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De copulis non est disputandum®

Copulae: An Overview

Wolfgang Karl Hirdle! Ostap Okhrin?

May 27, 2009

Abstract: Normal distribution of the residuals is the traditional assumption in the classical
multivariate time series models. Nevertheless it is not very often consistent with the real data.
Copulae allows for an extension of the classical time series models to nonelliptically distributed
residuals. In this paper we apply different copulae to the calculation of the static and dynamic
Value-at-Risk of portfolio returns and Profit-and-Loss function. In our findings copula based
multivariate model provide better results than those based on the normal distribution.

Keywords: copula; multivariate distribution; value-at-risk; multivariate dependence.
JEL Classification: C13, C14, C50.

1 Introduction

Understanding the joint distribution of high dimensional data is fundamental in applied
statistics. The conventional procedure to model joint distributions is to approximate them
with multivariate normal distributions.

That implies, however, that the dependence structures is reduced to a fixed type. Prede-
termining a multivariate normal distribution means that the tails of the distribution are
not too heavy, the distribution is symmetric and that the dependence between variables
is linear.

Empirical evidence for these assumptions are barely verified and an alternative model
is needed, with more flexible dependence structure and arbitrary marginal distributions.
These are exactly the characteristics of copulae.

Copulae are very useful for modelling and estimating multivariate distributions. The
flexibilty of copulae basically follows from Sklar’s Theorem, which says that each joint
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distribution can be “decomposed” into its marginal distributions and a copula C “re-
sponsible” for the dependence structure:

Flay...,za) = C{Fi(21),..., Fa(za)}.
Two important factors for practical applications rely on this theorem:

1. The construction of multivariate distributions may be done in two independent
steps: the specification of marginal distributions - not necessarily identical - and
the specification of a dependence structure. Copulae “couple together” the marginal
distributions into a multivariate distribution with the desired dependence structure.

2. Joint distributions can be separately estimated from a sample of observations: the
marginal distributions are estimated first, the dependence structure later.

The copula approach gives us more freedom than the normality assumptions, marginal
distributions with asymmetric heavy tails (typical for financial returns) can be combined
with different dependence structures, resulting in multivariate distributions (far different
from the multivariate normal) that better describe the empirical characteristics of financial
returns distribution.

Moreover, copulae allow for dynamical modelling and adaption to portfolios, different
copulae with distinct properties can be associated to different portfolios according to
their specific dependence structures. Furthermore, copulae may change as time evolves,
reflecting the evolution of the dependence between financial assets.

The structure of this paper is as follows. In the next section we give a short review of
the copula theory. In the Section 3 we deals with different copula classes used in the
calculation. The simulation and estimation techniques are provided in Sections 4 and
5 respectively. The first static problem on the calculation of the Value-at-Risk for the
portfolio return has been discussed in Sections 6 and in the beginning of Section 7. Sub-
sections 7.1 and 7.2 deals with the dynamic estimation of the Value-at-Risk for the Profit
and Loss function. The paper is finished with summary.

2 Copulae

The description of copulae for measuring and modelling dependence with its main proper-
ties is the subject of this section. The term copula goes back to the works of Sklar (1959)
were it was first mentioned. There are a lot of different equivalent definitions that could
define the copula, but the most general is the following one.

Definition 1 (Copula) A d-dimensional copula is a d-dimensional distribution with all
uniform marginal distributions.

Note that by considering random variables X1, ..., Xy with univariate distribution func-
tions Fly,, ..., Fx, and the random variables U; = Fx,(X;), ¢ = 1,...,d uniformly dis-
tributed in [0,1], a copula may be interpreted as the joint distribution of the marginal
distributions.



Copulae gained popularity through Sklar’s (1959) work where the term was first coined.
However, many results had already been proved by Hoeffding (1940) and Hoeffding (1941),
who could have been the founder of a copula theory, if he had considered the stochasti-
cally more intuitive dependency over the unit cube [0, 1] rather than over [—1/2,1/2]? as
he had done. Copulae allow marginal distributions to be separated from the dependency
structure. Sklar’s theorem connects copulae with distribution functions such that from
the one side every distribution function can be “decomposed” into its marginal distri-
bution and (at least) one copula and from the other side a (unique) copula is obtained
from “decoupling” every (continuous) multivariate distribution function from its marginal
distributions.

Theorem 1 (Sklar’s theorem) Let F' be a multivariate distribution function with mar-
gins Iy, ...  Fy, then a copula C' exists such that

F(Qf1,...,$d) - C{F1<x1)7"'7Fk(xd)}7 L1y, 2d GR

If F; are continuous fori=1,...,d then C is unique. Otherwise C' is uniquely determined

on Fi(R) x -+ x Fy(R).

Conversely, if C' is a copula and FY, ..., F; are univariate distribution functions, then the
function F' defined above is a multivariate distribution function with margins Fy, ..., Fy.

The representation in Sklar’s Theorem can be used to construct new multivariate distri-
butions by changing either the copula function or marginal distributions. For an arbitrary
continuous multivariate distribution we can determine its copula from the transformation

Cur, ..., uq) = F{F (w), ..., Fy (wa)},  wi, ... ug € [0, 1], (1)
where F; ! are inverse marginal distribution functions.
Since the copula function is a multivariate distribution with uniform margins, it follows
that the copula density can be determined in the usual way
00wy, . . ug)
ouy...0ug '

Being armed with Theorem (1| and (??) we can write the density function f(-) of the
d-variate distribution F' in terms of copula as follows

c(ug, ... uq) U, ..., uqg € [0,1],

d
flar,. . xa) = A Fi(z1), ..., Fa(xa)} [] filwi), 21, 20 €R
=1

A detailed discussion with proofs and deep mathematical treatment can be found in Joe
(1997) and Nelsen (2006). A practical introduction is given in Deutsch and Eller (1999).
Embrechts, McNeil and Straumann (1999b) discuss restrictions of the copula technique
and their relation to the classical correlation analysis.

3 Copula Classes

Since there are plenty of functions satisfying the assumption of Theorem [I| they should
be classified by construction and properties. Here we consider several main classes, like
simplest, elliptical, Archimedean copulae and hierarchical Archimedean copulae.



3.1 Simplest Copulae

Special cases, like independence and perfect positive or negative dependence can be repre-
sented by copulae. If d random variables X, ..., X, are stochastically independent from
Theorem [I], then the structure of such a relationship is given by the product copula

d
M(uy, ... ug) :Huj. (2)

Copulae are bounded, this means that for all u = (uy,...,ug)" € [0, 1]%
W(ug,...,ug) < Cug,...,uq) < M(ug, ..., uq)

where
M(uq, ... ,ug) = min(ug, ..., uq)

is called the Fréchet-Hoeffding lower bound and

d
W(uy,...,uy) = max (Zui—d—l—l,0>

i=1

is the Fréchet-Hoeffding upper bound. While M is not a copula for d > 2, W is a copula
for all d. Both structures represent the perfect negative and perfect positive dependence.
From this observation we may conclude that an arbitrary copula C' reflects dependence
which lies between the perfect negative and positive one.

3.2 Elliptical Copulae

The elliptical copulae are derived from the elliptical distributions using Theorem [1 In
the bivariate case one has that a bivariate copula is elliptical if, and only if, it is equal to
its associated copula

C(Ul,UQ,Q) = C(ul,u2,0)
= U1+U2—1+C(1—U1,1—U2,9), Ul,UQG[O,l].

The most prominent examples of elliptical copulae are Gaussian and t-copula.

Gaussian Copula

The Gaussian copula represents the dependence structure of the multivariate normal dis-
tribution, that means that normal marginal distributions are combined with a Gaus-
sian copula to form multivariate normal distributions. The combination of non-normal
marginal distributions with a Gaussian copula results in meta-Gaussian distributions, i.e.,
distributions where only the dependence structure is Gaussian.



To obtain the Gaussian copula, let X = (X,..., X4)" ~ Ng(u, ) with X; ~ N(u;,0;)
for j=1,...,d. A copula C exists:

F(xy,...,2q) = C{Fi(21),..., Fy(zq)},

where Fj is the distribution function of X; and F' the distribution function of X. Let
Y; = T;(X;), Tj(x) = (x — pj)/oj. Then Y; ~N(0,1) and Y = (Y7,...,Yy) " ~ Ng(0,¥)
where W is the correlation matrix associated with ¥. A copula C§?, called Gaussian
copula exists as follows:

Fy(y1,- - ya) = C54@(m), ..., ®(ya) }- (3)

An explicit expression for the Gaussian copula is obtained by rewriting with u; =
D(y;):

C’ga(ul, CeyUg) = Fy{@‘l(ul), ce CD_l(ud)}
1 (u1) >~ (uq) d 1 1
= / . / (2m)"2 | U |72 exp (—§rT\II’1r)dr1 .odrg.

o0

The density of the Gaussian copula is given by

So(uy,. .. ug) =| V|2 exp{—%@(\p-l —Id)g}. (4)

Student’s t-Copula

The t-copula, containing the dependence structure from the multivariate ¢-distribution,
may be obtained in a similar way.

Let X = (X1,...,Xa)" ~ta(v, 1, X) and Y = (Vy,...,Yy) " ~ t4(v,0,¥) where ¥ is the
correlation matrix associated with . The unique copula from Y is the Student’s t-copula
Cly. Foru= (uy,...,uq)" €[0,1]% the Student’s t-copula is given by

C’f,’\l,(ul, CoUg) = tl,’\p{t;l(ul), oot (ug)}

where ¢! is the quantile function from the univariate ¢-distribution and t,.v the distribu-
tion function of Y.

The density of the t-copula is given by

glur, ... ug) = t”’\p{td_( Doty ()}

[ w{ Hu)}
V+d { (%) }d 1(1+%CT\IJ—1<)_T.
(eI, 0+ 4) T

= \‘1’!"




3.3 Archimedean Copulae

As opposed to elliptical copulae, Archimedean copulae are not constructed using Theorem
[1, but are related to Laplace transforms of univariate distribution functions. Let L denote
the class of Laplace transforms which consists of strictly decreasing differentiable functions
Joe (1997), i.e.

L= {¢:[0;00) = [0,1] | $(0) = 1, ¢(00) = 0; (1)) > 0; j = 1,...,00}.
The function C' : [0, 1]¢ — [0, 1] defined as
Clug, ... ug) = ¢{o )+ + ¢ (wa)}, ur,...,uq €[0,1]

is a d-dimensional Archimedean copula, where ¢ € L and is called the generator of
the copula. Tt is straightforward to show that C(u,...,uq) satisfies the conditions of
Definition [l

Some d-dimensional Archimedean copulae are presented below.

Frank (1979) copula, 0 < 6§ < cc.

The first popular Archimedean copula is the so called Frank copula, which is the only
elliptical Archimedean copula. Its generator and copula functions are

p(x,0) = 0 log{l —(1—eDe™), 0<60 <00, z€[0,00).

d -
Co(u,...,uq) = —=log 1+]:1

0 {exp(=6) — 1}

The dependence becomes maximal when 6 tends to infinity and independence is achieved
when 6 = 0.

Gumbel (1960) copula, 1 <6 < co.

The Gumbel copula is frequently used in financial applications. Its generator and copula
functions are

6(z,0) = exp{-2/%), 1<6< o0, z€0,00)

Co(u,...,ug) = exp —{Z(—loguj)e}

J=1

Consider a bivariate distribution based on the Gumbel copula with univariate extreme
value marginal distributions. Genest and Rivest (1989) showed that this distribution is

6



the only bivariate extreme value distribution based on an Archimedean copula. Moreover,
all distributions based on Archimedean copulae belong to its domain of attraction under
common regularity conditions. In contrary to the elliptical copulae, the Gumbel cop-
ula leads to asymmetric contour diagrams. The Gumbel copula shows stronger linkage
between positive values, however, it also shows more variability and more mass in the
negative tail.

For 6 > 1 this copula allows for the generation of dependence in the upper tail. For
6 — 1, the Gumbel copula reduces to the product copula and for § — oo we obtain the
Fréchet-Hoeftfding upper bound.

Clayton (1978) copula, —1 <0 < o0, 0 # 0.

The Clayton copula which, in contrast to the Gumbel copula, has more mass on the lower
tail, and less on the upper. The generator and copula function are

d(x,0) = (bz+1)9, —1<6O<o0,0+£0,z€][0,00),

Colu,...,ug) = {(Zuj9>—d+1} .

The Clayton copula is one of few copulae that has a simple explicit form of density for
any dimension

co(uy, ..., uq H{1+ 1)0}u; (6+1) (Zu —d+ 1>

As the parameter 6 tends to infinity, dependence becomes maximal and as 6 tends to zero,
we have independence. As 6 — —1, the distribution tends to the lower Fréchet bound.

—(071+d)

3.4 Hierarchical Archimedean Copulae

A recently developed flexible method is provided by hierarchical Archimedean copulae
(HAC). The special, so called fully nested case of the copula function is:

Cluy, ..., uq) Ga-1{dzy 0 baa(-. [d3" 0 d1{e7 (ur) + ¢7 ' (ug)}

+ ¢51<U3)] +et ¢3—12<Ud71)) + (M—ll(ud)}
= Gaaldgl o C{on, -, Paa})(ur, . ua) + ¢yt (ua))

for ¢ ;' 0 pg_; €L*, i < j, where

L* ={w:[0;00) — [0,00) | w(0) =0,

w(o0) = 00; (—1) 1w >0, 5 =1,...,00}.

In contrast to the Archimedean copula, the HAC defines the whole dependency structure
in a recursive way. At the lowest level the dependency between the first two variables is

7



modelled by a copula function with the generator ¢y, i.e. z; = C(uy, up) = ¢1 {7 " (uy) +
#7 (uz)}. At the second level an another copula function is used to model the dependency
between z; and ug, etc. Note that the generators ¢; can come from the same family and
they differ only through the parameter or, to introduce more flexibility, they come from
different generator families. As an alternative to the fully nested model, we can consider
copula functions, with arbitrary chosen combinations at each copula level. Okhrin, Okhrin
and Schmid (2009a) provide several methodologies in determining the structure of the
HAC from the data. The case of d = 3 which we use further in applications is quite
a simple one. If 75,713 and 73 are Kendall’'s 7, pairwise rank correlation coefficients,
we join together those X; and X; such that max;jef123), izj = 7ij. Next we introduce
2= C{E(X,), Fy(X;)}. Estimation techniques will be considered later. Variable X;., i* €
{1,2,3}/{i, 7} is joined afterwards with the z.

Whelan (2004) provides tools for generating samples from Archimedean copulae, Savu
and Trede (2006) derived the density of such copulae and Joe (1997) proves their positive
quadrant dependence (see Theorem 4.4). Okhrin et al. (2009a) and Okhrin, Okhrin and
Schmid (2009b) considered methods for determining the optimal structure of the HAC,
provided asymptotic theory for the estimated parameters and derive theoretical properties
of this copula family.

4 Monte Carlo Simulation

The Monte-Carlo simulation is often a single reliable solution to many financial problems.
Within the simulation study the random variables are generated from some prescribed
distributions. There are numerous methods of simulating from copula-based distributions,
see Frees and Valdez (1998), Whelan (2004), Marshall and Olkin (1988),McNeil (2008),
Embrechts, McNeil and Straumann (1999), Frey and McNeil (2003), Devroye (1986), etc.
Here we focus on two of them, on the conditional inversion method and on the method
proposed by Marshall and Olkin (1988) for Archimedean copulae with generalizations to
hierarchical Archimedean copulae by McNeil (2008).

4.1 Conditional Inverse Method

The simulation from d pseudo random variables with joint distribution defined by a copula
C and d marginal distributions Fj, j = 1,...,d, may follow different techniques.

Defining the copula j-dimensional marginal distribution C; for j = 2,...,d—1as Cj(us, ..., u;) =
C(uy,...,uj,1,...,1) and the derivative of C; with respect to the first j — 1 arguments
as

A \(uy, .. uy) = = 0 T
]71<u1’ ;) ouy, ...,0uj_q

the probability P(U; < u;, Uy = uy,...,U;j—1 = uj_1) can be written as

C'j(ul + A'U,l, ey Ui + AUjfl,Uj) — Cj(ul, c. ,Uj)
Aug,...,Auj_1—0 Aul, ey Auj,l




Thus, the conditional distribution A(u;) (given fixed wy,...,u;_1) is a function of the
ratio of derivatives:

A(U]> == P(UJ S Uj | U1 == u17"';Uj—1 == uj—l)

o c?-fl(ul,...,uj)
C;-:}(Ul, ce ,Uj_1>

The generation of d pseudo random numbers with given marginal distributions Fj, j =
1,...,d and dependence structure given by the copula C follows the steps:

1. generate iid vy, ...,vg ~ U[0, 1].
2. for j =1,...,d calculate u; = A~*(v;).

3. set z; = F; ' (uy).

4.2 Marshal-Olkin Method

The Marshal-Olkin method is developed for the simulations only from Archimedean copu-
lae. The idea this approach is based on the fact that the Archimedean copulae are derived
from Laplace transforms. Let M be a univariate cdf of a positive random variable (so
that M(0) = 0) and ¢ be the Laplace transform of M, i.e.

o(s) = /000 exp{—sw}dM(w), s > 0.

For any univariate distribution function F', a unique distribution G exists:

Flz) = /0 " Go(2) dM(0) = d{—log G(z)}.

Considering d different univariate distributions Fi, ..., Fy, we obtain

Cluy, ... ug) = /OOO H GYdM(a) = ¢ [Z ¢ F(u;)}

which is a multivariate distribution function. By replacing the product of univariate
distributions G; for ¢ = 1,...,d with an arbitrary copula function R we get:

C(ul,...,ud):/Ooo.../OOOR(G?,...,Gg)dM(a).

Note that for the classical Archimedean copula R is equal to a product copula.

One proceeds with the following three steps to make a draw from a distribution described
by an Archimedean copula:

1. generate an observation u from M,

2. generate an observations (vy,...,vq) from R;

9



3. the generated vector is computed by x; = Gj_l(v;/u).
This method works faster than the conditional inverse technique. The drawback is that
the distribution M can be determined explicitly only for a few generator functions ¢ like,
for example for the Frank, Gumbel and Clayton families. The same problem arises in
the case of hierarchical copulae, where ¢; o ¢, +11 should satisfy the properties of generator
functions.

5 Copula Estimation

The estimation of a copula based multivariate distribution involves both the estimation
of the copula parameters § and the estimation of the margins F}, j = 1,...,d, however all
the parameters from the copula and from the margins could be also estimated in one step.
The properties and goodness of the estimator of 6 heavily depend on the estimators of

F;, 5 =1,...,d. We distinguish between a parametric and a nonparametric specification
of the margins. If we are interested only in the dependency structure, the estimator
of {d1,...,d4,0} should be independent of any parametric models for the margins. In

practical applications, however, we are interested in a complete distribution model and,
therefore, parametric models for margins are preferred.

For nonparametrically estimated margins, one may show the consistency and asymp-
totic normality of maximum-likelihood (ML) estimators and derive the moments of the
asymptotic distribution. The ML estimation can be performed simultaneously for the pa-
rameters of the margins and of the copula function. Alternatively, a two-stage procedure
can be applied, where we estimate the parameters of margins at the first stage and the
copula parameters at the second stage.

Let X be a d-dimensional random variable with parametric univariate marginal distri-
butions Fj(z;;d;), j = 1,...,d. Further let a copula belong to a parametric family
C ={Cy, 0 € ©}. The distribution of X can be expressed as

F(x1,...,2q) = C{F1(21;01), ..., Fa(xq;0q); 6}

and its density as

d
fl@r, o waid,. ., 00,0) = o{Fi(21:01), -, Fa(wa; 64); 03 [ [ fi(56;)
j=1
where c(-) is the copula density (??). For a sample of observations {z;}]_;, z; = (214, ...,Tas)"
and a vector of parameters o = (41, ...,084,0)" € R4 the likelihood function is given by
T
Loy, ... ,x7) = Hf(xu, ey X301, .., 04, 0)
t=1
and the log-likelihood function by
T
laszy, ... o0) = Z log c{Fi(x14;61),. .., Fa(zas;04): 0}
=1
T d
+ ZZlog fi(@j;65).
=1 j=1

10



The vector of parameters a = (dy,...,d4,60)" contains d parameters d; from the marginals
and the copula parameter #. All these parameters can be estimated in one step. For
practical applications, however, a two step estimation procedure is more efficient.

5.1 FML — Full Maximum Likelihood Estimation

In the Maximum Likelihood estimation method (also called full mazximum likelihood), the
vector of parameters « is estimated in one single step through

appyp = argmax {(«)

The estimates gy, = (51, o é)T solve
(00]0d1,...,00]Ddq4,0l/00) = Q.

Following the standard theory on ML estimation it is efficient and asymptotically normal.
However, it is often computationally demanding to solve the system simultaneously.

5.2 IFM — Inference for Margins

In the IFM (inference for margins) method, the parameters ¢; from the marginal distri-
butions are estimated in the first step and used to estimate the dependece parameter 6
in the second step:

1. for j = 1,...,d the log-likelihood function for each of the marginal distributions are

T
05(5;) =) log fi(w4; 6;)
t=1

and the estimated parameters

0; = argmax (;(4;)
5
2. the pseudo log-likelithood function

T
00,01, ...,60) = > logc{Fi(214501), ..., Fu(@as; 6a); 0}

t=1

is maximised over 6 to get the dependence parameter estimate 6.

The estimates &rppy = (51, . ,(§d, é)T solve
(001001, . ..,0L4/Ddq4,00/00) = Q.

Detailed discussion on this method could be found in Joe and Xu (1996) Note, that this
procedure does not lead to efficient estimators, however, as argued by Joe (1997) the loss
in the efficiency is modest. The advantage of the inference for margins procedure lies in
the dramatic reduction of the numerical complexity. Detailed discussion on the inference
for margins procedure can be found in Joe and Xu (1996). Note, that this method does
not lead to efficient estimators, however, as argued by Joe (1997) the loss in the efficiency
is modest.

11



5.3 CML — Canonical Maximum Likelihood

In the CML (canonical mazimum likelihood) method, the univariate marginal distributions
are estimated through the edf F. The asymptotic properties of the multistage estimators
of # do not depend explicitly on the type of the nonparametric estimator, but on its
convergence properties. For j =1,...,d

A

T
1
F(z) = 711 > I(wj <),
t=1

The pseudo log-likelihood function is
T
= logc{Fi(x1y), ..., Fulay); 0}
t=1

and the copula parameter estimator éoM 1 is given by

Ocnrr = arg max £(0).
0

Notice that the first step of the IMF and CML methods estimates the marginal distribu-
tions. After marginals are estimated, a pseudo sample {u;} of observations transformed
in the unit d-cube is obtained and used in the copula estimation. As in the IFM, the semi-
parametric estimator 0 is asymptotically normal under suitable regularity conditions.

6 Asset Allocation

We illustrate the extension of the classical asset allocation problem to copula-based mod-
els. We consider an investor with a CRRA utility function U(z) = (1—) *2'™ willing to
allocate his wealth to d risky assets. We denote the d-dimensional vector of d asset prices

by S¢ = (Si4,-- -, Sd’t)T and their continuously compounded asset returns at time ¢ + 1
by Xiv1 = (X141, -, Xags1) where Xy = logS;y1 — log S;. The vector of portfolio
weights by w = (wy,...,wg)". Let Fy,; be the d-dimensional distribution function of

X1 with the mean fi;41 and covariance matrix ;1. The aim is to forecast Fyy for the
time period ¢ + 1 using the data up to time ¢. The estimator is denoted by Ft+1 with the
mean fi;41, the covariance matrix Etﬂ and the density le The objective of the investor
is to maximise the expected utility at the time point ¢ 4+ 1. This leads to the optimisation
problem

{UHE%E oy U(1+wTXt+1). (5)
In the case of no short sales constraint we set W = {w € [0, 14 :w' = 1} else we set

= {w € R?: w'1 = 1}. The conditional expectation in () implies that we integrate
the utility with respect to the forecasted distribution Ft+1 This reduces the problem (|5 .
to the problem
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There are several alternative parametric approaches to modelling Fy; . Let g, de-
note the diagonal matrix containing only the main diagonal of >;,;. Then ¥;;; =
E;{tilRt+1E;’/t2Jrl, where R;.; denotes the correlation matrix. A standard approach is
to define the model of the asset returns in the form

E;i/Z(Xt — ) ~ Na(0, Ry), (6)
where the conditional moments p; and ¥; are modelled by a GARCH type process.

To introduce a copula-based distribution into the asset allocation we deviate from the
normality assumption and assume that F' = C(F},..., F;). Thus is replaced by:

Sau*(Xe = ) ~ C(F, . Fy) (7)

with some given functional forms of the copula and the marginal distributions. Similarly
as above, the parameters of the conditional moments of the copula and of the marginal
distributions are estimated using the ML method.

In Patton (2004) the investor allocates his wealth between small cap and large cap stocks
(i.e. d = 2). The conditional mean is defined as linear function of the lagged asset
returns and additional explanatory variables. The conditional variance is stated in the
TARCH(1,1) form. The rotated Gumbel copula with skewed ¢ margins are used to con-
struct the bivariate distribution of the residuals. This model reveals the highest likelihood
function and the lowest AIC and BIC criterion. It is concluded that unconstrained port-
folios derived from the normality assumption performed worse in 9 of 10 different trading
strategies compared to the Gumbel model.

7 Value-at-Risk of the Portfolio Returns

If the return of the stock ¢ at time point ¢ is denoted as X;; then the portfolio value V' at
time t is defined recursively as

d
Vi = Vi (1 +) wz-Xit> :
=1

where w; for i = 1,. .., d are the corresponding portfolio weights. Ruled with this notation
the portfolio return is then given by

v, d
Rtp = th —1= Zthwz
N i=1

In our study we consider the case of equally weighted portfolio, i.e. w; = é fori=1,....,d.
The portfolio return is the random variable and its distribution strongly depends on the
underlying distribution of the indices.

The distribution function of R,,, dropping the time index, is given by
Fr, (&) = P(R, <) (8)

One of the main advantages of copulae is the fact that they allow flexible modelling of
the tail behaviour of multivariate distributions. Since the tail behaviour explains the
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simultaneous outliers of asset returns, it is of special interest in risk management. The
Value-at-Risk of a portfolio at level « is defined as the lower a-quantile of the distribution
of the portfolio return, i.e.

VaR(a) = Fﬁpl(oz). 9)

The VaR is a reasonable measure of risk if we assume that the returns are elliptically
distributed. Moreover, the assumption of ellipticity implies that minimising the variance
in the Markowitz problem also minimises the VaR, the expected shortfall and any other
coherent measure of risk. However, this statement is false in the non-elliptical case.
Moreover, regarding the effect of diversification the variance is the smallest (highest)
for perfect negative (positive) correlation of the assets. This also holds for the VaR in
the elliptical case, however, not for the non-elliptical distributions. This implies that
for copula based distribution the VaR should be used with caution and its computation
should be awarded more attention. Detailed description of the VaR estimation procedure
at prescribed level o can be found in Giacomini and Hérdle (2005).

Our aim is to determine such ¢ that P(R, < {) = a. Note that

= U)TX szX sz z

where F; denotes the marginal distributions of individual asset returns, u; = F;(X;) ~
Ul0,1] for all i = 1,...,d and uy,...,uq ~ C. The copula C defines the dependency
structure between the asset returns. This implies that

Fr,(§) =P(R, <) = /Mc(ul, oo ug)duy .. dug, (10)

with
U= {0 x DO}, wale) = {5/wd—zw@ (w)/waf. (1)

For fixed a, the VaR is determined by solving numerically for £. Direct multidi-
mensional numerical integration is a tedious task which can be substantially simplified by
using the Monte-Carlo integration. For this purpose we have to generate random samples
from C' using the methods described in Section [

In the empirical study we consider four countries Canada, Germany, U.S. and U.K. from
the MCSI index and eleven models of the joint multivariate distribution of indices, which
include t-copula, Gaussian copula, simple exchangeable Archimedean copula, binary HAC
and aggregated binary HAC, with normally and ¢-distributed margins. As a benchmark
we use the empirical VaR, based purely on the real data.

In the cases where margins are t-distributed, we consider ¢-distribution with three degrees
of freedom, while estimated t-distributions for this data are tsi63, f3.420, 13.023, 12.879.
Multivariate t-copula in this case has eight degrees of freedom. Let us consider the
simulation procedure, where on the first stage we estimate the covariance matrix ¥ =
{3i;}ij=1,.4, mean vector i = {fi; }i=1, 4 from the real data set and assume, or estimate,

the marginal distributions Fj(-) (in our case they are normally or t-distributed), for i =
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1,...,d. Next we show how to sample uy,...,uq € U from ((11)). First we simulate the
vector u of a dimension d — 1

Uty .oy Ug—1 ™~ U(O,l)

Based on u we consider © = {x;};=1,_4—1 which for normal margins is equal to

xizcb_l(ui) izz+ﬁz7 izl,...,d—l,
and for ¢t margins is

V; — 2~ =N .
xi:t_1<ui> 1—211+MZ7 Z:17"'7d_17
i
where v;, ¢ = 1,...,d are degrees of freedom for marginal distributions. This transfor-
mation returns a normally or ¢t-distributed vector x with the same parameters as the real
data set.

Theoretically, in further steps we have to find bounds for the last stock (or index) to
gain the portfolio ¢ which is the a quantile. Thus, we separate our maximally reachable
portfolio return ¢ into two parts

d-1 .
§= Z c_iXi + EXda
=1

then the return of the last index given the return of the portfolio is

where the upper bound for our last value in vector u is then
d—1
uy = Fy (df - Zx,) .
i=1

Value u}, is uniformly distributed on [0, 1] and we simulate the last element of the vector
ug ~ U0, u}).

As mentioned above, the goal is to compute which for this setting is
FRP / / ul,..., du1 .du Uq.-
[0,1]9=1 % [0,u%]

Then by solving Fr,(§) = a we find R, = VaR(«). In our study we solve the equations
numerically using the golden section method. The integration is performed using the
Monte-Carlo technique
— 1 &
P(RP S g) = _Zc(uliy"';udi)

n
5 =1

where n, is equal to 10%, « is set to be 1% and the values wuy;, ..., ug for i = 1,...,n,
are simulated using the method described above. The precision of R is set at 0.00015.

15



Table 1: VaR for the 4-dimensional data set

N ts
N 20.0194 | -0.0210
ts -0.0199 | -0.0213
AC -0.0174 | -0.015
H ACyinary -0.0187 | -0.0194
HAChinary aggr. | -0.0188 | -0.0194
Empirical -0.0235

The final results for all methods are given in Table |1} In the left-hand column we provide
the models with normal margins and in the right-hand column with ¢ margins. From top
to bottom we have five different copula functions like Gaussian, ¢, simple Archimedean
copula, binary HAC and binary aggregated HAC. The empirical VaR which is at the bot-
tom of the table is derived from the empirical quantile. Bold fonts in the table emphasize
those results which are closest in absolute value to the empirical one in each column, and
italic fonts the worst cases in absolute value.

As can be seen from Table [I} the results which are the best in absolute value are those
returned by the model with ¢-copula and ¢ margins. The model based on the simple
Archimedean copula is the worst one. This is quite natural, since this copula needs
exchangeability between variables, which is not observable here (see previous section).
HAC with binary as well as aggregated binary structures, unfortunately, give us results
that are not much worse compared to ¢-copula and Gaussian copula. For VaR(0.01) the
t-copula with ¢ margins provided the best result.

7.1 VaR of the P&L

This sub-section introduces the main assumptions and steps necessary to estimate the
VaR from a Profit and Loss of a linear portfolio using copulae. Static and time-varying
methods and their VaR performance evaluation through backtesting are described below.

In this section w is the portfolio, which is represented by the number of assets for a
specified stock in the portfolio, w = {wy, ..., ws}, w; € Z. The value V; of the portfolio
w is given non-recursively by

d
Vi = ijsj,t (12)
j=1
and the random variable
Lt+1 = (V;H—l - VZ)

d
= > w8 {exp(Xjea1) — 1}
j=1

also called profit and loss (P&L) function, expresses the absolute change in the portfolio
value in one period.
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Similarly to the previous case, the distribution function of L, dropping the time index, is
given by

Fr(z) =P(L < x). (13)

As usual the Value-at-Risk at level a from a portfolio w is defined as the a-quantile from
F L-

VaR(a) = F} ! (a). (14)

It follows from that Fj, depends on the d-dimensional distribution of log-returns F'y.
In general, the loss distribution Fp, depends on a random process representing the risk
factors influencing the P&L from a portfolio. In the present case log-returns are a suitable
risk factor choice. Thus, modelling their distribution is essential to obtain the quantiles
from F7.

Contrary to the previous section, here log-returns are assumed to be time-dependent, thus
a log-returns process {X;} can be modelled as

Xjt = Wit + 05151

where e, = (€14,...,€44)" are standardised i.i.d. innovations with E[e;,] = 0 and E[e? ] =
1for j =1,...,d; F; is the available information at time ¢:

tje = E[Xj¢ | Fia]
is the conditional mean given F; ; and

02, = E[(Xje — p154)* | Fer]

7t
is the conditional variance given F; ;. The innovations ¢ = (ey,... ,gd)T have joint
distribution
F(er,...,ea) = Co{Fi(e1), ..., Fulea)}, (15)

where Cy is a copula belonging to a parametric family C = {Cy,0 € O}, and F}, j =
1,...,d are continuous marginal distributions of ¢;. To obtain the Value-at-Risk in this
set up, the dependence parameter and distribution function from residuals are estimated
from a sample of log-returns and used to generate P&L Monte Carlo samples. Their
quantiles at different levels are the estimators for the Value-at-Risk.

For a portfolio w on d assets and a sample {z;,}{_,, j = 1,...,d of log-returns, the
Value-at-Risk at level « is estimated according to the following steps:

1. Estimation of residuals é; from the prespecified time-series model;

2. Specification and estimation of marginal distributions F}(€;);

3. Specification of a parametric copula family C and estimation of dependence param-
eter 0;

4. Generation of Monte Carlo sample of innovations € and losses L, for the forecast on
the one day;
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5. Estimation of ‘7a\R(a), the empirical a-quantile from the forecasted L.

The application of the (static) procedure described above on sliding windows of a time
series {z;,}1_, delivers a sequence of parameters for a copula family. Hence the denomi-
nation time-varying copulae.

Using moving windows of size r in time ¢

{xt}f:sfuﬂrl
for s = r,...,T, the procedure described in the section above generates the time series
{VaR;}L of Value-at-Risk and {6;}._. dependence parameters estimates.

Afterwards Backtesting is used to evaluate the performance of the specified copula family
C. The estimated values for the VaR are compared with the true realisations {l;} of the

P&L function, an exceedance occuring for each [; smaller than mt(a). The ratio of the
number of exceedances to the number of observations gives the exceedances ratio a:

T
R 1 o
o = T——T‘ E I{lt < VCLRt(O{)}.

t=r

The estimation methods described before are used on two portfolio, the first composed of
2 positions, the second of 3 positions. Different copulae are used in static and dynamic
setups and their VaR performance is compared based on backtesting.

In this section, the Value-at-Risk of portfolios for two companies (Tyssenkrupp (TKA) and
Volkswagen (VOW) from 01.12.1997 to 03.07.2007) is computed using different copulae.

Assuming the log-returns {X;,} follow a GARCH(1,1) process we have
Xjt = Hjt + 051
where

2 2 2
05, =wj+ oo g+ Bi(Xj1 — 1)

and w>0,a; >0, 5, >0, a; + 3; < 1.

The fit of a GARCH(1,1) model to the sample of log returns {x,} |, X; = (X14, Xo4) ",
T = 2500, gives the estimates w;, &; and Bj, as in Table , and empirical residuals
{é,}T,, where & = (£14,€24)". The marginal distributions are specified as normal, i.e.,
¢; ~ N(f1;,6;) with parameters 6, = (ji;,6;) estimated from the data.

Figure [1| displays the Kernel density estimator of the residuals and of the normal den-
sity, estimated with an Quartic kernel. The dependence parameters are estimated for
different copula families (Gaussian, Clayton and Gumbel). Residuals € and fitted copulae
(Gaussian, Clayton and Gumbel) are plotted in Figure

In the dynamic approach, the empirical residuals are sampled in moving windows with
a fixed size r = 250, {&};_,_,,, for s = r,...,T. The time series from estimated
dependence parameters for each copula family are in Figure [3

The same portfolio compositions as in the static case are used to generate P&L samples.
The series of estimated Value-at-Risk and the P&L function for selected portfolios are
plotted in Figure and [6]
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L o Q; B; BL KS
MRK | 7.392e-04  4.588¢-06  3.333e-02  9.572e-01  0.1285 1.255e-11
(3.672¢-04)  (1.557¢-06) (6.225¢-03) (8.568¢-03)
TKA | 7.845e-04  3.549¢-06  7.087e-02  9.252e-01  0.1360 4.189¢-05
(3.308¢-04)  (1.149¢-06) (9.837e-03) (9.915¢-03)
VOW | 9.720e-04  1.239e-05  9.303¢-02  8.830e-01 1.927¢-05 3.422¢-06
(3.480e-04)  (2.699e-06) (1.301e-02) (1.566e-02)

Table 2: Fitting of univariate GARCH(1,1) to asset returns. The standard deviation
of the parameters are given in parentheses. The last two columns provide the p-values
of the Box-Ljung test (BL) for autocorrelations and Kolmogorov-Smirnov test (KS) for
normality applied to the residuals

Te}
S | o
o
< |
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™
S ] @
> >
N N
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— —
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o o
07 T T T T T T T e T T T T T T
-8 -6 -4 -2 0 2 4 -4 -2 0 2 4 6
X X

Fig. 1: Kernel density estimator of the residuals and of the normal density from TKA
(left) and VOW (right). Quartic kernel, h = 2.786n~%2.

Fig. 2 Residuals ¢ and fitted copulae: Gaussian (p = 0.462), Clayton (6 = 0.880),
Gumbel (6 = 1.439).
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Fig. 3: Dependence parameter é, estimated using the IFM method, Gaussian (upper

panel), Gumbel (middle panel) and Clayton (lower panel) copulae, moving window (w =
250).
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VaR - Clayton Copula

P&L
-0.41 232 5.06
L1 1 1

-3.15

-5.89

-8.63

TT T T T T T T T T T
1997 1999 2000 2001 2002 2003 2004 2005 2006 2007
time

Fig. 4: %7%(04) (solid line), P&L (dots) and exceedances (crosses), o = 0.05, & = 0.0424.
P&L samples generated with Clayton copula.

VaR - Gumbel Copula

P&L
-0.41 232 5.06 7.8
I 1 1 1

-3.15

-5.89

-8.63

T T T T T T T T T T
1997 1999 2000 2001 2002 2003 2004 2005 2006 2007
time

Fig. 5: @(a) (solid line), P&L (dots) and exceedances (crosses), o = 0.05, & = 0.0508.
P&L samples generated with Gumbel copula.
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VaR - Normal Copula

2.32 5.06 7.8
Il Il 1

P&L

-8.63 -589 -3.15 -041

I
+

TT T T T T T T T T T
1997 1999 2000 2001 2002 2003 2004 2005 2006 2007
time

Fig. 6: m(a) (solid line), P&L (dots) and exceedances (crosses), o = 0.05, & = 0.0464.
P&L samples generated with Gaussian copula.

7.2 3-dimensional Portfolio

In this section, the Value-at-Risk of portfolios composed of 3 positions (Merck (MRK),
Tyssenkrupp (TKA) and Volkswagen (VOW) from 01.12.1997 to 03.07.2007) is computed
using a time-varying simple Gumbel copula and time-varying hierarchical Archimedean
copula with generators from the Gumbel family.

The estimation of the parameters of the 3-dimensional copula was done by the IFM
method. Concerning the HAC, we determine the structure under each window and re-
estimate the parameters.

The fit of a GARCH(1,1) model to the sample of log returns { X, }7,, X; = (X1 4, Xo4, X34) 7,
T = 2500, gives the estimates w;, &; and [3]-, as in Table , and empirical residuals {&;}_;,
where &, = (€14,94,€3,4) ", as in upper right part of Figure . The marginal distributions
are specified as normal, &; ~ N(ji;, 6;) with the estimated parameters d; = (ji;, &;).

The estimated Value-at-Risk at level a together with the P&L function are plotted in
Figure[J for the simple Archimedean Copula (AC) and on[10]for the HAC. As can be seen
from the backtesting results for different VaR levels, HAC outperforms the simple AC in
all levels. This implies the necessity of dependence flexibility in modelling of log-returns.

8 Summary

To conclude, a summary of the main findings of this paper. We calculated the Value-
at-Risk for the static and dynamic portfolio constructed by different methods. Three
different copulae - Gumbel, Clayton and Gaussian - were used to estimate the Value-at-
Risk from the two- (MRK and TKA) and three- (MRK, TKA and VOW) dimensional
portfolios. From the time series of estimated dependence parameters, we can verify that
the dependence structure is represented in a similar form with all copula families, as in

Figure 3
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Fig. 7: Dependence parameter 6, estimated using the IFM method, Clayton (upper panel)
and Gumbel (lower panel) copulae, moving window (w = 250).

Using backtesting results to compare the performance in the VaR estimation, we remark
that on average the Clayton and Gaussian copulae overestimate the VaR. In terms of
capital requirement, a financial institution computing VaR with those copulae would be
requested to keep more capital aside than necessary to guarantee the desired confidence
level.

The estimation with Gumbel copula, on another side, produced results close to the de-
sired level. Gumbel copulae seems to represent specific data dependence structures (like
lower tail dependencies, relevant to explain simultaneous losses) better than Gaussian and
Clayton copulae.
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VaR - Gumbel 3D Copula

P&L
-3.14 -0.02 3.1 6.22 9.34
1 Il Il 1

—6.26

-9.38

TT T T T T T T T T T
1997 1999 2000 2001 2002 2003 2004 2005 2006 2007
time

Fig. 9: @(a) and P&L (dots), estimated with 3-dimensional simple Gumbel copula,

= 0.05 (&1 = 0.0612), ay = 0.01 (&2 = 0.0232), a3 = 0.005 (63 = 0.016) and
ay = 0.001 (éy = 0.006).

VaR - HAC Gumbel Copula
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Fig. 10: VaR(
generators, a; =
and ay = 0.001 (

&L (dots), estimated with 3-dimensional HAC with Gumbel
= 0.0592), az = 0.01 (&2 = 0.0208), a3 = 0.005 (&3 = 0.014)

) and P
0.05 (& =
Gy = 0.004).
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