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Abstract. Generalized single-index models are natural extensions of linear models

and circumvent the so-called curse of dimensionality. They are becoming increasingly

popular in many scientific fields including biostatistics, medicine, economics and finan-

cial econometrics. Estimating and testing the model index coefficients β is one of the

most important objectives in the statistical analysis. However, the commonly used

assumption on the index coefficients, ‖β‖ = 1, represents a non-regular problem: the

true index is on the boundary of the unit ball. In this paper we introduce the EFM ap-

proach, a method of estimating functions, to study the generalized single-index model.

The procedure is to first relax the equality constraint to one with (d− 1) components

of β lying in an open unit ball, and then to construct the associated (d− 1) estimating

functions by projecting the score function to the linear space spanned by the residuals

with the unknown link being estimated by kernel estimating functions. The root-n

consistency and asymptotic normality for the estimator obtained from solving the re-

sulting estimating equations is achieved, and a Wilk’s type theorem for testing the

index is demonstrated. A noticeable result we obtain is that our estimator for β has

smaller or equal limiting variance than the estimator of Carroll et al. (1997). A fixed

point iterative scheme for computing this estimator is proposed. This algorithm only

involves one-dimensional nonparametric smoothers, thereby avoiding the data sparsity

problem caused by high model dimensionality. Numerical studies based on simulation

and on applications suggest that this new estimating system is quite powerful and easy

to implement.

Key words and phrases: Generalized single-index model, index coefficients, estimating

equations, asymptotic properties, iteration.

noindentJEL-Codes: C02, C13, C14, C21

1. Introduction

Single-index models combine flexibility of modelling with interpretability of (linear)

coefficients. They circumvent the curse of dimensionality and are becoming increas-

ingly popular in many scientific fields. The reduction of dimension is achieved by

assuming the link function to be a univariate function applied to the projection of
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explanatory covariate vector on to some direction. In this paper we consider an ex-

tension of single index models where, instead of a distributional assumption, assump-

tions of only the mean function and variance function of the response are made. Let

(Yi,Xi), i = 1, · · · , n, denote the observed values with Yi being the response variable

and Xi as the vector of d explanatory variables. The relationship of the mean and

variance of Yi are specified as follows:

E(Yi|Xi) = µ{g(β>Xi)}, Var(Yi|Xi) = σ2V {g(β>Xi)}, (1.1)

where µ is a known monotonic function, V is a known covariance function, g is an

unknown univariate link function and β is an unknown index vector which belongs

to the parameter space Θ = {β = (β1, · · · , βd)
> : ‖β‖ = 1, β1 > 0, β ∈ Rd}. Here

we assume the parameter space is Θ rather than the entire Rd in order to ensure

that β in the representation (1.1) can be uniquely defined. This is a commonly used

assumption on the index parameter (see Carroll et al., 1997; Zhu and Xue, 2006).

Model (1.1) is flexible enough to cover a variety of situations. If µ is the identity

function and V is equal to constant 1, (1.1) reduces to a single-index model (Härdle,

Hall and Ichimura, 1993). Model (1.1) is an extension of the generalized linear model

(McCullagh and Nelder, 1989) and the single index model. When the conditional

distribution of Y is logistic, then µ{g(β>X)} = exp{g(β>X)}/[1+ exp{g(β>X)}] and

V {g(β>X)} = exp{g(β>X)}/[1 + exp{g(β>X)}]2.

For single-index models: µ{g(β>X)} = g(β>X) and V {g(β>X)} = 1, various

strategies for estimating β have been proposed in the last decades. Two most popular

methods are the average derivative method (ADE) introduced in Powell et al. (1989)

and Härdle and Stoker (1989), and the simultaneous minimization method of Härdle,

Hall and Ichimura (1993). Next we will review these two methods in short. The

ADE method is based on that ∂E(Y |X = x)/∂x = g′(β>x)β which implies that the

gradient of the regression function is proportional to the index parameter β. Then a

natural estimator for β is β̂ = n−1
n∑

i=1

∇̂G(Xi)/‖n−1
n∑

i=1

∇̂G(Xi)‖ with ∇G(x) denoting

∂E(Y |X = x)/∂x and ‖ · ‖ being the Euclidean norm. An advantage of the ADE

approach is that it allows estimating β directly. However, the high-dimensional kernel

smoothing used for computing ∇̂G(x) suffers from the “curse of dimensionality” if
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the model dimension d is large. Hristache, Juditski and Spokoiny (2001) improved

the ADE approach by lowering the dimension of the kernel gradually. The method of

Härdle, Hall and Ichimura (1993) is carried out by minimizing a least squares criterion

based on nonparametric estimation of the link g with respect to β and bandwidth h.

However, the minimization is difficult to implement since it depends on an optimization

problem in a high-dimensional space. Xia et al. (2002) proposed to minimize average

conditional variance (MAVE). Because the kernel used for computing β is a function

of ‖Xi −Xj‖, MAVE meets the problem of data sparseness. All the above estimators

are consistent under some regular conditions. Asymptotic efficiency comparisons of the

above methods have been discussed in Xia (2006) resulting in the MAVE estimator of β

having the same limiting variance as the estimators of Härdle, Hall and Ichimura (1993),

and claiming that alternative versions of the ADE method having larger variance.

The main challenges of estimation in the semiparametric model (1.1) are that, the

support of the infinite dimensional nuisance parameter g(·) depends on the finite di-

mensional parameter β, and the parameter β is on the boundary of a unit ball. For

estimating β the former challenge forces us to deal with the infinite dimensional nui-

sance parameter g. The latter one represents a non-regular problem. The classic

assumptions about asymptotic properties of the estimates for β are not valid. In addi-

tion, as a model proposed for dimension reduction, the dimension d may be very high

and one often meets the problem of computation. To attack the above problems, in

this paper we will develop an estimating function method (EFM) and then introduce a

computational algorithm to solve the equations based on a fixed point iterative scheme.

We first choose an identifiable parametrization which transforms the boundary of a unit

ball in Rd to the interior of a unit ball in Rd−1. By eliminating β1, the parameter space

Θ can be rearranged to a form {((1 −
d∑

r=2

β2
r )

1/2, β2, · · · , βd)
> :

d∑
r=2

β2
r < 1}. Then the

derivatives of a function with respect to (β2, · · · , βd)
> are readily obtained by chain

rule and the classic assumptions on the asymptotic normality hold after transformation.

The estimating functions (equations) for β can be constructed by replacing g(β>X)

with ĝ(β>X). The estimate ĝ for the nuisance parameter g is obtained using kernel

estimating functions and the smoothing parameter h is selected using K-fold cross-

validation. For the problem of testing the index, we establish a quasi-likelihood ratio
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based on the proposed estimating functions and show that the test statistics asymp-

totically follow a χ2-distribution whose degree of freedom does not depend on nuisance

parameters, under the null hypothesis. Then a Wilks’ type theorem for testing the

index is demonstrated.

The proposed EFM technique is essentially a unified method of handling different

types of data situations including categorical response variable and discrete explanatory

covariate vector. The main results of this research are as follows:

(a) Efficiency. A surprising result we obtain is that our EFM estimator for β has

smaller or equal limiting variance than the estimator of Carroll et al. (1997).

(b) Computation. The estimating function system only involves one-dimensional non-

parametric smoothers, thereby avoiding the data sparsity problem caused by high

model dimensionality. Unlike the quasi-likelihood inference (Carroll et al., 1997)

where the maximization is difficult to implement when d is large, the reparametriza-

tion and the explicit formulation of the estimating functions faciliate an efficient

computation algorithm. Here we use a fixed point iterative scheme to compute

the resultant estimator. The simulation results show that the algorithm adapts to

higher model dimension and richer data situations than the MAVE method of (Xia

et al., 2002).

The paper is organized as follows. In Section 2, we state the generalized single-

index model, discuss estimation of g using kernel estimating functions and of β using

profile estimating functions, and investigate the problem of testing the index using

quasi-likelihood ratio. In Section 3 we provide a computation algorithm for solving the

estimating functions and illustrate the method with simulation and practical studies.

The proofs are deferred to the Appendix.

2. Estimating function method (EFM) and its large sample

properties

In this section, which is concerned with inference based on the estimating function

method, the model of interest is determined through specification of mean and variance

functions, up to an unknown vector β and an unknown function g. Except for Gaussian
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data, model (1.1) needs not be a full semiparametric likelihood specification. Note that

the parameter space Θ = {β = (β1, · · · , βd)
> : ‖β‖ = 1, β1 > 0, β ∈ Rd} means that

β is on the boundary of a unit ball and it represents therefore a non-regular problem.

So we first choose an identifiable parametrization which transforms the boundary of a

unit ball in Rd to the interior of a unit ball in Rd−1. By eliminating β1, the parameter

space Θ can be rearranged to a form {((1 −
d∑

r=2

β2
r )

1/2, β2, · · · , βd)
> :

d∑
r=2

β2
r < 1}.

Then the derivatives of a function with respect to β(1) = (β2, · · · , βd)
> are readily

obtained by chain rule and the classic assumptions on the asymptotic normality hold

after transformation. This reparametrization is the key to analyzing the asymptotic

properties of the estimates for β and to faciliating an efficient computation algorithm.

We will investigate the estimation for g and β and propose a quasi-likelihood method

to test the statistical significance of certain variables in the parametric component.

2.1. The kernel estimating functions for the nonparametric part g

If β is known, then we estimate g(·) and g′(·) using the local linear estimating

functions. Let h denote the bandwidth parameter, and let K(·) denote the symmetric

kernel density function satisfying Kh(·) = h−1K(·/h). The estimation method involves

local linear approximation. Denote by α0 and α1 the values of g and g′ evaluating at

t, respectively. The local linear approximation for g(β>x) in a neighborhood of t is

g̃(β>x) = α0 + α1(β
>x− t). The estimators ĝ(t) and ĝ′(t) are obtained by solving the

kernel estimating functions with respect to α0, α1:





n∑
j=1

Kh(β
>Xj − t) µ′{g̃(β>Xj)}V −1{g̃(β>Xj)} [Yj − µ{g̃(β>Xj)}] = 0,

n∑
j=1

(β>Xj − t)Kh(β
>Xj − t) µ′{g̃(β>Xj)}V −1{g̃(β>Xj)} [Yj − µ{g̃(β>Xj)}] = 0,

(2.1)

Having estimated α0, α1 at t as α̂0, α̂1, the local linear estimators of g(t) and g′(t) are

ĝ(t) = α̂0 and ĝ′(t) = α̂1 respectively.

The key to obtain the asymptotic normality of the estimates for β lies in the asymp-

totic properties of the estimated nonparametric part. The following theorem will pro-

vide some useful results. The following notation will be used. Let X = {X1, · · · ,Xn},
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ρl(z) = {µ′(z)}lV −1(z) and J = ∂β
∂β(1) the Jacobian matrix of size d× (d− 1) with

J =


 −β(1)>/

√
1− ‖β(1)‖2

Id−1


 , β(1) = (β2, · · · , βd)

>.

The moments of K and K2 are denoted respectively by, j = 0, 1, · · ·

γj =

∫
tjK(t)dt and νj =

∫
tjK2(t)dt.

Proposition 1. Under regularity conditions (a), (b), (d) and (e) given in the Ap-

pendix, we have

(i) With h → 0, n → ∞ such that h → 0 and nh → ∞, ∀β ∈ Θ, the asymptotic

conditional bias and variance of ĝ is given by

E
{
{ĝ(β>x)− g(β>x)}2

∣∣∣X
}

=
{

1
2
γ2h

2g′′(β>x)
}2

+ ν0σ
2/[nhfβ>X(β>x)ρ2{g(β>x)}]

+OP (h4 + n−1h−1).

(2.2)

(ii) With h → 0, n → ∞ such that h → 0 and nh3 → ∞, for the estimates of the

derivative g′, it holds that

E
{
{ĝ′(β>x)− g′(β>x)}2

∣∣∣X
}

=
{

1
6
γ4γ

−1
2 h2g′′′(β>x) + 1

2
(γ4γ

−1
2 − γ2)h

2g′′(β>x)

× [ ρ′2{g(β>x)}/ρ2{g(β>x)}
+ f ′

β>X
(β>x)/fβ>X(β>x)]

}2

+ ν2γ
−2
2 σ2/[nh3fβ>X(β>x)ρ2{g(β>x)}]

+ OP (h4 + n−1h−3).

(2.3)

(iii) With h → 0, n →∞ such that h → 0 and nh3 →∞, we have that

E
{
‖∂ĝ(β>x)

∂β(1) − g′(β>x)J>{x− E(x|β>x)}‖2
∣∣∣X

}
= OP (h4 + n−1h−3), (2.4)

The proof of this Proposition appears in the Appendix. Results (i) and (ii) in Propo-

sition 1 is routine and in principal similar to Carroll, Ruppert and Welsh (1998). In

the situation where σ2V = σ2 and the function µ is identity, results (i) and (ii) co-

incides with that given by Fan and Gijbels (1996). From result (iii), it is seen that
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∂ĝ(β>x)/∂β(1) converges in probability to g′(β>x)J>{x − E(x|β>x)}, rather than

g′(β>x)J>x as if g were known. That is, lim
n→∞

{∂ĝ(β>x)/∂β(1)} 6= ∂{ lim
n→∞

ĝ(β>x)}/∂β(1),

which means that the convergence in probability and the derivation of the sequence

ĝn(β>x) (as a function of n) can not commute. This is primarily caused by the fact

that the support of the infinite dimensional nuisance parameter g(·) depends on the

finite dimensional projection parameter β. In contrast, a semiparametric model where

the support of the nuisance parameter is independent of the finite dimensional param-

eter is a partially linear regression model having form Y = X>θ + η(T ) + ε. It is

easy to check that the limit of ∂η̂(T )/∂θ is equal to E(X|T ), which is the derivative of

lim
n→∞

η̂(T ) = E(Y |T )−E(X>|T )θ with respect to θ. Result (iii) ensures that the pro-

posed estimator does not require undersmoothing of g(·) to obtain a root-n consistent

estimator for β and it is also of its own interest in inference theory for semiparametric

models.

2.2. The asymptotic distribution for the estimates of the parametric part

β

We will now proceed to the estimation of β ∈ Θ. We need to estimate the (d− 1)-

dimensional vector β(1), the estimator of which will be defined via:

n∑
i=1

[∂µ{ĝ(β>Xi)}/∂β(1)]V −1{ĝ(β>Xi)}[Yi − µ{ĝ(β>Xi)}] = 0. (2.5)

This is the direct analogue of the “ideal” estimating equation for known g, in that

it is calculated by replacing g(t) with ĝ(t). An asymptotically equivalent and easily

computed version of this equation is:

Ĝ(β)
def
=

n∑
i=1

J>ĝ′(β>Xi){Xi − ĥ(β>Xi)}ρ1{ĝ(β>Xi)}[Yi − µ{ĝ(β>Xi)}], (2.6)

with J = ∂β
∂β(1) the Jacobian mentioned above, ĝ and ĝ′ are defined by (2.1), and ĥ(t)

the local linear estimate for h(t) = E(X|β>X = t) = (h1(t), · · · , hd(t))
>,

ĥ(t) =
n∑

i=1

bi(t)Xi

/ n∑
i=1

bi(t),

where bi(t) = Kh(β
>Xi − t){Sn,2(t) − (β>Xi − t)Sn,1(t)} and Sn,k =

n∑
i=1

Kh(β
>Xi −

t)(β>Xi − t)k, k = 1, 2. We use (2.6) to estimate β(1) in the generalized single-index
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model, and then use the fact that β1 =
√

1− ‖β(1)‖2 to obtain β̂1. The use of (2.6)

constitutes in our view a new approach to estimating generalized single index models,

since (2.6) involves smooth pilot estimation of g, g′ and h we call it the Estimation

Function Method (EFM) for β.

Remark 1. It can be seen from the proof in the Appendix that the population version

of Ĝ(β) is

G(β) =
n∑

i=1

J>g′(β>Xi){Xi − h(β>Xi)}ρ1{g(β>Xi)}[Yi − µ{g(β>Xi)}], (2.7)

which is obtained by replacing ĝ, ĝ′, ĥ with g, g′, h in (2.6). One important property of

(2.7) is that the second Bartlett identity holds, for any β :

E{G(β)G>(β)} = −E{∂G(β)

∂β(1)
}.

This property makes the semiparametric efficiency of the EFM (2.6) possible.

We will focus now on the asymptotic normality of the estimator β̂(1) derived from

(2.6). The reason is that the asymptotic consistency has been achieved for many

existing estimators (Härdle, Hall and Ichimura, 1993; Härdle and Stoker, 1989) in

the simple single-index model. Let β0 = (β0
1 , β

(1)0>)> denote the true parameter

and B+ denote the Moore-Penrose inverse of any given matrix B. We assume in the

following context that β̂(1) is in a root-n neighborhood of the true parameter β(1)0,

β̂(1) ∈ {β(1) : ‖β(1)−β(1)0‖ ≤ Cn−1/2} with C is some constant. We have the following

asymptotic result for the estimator β̂(1).

Theorem 1. Let β̂(1) denote the solution of the estimating function (2.6). With

h → 0, n → ∞ such that nh6 → 0 and nh4 → ∞ and regularity conditions given in

the Appendix, we have:

√
n(β̂(1) − β(1)0)

L−→ Nd−1(0,Σβ(1)0), (2.8)

where Σβ(1)0 = {J>ΩJ}+|β(1)=β(1)0, J = ∂β
∂β(1) and

Ω = E
[
{XX> − E(X|β>X)E(X>|β>X)}ρ2{g(β>X)}{g′(β>X)}2/σ2

]
.
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Remark 2. Note that β>Ωβ = 0, so the nonnegative matrix Ω degenerates in the

direction of β. If the mean function µ is the identity function and the variance function

is equal to a scale constant, that is, µ{g(β>X)} = g(β>X), σ2V {g(β>X)} = σ2, the

matrix Ω in Theorem 1 reduces to be

Ω = E
[
{XX> − E(X|β>X)E(X>|β>X)}{g′(β>X)}2/σ2

]
.

Technically speaking, Theorem 1 shows that an undersmoothing approach is unnec-

essary and that root-n consistency can be achieved. The asymptotic covariance Σβ(1)0

in general can be estimated by replacing terms in its expression by estimates of those

terms. The asymptotic normality of β̂ = (β̂1, β̂
(1)>)> will follow from Theorem 1 with

a simple application of the multivariate delta-method, since β̂1 =

√
1− ‖β̂(1)‖2. Ac-

cording to the results of Carroll et al. (1997), the asymptotic variance of their estimator

is Ω+. Define the block partition of matrix Ω as follows:

Ω =


 Ω11 Ω12

Ω21 Ω22


 , (2.9)

where Ω11 is a positive constant, Ω12 is a (d − 1)-dimensional row vector, Ω21 is a

(d− 1)-dimensional column vector and Ω22 is a (d− 1)× (d− 1) nonnegative definite

matrix.

Corollary 1. Under the conditions of Theorem 1, we have

√
n(β̂ − β0)

L−→ Np(0,Σβ0), (2.10)

with Σβ0 = J{J>ΩJ}+J>
∣∣∣
β=β0

. Further,

Σβ0 ≤ Ω+
∣∣∣
β=β0

,

and the stick less-than sign holds when det(Ω22) = 0. That is, in this case the EFM is

more efficient than that of Carroll et al. (1997).

2.3. Profile quasi-likelihood ratio test

In applications, it is important to test the statistical significance of added predic-

tors in a regression model. Here we establish a quasi-likelihood ratio statistic to test
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the significance of certain variables in the linear index. The null hypothesis that the

model is correct is tested against a full model alternative. Fan and Jiang (2007) gave

a recent review about generalized likelihood ratio tests. Bootstrap tests for nonpara-

metric regression, generalized partially linear models and single index models can be

found in Härdle and Mammen (1993), Härdle, Mammen and Müller (1998) and Härdle,

Mammen and Proenca (2001). Consider the testing problem:

H0 : g(·) = g(
r∑

k=1

βkXk) ←→ H1 : g(·) = g(
r∑

k=1

βkXk +
d∑

k=r+1

βkXk). (2.11)

We mainly focus on testing βk = 0, k = r+1, · · · , d, though the following test procedure

can be easily extended to a general linear testing Bβ̃ = 0 where B is a known matrix

with full row rank and β̃ = (βr+1, · · · , βd)
>. The profile quasi-likelihood ratio test is

defined by

Tn = 2{sup
β∈Θ

Q̂(β)− sup
β∈Θ,β̃=0

Q̂(β)}, (2.12)

where Q̂(β) =
n∑

i=1

Q[µ{ĝ(β>Xi)}, Yi], Q[µ, y] =
∫ y

µ
V {µ−1(s)}(s−y)ds and µ−1(·) is the

inverse function of µ(·). The following Wilks’ type theorem shows that the distribution

of Tn is asymptotically chi-squared and independent of nuisance parameters.

Theorem 2. Under the assumptions of Theorem 1, if βk = 0, k = r + 1, · · · , d, then

Tn
L−→ χ2(d− r). (2.13)

3. Numerical Studies

3.1. Computation of the estimates

Solving the joint estimating equations (2.1) and (2.6) poses some interesting chal-

lenges, since the functions ĝ(β>X) and ĝ′(β>X) depend on β implicitly. Treating β>X

as a new predictor (with given β), equation (2.1) gives us ĝ, ĝ′ as in Fan, Heckman

and Wand (1995). We therefore focus on (2.6), as estimating equations. It cannot be

solved explicitly, and hence one needs to find solutions using numerical methods. The

Newton-Raphson algorithm is one of the popular and successful methods for finding
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roots. However, the computational speed of this algorithm crucially depends on the

initial value. We propose therefore a fixed point iterative algorithm that is adapted to

higher dimension and unsensitive to the initial value. It is worth noting that this algo-

rithm can be implemented in the case that d > n, because the resultant procedure only

involves one-dimensional nonparametric smoothers, thereby avoiding the data sparsity

problem caused by high dimensionality.

Rewrite the estimating functions as Ĝ(β) = J>F̂(β) with F̂(β) = (F̂1(β), · · · , F̂d(β))>

and

F̂s(β) =
n∑

i=1

{Xsi− ĥs(β
>Xi)}µ′{ĝ(β>Xi)}ĝ′(β>Xi)V

−1{ĝ(β>Xi)}[Yi−µ{ĝ(β>Xi)}].

Setting Ĝ(β) = 0 and after some simple calculations, we can get that





β1 = |F̂1(β)|/‖F̂ (β)‖, s = 1

β2
s = F̂ 2

s (β)/‖F̂ (β)‖2, s ≥ 2
(3.1)

Based on this, the fixed point iterative algorithm is summarized as:

Step 0. Choose initial values for β, denoted by βold.

Step 1. Solving the estimating equation (2.1) with respect to α, yields ĝ(β>oldXi) and

ĝ′(β>oldXi), 1 ≤ i ≤ n.

Step 2. Update βold with βold = βnew/‖βnew‖ by solving the equation (2.6) in the

fixed point iteration

βnew = M

F̂1(βold)/‖F̂ (βold)‖+M
βold + |F̂1(βold)|/‖F̂ (βold)‖2

F̂1(βold)/‖F̂ (βold)‖+M
F̂(βold),

where M is a constant satisfying F̂1(β)/‖F̂ (β)‖+ M 6= 0 for any β (M can be chosen

to be 2).

Step 3. Repeat Steps 1 and 2 until max
1≤s≤d

|βnew,s − βold,s| ≤ tol is met with tol being a

prescribed tolerance.

The final vector βnew/‖βnew‖ is the estimator of β0. Similar to other direct es-

timation methods (Horowitz and Härdle, 1996), the preceding calculation is easy to

implement. Empirically the initial value for β, (1, 1, · · · , 1)>/
√

d can be used in the

calculations. The Epanechnikov kernel function K(t) = 3/4(1 − t2)I(|t| ≤ 1) is used.
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The bandwidth involved in Step 1 can be chosen to be optimal for estimation of ĝ(t)

and ĝ′(t) based on the observations {β>oldXi, Yi}. So the standard bandwidth selection

methods, such as K-fold cross validation, generalized cross validation (GCV) and the

rule of thumb, can be adopted. In this step, we recommend K-fold cross validation

to determine the optimal bandwidth using the quasi-likelihood as a criterion function.

The K-fold cross validation is not too computationally intensive while making K not

take too large values (for example, K = 5 or 10). Here we recommend that the smooth-

ing parameters be chosen graphically using partial residual plots. The simplest way to

do this is to try a number of smoothing parameters that smooth the data and pick the

one that seems most reasonable.

3.2. Simulation results

Example 1 (continuous response). We report a simulation study to investigate the

finite-sample performance of the proposed estimator and compare it with the rMAVE

(refined MAVE, for details see Xia et al. (2002)) estimator. We consider the following

model similar to that used in Xia (2006):

E(Y |β>X) = g(β>X), g(β>X) = (β>X)2 exp(β>X);

V ar(Y |β>X) = σ2, σ = 0.1.
(3.2)

Let the true parameter β = (2, 1, 0, · · · , 0)>/
√

5. Two sets of designs for X are consid-

ered: Design (A) and Design (B). In Design (A), (Xs + 1)/2 ∼ Beta(τ, 1), 1 ≤ s ≤ d

and in Design (B) (X1 + 1)/2 ∼ Beta(τ, 1) and P (Xs = ±0.5) = 0.5, s = 2, 3, 4, · · · , d.

The data generated in Design (A) are not elliptically symmetric. All the components

of Design (B) are discrete except for the first component X1. Y generates from normal

distribution. This simulation data set consists of 400 observations with 250 replica-

tions. The results are shown in Table 1. Both MAVE and EFM estimates are close

to the true parameter vector for d = 10. However, the average estimation errors from

MAVE estimates for d = 50 are about 10 times larger as those of the EFM estimates.

This indicates that the fixed point algorithm is more adaptive to high dimension.

Example 2 (binary response). This simulation design assumes an underlying generalized
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single index model for binary responses with

P (Y = 1|X) = µ{g(β>X)} = exp{g(β>X)}/[1 + exp{g(β>X)}],
g(β>X) = exp(5β>X− 2)/{1 + exp(5β>X− 3)} − 1.5.

(3.3)

The underlying regression coefficients are assumed to be β = (2, 1, 0, · · · , 0)>/
√

5. We

consider two sets of designs: Design (C) and Design (D). In Design (C), X1 and X2

follow the uniform distribution U(−2, 2). In Design (D), X1 is also assumed to be

uniformly distributed in interval (−2, 2) and (X2 + 1)/2 ∼ Beta(1, 1). The similar

designs for generalized partially linear single index models are assumed in Kane, Holt

and Allen (2004). Here a sample size of 700 is used for the case d = 10 and 3000 is used

for d = 50. Different sample sizes from Example 1 are used due to varying complexity

of the two examples. For this example, 250 replications are simulated and the results

are displayed in Table 2. In this set of simulations, the average estimation errors from

rMAVE estimates are about three times as large as EFM estimates under both Design

(C) and Design (D) for d = 10 or d = 50. The values in the row marked by d = 50

look a little bigger. However, it is reasonable because of the number of summands in

the average estimate error for d = 50 is five times as large as that for d = 10. Again it

appears that the EFM procedure achieves more precise estimators.

Table 1: Average estimation errors
d∑

s=1

|β̂s − βs| for

model (3.2)

Design (A) Design (B)

d τ rMAVE EFM rMAVE EFM

10 0.75 0.0559* 0.0809 0.0522* 0.0715

10 1.5 0.0323* 0.0431 0.0417* 0.0523

50 0.75 6.2019 0.9119 6.1265 0.5066

50 1.5 3.1792 0.2313 3.9514 0.2769

* The values are adopted from Xia (2006).
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Table 2: Average estimation errors
d∑

s=1

|β̂s − βs| for

model (3.3)

Design (C) Design (D)

d rMAVE EFM rMAVE EFM

10 1.2600 0.4785 1.8096 0.7415

50 4.8857 1.2009 5.8280 1.9908

Table 3: Average estimation errors
d∑

s=1

|β̂s − βs|
for model (3.4)

d = 10 d = 50 d = 100 d = 120

rMAVE 0.6841 6.7224 — —

EFM 0.0955 0.9363 4.4518 5.9280

— means that the values can not be calculated by

rMAVE because of high dimension.
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Figure 1. Simulation results for Design (A) in Example 1. The left graphs depict the case

τ = 1.5 with τ is the first parameter in Beta(τ, 1). The right graphs are for τ = 0.75.
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Figure 2. Simulation results for Design (B) in Example 1. The left graphs depict the case

τ = 1.5 with τ is the first parameter in Beta(τ, 1). The right graphs are for τ = 0.75.

0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ

po
w

er

Design (C), d=10

0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ

po
w

er

Design (C), d=50

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ

po
w

er

Design (D), d=10

0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ

po
w

er

 Design (D), d=50

Figure 3. Simulation results for Example 2. The left graphs depict the case of Design (C)

with parameter dimension being 10 and 50. The right graphs are for Design (D).

Example 3 (A simple model). To illustrate the adaptivity of our algorithm to high dimension,
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we consider the following simple single index model

Y = (β>X)2 + ε. (3.4)

The true parameter is β = (2, 1, 0, · · · , 0)>, X is generated from Nd(0, I) and ε ∼ N(0, 0.22).

The results given in Table 3 are based on a sample size of n = 100 and 250 replicates.

An important result from this simulation is that the proposed EFM procedure can provide

a reasonable estimate even when the dimension of parameter is larger than the number of

observations.

Performance of profile quasi-likelihood ratio test. To illustrate how the profile quasi-likelihood

ratio performs for linear hypothesis problems, we simulate the same data as above, except

that we allow some components of the index to follow the null hypothesis:

H0 : β4 = β5 = · · · = βd = 0.

We examine the power of the test under a sequence of the alternative hypotheses indexed by

parameter δ as follows:

H1 : β4 = δ, βs = 0 for s ≥ 5.

When δ = 0, the alternative hypothesis becomes the null hypothesis.

We examine the profile quasi-likelihood ratio test under a sequence of alternative models,

progressively deviating from the null hypothesis, namely, as δ increases. The power functions

are calculated at the significance level: 0.05, using the asymptotic distribution. We calculate

test statistics from 250 simulations by employing the fixed point algorithm and find the

percentage of test statistics greater than or equal to the associated quantile of the asymptotic

distribution. The pictures in Figure 1, 2 and 3 illustrate the power function curves for two

models under the given significance levels. The power curves increase rapidly with δ, which

shows the profile quasi-likelihood ratio test is powerful. When δ is close to 0, the test sizes

are all approximately the significance levels.

3.3. A real data example

Income, to some extent, is considered as an index of a successful life. It is generally believed

that demographic information, such as education level, relationship in the household, marital

status, the fertility rate and gender, among others, have effects on amounts of income. For

example, Murray (1997) illustrated that adults with higher intelligence have higher income.
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Kohavi (1996) predicted income using a Bayesian classifier offered by a machine learning

algorithm. Madalozzo (2008) examined income differentials between married women and

those who remain single or cohabitation by using multivariate linear regression. Here we will

use the generalized single index model to explore the relationship between income and some

of its possible determinants.

We use the “Adult” database, which was extracted from the census bureau database

and is publicly available form website: http://archive.ics.uci.edu/ml/datasets/Adult. It was

originally used to model income exceeds over USD 50000/year based on census data. After

excluding a few missing data, the data set in our study includes 30162 subjects. The selected

explanatory variables are:

X1 =age (integer): number of years of age and greater than or equal to 17.

X2 =work-class (categorical): 1 = Federal-gov, 2 = Local-gov, 3 = Never-worked, 4 =

Private, 5 = Self-emp-inc (self-employed, incorporated), 6 = Self-emp-not-inc (self-

employed, not incorporated), 7 = State-gov, 8 = Without-pay.

X3 =fnlwgt (continuous): The final sampling weights on the CPS files are controlled to

independent estimates of the civilian noninstitutional population of the US.

X4 =education (ordinal): 1=Preschool (less than 1st Grade), 2=1st-4th, 3=5th-6th, 4=7th-

8th, 5=9th, 6=10th, 7=11th, 8=12th (12th Grade no Diploma), 9=HS-grad (high

school Grad-Diploma or Equiv), 10=Some-college (some college but no degree), 11=Assoc-

voc (associate degree-occupational/vocationl), 12=Assoc-acdm (associate degree-academic

program), 13=Bachelors, 14=Masters, 15=Prof-school (professional school), 16=Doc-

torate.

X5 =education-num (continuous): Number of years of education.

X6 =marital-status (categorical): 1 = Divorced, 2 = Married-AF-spouse (married, armed

forces spouse present), 3 = Married-civ-spouse (married, civilian spouse present ), 4 =

Married-spouse-absent (married, spouse absent (exc. separated)), 5 = Never-married,

6 = Separated, 7 = Widowed.

X7 =occupation (categorical): 1 = Adm-clerical (administrative support and clerical), 2

= Armed-Forces, 3 = Craft-repair, 4 = Exec-managerial (executive-managerial), 5

= Farming-fishing, 6 = Handlers-cleaners, 7 = Machine-op-inspct (machine opera-

tor inspection), 8 = Other-service, 9 = Priv-house-serv (private household services),

10= Prof-specialty (professional specialty), 11= Protective-serv, 12= Sales, 13= Tech-

support, 14= Transport-moving.
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X8 =relationship (categorical): 1 = Husband, 2 = Not-in-family, 3 = Other-relative, 4 =

Own-child, 5 = Unmarried, 6 = Wife.

X9 =race (categorical): 1 = Amer-Indian-Eskimo, 2 = Asian-Pac-Islander, 3 = Black, 4 =

Other, 5 = White .

X10 =sex (categorical): 1=Male, 0=Female.

X11 =capital-gain (continuous): a profit that results from investments into a capital asset.

X12 =capital-loss (continuous): a loss that results from investments into a capital asset.

X13 =hours-per-week (continuous): usual number of hours worked per week.

X14 =native-country (categorical): 1=United-States, 0=others.

The generalized single index model will be used to model the relationship between income

and the relevant 14 predictors X = (X1, · · · , X14)> :

P (“income” > 50000|X) = exp{g(β>X)}/[1 + exp{g(β>X)}], (3.5)

where Y = I(“income” > 50000) and β = (β1, · · · , β14)> and βs represents the effect of the

sth predictor. Formally, we are testing

H0 : β7 = 0 ←→ H1 : β7 6= 0. (3.6)

After a preliminary data check, we find that the explanatory variables X3 = “fnlwgt”,

X11 = “capital-gain” and X12 = “capital-loss” are very skewed to the left and the later two

often take zero value. So before fitting (3.5) we first transformed these three variables. A

natural choice is to use log(“fnlwgt”), log(1+“capital-gain”) and log(1+“capital-loss”). The

fixed point iterative algorithm is employed to compute the estimate for β. To illustrate further

the practical implications of this approach, we compare our results to those obtained by using

a logistic regression. The coefficients of the two models are given in Table 4. The relative

magnitudes as well as the sign of the estimated coefficients are good proxies of the relevance of

each of the explanatory variables. In both models, the variables have the same expected sign.

The generalized single index model provides more reasonable results: X5 = “education-num”

has its strongest positive effect on income, those who got a bachelor’s degree or higher seem

to have much higher income than those with lower education level.

In contrast, results derived from a logistic regression show that “sex” is the largest positive

contributor, an unconvincing conclusion. It appears that men consistently earn more than
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women on average — and this is true for lawyers, doctors, etc. Men at most achieved about

twice income of their female counterparts in each education level, however, the median weekly

earnings of full time workers with doctorate degree is about five times that of those with lowest

education (pre-schools). So “education” has a larger impact on income than “sex”.

Some other interesting conclusions could be obtained by looking at the output. “Age”

accounts for the experience effect and has a positive effect. Persons who worked without

pay in a family business, unpaid childcare and others earn a lower income than persons who

worked for wages or for themselves. The “fnlwgt” attribute has a positive relation to income.

Males are likely to make much more money (about 1.4 times) than females. The expected

sign for marital status is negative, given that the household production theory affirms that

division of work is efficient when each member of a family dedicates their time to the more

productive job. Men usually receive relatively better compensation for their time in the labor

market than in home production. Thus, the expectation is that married women dedicate more

time to home tasks and less to the labor market, and this would imply a different probability

of working given the marital status choice.

Also “race” influences the income and Asian or Pacific Islanders seem to make more money

than other races. And also, one’s income significantly increases as working hours increases.

Both “capital-gain” and “capital-loss” have positive effects, so we think that people make

more money who can use more money to invest. The presence of young children has a negative

influence on the income. The coefficient for “native-country” and “occupation” indicators

are not significant. Hence the conclusion based on the generalized single index model is

consistent with what we expect. To help with interpretation of the model, plots of β>X

versus predicted response probability and g(β>X) are generated, respectively, and can be

found on the right column in Figure 4.

We now employ the quasi-likelihood ratio test to the test problem (3.6). The QLR test

statistic is 172.4157 with one degree of freedom, resulting in a P-value of < 10−5. Hence this

result provides strong evidence that occupation has a significant influence on high income.
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Table 4: Fitted coefficients for model (3.5)

Variables β̂ of GSIM β̂ of LR

Constant — -9.1710 (.3789)

Age 0.0835 (.0004) 0.0371 (.0014)

Workclass -0.0664 (.0037) -0.0867 (.0132)

log(Fnlwgt) 0.0476 (.0055) 0.1104 (.0258)

Education 0.0379 (.0009) 0.0161 (.0053)

Education-Num 0.6517 (.0018) 0.3414 (.0074)

Marital-Status -0.3163 (.0020) -0.2163 (.0123)

Occupation 0.0137 (.0009) 0.0002 (.0040)

Relationship -0.3511 (.0027) -0.1193 (.0014)

Race 0.0953 (.0036) 0.1035 (.0223)

Sex 0.1792 (.0059) 0.9135 (.0507)

log(1 + Capital-Gain) 0.4569 (.0025) 0.2054 (.0060)

log(1 + Capital-Loss) 0.2290 (.0031) 0.1573 (.0087)

Hours-per-Week 0.0734 (.0004) 0.0297 (.0015)

Native-Country 0.0091 (.0113) 0.0069 (.0656)
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ĝ(
β̂
>

X
)

The fitted curve for the unknown link function

Figure 4. Adult data: The left graph is a plot of predicted response probability based on

the generalized single index model. The right graph is the fitted curve for the unknown link

function g(·).

References

Carroll, R. J., Fan, J., Gijbels, I. and Wand, M. P. (1997). Generalized partially

linear single-index models. J. Am. Statist. Ass., 92 447–489.

Carroll, R. J., Ruppert, D. and Welsh, A. H. (1998). Local estimating equations. J.

Am. Statist. Ass., 93 214–227.

Fan, J. and Gijbels, I. (1996). Local polynomial modeling and its applications. London:

Chapman and Hall.

Fan, J., Heckman, N. E. and Wand, M. P. (1995). Local polynomial kernel regression for

generalized linear models and quasi-likelihood functions. J. Am. Statist. Ass., 90 141–150.

Fan, J. and Jiang, J. (2007). Nonparametric inference with generalized likelihood ratio

test. Test, 16 409–478.
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4. Appendix

In this section the proof of Theorem 1 will be given. We first introduce some regularity

conditions.

Regularity Conditions

(a) µ(·), V (·), g(·),h(·) = E(X|β>X = ·) have two bounded and continuous derivatives.

(b) Let q(z, y) = µ′(z)V −1(z){y − µ(z)}. Assume that ∂q(z, y)/∂z < 0 for z ∈ R and y in

the range of the response variable.

(c) The largest eigenvalues of Ω22 is bounded away from infinity.

(d) The density function fβ>X(β>x) of random variable β>X is bounded away from 0 on

Tβ and satisfies the Lipschitz condition of order 1 on Tβ, where Tβ = {β>x : x ∈ T} and

T is a compact support set of X.

(e) The kernel K is a bounded and symmetric density function with a bounded derivative,

and satisfies
∫ ∞

−∞
t2K(t)dt 6= 0 and

∫ ∞

−∞
|t|jK(t)dt < ∞, j = 1, 2, · · ·

Condition (a) is some mild smoothness conditions on the involved functions of the model.

We impose Condition (b) to guarantee that the solutions of equation (2.1), ĝ(t) and ĝ′(t), lie

in a compact set. Condition (c) implies that the second moment of estimating equation (2.7),

tr(J>ΩJ), is bounded. Then the CLT can be applied to G(β). Condition (d) means that X

may have discrete components and the density function of β>X is positive, which ensures that

the denominators involved in the nonparametric estimators, with high probability, bounded

away from 0. Condition (e) is a commonly used smoothness condition, including the Gaussian

kernel and the quadratic kernel. All of the conditions can be relaxed at the expense of longer

proofs.

Throughout the Appendix, Zn = OP (an) denotes that a−1
n Zn is bounded in probability and

the derivation for the order of Zn is based on the fact that Zn = OP {
√

E(Z2
n)}. Therefore,

it allows to apply the Cauchy-Schwartz inequality to the quantity having stochastic order an.

Proof of Proposition 1.

(i). Conditions (a), (b), (d) and (e) are essentially equivalent conditions given by Carroll,

Ruppert and Welsh (1998), and as a consequence the derivation of bias and variance for
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ĝ(β>x) and ĝ′(β>x), is similar to that of Carroll, Ruppert and Welsh (1998). The asymp-

totic expansion for ĝ(β>x) and ĝ′(β>x) is helpful in the following proofs. The asymptotic

expansion is:

ĝ(β>x)− g(β>x) =
[
n−1

n∑
j=1

Kh(β>Xj − β>x)ρ2{α0 + α1(β>Xj − β>x)}
]−1

×n−1
n∑

j=1
Kh(β>Xj − β>x)q{α0 + α1(β>Xj − β>x), Yj}

+OP (h8 + n−1h + n−2h−2)1/2,

(A.1)

and

hĝ′(β>x)− hg′(β>x)

=
[
n−1

n∑
j=1
{(β>Xj − β>x)/h}2Kh(β>Xj − β>x)ρ2{α0 + α1(β>Xj − β>x)}

]−1

×n−1
n∑

j=1
{(β>Xj − β>x)/h}Kh(β>Xj − β>x)q{α0 + α1(β>Xj − β>x), Yj}

−
[
n−1

n∑
j=1
{(β>Xj − β>x)/h}2Kh(β>Xj − β>x)ρ2{α0 + α1(β>Xj − β>x)}

]−1

×
[
n−1

n∑
j=1
{(β>Xj − β>x)/h}Kh(β>Xj − β>x)ρ2{α0 + α1(β>Xj − β>x)}

]

×
[
n−1

n∑
j=1

Kh(β>Xj − β>x)ρ2[α0 + α1(β>Xj − β>x)]
]−1

×n−1
n∑

j=1
Kh(β>Xj − β>x)[µ{g(β>Xj)} − µ{α0 + α1(β>Xj − β>x)}]

+OP (h8 + n−1h + n−2h−2)1/2,

(A.2)

where α0 = g(β>x), α1 = g′(β>x), q(z, y) = µ′(z)V −1(z){y − µ(z)}, ρl(z) = {µ′(z)}lV −1(z)

and OP (1) denoting a random quantity is bounded in probability.

(ii). The first equation of (2.1) is

0 =
n∑

j=1
Kh(β>Xj − β>x) µ′{α̂0 + α̂1(β>Xj − β>x)}V −1{α̂0 + α̂1(β>Xj − β>x)}

×[Yj − µ{α̂0 + α̂1(β>Xj − β>x)}].

Taking derivatives with respect to β(1) on both sides, direct observations lead to

∂α̂0

∂β(1)
= {B(β>x)}−1{A1(β>x) + A2(β>x) + A3(β>x)},
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where

B(β>x) = −
n∑

j=1
Kh(β>Xj − β>x)q′z{α̂0 + α̂1(β>Xj − β>x), Yj},

A1(β>x) =
n∑

j=1
Kh(β>Xj − β>x)J>(Xj − x)q′z{α̂0 + α̂1(β>Xj − β>x), Yj}α̂1,

A2(β>x) =
n∑

j=1
Kh(β>Xj − β>x)q′z{α̂0 + α̂1(β>Xj − β>x), Yj}(β>Xj − β>x) ∂α̂1

∂β(1) ,

A3(β>x) =
n∑

j=1
h−1K ′

h(β>Xj − β>x)J>(Xj − x)q{α̂0 + α̂1(β>Xj − β>x), Yj},

with K ′
h(·) = h−1K ′(·/h). Note that ∂α̂0/∂β(1) = ∂ĝ(β>x)/∂β(1), then we have

∂ĝ(β>x)
∂β(1)

= {B(β>x)}−1A1(β>x) + {B(β>x)}−1A2(β>x) + {B(β>x)}−1A3(β>x). (A.3)

In the following, we will prove that

E‖{B(β>x)}−1A1(β>x)− g′(β>x)J>{x− h(β>x)}‖2 = OP (h4 + n−1h−3), (A.4)

the second term in (A.3) is of order OP (h4 + n−1h), and the third term is of order OP (h4 +

n−1h−3). The combination of (A.3) and these three results can directly lead to Result (ii) of

Proposition 1. The proof is summarized in three steps.

Step 1. The analysis of term {B(β>x)}−1A1(β>x).

First we analyze {B(β>x)}−1A1(β>x), which can be decomposed as follows,

{B(β>x)}−1A1(β>x) = ĝ′(β>x)J>{x− ĥ(β>x)}
−ĝ′(β>x)J>

[
{B(β>x)}−1

n∑
j=1

Kh(β>Xj − β>x)Xj

×q′z{α̂0 + α̂1(β>Xj − β>x), Yj} − ĥ(β>x)
]

(A.5)

By applying the result about ĝ′(β>x) in (i) of Proposition 1 and the classical asymptotic

theory of local linear regression estimate for ĥ(β>x) (see Fan et al., 1996), it can be shown

that

E‖ĝ′(β>x)J>{x− ĥ(β>x)} − g′(β>x)J>{x− h(β>x)}‖2 = OP (h4 + n−1h−3). (A.6)

Next we show that the second moment of the second term in (A.5) is of orderOP (h4+n−1h−1).

Define

B1(β>x) =
n∑

j=1
Kh(β>Xj − β>x)ρ2{α0 + α1(β>Xj − β>x)}. (A.7)
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By conditions (a), (d) and (e), we obtain several useful results, for k = 0, 1, 2,

E
∥∥∥{B1(β>x)}−1

n∑
j=1

Kh(β>Xj − β>x)Xj(β>Xj − β>x)k

×q′′z{α0 + α1(β>Xj − β>x), Yj}
∥∥∥

2

= OP {cI(k = 0) + h4I(k 6= 0) + (nh)−1h2k},
E

∥∥∥{B1(β>x)}−1
n∑

j=1
Kh(β>Xj − β>x)Xj(β>Xj − β>x)k

×ρ1{α0 + α1(β>Xj − β>x)}[Yj − µ{α0 + α1(β>Xj − β>x)}]
∥∥∥

2

= OP {h4I(k = 0) + h8I(k 6= 0) + (nh)−1h2k},

(A.8)

and that

E
∣∣∣{B(β>x)/n}−1 − {B1(β>x)/n}−1

∣∣∣
2

= OP (h4 + n−1h−1). (A.9)

It is easy to check that (A.8) also holds for the case where q′′z is replaced with q′z, the case ρ1

is replaced with ρ′1 or ρ′′1 and the case when multiplier Xj (not Xj in linear index β>Xj) is

deleted.

Applying a Taylor expansion to q′z{α̂0 + α̂1(β>Xj − β>x), Yj} at α0, α1, then the second

term in (A.5) can be rewritten as

R1 + R2 + R3 + R4 + others, (A.10)

where

R1(β>x) = g′(β>x)J>
[
{B1(β>x)}−1

n∑
j=1

Kh(β>Xj − β>x)Xj

×q′z{α0 + α1(β>Xj − β>x), Yj} − h(β>x)
]
,

R2(β>x) = −g′(β>x)J>
{

ĥ(β>x)− h(β>x)
}

,

R3(β>x) = −g′(β>x)J>{B1(β>x)}−1
n∑

j=1
Kh(β>Xj − β>x)Xj

×[ρ2{α0 + α1(β>Xj − β>x)}+ ρ′2{α0 + α1(β>Xj − β>x)}](α̂0 − α0),

R4(β>x) = g′(β>x)J>[{B1(β>x)}−1 − {B(β>x)}−1]
n∑

j=1
Kh(β>Xj − β>x)Xj

×ρ2{α0 + α1(β>Xj − β>x)},

and “others′′ = OP (h4 + n−1h−1) according to (A.8), (A.9) and Result (i) of Proposition 1.

So the second term in (A.5) is dominated by R1 + R2 + R3 + R4, and the conditional second

moment of every term is of order OP (h4 + n−1h−1). Combining this and the result of (A.6),

the proof for this step completes.
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This step yields the following result

{B(β>x)}−1A1(β>x) = ĝ′(β>x)J>{x− ĥ(β>x)}
−[R1(β>x) + R2(β>x) + R3(β>x) + R4(β>x)]

+OP (h4 + n−1h−1),

(A.11)

where R1(β>x), R2(β>x), R3(β>x), R4(β>x) are introduced in (A.10). ]

Step 2. The analysis of term {B(β>x)}−1A2(β>x).

This term can be rewritten as,

{B(β>x)}−1A2(β>x)

= {B1(β>x)}−1A2(β>x) + [{B(β>x)}−1 − {B1(β>x)}−1]A2(β>x).
(A.12)

We first deal with {B1(β>x)}−1A2(β>x). By a Taylor expansion at α0, α1 and using (A.8)

and result (i) of Proposition 1, we have that

{B1(β>x)}−1A2(β>x)

= R5(β>x) ∂α̂1

∂β(1)

+{B1(β>x)}−1
n∑

j=1
Kh(β>Xj − β>x)(β>Xj − β>x) ∂α̂1

∂β(1)

×q′′z{α0 + α1(β>Xj − β>x), Yj}{(α̂0 − α0) + (α̂1 − α1)(β>Xj − β>x)}
+OP (h4 + n−1h−1)

= R5(β>x) ∂α̂1

∂β(1) +OP (h4 + n−1h−1),

(A.13)

where

R5(β>x) = −{B1(β>x)}−1
n∑

j=1
Kh(β>Xj − β>x)ρ2{α0 + α1(β>Xj − β>x)}

×(β>Xj − β>x).

From (A.13) and (A.8), we conclude that

E‖{B1(β>x)}−1A2(β>x)‖2 = OP (h4 + n−1h).

In addition, we have with Cauchy-Schwarz:

E
∥∥∥[{B(β>x)}−1 − {B1(β>x)}−1]A2(β>x)

∥∥∥
2

≤ E1/2
∣∣∣[{B(β>x)}−1 − {B1(β>x)}−1]{B1(β>x)}

∣∣∣
4
E1/2

∥∥∥{B1(β>x)}−1A2(β>x)
∥∥∥

4

= OP (h8 + n−1h3).
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Then it follows that

E
∥∥∥{B(β>x)}−1A2(β>x)

∥∥∥
2
≤ 2E

∥∥∥{B1(β>x)}−1A2(β>x)
∥∥∥

2

+2E
∥∥∥[{B(β>x)}−1 − {B1(β>x)}−1]A2(β>x)

∥∥∥
2

= OP (h4 + n−1h) +OP (h8 + n−1h3) = OP (h4 + n−1h).
(A.14)

This step gives that

{B(β>x)}−1A2(β>x) = R5(β>x) ∂α̂1

∂β(1) +OP (h4 + n−1h−1), (A.15)

with R5(β>x) given in (A.13). ]

Step 3. The analysis of term {B(β>x)}−1A3(β>x).

We now proceed to show that this term is of order OP (h4 + n−1h−3) and write

{B(β>x)}−1A3(β>x)

= {B1(β>x)}−1A3(β>x) + [{B(β>x)}−1 − {B1(β>x)}−1]A3(β>x).
(A.16)

Noting that
∫

tkK ′(t)dt = 0 when k is an even number and following similar derivations as

used for {B1(β>x)}−1A2(β>x), we have that

{B1(β>x)}−1A3(β>x)

= R6(β>x)

+{B1(β>x)}−1
n∑

j=1
h−1K ′

h(β>Xj − β>x)J>(Xj − x)q′z{α0 + α1(β>Xj − β>x), Yj}

×(α̂0 − α0)

+{B1(β>x)}−1
n∑

j=1
h−1K ′

h(β>Xj − β>x)J>(Xj − x)q′z{α0 + α1(β>Xj − β>x), Yj}

×{(α̂1 − α1)(β>Xj − β>x)}
+OP (h8 + n−1h + n−2h−4)1/2

= R6(β>x) + R7(β>x) +OP (h8 + n−1h + n−2h−4)1/2,

(A.17)

where
R6(β>x) = {B1(β>x)}−1

n∑
j=1

h−1K ′
h(β>Xj − β>x)J>(Xj − x)

×q{α0 + α1(β>Xj − β>x), Yj}
R7(β>x) = −{B1(β>x)}−1

n∑
j=1

h−1K ′
h(β>Xj − β>x)J>(Xj − x)

×ρ2{α0 + α1(β>Xj − β>x)}(α̂0 − α0).
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The last equality in (A.17) is achieved by plugging in the asymptotic expansion for α̂0 − α0

provided in (A.1) and by merging the terms of order OP (h8 +n−1h+n−2h−4)1/2 or of smaller

order than this one. Similar to the treat on (A.8), we obtain that E‖R6(β>x)‖2 = OP (h4 +

n−1h−3) and E‖R7(β>x)‖2 = OP (h4 + n−1h−1), therefore, E‖{B1(β>x)}−1A3(β>x)‖2 =

OP (h4 + n−1h−3). An application of Cauchy-Schwartz inequality indicates that the second

term in (A.16) is ignorable compared to the first term. Therefore

E‖{B(β>x)}−1A3(β>x)‖2 = OP (h4 + n−1h−3). (A.18)

This step indicates that

{B(β>x)}−1A3(β>x) = R6(β>x) + R7(β>x) +OP (h8 + n−1h + n−2h−4)1/2, (A.19)

with R6(β>x) and R7(β>x) are defined in (A.17). ]

Combining the above three steps, we obtain Result (ii) of Proposition 1. ¤

Remark 3. By mimicking the forgoing analysis for ∂ĝ(β>x)/∂β(1), we have that

E
∥∥∥∂ĝ′(β>x)/∂β(1) − g′(β>x)J>{x− h(β>x)− h′(β>x)} − S1(β>x)− S2(β>x)

∥∥∥
2

= OP (h4 + n−1h−3),

where

S1(β>x) =
[
n−1

n∑
j=1
{(β>Xj − β>x)/h}2Kh(β>Xj − β>x)ρ2{α0 + α1(β>Xj − β>x)}

]−1

×n−1
n∑

j=1
h−2J>(Xj − x)Kh(β>Xj − β>x)q{α0 + α1(β>Xj − β>x), Yj},

S2(β>x) =
[
n−1

n∑
j=1
{(β>Xj − β>x)/h}2Kh(β>Xj − β>x)ρ2[α0 + α1(β>Xj − β>x)]

]−1

×n−1
n∑

j=1
h−2{(β>Xj − β>x)/h}J>(Xj − x)K ′

h(β>Xj − β>x)

×ρ′1{α0 + α1(β>Xj − β>x)}[Yj − µ{α0 + α1(β>Xj − β>x)}].
Using this, we can conclude the result of step 2 as

{B(β>x)}−1A2(β>x) = R5(β>x)g′′(β>x)J>{x− h(β>x)}
+R5(β>x){S1(β>x) + S2(β>x)}+OP (h8 + n−1h)1/2.

(A.20)

In a summary, it follows from the three steps and (A.20) that

∂ĝ(β>x)/∂β(1) = ĝ′(β>x)J>{x− ĥ(β>x)}
−{R1(β>x) + R2(β>x) + R3(β>x) + R4(β>x)}
+R5(β>x)g′′(β>x)J>{x− h(β>x)}
+R5(β>x){S1(β>x) + S2(β>x)}
+R6(β>x) + R7(β>x) +OP (h8 + n−1h + n−2h−4)1/2,

(A.21)
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where Rk, k ≤ 4 are given in step 1, R5 in step 2 and Rk, k ≥ 6 in step 3.

Proof of (2.6) and (2.7).

Proof of (2.6). We only need to prove that

Ĝ(β)−
n∑

i=1

∂µ{ĝ(β>Xi)}
∂β(1)

V −1{ĝ(β>Xi)}[Yi − µ{ĝ(β>Xi)}] = OP (
√

n), (A.22)

and

∂Ĝ(β)
∂β(1)

+
n∑

i=1

∂µ{ĝ(β>Xi)}
∂β(1)

V −1{ĝ(β>Xi)}[∂µ{ĝ(β>Xi)}
∂β(1)

]> = OP (n). (A.23)

Using the notations introduced in (A.3), the term in the left hand side of (A.22) can be

decomposed into the following three terms:

Ĝ(β)−
n∑

i=1
[∂µ{ĝ(β>Xi)}/∂β(1)]V −1{ĝ(β>Xi)}[Yi − µ{ĝ(β>Xi)}]

= C1 + C2 + C3,

where

C1 =
n∑

i=1
µ′{ĝ(β>Xi)}V −1{ĝ(β>Xi)}[Yi − µ{ĝ(β>Xi)}]ĝ′(β>Xi)

×J>
[
{B(β>Xi)}−1

n∑
j=1

Kh(β>Xj − β>Xi)Xj

×q′z{α̂0 + α̂1(β>Xj − β>Xi), Yj} − ĥ(β>Xi)
]

C2 = −
n∑

i=1
µ′{ĝ(β>Xi)}V −1{ĝ(β>Xi)}[Yi − µ{ĝ(β>Xi)}]{B(β>Xi)}−1A2(β>Xi)

C3 = −
n∑

i=1
µ′{ĝ(β>Xi)}V −1{ĝ(β>Xi)}[Yi − µ{ĝ(β>Xi)}]{B(β>Xi)}−1A3(β>Xi).

Next we will prove that Ck = OP (
√

n), k = 1, 2, 3. Under the assumptions on h in Theorem

1, by Result (ii) of Proposition 1, results given in (A.11), (A.15) and (A.19) and that for any

function ∆(·) defined on X = {Xi, 1 ≤ i ≤ n}
n∑

i=1
µ′{g(β>Xi)}V −1{g(β>Xi)}[Yi − µ{g(β>Xi}]∆(X ) = OP (

√
n),

n∑
i=1

µ′{g(β>Xi)}V −1{g(β>Xi)}[Yi − µ{g(β>Xi)}]

×OP (h8 + n−1h + n−2h−4)1/2 = OP (
√

n),
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we observe that it is sufficient to show that C∗
k = OP (

√
n), k = 1, 2, 3, where

C∗
1 =

n∑
i=1

µ′{g(β>Xi)}V −1{g(β>Xi)}[Yi − µ{g(β>Xi)}]

×{R∗
1(β

>Xi) + R3(β>Xi) + R4(β>Xi)},
C∗

2 = −
n∑

i=1
µ′{g(β>Xi)}V −1{g(β>Xi)}[Yi − µ{g(β>Xi)}]

×R5(β>Xi){S1(β>Xi) + S2(β>Xi)},
C∗

3 = −
n∑

i=1
µ′{g(β>Xi)}V −1{g(β>Xi)}[Yi − µ{g(β>Xi)}]

×{R6(β>Xi) + R7(β>Xi)}.

(A.24)

with

R∗
1(β

>x) = {B1(β>x)}−1
n∑

j=1
Kh(β>Xj − β>x)Xjρ

′
1{α0 + α1(β>Xj − β>x)}

×[Yj − µ{α0 + α1(β>Xj − β>x)}].

We first show that C∗
1 = OP (

√
n), where

C∗
1 =

n∑
i=1

µ′{g(β>Xi)}V −1{g(β>Xi)}[Yi − µ{g(β>Xi)}]R∗
1(β

>Xi)

+
n∑

i=1
µ′{g(β>Xi)}V −1{g(β>Xi)}[Yi − µ[g(β>Xi)]]R3(β>Xi)

+
n∑

i=1
µ′{g(β>Xi)}V −1{g(β>Xi)}[Yi − µ{g(β>Xi)}]R4(β>Xi)

The second moment of the first term in the above expression is

E
∥∥∥

n∑
i=1

µ′{g(β>Xi)}V −1{g(β>Xi)}[Yi − µ{g(β>Xi)}]R∗
1(β

>Xi)
∥∥∥

2
= 1/h, (A.25)

and the first term is of order OP (
√

n) if nh → ∞. As a consequence of Cauchy-Schwartz

inequality, the second term satisfies
∣∣∣

n∑
i=1

µ′{g(β>Xi)}V −1{g(β>Xi)}[Yi − µ{g(β>Xi)}]R3(β>Xi)
∣∣∣
2

≤
n∑

i=1
µ′2{g(β>Xi)}V −2{g(β>Xi)}[Yi − µ{g(β>Xi)}]2g′2(β>Xi)

×
∥∥∥{B1(β>Xi)}−1

n∑
j=1

Kh(β>Xj − β>x)Xj

×[ρ2{α0 + α1(β>Xj − β>x)}+ ρ′2{α0 + α1(β>Xj − β>x)}]
∥∥∥

2

×
n∑

i=1
(α̂0(β>Xi)− α0(β>Xi))2

= nOP (h2 + n−1h−1)OP (h4 + n−1h−1).

(A.26)

So the second term is of order OP (
√

n) when nh6 → 0 and nh2 → ∞. The structure of

R4, R7 is similar to that of R3 and R5S1, R5S2, R6 similar to R∗
1 respectively, hence we can
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use the similar arguments of (A.26) and (A.25) to analyze the remaining terms. Under the

bandwidth conditions nh6 → 0 and nh4 → ∞, we find that C∗
k = OP (

√
n), k = 1, 2, 3. The

proof for (A.22) completes. ]

(A.23) is a direct consequence of Proposition 1. As a byproduct, we can establish that

∂Ĝ(β)/∂β(1) +
n∑

i=1
{g′(β>Xi)}2[µ′{g(β>Xi)}]2V −1{g(β>Xi)}

×J>{Xi − h(β>Xi)}{Xi − h(β>Xi)}>J = oP (n).
(A.27)

The proof for (2.7). Equation (A.27) implies that ∂Ĝ(β)/∂β(1) − ∂G(β)/∂β(1) = OP (
√

n),

so we only need concentrate on showing that Ĝ(β) − G(β) = OP (
√

n). After some tedious

calculations, we find that it is equivalent to show that the following two dominated terms

D1, D2 satisfy that Dk = OP (
√

n), k = 1, 2

D1 =
n∑

i=1
J>{ĝ′(β>Xi)− g′(β>Xi)}{Xi − h(β>Xi)}ρ1{g(β>Xi)}[Yi − µ{g(β>Xi)}],

D2 =
n∑

i=1
J>g′(β>Xi){Xi − h(β>Xi)}ρ1{g(β>Xi)}[µ{g(β>Xi)} − µ{ĝ(β>Xi)}].

Plugging (A.2) and (A.1) into above expression, it is straightforward to obtain the desired

result. ]

We have completed the proof for (2.6) and (2.7). ¤

Proof of Theorem 1. Recall the notation J,Ω and G(β) introduced in Section 2. By (2.

7), we have shown that

√
n(β̂(1) − β(1)0) =

1√
n
{J>ΩJ}+G(β) + OP (1). (A.28)

Theorem 1 follows directly form the above asymptotic expansion and the fact that E{G(β)G>(β)} =

nJ>ΩJ. ¤

Proof of Corollary 1.

The asymptotic covariance of β̂ can be obtained by adjusting the asymptotic covariance of

β̂(1) via the multivariate delta method, and is of form J(J>ΩJ)+J>. Next we will compare

this asymptotic covariance with that (denoted by Ω+) given in Carroll et al. (1997). Write

Ω as

Ω =


 Ω11 Ω12

Ω21 Ω22
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where Ω22 is a (d − 1) × (d − 1) matrix. We will next investigate two cases respectively:

det(Ω22) 6= 0 and det(Ω22) = 0. Let α = −β(1)/
√

1− ‖β(1)‖2 = −β(1)/β1.

Consider the case that det(Ω22) 6= 0. Because rank(Ω) = d−1, det(Ω11Ω22−Ω21Ω12) = 0.

Note that Ω22 is nondegenerate, it can be easily shown that Ω11 = Ω12Ω−1
22 Ω21. Combining

this with the following fact,

J>ΩJ =
(

α Id−1

)

 Ω11 Ω12

Ω21 Ω22





 ατ

Id−1




= Ω22 + (Ω21/
√

Ω11 +
√

Ω11α)(Ω12/
√

Ω11 +
√

Ω11α
>)−Ω21Ω12/Ω11,

we can get that J>ΩJ is nondegenerate. In this situation, its inverse (JΩJ)+ is just the

ordinary inverse (JΩJ)−1. Then J(J>ΩJ)+J> =
{
J(J>ΩJ)−1/2

}{
(J>ΩJ)−1/2J>

}
, a full-

rank decomposition. Then
{
J(J>ΩJ)+J>

}+
=

{
J(J>ΩJ)−1/2

}

×
{

(J>ΩJ)−1/2J>J(J>ΩJ)−1J>J(J>ΩJ)−1/2
}−1

×
{

(J>ΩJ)−1/2J>
}

= J(J>J)−1J>ΩJ(J>J)−1J>

= Ω.

This means that J(J>ΩJ)+J> = Ω+.

When det(Ω22) = 0, we can obtain that

Ω+ =


 1/Ω11 + Ω12Ω+

22.1Ω21/Ω2
11 −Ω12Ω+

22.1/Ω11

−Ω+
22.1Ω21/Ω11 Ω+

22.1


 ,

with Ω22.1 = Ω22 −Ω21Ω12/Ω11. Write J(J>ΩJ)+J> as

 α>(J>ΩJ)+α α>(J>ΩJ)+

(J>ΩJ)+α (J>ΩJ)+


 .

Note that J>ΩJ = Ω22.1 +(Ω21/
√

Ω11 +
√

Ω11α)(Ω12/
√

Ω11 +
√

Ω11α
>), so J>ΩJ ≥ Ω22.1.

Combining this with rank(Ω22) = d− 2, we have that (J>ΩJ)+ ≤ Ω+
22.1. It is easy to check

that α>Ω22.1 = 0, so α ⊥ span(Ω22.1) and α>Ω+
22.1α = 0, and then α>(J>ΩJ)+ = 0. In

this situation, J(J>ΩJ)+J> ≤ Ω+ and the stick less-than sign holds since J>ΩJ 6= Ω22.1

and 1/Ω11 > 0. ¤

Proof of Theorem 2.
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Under H0, we have β = [e B]>(
√

1− ‖ω(1)‖2,ω(1)τ )> with e = (1, 0, · · · , 0)> is a r-

dimensional vector,

B =


 0> 0

Ir−1 0




is a r×(d−1) matrix and ω(1) = (β2, · · · , βr)> is a (r−1)×1 vector. Let ω = (
√

1− ‖ω(1)‖2,ω(1)>)>.

So under H0 the estimator is also the local maximizer ω̂ of the problem

Q̂([e B]>ω̂) = sup
‖ω(1)‖<1

Q̂([e B]>ω).

Expanding Q̂(B>ω̂) at β̂(1) by a Taylor’s expansion and noting that ∂Q̂(β)

∂β(1)

∣∣∣
β(1)=β̂(1)

= 0, then

Q̂(β̂)− Q̂(B>ω̂) = T1 + T2 + OP (1), where

T1 = −1
2

(
β̂(1) −B>ω̂

)> ∂2Q̂(β)
∂β(1)∂β(1)τ

∣∣∣
β(1)=β̂(1)

(
β̂(1) −B>ω̂

)
,

T2 =
1
6

(
β̂(1) −B>ω̂

)> ∂
{

(β̂(1) −B>ω̂)> ∂2Q̂(β)

∂β(1)∂β(1)τ |β(1)=β̂(1)(β̂(1) −B>ω̂)
}

∂β(1)
.

Assuming the conditions in Theorem 1 and under the null hypothesis H0, it is easy to show

that
√

n(B>ω̂ −B>ω) =
1√
n
B>B(J>ΩJ)+G(β) + OP (1).

Combining this with (A.28), under the null hypothesis H0,
√

n(β̂(1) −B>ω̂(1))

= 1√
n
(J>ΩJ)1/2+{Id−1 − (J>ΩJ)1/2B>B(J>ΩJ)1/2+}(J>ΩJ)1/2+G(β) + oP (1).

(A.29)

Since 1√
n
G(β) = OP (1), ∂2Q̂(β)

∂β(1)∂β(1)τ

∣∣∣
β(1)

= −nJ>ΩJ+OP (n) and matrix J>ΩJ has eigenval-

ues uniformly bounded away from 0 and infinity, we have ‖β̂(1)−B>ω̂(1)‖ = OP (n−1/2) and

then |T2| = OP (1). Combining this and (A.29), we have

Q̂(β̂)− Q̂(B>ω̂) = n
2 (β̂(1) −B>ω̂(1))>J>ΩJ(β̂(1) −B>ω̂(1))

= n
2G

>(β)(J>ΩJ)1/2+P(J>ΩJ)1/2+G(β),

with P = Id−1 − (J>ΩJ)1/2B>B(J>ΩJ)1/2+. Here P is idempotent having rank d − r, so

it can be written as P = S>S where S ia a (d − r) × (d − 1) matrix satisfying SS> = Id−r.

Consequently,

2{Q̂(β̂)− Q̂(B>ω̂)} =
(√

nS(J>ΩJ)1/2+G(β)
)>(√

nS(J>ΩJ)1/2+G(β)
)

L−→ χ2(d− r).

¤
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