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Abstract

A simple and commonly used method to approximate the total claim distribution of

a (possible weakly dependent) insurance collective is the normal approximation. In

this article, we investigate the error made when the normal approximation is plugged

in a fairly general distribution-invariant risk measure. We focus on the rate of the

convergence of the error relative to the number of clients, we specify the relative

error’s asymptotic distribution, and we illustrate our results by means of a numerical

example. Regarding the risk measure, we take into account distortion risk measures

as well as distribution-invariant coherent risk measures.
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1 Introduction

In insurance practice, a simple and fast way to approximate the distribution of the

total claim amount Sn :=
∑n

i=1Xi of a homogeneous (possibly weakly dependent)

insurance collective {X1, . . . , Xn} is the normal approximation. According to the

CLT we have that the distribution of Sn is “close” (relatively to n) to the normal

distribution with mean µn := E[Sn] = nE[X1] and variance σ2
n := Var[Sn], provided

the latter is finite. Practitioners then often plug this normal distribution Nµn,σ2
n

in

some distribution-invariant risk measure ρ to approximate the collective’s premium

ρ(Fn) by ρ(Φn), where Fn and Φn := Φµn,σ2
n

refer to the distribution functions (df) of

Sn and Nµn,σ2
n
, respectively. Actually, the values of µn and σn have to be estimated

by some suitable estimators µ̂n = µ̂n,mn and σ̂n = σ̂n,mn (based on a sample of size

mn) and the resulting (random) df Φ̂n := Φµ̂n,σ̂2
n

is plugged in the risk measure to

approximate the collective’s premium. Notice that for positively homogeneous and

cash-invariant risk measures, the approximation ρ(Φ̂n) can be expressed as

ρ(Φ̂n) = σ̂n ρ(Φ) − µ̂n (1)

where Φ refers to the standard normal df. The representation (1) provides an ex-

tremely simple tool for the approximation of the collective’s premium ρ(Fn), so that

this (normal) approximation is quite popular in practice.

In this article we focus on how the error distance between ρ(Φ̂n) and ρ(Fn) behaves

asymptotically, relatively to n, as the number n of clients increases. For a large class of

distribution-invariant positively homogeneous and cash-invariant risk measures ρ (in

the sense of [1, 2, 8, 13]) we will show that under fairly mild assumptions

n1/2−ε ρ(Φ̂n) − ρ(Fn)

n

a.s.−→ 0, n→ ∞ (2)

for each ε ∈ (0, 1/2), and

law
(
n1/2 ρ(Φ̂n) − ρ(Fn)

n

)
w−→ N , n→ ∞ (3)

for a certain normal distribution N . Notice that ρg(Φ̂n)/n can be seen as an approxi-

mation of the individual premium ρg(Fn)/n.

Regarding ρ we will at first focus on so called distortion risk measures introduced by

Wang [36]. Given a distortion function g, i.e. a nondecreasing function g on [0, 1]

satisfying g(0) = 0 and g(1) = 1,

ρg(F ) :=

∫ 0

−∞
g(F (t)) dt−

∫ ∞

0

[1 − g(F (t))] dt (4)

provides a positively homogeneous distribution-invariant monetary risk measure on

the class Fg of all df F for which the integrals in (4) exists. It is subadditive (hence

coherent) if and only if g is concave (cf. [37]). As usual we refer to ρg as distortion

risk measure with distortion function g. If g is a càdlàg function then we have the

alternative representation ρg(F ) = −
∫

R
xdg(F (x)). Notice that most of the popular
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risk measures in practice can be represented as in (4), so that this class of risk measures

has been studied extensively in the last decade, see [16, 19, 20, 36, 37, 38] and references

cited therein. For instance, the Value-at-Risk VaRα at level α ∈ (0, 1), the Average

Value-at-Risk AVaRα at level α ∈ (0, 1), and the Wang transformWTθ with parameter

θ ∈ R, correspond to the distortion functions g(x) = 1[α,1](x), g(x) = (x/α) ∧ 1, and

g(x) = Φ(Φ−1(x) − θ), respectively. For details and other examples see, e.g., [19, 38].

In Section 2.1, we will establish (2) and (3) for ρ = ρg. We will see in particular that

the goodness of the approximation of ρ(Fn)/n by ρ(Φ̂n)/n is typically ruled by the

goodness of the estimate µ̂n/n of E[X1] (cf. Corollary 2.9 and its proof). In Section

2.2 we will see that the results of Section 2.1 can easily be extended to partially more

general distribution-invariant risk measures. The key will be a robust representation

(similar to results in [13]) of distribution-invariant coherent risk measures by distortion

risk measures. In Section 3, we will illustrate our analysis by means of a numerical

example, and in Section 4 we will give the proofs of our main results. Finally, in the

Appendix A we will present some examples for risk measures that match the setting

of Section 2.2.

2 Results

Let X1, X2, . . . be identically distributed square-integrable random variables on some

probability space (Ω,F ,P). The random variable Xi can be regarded as the claim

of the ith client, where a negative value corresponds to a payout to the client. We

denote by Fn the df of the total claim amount Sn :=
∑n

i=1Xi, let µ̂n and σ̂n be some

estimates of µn := E[Sn] = nE[X1] and σn := Var[Sn]
1/2 (based on a sample of size

mn), and let Φ, Φn and Φ̂n denote the standard normal df, the df of Nµn,σ2
n

and the

(random) df of Nµ̂n,σ̂2
n
, respectively.

Throughout this article we will assume that the sequence (Xi) is “(λ, γ)-Berry-Esseen”.

We say that (Xi) is (λ, γ)-Berry-Esseen if there is some constant cλ,γ > 0 such that

‖Gn − Φ‖λ ≤ cλ,γ n
−γ for all n ∈ N, where Gn denotes the df of the random variable

Zn := (Sn − µn)/σn, and ‖ · ‖λ := ‖(·)φλ‖∞ refers to the nonuniform sup-norm based

on the weight function φλ(x) := (1 + |x|)λ, x ∈ R. In Example 2.1 we will give three

examples for Berry-Esseen sequences. Two of them involve the notion of φ- and α-

mixing introduced in [18] and [32], respectively. Recall that (Xi) is said to be φ- or

α-mixing according to as φ(n) → 0 or α(n) → 0, respectively, where

φ(n) := sup
k≥1

sup
A∈Fk

1
, B∈F∞

n+k

|P[B|A] − P[B]|

α(n) := sup
k≥1

sup
A∈Fk

1
, B∈F∞

n+k

|P[A ∩B] − P[A]P[B]|

with Fm
n := σ(Xi : n ≤ i ≤ m) ⊂ F . For an overview on mixing conditions see, e.g.,

[4, 9]. In [5], one can find several examples for strictly stationary φ-mixing sequences

(noting that φ-mixing sequences are also β-mixing, cf. [4, (1.11)]). For examples for

strictly stationary α-mixing sequences see, e.g., [24].
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Example 2.1 (i) If X1, X2, . . . are independent and E[|X1|2+δ] < ∞ for some δ > 0,

then Michel’s nonuniform Berry-Esseen inequality [25, Theorem 3] shows that (Xi) is

(λ, γ)-Berry-Esseen with λ = 2 + δ and γ = min{δ; 1}/2.

(ii) If (Xi) is strictly stationary and φ-mixing with mixing coefficients φ(n) satisfying

φ(n) ≤ c e−κn for all n ∈ N and some c, κ > 0, E[|X1|2+δ] < ∞ for some δ ≥ 1,

and limn→∞ σn/
√
n = σ for some σ > 0, then Schneider’s nonuniform Berry-Esseen

inequality [34, Theorem 4] shows that (Xi) is (λ, γ)-Berry-Esseen for λ = 2 + δ and

γ ∈ (0, 1/2). Notice that under the assumptions imposed on φ(n) we have that σn/
√
n

converges to σ := (Var[X1] + 2
∑∞
j=2 Cov(X1, Xj))

1/2, cf. Example 2.5(ii) below.

(iii) If (Xi) is strictly stationary and α-mixing with mixing coefficients α(n) satisfying∑∞
n=1 α(n)ε < ∞ for all ε > 0, E[|X1|q] < ∞ for all q > 0, and limn→∞ σn/

√
n = σ

for some σ > 0, then Hipp’s nonuniform Berry-Esseen inequality [17, Theorem 2.5]

shows that (Xi) is (λ, γ)-Berry-Esseen for every λ > 0 and γ ∈ (0, 1/2). Notice

that under the assumptions imposed on α(n) we have that σn/
√
n converges to σ :=

(Var[X1] + 2
∑∞
j=2 Cov(X1, Xj))

1/2, cf. Example 2.5(iii) below. 3

2.1 Distortion risk measures

In this subsection we focus on distortion risk measures ρg as introduced in (4). We

first investigate the distance between ρg(Φn) and ρg(Fn). As usual, a ∧ b and a ∨ b
denote the minimum and the maximum of a, b ∈ R, respectively. Moreover we set

a+ := a ∨ 0 and a− := (−a) ∨ 0 for a ∈ R.

Theorem 2.2 Let g be a distortion function, and suppose that

(a) there are L, β > 0, k ∈ N0, and 0 = d0 < d1 < . . . < dk+1 = 1, such that g is

Hölder-β-continuous with Hölder constant L on each of the intervals (di, di+1),

i = 0, . . . , k,

(b) (Xi) is (λ, γ)-Berry-Esseen for some γ > 0 and λ ≥ 1 satisfying λβ > 1,

(c) limn→∞ σn/
√
n = σ for some σ > 0,

(d) Fn ∈ Fg and Φn ∈ Fg for all n ∈ N.

Then there is some finite constant C = Ck,L,λ,γ,β,σ > 0, and some n0 ∈ N (depending

only on the distribution of X1), such that

|ρg(Fn) − ρg(Φn)| ≤ C n1/2−(β∧1)γ ∀n ≥ n0. (5)

If g is Hölder-β-continuous on all of [0, 1], i.e. if k = 0, then in (b) the assumption

λ ≥ 1 can be replaced by λ > 0, in the exponent on the right-hand side of (5) the

expression β ∧ 1 can be replaced by β, and inequality (5) holds for all n ∈ N.

The proof of Theorem 2.2 is relegated to Section 4.1. Assumption (d) in Theorem 2.2

is imposed to guarantee that the left-hand side of (5) is well-defined. In the following

Examples 2.3–2.6 we illustrate conditions (a)–(d), respectively.
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Example 2.3 Condition (a) on g in Theorem 2.2 is fulfilled for, e.g., g1(x) = 1[α,1](x)

(Value-at-Risk), g2(x) = (x/α)∧1 (Average Value-at-Risk) and g3(x) = Φ(Φ−1(x)−θ)
(Wang transform) with any β > 0, β = 1 and β ∈ (0, 1), respectively. 3

Example 2.4 (i) If X1, X2, . . . are independent and E[|X1|(2+δ)∨(1/β)] < ∞ for some

δ > 0∨(1/β−2), then according to Example 2.1(i) the sequence (Xi) satisfies condition

(b) in Theorem 2.2 with λ = 2 + δ and γ = (δ ∧ 1)/2.

(ii) If (Xi) is strictly stationary and φ-mixing with mixing coefficients φ(n) satisfying∑∞
n=1 φ(n)1/2 < ∞, and E[|X1|2+δ] < ∞ for some δ > 1 ∨ (1/β − 2), then according

to Example 2.1(ii) the sequence (Xi) subject to condition (c) in Theorem 2.2 satisfies

condition (b) in Theorem 2.2 with λ = 2 + δ and γ ∈ (0, 1/2).

(iii) If (Xi) is strictly stationary and α-mixing with mixing coefficients α(n) satisfying∑∞
n=1 α(n)ε < ∞ for every ε > 0, and E[|X1|q] < ∞ for every q > 0, then according

to Example 2.1(iii) the sequence (Xi) subject to condition (c) in Theorem 2.2 satisfies

condition (b) in Theorem 2.2 with λ > 1/β and γ ∈ (0, 1/2). 3

Example 2.5 (i) IfX1, X2, . . . are independent then the sequence (Xi) clearly satisfies

condition (c) in Theorem 2.2 for σ := Var[X1]
1/2.

(ii) If (Xi) is strictly stationary and φ-mixing with mixing coefficients φ(n) satisfying∑∞
n=1 φ(n)1/2 < ∞, and E[|X1|2+δ] < ∞ for some δ > 0, then the sequence (Xi)

satisfies condition (c) in Theorem 2.2 for σ := (Var[X1]+2
∑∞
j=2 Cov(X1, Xj))

1/2, see

the proof of Lemma 4.2.2 in [29].

(iii) If (Xi) is strictly stationary and α-mixing with mixing coefficients α(n) satisfying∑∞
n=1 α(n)δ/(2+δ) < ∞ for some δ > 0, and E[|X1|2+δ] < ∞, then the sequence (Xi)

satisfies condition (c) in Theorem 2.2 for σ := (Var[X1]+2
∑∞
j=2 Cov(X1, Xj))

1/2, see

[27, Corollary 1.1]. 3

Example 2.6 If there are 0 < x0 ≤ x1 < 1 so that g(x) = 0 for x ∈ [0, x0) and

g(x) = 1 for x ∈ (x1, 1] (which is the case, e.g., for g1 in Example 2.3), then condition

(d) in Theorem 2.2 is always fulfilled. Moreover, if F1 ∈ Fg and Φ ∈ Fg then condition

(d) is also fulfilled whenever g is concave (which is the case, e.g., for g2 and g3 in

Example 2.3). Indeed in this case ρg may be viewed as a Choquet integral w.r.t. the

set function g(P[·]) (cf. [13]), and the space of random variables on (Ω,F ,P) with df

in Fg is a vector subspace of the space of all random variables on (Ω,F ,P) (cf. [7]). 3

We emphasize that in the setting of Example 2.4(i), for each of the risk measures ρgi
in Example 2.3 the right-hand side of (5) is strictly positive and bounded below. This

is also true for every coherent distortion risk measures since the concavity of g implies

β ≤ 1. For g1 and g2 in Example 2.3, and for all other distortion functions g for which

we can choose β = 1, the right-hand side of (5) can even be chosen to be constant

(provided γ ≥ 1/2, e.g., if δ ≥ 1 in the setting of Example 2.4). So in this case the
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relative error |ρg(Fn) − ρg(Φn)|/n converges at least at rate 1. On the other hand, in

general, no matter how small β, γ > 0 are, the relative error converges always faster

than at rate 1/2.

As indicated in the introduction, in practice one is actually interested in statements

as (2) where µn and σn are estimated by some suitable estimators µ̂n and σ̂n based

on random variables Y1, . . . , Ymn having the same distribution as X1. We will assume

throughout the rest of this section that

n−(1/2+ε)(µ̂n − µn)
a.s.−→ 0 (6)

for some ε ∈ (0, 1/2), and that

n−1/2(σ̂n − σn)
a.s.−→ 0. (7)

The following two examples show that the conditions (6)–(7) are not too restrictive.

Throughout theses examples we shall assume mn ∼ n, i.e. that there is some constant

c > 0 such that mn/n→ c as n→ ∞.

Example 2.7 (i) If Y1, Y2, . . . are independent, then (6) holds for µ̂n := n
mn

∑mn
i=1 Yi

and every ε ∈ (0, 1/2) by the Marcinkiewicz-Zygmund SLLN (cf. [11, 35]) and Slutzky’s

lemma.

(ii) If (Yi) is strictly stationary and φ-mixing with mixing coefficients φ(n) satisfying∑∞
n=1 φ(2n)1/2 < ∞, then (6) holds for µ̂n := n

mn

∑mn
i=1 Yi and every ε ∈ (0, 1/2)

by Peligrad’s Marcinkiewicz-Zygmund type SLLN for strictly stationary φ-mixing se-

quences [26, Theorem 2] and Slutzky’s lemma.

(iii) If (Yi) is strictly stationary and α-mixing with mixing coefficients α(n) satisfying∑∞
n=1 n

(1−4ε)/(2ε)α(n) <∞ for some ε ∈ (0, 1/2), then (6) holds for µ̂n := n
mn

∑mn
i=1 Yi

(with the same ε) by Rio’s Marcinkiewicz-Zygmund type SLLN for strictly stationary

α-mixing sequences (cf. [31, Theorem 1 along with (1.10) with r = 2]) and Slutzky’s

lemma. 3

Example 2.8 (i) If X1, X2, . . . are independent and Y1, Y2, . . . are independent, then

(7) holds for σ̂n := ( n
mn

∑mn
i=1(Yi− 1

mn

∑mn
i=1 Yi)

2)1/2 by the classical Kolmogorov SLLN

and Slutzky’s lemma.

(ii) If the sequences (Xi) and (Yi) coincide in law, (Xi) is strictly stationary and

α-mixing with mixing coefficients α(n) satisfying
∑∞

n=1 α(n)δ/(2+δ) < ∞ for some

δ > 0, and E[|X1|2+δ] < ∞, then (7) holds for σ̂n :=
√

π
2

√
n

logmn

∑mn
i=1

1√
i
|1i

∑i
j=1 Yj −

1
mn

∑mn
i=1 Yi| by Corollary 1.1 in [27] and Slutzky’s lemma. 3

Corollary 2.9 (Rate of convergence) Suppose that the assumptions of Theorem 2.2

and the conditions (6) and (7) hold. Then we have (2) with ρ = ρg (and ε as in (6)),

i.e.

n1/2−ε ρg(Φ̂n) − ρg(Fn)

n

a.s.−→ 0, n→ ∞.
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Proof By the triangle inequality, the representation (1) for ρg(Φn) (recall that ρg
is the positively homogeneous and cash-invariant), the analogous representation for

ρg(Φn), and (5), we have

|ρg(Φ̂n) − ρg(Fn)|
n

≤ |ρg(Φ̂n) − ρg(Φn)|
n

+
|ρg(Φn) − ρg(Fn)|

n

≤ |σ̂n − σn| |ρg(Φ)| + |µn − µ̂n|
n

+ C n−1/2−(β∧1)γ (8)

with Φ the standard normal df. By (6) we have that |µn − µ̂n|/n converges to 0 at

least at rate 1/2 − ε. By (7) we have that |σ̂n − σn|/n converges to 0 at least at rate

1/2. Moreover we obviously have that the latter summand on the right-hand side of

(8) converges to 0 at rate 1/2 + (β ∧ 1)γ. The statement of Corollary 2.9 then follows

from (8). 2

Corollary 2.9 and its proof show that the rate of the convergence of (ρg(Φn)−ρg(Fn))/n

to 0 is not smaller than the rate of the convergence of the estimator µ̂n/n to E[X1].

We realize that in this case the relative approximation of ρg(Fn) by ρg(Φn) is asymp-

totically not worse than the estimation of the mean E[X1]. We can also deduce that

if

law
(√

n
µ̂n − µn

n

)
w−→ N , n→ ∞ (9)

for some distribution N on (R,B(R)), then the asymptotic error distribution N in

(3) is given by the same N , cf. Corollary 2.10. Notice that assumption (9) is not too

restrictive. Indeed: For µ̂n := n
mn

∑mn
i=1 Yi the Examples 2.1 and 2.5 provide standard

settings where (9) holds for N = N0,σ2 (just replace (Xi) by (Yi)), and Example 2.8

shows that in some situations it is even possible to estimate the asymptotic standard

deviation σ consistently.

Corollary 2.10 (Asymptotic error distribution) Suppose the assumptions of Theorem

2.2 and the conditions (7) and (9) hold. Then we have (3) with ρ = ρg, i.e.

law
(√

n
ρg(Φ̂n) − ρg(Fn)

n

)
w−→ N , n→ ∞.

Proof The statement of Corollary 2.10 follows immediately from (8) (without absolute

values and with “≤” replaced by “=”), condition (9) and Slutzky’s lemma. 2

Remark 2.11 It is worth mentioning that the normal approximation makes sense

also for parametric models for the distribution of X1 since the convolution is typically

non-determinable. For parametric models the estimators µ̂n and σ̂n might be chosen

according to the particular model (and might possess partially better statistical prop-

erties compared to the nonparametric estimators considered in Examples 2.7 and 2.8),

but the asymptotic behavior of the estimators exploited in the corollaries is typically

the same. 3
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2.2 Extension to partially more general distribution-invariant risk

measures

In this section, we focus on distribution-invariant coherent risk measures ρ that are not

necessarily distortion risk measures but that can be robustly represented by distortion

risk measures (more precisely by concave distortion functions). That is, we suppose

that there exists a set Gρ of concave distortion functions such that

ρ(F ) = sup
g∈Gρ

ρg(F ) (10)

for every admissible df F , where ρg denotes the distortion risk measure with distortion

function g (cf. (4)). So we have in particular

|ρ(Fn) − ρ(Φn)| = | sup
g∈Gρ

ρg(Fn) − sup
g∈Gρ

ρg(Φn)| ≤ sup
g∈Gρ

|ρg(Fn) − ρg(Φn)|.

Now, observe that the constant C in the basic Theorem 2.2 depends only on β and

L (other properties of g do not play any role). Therefore the result of Theorem 2.2

carries over to ρ in (10) if, for some β > 0 fixed, all distortion functions g ∈ Gρ are

Hölder-β-continuous with a common Hölder constant L. Of course, in this case the

Corollaries 2.9 and 2.10 carry over to ρ in (10) as well. In Theorem 2.12 we will see

that under some assumptions on ρ the robust representation (10) holds. In Lemma

2.14 we will obtain a criterion to check whether the distortion functions in Gρ are all

Hölder-β-continuous with a common Hölder constant L.

We first discuss the existence of the representation (10). Such a representation result is

already known from [13] but we will give a generalized version; notice that (10) differs

from the celebrated Kusuoka representation (see [23], and [28] for an extension). The

basic setting is the following. Let (Ω,F ,P) be a probability space that is rich enough

to support a random variable with continuous distribution (which is equivalent to

(Ω,F ,P) being atomless in the sense of [13, Definition A.26]). Let X be a subspace

of L1(Ω,F ,P) such that L∞(Ω,F ,P) ⊂ X and X ∧ Y,X ∨ Y ∈ X for all X,Y ∈ X,

and let X+ be the class of all nonnegative random variables of X. We denote by

F the set of all df FX of random variables X ∈ X, and we consider a distribution-

invariant coherent risk measure ρ : F → R. Finally we denote by Bx any random

variable distributed according to the Bernoulli distribution with parameter x. Recall

that every nondecreasing concave function on [0, 1] is continuous on (0, 1].

Theorem 2.12 (Robust representation) If the cutting condition

lim
n→∞

ρ(F−λ(X−n)+) = 0 ∀X ∈ X+, λ > 0 (11)

holds then there is some set Gρ of concave distortion functions satisfying (10) for all

F ∈ F. If in addition

lim
x→0+

ρ(F−Bx) = 0, (12)

then all functions g ∈ Gρ are continuous at 0 (and therefore continuous on [0, 1]).
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The proof of Theorem 2.12 is relegated to Section 4.2. In Lemma A.1 in the Appendix

A we will see that if X is chosen to be an Orlicz space with continuous Young function,

then every coherent risk measure ρ satisfies the conditions (11)–(12). In the Appendix

A we will also give examples of particular coherent risk measures on Orlicz spaces

satisfying (11)–(12). Further, we note that it is an easy consequence of (14) below

that condition (12) ensures that the functions g ∈ Gρ are continuous at 0 (i.e. that the

second part of Theorem 2.12 holds true), where

g̃ρ(x) := sup
g∈Gρ

g(x), x ∈ [0, 1]. (13)

Notice that the function g̃ρ is again a distortion function which we refer to as distortion

function associated with ρ. We reasonably denote the corresponding distortion risk

measure by ρegρ .

Remark 2.13 (i) If ρ is known to be a distortion risk measure (as defined in (4))

then its distortion function gρ can clearly be recovered from ρ by gρ(x) = ρ(F−Bx),

x ∈ [0, 1], where as above Bx refers to any random variable distributed according to

the Bernoulli distribution with parameter x.

(ii) If the risk measure ρ satisfies (10) for all F ∈ F, then ρ will degenerate to a

distortion risk measure if and only if ρ = ρegρ with g̃ρ as in (13). The necessity is

obvious, and the sufficiency can be seen as follows. If ρ is a distortion risk measure

then according to (i) its distortion function gρ is given by gρ(x) = ρ(F−Bx), x ∈ [0, 1].

The identity (14) in Lemma 2.14 below then shows that gρ must coincide with the

distortion function g̃ρ associated with ρ. 3

The following lemma gives a criterion for the distortion functions g ∈ Gρ to be all

Hölder-β-continuous with a common Hölder constant.

Lemma 2.14 Suppose (10) holds for all F ∈ F for some set Gρ of concave distortion

functions, and let g̃ρ denote the distortion function associated with ρ (cf. (13)). Then

we have

g̃ρ(x) = ρ(F−Bx), x ∈ [0, 1], (14)

where as above Bx refers to any random variable distributed according to the Bernoulli

distribution with parameter x. Moreover, if every g ∈ Gρ is continuous at 0, and if for

some β > 0 the condition

L := sup
x∈(0,1]

g̃ρ(x)

xβ
<∞ (15)

holds, then every g ∈ Gρ is Hölder-β-continuous with Hölder constant L.

The proof of Lemma 2.14 is relegated to Section 4.3. Condition (15) provides a trans-

parent condition in order to obtain a common Hölder constant. Equation (14) in turn

provides a useful tool for the calculation of g̃ρ(x); the values g̃ρ(x), x ∈ [0, 1], are

needed for checking condition (15). In the Appendix A, we will give examples for

distribution-invariant coherent risk measures satisfying condition (15). Examples are

Haezendonck risk measures and risk measures based on one-sided moments.
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3 Numerical example

In this section, we are going to illustrate Theorem 2.2 as well as the Corollaries 2.9

and 2.10 by means of a numerical example. We consider an i.i.d. insurance collective

of size n and assume that the individual claim df F1 is given by the Gamma df on R−
(i.e., −X1 ∼ Γ(a, b)) with parameters a = 4 and b = 0.004. We note that the Gamma

distribution is often used in insurance practice to model small to moderate individual

claims (as for instance in third party car insurance or home contents insurance). The

mean and the standard deviation of F1 are given by −a/b = −1′000 and
√
a/b2 = 500.

The n-fold convolution Fn of F1 is known to be the Gamma df on R− with parameters

na = 4n and b = 0.004, and the mean and the standard deviation of Fn are given by

−1′000n and
√
na/b2 = 500

√
n, respectively. As underlying “premium principle” we

consider the Value-at-risk at level α = 0.05 which is the distortion risk measure ρg
with distortion function g = 1[α,1].

As already mentioned subsequent to Example 2.6, Theorem 2.2 indicates that under

some assumptions (which are fulfilled in the present setting) the right-hand side of (5)

can be chosen to be constant. The second row in Figure 1 shows that in our example

the difference ρ(Φn)− ρ(Fn) is indeed nearly constant as n increases. That is, relative

to the number of clients n, the approximation of ρ(Fn) by ρ(Φn) is of order n−1. Hence

the approximation is pretty good, see also the first row in Figure 1.

However, in practice the exact mean and the exact standard deviations are unknown

and have be to estimated. So, in fact, for practical purposes it is more interesting to

study the asymptotic behavior of the difference ρ(Φ̂n)−ρ(Fn). The Corollaries 2.9 and

2.10 show that the approximation of ρ(Fn) by ρ(Φ̂n) relative to the number of clients

n is of order n−1/2+ε and that the relative difference (ρ(Φ̂n) − ρ(Fn))/n weighted by

n1/2 is asymptotically normal. Figure 2 shows that in our example the relative error

(ρ(Φn)− ρ(Fn))/n indeed converges to 0, and that the relative error weighted by n1/2

is indeed subject to a random fluctuation. Figure 2 also shows that the approximation

of ρ(Fn) by ρ(Φ̂n) is “aggressive”, which might be due to the fact that the tail of the

Gamma distribution is “heavier” than the tail of a normal distribution.

4 Proofs

4.1 Proof of Theorem 2.2

The proof of Theorem 2.2 relies on the following lemma which involves the left-

continuous inverse H←(x) := inf{t ∈ R : H(t) ≥ x} of a df H .

Lemma 4.1 ([38, Theorem 2]) Let g be a distortion function, and suppose that

(i) there are β, L > 0, k ∈ N0, and 0 = d0 < d1 < . . . < dk+1 = 1, such that g is

Hölder-β-continuous with Hölder constant L on each of the intervals (di, di+1),

i = 0, . . . , k,

(ii) H,H1, H2, . . . ∈ Fg,
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(iii) H is differentiable at H←(di), and H ′(H←(di)) > 0, for i = 1, . . . , k,

(iv) ‖Hn −H‖∞ → 0.

For every λ ≥ 1 satisfying λβ > 1 there is a finite constant c = ck,H,L,λβ > 0, and

some n0 ∈ N (for which ‖Hn −H‖∞ is sufficiently small for all n ≥ n0), such that

|ρg(Hn) − ρg(H)| ≤ c ‖Hn −H‖β∧1
λ ∀n ≥ n0. (16)

If g is Hölder-β-continuous on all of [0, 1], i.e. if k = 0, then condition (iv) can be

skipped, the assumption λ ≥ 1 can be replaced by λ > 0, in (16) the exponent β ∧ 1

can be replaced by β, and inequality (16) holds for all n ∈ N.

Notice that under the assumptions of Lemma 4.1, the expression ‖Hn−H‖λ might be

infinite when λ > 1. Also, ‖Hn −H‖λ → 0 implies condition (iv).

In order to prove Theorem 2.2 we set Zn := (Sn − µn)/σn and write Nn for any

random variable distributed according to the normal law Nµn,σ2
n
. We further define

Z := (Nn − µn)/σn which is N0,1-distributed. As ρg is distribution-invariant, we

may and do use without risk of ambiguity ρg(Y ) and ρg(FY ) as synonyms, where Y

is any admissible random variable. By the positive homogeneity and the translation

invariance of ρg we obtain

|ρg(Fn) − ρg(Φn)| = |ρg(Sn) − ρg(Nn)| (17)

= |ρg(σnZn + µn) − ρg(σnZ + µn)|
= |σnρg(Zn) − µn − (σnρg(Z) − µn)|
= σn|ρg(Zn) − ρg(Z)|
= σn|ρg(Gn) − ρg(Φ)|,

where Gn denotes the df of Zn, and Φ is the standard normal df. Now, we intend

to apply Lemma 4.1. We are going to show that the assumptions (i)–(iv) of Lemma

4.1 are fulfilled for H := Φ and Hn := Gn. Condition (i) is ensured by assumption

(a) of Theorem 2.2, the validity of condition (ii) was already discussed subsequent to

Theorem 2.2, and condition (iii) is obvious since Φ is strictly increasing and smooth.

By assumption (b) of Theorem 2.2 we moreover have

‖Gn − Φ‖λ ≤ cλ,γ n
−γ ∀n ∈ N (18)

for some constant cλ,γ > 0, so that condition (iv) of Lemma 4.1 holds too. Therefore

the lemma implies

|ρg(Gn) − ρg(Φ)| ≤ ck,Φ,L,λβ ‖Gn − Φ‖β∧1
λ ∀n ≥ n0

for some constant ck,Φ,L,λβ > 0. Along with assumption (c) of Theorem 2.2 as well as

(17) and (18), this implies (5).
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4.2 Proof of Theorem 2.12

The verification of the second part of Theorem 2.12 was already given subsequent to

Theorem 2.12. The proof of the first part relies on the following lemma.

Lemma 4.2 Condition (11) implies

ρ(FX) = sup
m∈N

inf
k∈N

ρ(F[X+∧k]−[X−∧m]) ∀X ∈ X.

Proof In view of Proposition 6.6 in [22], condition (11) allows to apply Lemma 6.5 in

[22]. Assertion .1 of this lemma gives supm∈N ρ(FX+−[X−∧m]) = ρ(FX), and assertion

.2 of this lemma gives infk∈N ρ(F[X+∧k]−[X−∧m]) = ρ(FX+−[X−∧m]) for every m ∈ N.

The statement of Lemma 4.2 is obvious now. 2

We will combine Lemma 4.2 with known representation results (mentioned above) for

distribution-invariant coherent risk measures defined on the set F∞ of all df FX of

random variables X ∈ L∞(Ω,F ,P) in order to prove Theorem 2.12.

Proof (of Theorem 2.12) Possibly changing to a suitable probability space, we may

assume that L2(Ω,F ,P) is separable. Then in the specified setting, Corollary 4.72

in [13] along with Theorem 2.1 in [21] yields the existence of some set G of concave

distortion functions such that (10) holds for all F ∈ F∞. Now set

ρ̃(F ) := sup
g∈G

ρg(F ), F ∈ F.

We are going to show that ρ̃ provides a distribution-invariant coherent risk measure

on F which coincides with ρ. We will proceed in two steps: First we will show that ρ̃

is well-defined and defines a distribution-invariant coherent risk measure on F (which

obviously satisfies ρ̃ = ρ on F∞). Second we will show that ρ̃ = ρ on F.

Step 1. If we can show that ρg(F ) ∈ R (for all g ∈ G) and supg∈G ρg(F ) < ∞ for

all F ∈ F, then it follows easily that ρ̃ defines a distribution-invariant coherent risk

measure on F, since every distortion risk measure ρg with concave distortion function

g is coherent and distribution-invariant. Of course, in view of (4), the mentioned

conditions hold if we can show

sup
g∈G

∫ 0

−∞
g(F (t)) dt ≤ ρ(F−X−) and ∀ g ∈ G :

∫ ∞

0

[1 − g(F (t))] dt <∞ (19)

for all F ∈ F. To verify the first statement in (19), we pick X ∈ X (corresponding to

FX ∈ F). For every g ∈ G we have

g(F−X−(t)) ≤ lim inf
m→∞

g(F−[X−∧m](t))

at every continuity point t < 0 of F−X− , since g as a concave function is lower semi-

continuous. Using this and applying Fatou’s lemma, we obtain

sup
g∈G

∫ 0

−∞
g(FX(t)) dt ≤ sup

g∈G

∫ 0

−∞
g(F−X−(t)) dt
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≤ sup
g∈G

∫ 0

−∞
lim inf
m→∞

g(F−[X−∧m](t)) dt

≤ sup
g∈G

lim inf
m→∞

∫ 0

−∞
g(F−[X−∧m](t)) dt

= sup
g∈G

lim inf
m→∞

ρg(F−[X−∧m])

≤ lim inf
m→∞

ρ(F−[X−∧m])

≤ ρ(F−X−).

Hence the first statement in (19) holds indeed. To verify the second statement in

(19), we pick X ∈ X (corresponding to FX ∈ F) and we denote by g′ the right-sided

derivative of g. As g is a nondecreasing concave function, it is continuous on (0, 1], so

that

1 − g(FX(t)) = g(1) − g(FX(t)) ≤ g′(FX(t0))[1 − FX(t)] ∀ t ≥ t0,

for any t0 > 0 such that FX(t0) > 0. Moreover, the integral
∫∞
0

[1 − FX(t)]dt exists

since X ∈ L1(Ω,F ,P). Hence,

∫ ∞

0

[1 − g(FX(t))] dt ≤
∫ t0

0

[1 − g(FX(t))] dt + g′(FX(t0))

∫ ∞

t0

[1 − FX(t)] dt <∞.

This shows that the second statement in (19) holds, too.

Step 2. Condition (11) on ρ ensures that the right-hand side of

0 ≤ ρ̃(F−λ(X−r)+) ≤ ρ(F−λ(X−r)+)

converges to 0, as r → ∞, for every X ∈ X+ and λ > 0. Therefore condition (11) is

also fulfilled by ρ̃, and Lemma 4.2 applied to ρ̃ implies ρ = ρ̃ on F. 2

4.3 Proof of Lemma 2.14

Due to (10), Remark 2.13(i) and the definition of g̃ρ, we have

ρ(F−Bx) = sup
g∈Gρ

ρg(F−Bx) = sup
g∈Gρ

g(x) = g̃ρ(x), x ∈ [0, 1],

i.e. (14) holds.

In order to prove the second part of Lemma 2.14, we let 0 < x < x′ ≤ 1. Since the

underlying probability space (Ω,F ,P) was assumed to be rich enough to support a

random variable with continuous distribution, we may pick a measurable decomposi-

tion Ω1 ∪ Ω2 ∪ Ω3 of Ω such that P[Ω1] = x, P[Ω2] = x′ − x and P[Ω3] = 1 − x′. We

now define random variables Bx := 1Ω1
, Bx′ := 1Ω1∪Ω2

and Bx′−x := 1Ω2
, and note

that they are distributed according to the Bernoulli distribution with parameters x, x′

and x′ − x, respectively. Moreover we clearly have Bx′ = Bx + Bx′−x on Ω. Thus we
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obtain by Remark 2.13(i) as well as the subadditivity and the distribution-invariance

of ρg that

g(x′) − g(x) = ρg(F−Bx′ ) − ρg(F−Bx)

≤ ρg(F−Bx′−x)

≤ ρ(F−Bx′−x)

≤ sup
y∈(0,1]

ρ(F−By)

yβ
(x′ − x)β .

for every g ∈ Gρ. Therefore condition (15) implies that every g ∈ Gρ is Hölder-β-

continuous on (0, 1] with Hölder constant L. Since every g is also continuous at 0, we

conclude that every g ∈ Gρ is Hölder-β-continuous even on [0, 1] with Hölder constant

L.

A Examples for distribution-invariant coherent risk

measures on Orlicz spaces

Here we intend to illustrate conditions (11), (12) and (15) by means of examples. At

the beginning we will see that the cutting condition (11) and condition (12) are already

satisfied if the domain X of the coherent risk measure ρ is chosen to be an Orlicz space.

Thereafter, in Sections A.1 and A.2, we will give examples for risk measures on Orlisz

spaces that satisfy also condition (15). We will show in particular that some of these

examples are not covered by the results of Section 2.1 (which justifies Section 2.2).

Recall that a continuous Young function is a convex function ψ : R+ → R+ satisfying

ψ(0) = 0, being continuous at 0, and converging to ∞ as x → ∞. Every continuous

Young function is in particular nondecreasing. For any continuous Young function ψ,

the set

Lψ(Ω,F ,P) :=
{
Y ∈ L0(Ω,F ,P) : E[ψ(|Y |/c)] <∞ for some c > 0

}

is known as Orlicz space associated with the Young function ψ, whereas the subset

Mψ(Ω,F ,P) :=
{
Y ∈ L0(Ω,F ,P) : E[ψ(|Y |/c)] <∞ for all c > 0}

is sometimes called Orlicz heart associated with the Young function ψ (cf. [6]). For any

continuous Young function ψ we have L∞(Ω,F ,P) ⊂ Mψ(Ω,F ,P) ⊂ Lψ(Ω,F ,P) ⊂
L1(Ω,F ,P). For the particular continuous Young function ψ(x) = xp with p ∈ [1,∞),

the spaces Mψ(Ω,F ,P) and Lψ(Ω,F ,P) coincide with Lp(Ω,F ,P). For details the

reader is kindly referred to [30] or [10, Section 2].

Lemma A.1 If X is one of the spaces Mψ(Ω,F ,P) or Lψ(Ω,F ,P) for some continu-

ous Young function ψ, then every coherent risk measure ρ : X → R satisfies the cutting

condition (11) as well as condition (12).
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Proof The sets Lψ(Ω,F ,P) and Mψ(Ω,F ,P) of all equivalence classes of P-almost

everywhere equal elements of Lψ(Ω,F ,P) and Mψ(Ω,F ,P) (respectively) are known

to be vector spaces. The (Luxemburg) norm,

‖Y ‖ψ := inf {c > 0 : E[ψ(|Y |/c)] ≤ 1} , Y ∈ Lψ(Ω,F ,P),

makes Lψ(Ω,F ,P) a Banach space with Mψ(Ω,F ,P) being norm-closed. (Notice that

for ψ(x) = xp, with p ∈ [1,∞), the Luxemburg norm coincides with the classical Lp-

norm ‖·‖p.) As a consequence (Lψ(Ω,F ,P), ‖·‖ψ) and (Mψ(Ω,F ,P), ‖·‖ψ) are Banach

lattices (with respect to the P-almost sure ordering �), i.e. Banach spaces such that

‖Y ‖ψ ≥ ‖X‖ψ whenever Y � X . Therefore every real-valued coherent risk measure

ρ on Lψ(Ω,F ,P) or Mψ(Ω,F ,P) is continuous w.r.t. the seminorm on Lψ(Ω,F ,P)

associated with ‖ · ‖ψ (cf. [33, Proposition 3.1]).

Below we will show that

lim
r→∞

‖Yr‖ψ = 0 (20)

for every decreasing sequence (Yr)r≥0 ⊂ Lψ(Ω,F ,P) (resp. ⊂Mψ(Ω,F ,P)) converging

P-almost surely to 0 as r → ∞. On the one hand, (20) implies limr→∞ ‖λ(X −
r)+‖ψ = 0 for every X ≥ 0 in Lψ(Ω,F ,P) (resp. in Mψ(Ω,F ,P)) and λ > 0. Along

with the seminorm-continuity of the risk measure ρ established above, this would

imply that the cutting condition (11) holds. On the other hand, (20) also implies

limx→0+ ‖F←Bx(U)‖ψ = 0, where F←Bx denotes the left-continuous inverse of the df FBx
of the Bernoulli distribution with parameter x, and U is a random variable on (Ω,F ,P)

which is uniformly distributed on (0, 1). Along with the seminorm-continuity of the

risk measure ρ established above, this would imply that condition (12) holds.

It remains to show (20). For any decreasing sequence (Yr)r≥0 ⊂ Lψ(Ω,F ,P) (resp.

⊂Mψ(Ω,F ,P)) converging P-almost surely to 0, the sequence (‖Yr‖ψ)r≥0 is decreasing

as well. Moreover, for any 0 < c ≤ infr ‖Yr‖ψ the decreasing sequence (ψ(|Yr |/c))r≥0

converges P-almost surely to 0 due to the continuity of ψ. By dominated convergence

we deduce limr→∞ E[ψ(|Yr |/c)] = 0, which in turn implies infr ‖Yr‖ψ = 0. This yields

in particular (20). 2

In the following Sections A.1 and A.2, we will present some customary distribution-

invariant coherent risk measures on Orlisz spaces that satisfy also condition (15) (apart

from conditions (11) and (12)).

A.1 Haezendonck risk measures

Let ψ be a strictly increasing continuous Young function satisfying ψ(1) = 1, and let

X be the Orliz heart Mψ(Ω,F ,P) associated with ψ. Moreover fix α ∈ (0, 1). It was

shown in [14] that for every X ∈ Mψ(Ω,F ,P) and every x ∈ R with P[X > x] > 0

there exists a unique real number πψα (X,x) > x such that

E

[
ψ

( (X − x)+

πψα (X,x) − x

)]
= 1 − α.
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Therefore we may define a functional ρH,ψα on the set Fψ of all df FX of random

variables X ∈ Lψ(Ω,F ,P) by

ρH,ψα (FX) := inf
{
πψα (−X,x) : x ∈ R with P[−X > x] > 0

}
.

The functional ρH,ψα provides a distribution-invariant positively homogeneous risk mea-

sure (cf. [14, Theorem 3.2]) known as Haezendonck risk measure w.r.t. ψ and level α.

The restriction of ρH,ψα to the set of all df of P-essentially bounded random variables

has been established to be subadditive in Proposition 12 of [3]. The proof given there

can be transferred verbatim to the functional on Lψ(Ω,F ,P) itself. So, in fact, ρH,ψα

provides a distribution-invariant coherent risk measure. According to Lemma A.1 it

also satisfies the cutting condition (11) and condition (12). By the way, there is an

intimate relationship with Orlicz premiums as introduced in [15]. Indeed: The number

πψα (X,x) − x can be seen as the Orlicz premium of (X − x)+ w.r.t. ψ.

The following lemma shows that under some additional assumptions on ψ the Haezen-

donck risk measure ρH,ψα also satisfies condition (15), so that it meets the requirements

discussed subsequent to (10).

Lemma A.2 If there are some x0 ∈ (0, 1 − α) and β ∈ (0, 1] such that

xψ(x−β) ≤ 1 − α ∀x ∈ (0, x0], (21)

then the Haezendonck risk measure ρH,ψα satisfies condition (15). For instance, condi-

tion (21) is satisfied for ψ(x) = xp with p ∈ [1,∞).

Proof We have for x ∈ (0, 1)

ρH,ψα (F−Bx) ≤ 1 ∧ πψα (Bx, x) = 1 ∧
(
x+

1 − x

ψ−1((1 − α)/x))

)
.

where ψ−1 denotes the inverse of ψ (recall that we assumed the Young function ψ to

be strictly increasing). Under assumption (21) we can easily deduce with the help of

(14) that

sup
x∈(0,1]

g̃ρH,ψα
(x)

xβ
= sup

x∈(0,1]

ρH,ψα (F−Bx)

xβ
≤ max{2;x−β0 }.

That is, (15) holds. In the case ψ(x) = xp, with p ∈ [1,∞), condition (21) is easily

seen to hold for β := (2p)−1 and x0 := (1 − α)2. This verifies the second statement of

the lemma. 2

Now, choose ψ(x) = xp for any p ∈ [1,∞). For some choices of p the corrsesponding

Haezendonck risk measure degenerates to a distortion risk measure, so that also the

results of Section 2.1 could be applied. For instance, for p = 1 the Haezendonck

risk measure ρH,ψα is just the Avarage Value-at-Risk at level 1 − α (see [13, Lemma

4.46] and [3, Section 3.1]). For other choices of p, the coherent risk measure ρH,ψα

does not degenerate to a distortion risk measure (cf. Example A.3). This justifies the

investigations of Section 2.2.
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Example A.3 For ψ(x) = x2 and α ∈ (1
3 ,

3
8 ) the Haezendonck risk measure ρH,ψα is

not a distortion risk measure.

Proof According to Remark 2.13(ii) it suffices to show that ρ := ρH,ψα does not

coincide with the distortion risk measure ρegρ , where g̃ρ denotes the distortion function

associated with ρ (cf. (13)). We will show that ρ(−Y ) 6= ρegρ(−Y ) for every random

variable Y which is uniformly distributed on {0; 1; 2}. On the one hand, for the

Haezendonck risk measure we obtain

ρ(−Y ) ≤ πψα (Y, 1/3) = 1/3 +

(
E[((Y − 1/3)+)2]

(1 − α)

)1/2

< 5/3.

On the other hand, for the associated distortion function g̃ρ we obtain by straightfor-

ward calculations

g̃ρ(x) =





x+

(
α

1−α x(1 − x)
)1/2

: x < 1 − α

1 : x ≥ 1 − α

and thus

ρegρ(−Y ) = g̃ρ(1/3) + g̃ρ(2/3) =
2

3

( 2α

1 − α

)1/2

+ 1 ≥ 5

3
.

Therefore we indeed have ρ(−Y ) 6= ρegρ(−Y ). 2

A.2 Risk measures based on one-sided moments

Let X be Lp(Ω,F ,P) for some p ∈ [1,∞) and let a ∈ [0, 1]. Then

ρp,a(FX) := −E[X ] + a
(
E[((X − E[X ])−)p]

)1/p

defines a distribution-invariant coherent risk measure on the set Fp of all df FX of

random variables X ∈ Lp(Ω,F ,P) (cf. [12, Lemma 4.1]). The risk measure ρp,a has

been introduced in [12] as a building block for the problem of risk allocation (actually it

was studied earlier in [8] on L∞(Ω,F ,P) in a different context). In view of Lemma A.1

it also satisfies the cutting condition (11) and condition (12). Moreover, the following

lemma tells us that it also fulfills condition (15), so that it meets the requirements

discussed subsequent to (10).

Lemma A.4 The risk measure ρp,a satisfies condition (15) for every β ∈ (0, 1/p).

Proof It can be easily verified that the associated distortion function g̃ρp,a of ρp,a
satisfies g̃ρp,a(x) = x + a(1 − x)x1/p, which immediately yields the statement of the

lemma. 2

In the case a = 0 the risk measure ρp,a degenerates to the negative mean which is

a distortion risk measure with the identity on [0, 1] as distortion function. A similar

statement does not hold for a > 0, as will be shown in the following lemma.
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Lemma A.5 If a > 0, then the risk measure ρp,a is not a distortion risk measure.

Proof According to Remark 2.13(ii) it suffices to show that ρ := ρp,a does not

coincide with the distortion risk measure ρegρ , where g̃ρ denotes the distortion function

associated with ρ (cf. (13)). We will show that ρ(−Y ) 6= ρegρ(−Y ) for every random

variable Y which is uniformly distributed on {0; 1; 2}. One the one hand, we have

ρp,a(−Y ) = 1 + a(1/3)1/p. On the other hand, we easily obtain g̃ρp,a(x) = q + a(1 −
x)x1/p, and so

ρegρ(−Y ) = g̃ρ(1/3) + g̃ρ(2/3) = 1 + a(1/3)1/p(2 + 2
1
p )/3.

That is, ρ(−Y ) 6= ρegρ(−Y ). 2
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Figure 1: In each column the curves n 7→ (ρ(Φn)− ρ(Fn))/n and n 7→ (ρ(Φn)− ρ(Fn))

are displayed, where ρ is the Value-at-Risk at level α = 0.05, and F1 is the

Gamma df on R− with parameters a = 4 and b = 0.004.
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Figure 2: Sample paths of n 7→ (ρ(Φ̂n) − ρ(Fn))/n, n 7→ (ρ(Φ̂n) − ρ(Fn))/
√
n and

n 7→ (ρ(Φ̂n) − ρ(Fn)), where ρ is the Value-at-Risk at level α = 0.05, F1

is the Gamma df on R− with parameters a = 4 and b = 0.004, and Φ̂n is

based on n simulated i.i.d. F1 random variables (the two columns mirror two

different Monte Carlo simulations).
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