
process AR(p) (CAR(p)). Define a p× p-matrix:

A =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

. . . 0
...

0 . . . . . . 0 0 1
−αp −αp−1 . . . 0 −α1

 (8)

in the vectorial Ornstein-Uhlenbleck process Xt ∈ Rp for p ≥ 1 as:

dXt = AXtdt+ eptσtdBt (9)

4



where ek denotes the k’th unit vector in Rp for k = 1, ...p, σt > 0 states the temperature volatility, Bt is
a Wiener Process and αk are positive constants. Note that the form of the Ap×p-matrix, makes Xq(t) to
be a Markov process.

By applying the multidimensional Itô Formula, the process in Equation (9) has the explicit form:

Xs = exp {A(s− t)}x +

∫ s

t
exp {A(s− u)}epσudBu (10)

for s ≥ t ≥ 0 and stationarity holds when the eigenvalues of A have negative real part or the variance
matrix

∫ t
0 σ

2
t−s exp {A(s)}epe>p exp

{
A>(s)

}
ds converges as t→∞.

There is an analytical link between Xq(t), and the lagged temperatures up to time t − p. We first say
that the state vector Xt is given by the prediction from the dynamics in (9). Using the expected value
as the prediction, and by abusing the notation, we say that the state Xt is given as the solution of the
first-order system of differential equations

dXt = AXt dt (11)

By substituting iteratively into the discrete-time dynamics, one obtains that:
p = 1,Xt = X1(t) and dX1(t) = −α1X1(t)dt
p = 2, dt = 1, X1(t+2) ≈ (2− α1)X1(t+1) + (α1 − α2 − 1)X1(t)

p = 3,

X1(t+1) −X1(t) = X2(t)dt

X2(t+1) −X2(t) = X3(t)dt

X3(t+1) −X3(t) = −α3X1(t)dt− α2X2(t)dt− α1X3(t)dt

X1(t+2) −X1(t+1) = X2(t+1)dt

X2(t+2) −X2(t+1) = X3(t+1)dt

X3(t+2) −X3(t+1) = −α3X1(t+1)dt− α2X2(t+1)dt− α1X3(t+1)dt

X1(t+3) −X1(t+2) = X2(t+2)dt

X2(t+3) −X2(t+2) = X3(t+2)dt

X3(t+3) −X3(t+2) = −α3X1(t+2)dt− α2X2(t+2)dt− α1X3(t+2)dt

substituting into the X1 dynamics and setting dt = 1:

X1(t+3) ≈ (3− α1)X1(t+2) + (2α1 − α2 − 3)X1(t+1)

+ (−α1 + α2 − α3 + 1)X1(t) (12)

Now, we approximate by Euler discretization to get the following for X1(t), X2(t) and X3(t). For X3(t) and
using a time step of length 2 (dt = 2), we obtain

X3(t+2) −X3(t) = −α3X1(t) · 2− α2X2(t) · 2− α1X3(t) · 2 .

Using the Euler approximation on X2(t) with time step 1 yields

X2(t+1) −X2(t) = X3(t)

and similarly for X1t we get
X1(t+1) −X1(t) = X2(t)

5



and
X1(t+2) −X1(t+1) = X2(t+1)

Hence, inserting in the approximation of X3(t) we find

X3(t+2) = (1− 2α1 + 2α2 − 2α3)X1(t) + (4α1 − 2α2 − 2)X1(t+1) + (1− 2α1)X1(t+2) (13)

Thus, we see that we can recover the state of X3(t) by inserting X1(t) = Tt−Λt at times t, t− 1 and t− 2.
Next, we have

X2(t+2) −X2(t+1) = X3(t+1)

which implies, using the recursion on X3(t+2) in Equation (13)

X2(t+2) = X2(t+1) + (1− 2α1 + 2α2 − 2α3)X1(t−1) − (4α1 − 2α2 − 2)X1(t) + (1− 2α1)X1(t+1) .

Inserting for X2(t+1), we get

X2(t+2) = X1(t+2) − 2α1X1(t+1) + (−2 + 4α1 − 2α2)X1(t) + (1− 2α1 + 2α2 − 2α3)X1(t−1) (14)

We see that X2(t+2) can be recovered by the temperature observation at times t + 2, t + 1, t and t − 1.
Finally, the state of X1(t) is obviously simply today’s temperature less its seasonal state.

4 Temperature futures pricing

As temperature is not a tradable asset in the market place, no replication arguments hold for any tem-
perature futures and incompleteness of the market follows. In this context all equivalent measures Q will
be risk-neutral probabilities. We assume the existence of a pricing measure Q, which can be parametrized
and complete the market, Karatzas and Shreve (2001). For that, we pin down an equivalent measure
Q = Qθt to compute the arbitrage free price of a temperature future:

F(t,τ1,τ2) = EQθt [Y (Tt)|Ft] (15)

with Y (Tt) being the payoff from the temperature index (CAT, HDD, CDD indices) and θt denotes the
time dependent market price of risk (MPR). The risk adjusted probability measure can be retrieved via
Girsanov’s theorem, by establishing:

Bθ
t = Bt −

∫ t

0
θudu (16)

Bθ
t is a Brownian motion for any time before the end of the trading time (t ≤ τmax) and a martingale under

Qθt . Here the market price of risk (MPR) θt = θ is as a real valued, bounded and piecewise continuous
function. Under Qθ, the temperature dynamics of (10) become

dXt = (AXt + epσtθt)dt+ epσtdB
θ
t (17)

with explicit dynamics, for s ≥ t ≥ 0:

Xs = exp {A(s− t)}x +

∫ s

t
exp {A(s− u)}epσuθudu

+

∫ s

t
exp {A(s− u)}epσudBθ

u (18)
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From Theorem 4.2 (page 12) in Karatzas and Shreve (2001) we can parametrize the market price of risk
θt and relate it to the risk premium for traded assets (as WD are indeed tradable assets) by the equation

µt + δt − rt = σtθt (19)

where µt is the mean rate of return process, δt defines a dividend rate process, σt denotes the volatility
process and rt determines the risk-free interest rate process of the traded asset. In other words, the risk
premium is the compensation, in terms of mean growth rate, for taking additional risk when investing in
the traded asset. Assuming that δt = 0, a sufficient parametrization of the MPR is setting θt = (µt−rt)/σt
to make the discounted asset prices martingales. We later relax that assumption, by considering the time
dependent market price of risk.

4.1 CAT Futures and Options

Following Equation (15) and using Fubini-Tonelli, the risk neutral price of a future based on a CAT index
under Qθ is defined as:

FCAT (t,τ1,τ2) = EQθ
[∫ τ2

τ1

Tsds|Ft
]

(20)

For contracts whose trading date is earlier than the temperature measurement period, i.e. 0 ≤ t ≤ τ1 < τ2,
Benth et al. (2007) calculate the future price explicitly by inserting the temperature model (7) into (20):

FCAT (t,τ1,τ2) =

∫ τ2

τ1

Λudu+ at,τ1,τ2Xt +

∫ τ1

t
θuσuat,τ1,τ2epdu

+

∫ τ2

τ1

θuσue
>
1 A
−1 [exp {A(τ2 − u)} − Ip] epdu (21)

with at,τ1,τ2 = e>1 A
−1 [exp {A(τ2 − t)} − exp {A(τ1 − t)}] and p × p identity matrix Ip. While for CAT

futures traded between the measurement period i.e. τ1 ≤ t < τ2, the risk neutral price is:

FCAT (t, τ1, τ2) = EQθ
[∫ t

τ1

Tsds|Ft
]

+ EQθ
[∫ τ2

t
Tsds|Ft

]
= EQθ

[∫ t

τ1

Tsds|Ft
]

+

∫ τ2

t
Λudu+ at,t,τ2Xt

+

∫ τ2

t
θuσue

>
1 A
−1 [exp {A(τ2 − u)} − Ip] epdu

where at,t,τ2 = e>1 A
−1 [exp {A(τ2 − t)} − Ip]. Since the expected value of the temperature from τ1 to t

is already known, this time the future price consists on a random and a deterministic part. Details of
the proof can be found in Benth, Saltyte Benth and Koekebakker (2008). Note that the CAT futures
price is given by the aggregated mean temperature (seasonality) over the measurement period plus a
mean reversion weighted dependency on Xt, which is depending on the temperature of previous days
Tt−k, k ≤ p. The last two terms smooth the market price of risk over the period from the trading date t
to the end of the measurement period τ2, with a change happening in time τ1. Similar results hold for
the C24AT index futures.

Note that that only coordinate of Xt that has a has a random component dBθ is Xpt, hence the dynamics
under Qθ of FCAT (t, τ1, τ2) is:

dFCAT (t, τ1, τ2) = σtat,τ1,τ2epdB
θ
t

7



where σtat,τ1,τ2ep denotes CAT future volatility.

From the risk neutral dynamics of FCAT (t, τ1, τ2), the explicit formulae for the CAT call option written
on a CAT future with strike K at exercise time τ < τ1 during the period [τ1, τ2]:

CCAT (t,τ,τ1,τ2) = exp {−r(τ − t)}
×

[(
FCAT (t,τ1,τ2) −K

)
Φ {d (t, τ, τ1, τ2)}

+

∫ τ

t
Σ2
CAT (s,τ1,τ2)dsΦ {d (t, τ, τ1, τ2)}

]
(22)

where

d (t, τ, τ1, τ2) = FCAT (t,τ1,τ2) −K/

√∫ τ

t
Σ2
CAT (s,τ1,τ2)ds

and
ΣCAT (s,τ1,τ2) = σtat,τ1,τ2ep

Note that once that a risk neutral probability Qθ is chosen, the market of futures and options is complete
and therefore we can replicate the option. In order to do that, one should compute the number of
CAT-futures held in the portfolio, which is simply computed by the option’s delta:

∂CCAT (t,τ,τ1,τ2)

∂FCAT (t,τ1,τ2)
= Φ {d (t, T, τ1, τ2)} (23)

The strategy holds close to zero CAT futures when the option is far out of the money, close to 1 otherwise.

4.2 CDD Futures and Options

Analogously, one derives the CDD future price. Following (15), the risk neutral price of a CDD future
which is traded at 0 ≤ t ≤ τ1 < τ2 is defined as:

FCDD(t,τ1,τ2) = EQθ
[∫ τ2

τ1

max(Ts − c, 0)ds|Ft
]

=

∫ τ2

τ1

υt,sψ

[
m{t,s,e>1 exp{A(s−t)}Xt} − c

υt,s

]
ds (24)

where

m{t,s,x} = Λs − c+

∫ s

t
σuθue

>
1 exp {A(s− t)} epdu+ x

υ2
t,s =

∫ s

t
σ2
u

[
e>1 exp {A(s− t)} ep

]2
du

ψ(x) = xΦ(x) + ϕ(x) (25)

For CDD futures contracts traded at τ1 ≤ t ≤ τ2, the non-abitrage price of a CDD future is:

FCDD(t,τ1,τ2) = EQθ
[∫ τ2

τ1

max(Ts − c, 0)ds|Ft
]

= EQθ
[∫ t

τ1

max(Ts − c, 0)ds|Ft
]

+

∫ τ2

t
υt,sψ

[
m{t,s,e>1 exp{A(s−t)}Xt} − c

υt,s

]
ds (26)
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with m{t,s,x} and υ2
t,s defined as above. Note again that the expected value of the temperature from τ1 to

t is known.

The dynamics of the FCDD(t,τ1,τ2) for 0 ≤ t ≤ τ1 under Qθ is given by:

dFCDD(t, τ1, τ2) = σt

∫ τ2

τ1

e>1 exp {A(s− t)} ep

× Φ

[
m{t,s,e>1 exp{A(s−t)}Xt} − c

υt,s

]
dsdBθ

t

The term structre of volatility for CDD futures is defined as:

ΣCDD(s,τ1,τ2) = σt

∫ τ2

τ1

e>1 exp {A(s− t)} ep

× Φ

[
m{t,s,e>1 exp{A(s−t)}Xt} − c

υt,s

]
ds (27)

For the call option written CDD-future, the solution is not analytical but is given in terms of an expression
suitable for Monte Carlo simulation. The risk neutral price of a CDD call written on a CDD future with
strike K at exercise time τ < τ1 during the period [τ1, τ2]:

CCDD(t,T,τ1,τ2) = exp {−r(τ − t)}

× E

[
max

{∫ τ2

τ1

υτ,sψ

(
mindex − c

υτ,s

)
ds−K, 0

}]
x=Xt

(28)

index = τ, s, e>1 exp {A(s− t)}x +

∫ τ

t
e>1 exp {A(s− u)} epσuθudu+ Σ(s,t,τ)Y

Y∼N(0, 1)

Σ2
(s,t,τ) =

∫ τ

t

[
e>1 exp {A(s− u)} ep

]2
σ2
udu

If the ΣCDD(s,τ1,τ2) is non-zero for almost everywhere t ∈ [0, τ ], then the hedging strategy HCDD is given
by:

HCDD(t,τ1,τ2) =
σt

ΣCDD(s,τ1,τ2)
E

[
1

{∫ τ2

τ1

υτ,sψ

(
m(τ,s,Z(x)) − c

υτ,s

)
ds > K

}

×
∫ τ2

τ1

e>1 exp {A(s− t)} epΦ
(
m(τ,s,Z(x)) − c

υτ,s

)
ds

]
x=Xt

(29)

for t ≤ τ , where Z(x) is a normal random variable with mean

e>1 exp {A(s− t)}x +

∫ τ

t
e>1 exp {A(s− u)} epσuθudu

and variance Σ2
(s,t,τ).
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4.3 Infering the market price of temperature risk

In the weather derivative market there is obviously the question of choosing the right price among possible
arbitrage free prices. For pricing nontradable assets one essentially needs to incorporate the market price
of risk (MPR), which is an important parameter of the associated equivalent martingale measures used
to price and hedge weather futures/options in the market. MPR can be calibrated from data and thereby
using the market to pin down the price of the temperature derivative. Once we know the MPR for
temperature futures, then we know the MPR for options.

By inverting (21), given observed prices, θt is inferred for contracts with trading date t ≤ τ1 < τ2. Setting
θit as a constant for each of the i contract, with i = 1 . . . 7, θ̂it is estimated via:

arg min
θ̂it

(
FAAT (t,τ i1,τ

i
2) −

∫ τ i2

τ i1

Λ̂udu− ât,τ i1,τ i2
X̂t

− θ̂it

{∫ τ i1

t
σ̂uât,τ i1,τ i2

epdu

+

∫ τ i2

τ i1

σ̂ue
>
1 A
−1
[
exp

{
A(τ i2 − u)

}
− Ip

]
epdu

})2

(30)

A simpler parametrization of θt is to assume that it is constant for all maturities. We therefore estimate
this constant θt for all contracts with t ≤ τ i1 < τ i2, i = 1, · · · , 7 as follows:

arg min
θ̂t

Σ7
i=1

(
FCAT (t,τ i1,τ

i
2) −

∫ τ i2

τ i1

Λ̂udu− ât,τ i1,τ i2
Xt

− θ̂t

{∫ τ i1

t
σ̂uât,τ i1,τ i2

epdu

+

∫ τ i2

τ i1

σ̂ue
>
1 A
−1
[
exp

{
A(τ i2 − u)

}
− Ip

]
epdu

})2

Assuming now that, instead of one constant market price of risk per trading day, we have a step function
with jump θ̂t = I (u ≤ ξ) θ̂1

t + I (u > ξ) θ̂2
t with jump point ξ (take e.g. the first 150 days before the

beginning of the measurement period). Then we estimate θ̂t for contracts with t ≤ τ i1 < τ i2, i = 1, · · · , 7
by:

f(ξ) = arg min
θ̂1t ,θ̂

2
t

Σ7
i=1

(
FCAT (t,τ i1,τ

i
2) −

∫ τ i2

τ i1

Λ̂udu− ât,τ i1,τ i2
Xt

− θ̂1
t

{∫ τ i1

t
I (u ≤ ξ) σ̂uât,τ i1,τ i2epdu

+

∫ τ i2

τ i1

I (u ≤ ξ) σ̂ue>1 A−1
[
exp

{
A(τ i2 − u)

}
− Ip

]
epdu

}

− θ̂2
t

{∫ τ i1

t
I (u > ξ) σ̂uât,τ i1,τ i2

epdu

+

∫ τ i2

τ i1

I (u > ξ) σ̂ue
>
1 A
−1
[
exp

{
A(τ i2 − u)

}
− Ip

]
epdu

})2
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City Period â0 â1 â2 â3
Tokyo 19730101-20081231 15.76 7.82e-05 10.35 -149.53
Osaka 19730101-20081231 15.54 1.28e-04 11.50 -150.54
Beijing 19730101-20081231 11.97 1.18e-04 14.91 -165.51
Taipei 19920101-20090806 23.21 1.68e-03 6.78 -154.02

Table 2: Seasonality estimates of daily average temperatures in Asia. Data source: Bloomberg

Generalising the previous piecewise continuous function, the (inverse) problem of determining θt with
t ≤ τ i1 < τ i2, i = 1, · · · 7 can be formulated via a series expansion for θt:

arg min
γ̂k

Σ7
i=1

(
FAAT (t,τ i1,τ

i
2) −

∫ τ i2

τ i1

Λ̂udu− ât,τ1i ,τ
i
2
X̂t

−
∫ τ i1

t

K∑
k=1

γ̂kĥk(ui)σ̂ui ât,τ1,τ2epdui

−
∫ τ i2

τ i1

K∑
k=1

γ̂kĥk(ui)σ̂uie
>
1 A
−1
[
exp

{
A(τ i2 − ui)

}
− Ip] epdui

)2

(31)

where hk(ui) is a vector of known basis functions and γk defines the coefficients. Here hk(ui) may denote
a spline basis for example. Härdle and López Cabrera (2009) show additional methods about how to
infere the MPR.

5 Asian temperature derivatives

5.1 Asian temperature dynamics

We turn now to the analysis of the weather dynamics for Tokyo, Osaka, Beijing and Taipei daily tem-
perature data. The temperature data were obtained from the Tokyo Narita International Airport, Osaka
Kansai International Airport and Bloomberg. We consider recordings of daily average temperatures from
19730101 - 20090604. In all studied data, a linear trend was not detectable but a clear seasonal pattern
emerged. Figure 1 shows 8 years of daily average temperatures and the least squares fitted seasonal
function with trend:

Λt = a0 + a1t+ a2cos

{
2π(t− a3)

365

}
(32)

The estimated coefficients are displayed in Table 2.

The low order polynomial deterministic trend smooths the seasonal pattern and makes the model to be
parsimonius. The coefficient â0 can be interpretated as the average temperature, while â1 as the global
warming trend component. In most of the Asian cases, as expected, the low temperatures are observed
in the winter and high temperatures in the summer.

After removing the seasonality in (32) from the daily average temperatures,

Xt = Tt − Λt (33)
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Figure 1: Seasonality effect and daily average temperatures for Tokyo Narita International Airport, Osaka Kansai Interna-
tional Airport, Beijing and Taipei.

AsianWeather1
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City τ̂(p-value) k̂(p-value)

Tokyo -56.29(< 0.01) 0.091(< 0.1)
Osaka -17.86(< 0.01) 0.138(< 0.1)
Beijing -20.40(< 0.01) 0.094(< 0.1)
Taipei -33.21(< 0.01) 0.067(< 0.1)

Table 3: Stationarity tests.

every every every every every
Year 3 years 6 years 9 years 12 years 18 years

73-75 AR(1) 2*AR(3) 3*AR(3) 4*AR(8)* 6*AR(9)*
76-78 AR(1)
79-81 AR(1) 2*AR(8)*
82-84 AR(8)* 3*AR(9)*
85-87 AR(1) 2*AR(3) 4*AR(3)
88-90 AR(1)
91-93 AR(1) 2*AR(3) 3*AR(3) 6*AR(3)
94-96 AR(1)
97-99 AR(1) 2*AR(1) 4*AR(3)
00-02 AR(1) 3*AR(3)
03-05 AR(3) 2*AR(3)
06-09 AR(1)

Table 4: Tokyo Moving window for AR, * denotes instability

we check whether Xt is a stationary process I(0). In order to do that, we apply the Augmented Dickey-
Fuller test (ADF) (1 − L)X = c1 + µt + τLX + α1(1 − L)LX + . . . αp(1 − L)LpX + εt, where p is the
number of lags by which the regression is augmented to get residuals free of autocorrelation. Under H0

(unit root), τ should be zero. Therefore the test statistic of the OLS estimator of τ is applicable. If the
null hypothesis H0 (τ = 0) is rejected then Xt is a stationary process I(0).

Stationarity can also be verified by using the KPSS Test: Xt = c+ µt+ k
∑t

i=1 ξi + εt with stationary εt
and iid ξt with an expected value 0 and variance 1. If H0 : k = 0 is accepted then the process is stationary.
The estimates of τ and k of the previuos stationarity tests are illustrated in Table 3, indicating that the
stationarity is achieved.

The Partial Autocorrelation Function (PACF) of (33) suggests that higher order autoregressive models
AR(p), p > 1 are suitable for modelling the time evolution of Asia temperatures after removing seasonality,
see Figure 2.

The covariance stationarity dynamics were captured using autoregressive lags over different year-lengths
moving windows, as it is denoted in Table 4 and Table 5 for the case of Tokyo and Osaka. The autore-
gressive models showed, for larger length periods, higher order p and sometimes lack of stability (AR *),
i.e. the eigenvalues of matrix A (8) had positive real part. Since local estimates of the a fitted seasonal
variation σt with GARCH models captures long memory affects and assuming that it shocks temperature
residuals in the same way over different length periods, the autoregressive model AR(3) was therefore cho-
sen. p = 3 is also confirmed by the Akaike and Schwarz information criteria for each city. The coefficients
of the fitted autoregressive process

Xt+p =

p∑
i=1

βiXt+p−i + σtεt (34)

and their corresponding are CAR(3)-parameters displayed in Table 6. The stationarity condition is
fulfilled since the eigenvalues of A have negative real parts. The element components of the matrix A (8)
do not change over time, this makes the process stable.
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Figure 2: Partial autocorrelation function (PACF) for Tokyo (upper left), Osaka (upper right), Beijing (lower left), Taipei
(lower right)

AsianWeather2

every every every every every
Year 3 years 6 years 9 years 12 years 18 years

73-75 AR(1) 2*AR(3) 3*AR(3) 4*AR(3) 6*AR(6)*
76-78 AR(3)
79-81 AR(3) 2*AR(3)
82-84 AR(2) 3*AR(3)
85-87 AR(3) 2*AR(3) 4*AR(6)*
88-90 AR(3)
91-93 AR(3) 2*AR(3) 3*AR(6)* 6*AR(7)*
94-96 AR(1)
97-99 AR(2) 2*AR(2) 4*AR(7)*
00-02 AR(1) 3*AR(3)
03-05 AR(3) 2*AR(3)
06-09 AR(1)

Table 5: Osaka Moving window for AR, * denotes instability.
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Coefficient Tokyo(p=3) Osaka(p=3) Beijing(p=3) Taipei(p=3)
AR β1 0.668 0.748 0.741 0.808

β2 -0.069 -0.143 -0.071 -0.228
β3 -0.079 -0.079 0.071 0.063

CAR α1 -2.332 -2.252 -2.259 -2.192
α2 1.733 -1.647 -1.589 -1.612
α3 -0.480 -0.474 -0.259 -0.357

Eigenvalues real part of λ1 -1.257 -1.221 -0.231 -0.396
real part of λ2,3 -0.537 -0.515 -1.013 -0.8976

Table 6: Coefficients of (C)AR(p), Model selection: AIC.

ĉ1 ĉ2 ĉ3 ĉ4 ĉ5 ĉ6 ĉ7 ĉ8 ĉ9 α β
Tokyo 3.91 -0.08 0.74 -0.70 -0.37 -0.13 -0.14 0.28 -0.15 0.09 0.50
Osaka 3.40 0.76 0.81 -0.58 -0.29 -0.17 -0.07 0.01 -0.04 0.04 0.52
Beijing 3.95 0.70 0.82 -0.26 -0.50 -0.20 -0.17 -0.05 0.10 0.03 0.33
Taipei 3.54 1.49 1.62 -0.41 -0.19 0.03 -0.18 -0.11 -0.16 0.06 0.33

Table 7: First 9 Coefficients of σ2
t and GARCH(p = 1, q = 1).

After trend and seasonal components were removed, the residuals εt and the squared residuals ε2
t of (34)

for Chinese temperature data are plotted in the Figure 3 and for Japan in Figure 4. According to the
modified Li-McLeod Portmanteau test, we reject at 1% significance level the null hypothesis H0 that
the residuals are uncorrelated. The ACF of the residuals of AR(3) for Asian cities is close to zero and
according to Box-Ljung statistic the first few lags are insignificant as it is displayed in Figure 5 for the
case of China and Figure 6 for the case of Japan. However, the ACF for the squared residuals (also
displayed in Figure 5, 6) shows a high seasonal pattern.

This seasonal dependence of variance of residuals of the AR(3) (σ̂2
t,FTSG) for the Asian cities is cali-

brated with a truncanted Fourier function and a Generalized Autoregressive Conditional Heteroscedas-
ticity GARCH(p,q):

σ̂2
t,FTSG = c1 +

16∑
i=1

{
c2i cos

(
2iπt

365

)
+ c2i+1 sin

(
2iπt

365

)}
+ α1(σ2

t−1εt−1)2 + β1σ
2
t−1 (35)

Alternatively to the seasonal variation of the 2 step model, one can smooth the data with a Local Linear
Regression (LLN) σ̂2

t,LLR estimator:

min
a,b

365∑
i=1

(
σ̂2
t,LLR,i − a(t)− b(t)(Ti − t)

)2

K

(
Ti − t
h

)
(36)

Asympotically they can be approximated by Fourier series estimators. Table 7 shows the first 9 coefficients
of the seasonal variation using the 2 steps model. Figure 7 shows the daily empirical variance (the average
of 35 years squared residuals for each day of the year) and the fitted squared volatility function for the
residuals σ̂2

t,FTSG and σ̂2
t,LLR using Epanechnikov Kernel und bandwidth bandwidth h = 4.49, 4.49 for

the Chinese cities and h = 3.79 for Japanese cities at 10% significance level. The results are different to
the Campbell and Diebold (2005) effect for American and European temperature data, high variance in
earlier winter - spring and low variance in late winter - late summer.

Figure 8 and 9 shows the ACF plot of the Asian temperature residuals ε̂t and squared residuals ε̂2
t , after

dividing out the seasonal volatility σ̂2
t,LLR from the regression residuals. The ACF plot of the residuals

remain unchanged and now the ACF plot for squared residuals presents a non-seasonal pattern. Table 8
shows the statistics for the standardized residuals under different seasonal variations ( ε̂t

σt,FTS
, ε̂t
σt,FTSG

and
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Figure 3: Residuals ε̂t and squared residuals ε̂2t of the AR(p) (for Beijing (1-2 panel) and Taipei (3-4 pannel)) during
19730101-20081231. No rejection of H0 that the residuals are uncorrelated at 0% significance level, according to the modified
Li-McLeod Portmanteau test

AsianWeather3
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Figure 4: Residuals ε̂t and squared residuals ε̂2t of the AR(p) (for Tokyo (1-2 panel) and Osaka (3-4 pannel)) during
19730101-20081231. No rejection of H0 that the residuals are uncorrelated at 0% significance level, according to the modified
Li-McLeod Portmanteau test

AsianWeather3
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Figure 5: ACF for residuals ε̂t and squared residuals ε̂2t of the AR(p) of the AR(p) (for Beijing (1-2 panel) and Taipei (3-4
pannel)) during 19730101-20081231
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Figure 6: ACF for residuals ε̂t and squared residuals ε̂2t of the AR(p) of the AR(p) (for Tokyo (1-2 panel) and Osaka (3-4
panel)) during 19730101-20081231
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Figure 7: Daily empirical variance, σ̂2
t,FTSG,σ̂2

t,LLR for Beijing (upper left), Taipei (upper right), Tokyo (lower left), Osaka
(lower right)

AsianWeather5

ε̂t
σt,LLR

). The estimator of the seasonal variation with local linear regression was the closer to the normal

residuals. The acceptance of the null hyptohesis H0 of normality is at 1% significance level.

The log Kernel smoothing density estimate against a log Normal Kernel evaluated at 100 equally spaced
points for Asian temperature residuals has been plotted in Figure (10) to verify if residuals become
normally distributed. The seasonal variation modelled with a GARCH (1,1) and by the local linear
regression are adequately capturing the intertemporal dependencies in daily temperature.

5.2 Pricing Asian futures

In this section, using Equation (30) and (31) but for C24AT index futures, we infered the market price of
risk for C24AT Asian temperature derivatives as Härdle and López Cabrera (2009) did for Berlin monthly
CAT futures. Table 9 shows the replication of the observed Tokyo C24AT index futures prices traded
in Bloomberg on 20090130, using the constant MPR for each contract per trading day and the time
dependent MPR using cubic polynomials with number of knots equal to the number of traded contracts
(7). One can notice that the C24AT index futures for Tokyo are underpriced when the MPR is equal to
zero. From (21) for C24AT index futures, we observe that a high proportion of the price value comes from
the seasonal exposure, showing high CAT temperature futures prices from June to August and low prices
from November to February. The influence of the temperature variation σt can be clearly reflected in the
behaviour of the MPR. For both parametrization, MPR is close to zero far from measurement period and
it jumps when it is getting closed to it. This phenomena is also related to the Samuelson effect, where
the CAT volatility for each contract is getting closed to zero when the time to measurement period is
large. C24AT index futures future prices with constant MPR estimate per contract per trading day full
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Figure 8: ACF for temperature (squared) residuals ε̂t
σt,LLR

for Beijing (1-2 panel)and Taipei (3-4 pannel).
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Figure 9: ACF for temperature (squared) residuals ε̂t
σt,LLR

for Tokyo (1-2 panel) and Osaka (3-4 panel).
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City ε̂t
σt,FTS

ε̂t
σt,FTSG

ε̂t
σt,LLR

Tokyo Jarque Bera 158.00 127.23 114.50
Kurtosis 3.46 3.39 3.40
Skewness -0.15 -0.11 -0.12

Osaka Jarque Bera 129.12 119.71 105.02
Kurtosis 3.39 3.35 3.33
Skewness -0.15 -0.14 -0.14

Beijing Jarque Bera 234.07 223.67 226.09
Kurtosis 3.28 3.27 3.25
Skewness -0.29 -0.29 -0.29

Taipei Jarque Bera 201.09 198.40 184.17
Kurtosis 3.36 3.32 3.3
Skewness -0.39 -0.39 -0.39

Table 8: Statistics of the Asian temperature residuals ε̂t and squared residuals ε̂2t , after dividing out the seasonal volatility
σ̂2
t,LLR from the regression residuals
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Figure 10: Log of Kernel smoothing density estimate vs Log of Normal Kernel for ε̂t
σt,LLR

(upper) and ε̂t
σt,FTSG

(lower) of

Tokyo (left), Osaka (left middle), Beijing (right middle), Taipei (right)

AsianWeather7

23



City Code FC24ATBloomberg FC24AT,θ̂0t
FC24AT,θ̂it

F
C24AT,θ̂

spl
t

Tokyo J9 450.000 452.125 448.124 461.213
K9 592.000 630.895 592.000 640.744

Osaka J9 460.000 456.498 459.149 -
K9 627.000 663.823 624.762 -

Table 9: Tokyo & Osaka C24AT future prices estimates on 20090130 from different MPR parametrization methods.

replicate the Bloomberg estimates and pricing deviations are smoothed over time when the estimations
use smoothed MPRs. Positive (negative) MPR contributes positively (negatively) to future prices, leading
to larger (smaller) estimation values than the real prices.

The Chicago Mercantile exchange does not carry out trade CDD futures for Asia, however one can use
the estimates of the smoothed MPR of CAT (C24AT) futures in (21) to price CDD futures. From the
HDD-CDD parity (5), one can estimate HDD futures and compare them with real data.

Since C24AT futures are indeed tradable assets, a simple and sufficient parametrization of the MPR to
make the discounted asset prices martingales is setting θt = (µt − rt)/σt. In order to see which of the
components (µt − rt or σt) contributes more to the variation of the MPR, the seasonal effect that the
MPR θt presents was related with the seasonal variation σt of the underlying process. In this case, the
relationship between θt and σt is well defined given by the deterministic form of σt(σt,FTSG, σt,LLR) in
the temperature process.

First, using different trading day samples, the average of the calibrated θit over the period [τ1, τ2] was
estimated as:

θ̂i[τ1,τ2] =
1

Tτ1,τ2 − tτ1,τ2

Tτ1,τ2∑
t=tτ1,τ2

θ̂it,

where t[τ1,τ2] and T[τ1,τ2] indicate the first and the last trade for the contracts with measurement month
[τ1, τ2]. Similarly, the variation over the measurement period [τ1, τ2] was defined as:

σ̂2
[τ1,τ2] =

1

τ2 − τ1

τ2∑
t=τ1

σ̂2
t .

Then one can conduct a regression model of θ̂iτ1,τ2 on σ̂2
τ1,τ2 . Figure 11 shows the linear and quadratic

regression of the average of the calibrated MPR and σt(σt,FTSG, σt,LLR) of CAT-C24AT Futures with
Measurement Period (MP) in 1 month for Berlin-Essen and Tokyo weather derivative from July 2008
to June 2009. The values of θ̂it for contracts on Berlin and Essen were assumed coming from the same
population, while for the asian temperature market, Tokyo was the only considered one for being the
largest one. As we expect, the contribution of σt into θt = (µt− rt)/σt gets larger the closer the contracts
are to the measurement period. Table 10 shows the coefficients of the parametrization of θ̂it for the
German and Japanese temperature market. A quadratic regression was fitting more suitable than a linear
regression (see R2 coefficients).

The previous findings generally support theoretical results of reverse relation between MPR θ̂τ1,τ2 and
seasonal variation σt(σt,FTSG, σt,LLR), indicating that a simple parametrization is possible. Therefore,
the MPR for regions without weather derivative markets can be infered by calibration of the data or by
knowing the formal dependence of MPR on seasonal variation. We conducted an empirical analysis to
weather data in Koahsiung, which is located in the south of China and it is characterized by not having
a formal temperature market, see Figure 12. In a similar way that other Asian cities, a seasonal function
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Figure 11: Average of the Calibrated MPR and the Temperature Variation of CAT-C24AT Futures with Measurement
Period (MP) in 1 month (Linear, quadratic). Berlin and Essen (left) and Tokyo (right) from July 2008 to June 2009.

AsianWeather8

City Parameters θ̂τ1,τ2 = a+ b · σ̂2
τ1,τ2 θ̂τ1,τ2 = a+ b · σ̂2

τ1,τ2 + c · σ̂4
τ1,τ2

Berlin- a 0.3714 2.0640
Essen b -0.0874 -0.8215

c - 0.0776
R2
adj 0.4157 0.4902

Tokyo a - 4.08
b - -2.19
c - 0.28

R2
adj - 0.71

Table 10: Parametrization of MPR in terms of seasonal variation for contracts with measurement period of 1 month.
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i 1 2 3 4 5 6

ĉi 5.11 -1.34 -0.39 0.61 0.56 0.34

d̂i -162.64 19.56 16.72 28.86 16.63 21.84

Table 11: Coefficients of the seasonal function with trend for Koahsiung

with trend was fitted:

Λ̂t = 24.4 + 16 · 10−5t+
3∑
i=1

ĉi · cos

{
2πi(t− d̂i)

365

}

+ I(t ∈ ω) ·
6∑
i=4

ĉi · cos

{
2π(i− 4)(t− d̂i)

365

}
(37)

where I(t ∈ ω) is the indicator function for the months of December, January and February. This form
of the seasonal function makes possible to capture the peaks of the temperature in Koahsiung, see upper
panel of Figure 12. The coefficient values of the fitted seasonal function are shown in Table 11.

The fitted AR(p) process to the residuals of Koahsiung by AIC was of degree p = 3, where

β1 = 0.77, β2 = −0.12, β3 = 0.04

and CAR(3) with coefficients
α1 = −2.24, α2 = −1.59, α3 = −0.31

The seasonal volatility fitted with Local Linear Regression (LLR) is plotted in the middle panel of Fig-
ure 12, showing high volatility in late winter - late spring and low volatility in early summer - early
winter. The standardized residuals after removing the seasonal volatility are very closed to normality
(kurtosis=3.22, skewness=-0.08, JB=128.74), see lower panel of Figure 12.

For 0 ≤ t ≤ τ1 < τ2, the C24AT Future Contract for Kaohsiung is equal to:

FC24AT (t,τ1,τ2) = EQθ
[∫ τ2

τ1

Tsds|Ft
]

=

∫ τ2

τ1

Λudu+ at,τ1,τ2Xt +

∫ τ1

t

θ̂τ1,τ2σuat,τ1,τ2epdu

+

∫ τ2

τ1

θ̂τ1,τ2σue
>
1 A
−1 [exp {A(τ2 − u)} − Ip] epdu (38)

where θ̂τ1,τ2 = 4.08 − 2.19 · σ̂2
τ1,τ2 + 0.028 · σ̂4

τ1,τ2 , i.e. the formal dependence of MPR on seasonal variation for

C24AT-Tokyo futures. In this case σ̂2
τ1,τ2=1.10, θ̂τ1,τ2=2.01 and FC24AT (20090901,20091027,20091031)=139.60.

The C24AT-Call Option written on a C24AT future with strike K at exercise time τ < τ1 during period [τ1, τ2] is
equal to:

CC24AT (t,τ,τ1,τ2) = exp {−r(τ − t)}
×
[ (
FC24AT (t,τ1,τ2) −K

)
Φ {d(t, τ, τ1, τ2)}

+

∫ τ

t

Σ2
C24AT (s,τ1,τ2)

dsΦ {d(t, τ, τ1, τ2)}
]
,

Table 12 shows the value of the C24AT-Call Option written on a C24AT future with strike price K = 125◦C, the
measurement period during the 27-31th October 2009 and trading date on 1st. September 2009. The price of the
C24AT-Call for Koahsiung decreases when the measurement period is getting closer. This example give us the
insight that by knowing the formal dependence of MPR on seasonal variation, one can infere the MPR for regions
where weather derivative market does not exist and with that one can price new exotic derivatives. Without doubt,
the empirical findings of the MPR need to be further developed to better understand its behaviour.
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Derivative Type Parameters

Index C24AT
r 1%
t 1. September 2009

Measurement Period 27-31. October 2009
Strike 125◦C

Tick Value 0.01◦C=U25
FC24AT (20090901,20091027,20091031) 139.60

CC24AT (20090901,20090908,20091027,20091031) 12.25
CC24AT (20090901,20090915,20091027,20091031) 10.29
CC24AT (20090901,20090922,20091027,20091031) 8.69
CC24AT (20090901,20090929,20091027,20091031) 7.25

Table 12: C24AT Calls in Koahsiung

6 Conclusion

This paper analyses the pricing of asian weather risk. We apply higher order continuous time autoregressive models
CAR(3) with seasonal variance for modelling Asian temperature. We modelled the seasonal variation with a GARCH
model and with a local linear regression in order to achieve normal residuals and with that being able to work in a
financial mathematics context.

From temperature derivative (C24AT) data of the Chicago Mercantile Exchange (CME), the calibration of the
market price of risk is estimated to price new weather derivatives. The MPR for C24AAT temperature derivatives
is different from zero, showing a seasonal structure that comes from the seasonal variance of the temperature
process. The empirical findings in this paper generally support theoretical results of reverse relation between MPR
and variation. Therefore, by knowing the formal dependence of MPR on seasonal variation, one can infere the MPR
for regions where weather derivative market does not exist.
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