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Abstract

In this article, we present new ideas concerning Non-Gaussian Component
Analysis (NGCA). We use the structural assumption that a high-dimensional

random vector ~X can be represented as a sum of two components - a low-
dimensional signal ~S and a noise component ~N . We show that this assump-
tion enables us for a special representation for the density function of ~X.
Similar facts are proven in original papers about NGCA ([1], [5], [13]), but
our representation differs from the previous versions. The new form helps us
to provide a strong theoretical support for the algorithm; moreover, it gives
some ideas about new approaches in multidimensional statistical analysis. In
this paper, we establish important results for the NGCA procedure using the
new representation, and show benefits of our method.
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Introduction

Each method for solving the dimension reduction problem has its own
”point of departure”. In the approach based on Independent Component
Analysis, high-dimensional data are assumed to be a linear or nonlinear mix-
ture of unknown latent non-Gaussian variables [Hyvärianen et al., 2001].
Another popular method - Principal Component Analysis - implies that the
projection representing the data optimally in the least-squared sense is the
best projection [Jackson, 1991].

In this paper, we discuss the new ideas concerning Non-Gaussian Compo-
nent Analysis (NGCA). The method assumes that the ”useful part” (which
one can imagine as ”a signal” or ”an information”) of the high - dimen-
sional random variable belongs to some low-dimensional space, and the ”rest
part” has normal distribution. This assumption follows the observation that
in real-world applications the ”useful part” is non-Gaussian while the ”rest
part” has a nearly Gaussian distribution [Blanchard et al, 2006].

The aim of Non-Gaussian Component Analysis is to estimate the subspace
of the ”useful part”, also known as an effective dimension reduction subspace
(EDR subspace). The original method can be briefly explained as follows:
1) finding vectors that belong to the EDR subspace; 2) constructing a basis
from vectors that were obtained on the first step. [Blanchard et al., 2006;
Kawanabe et al., 2007; Dalalyan et al., 2007; Diederichs et al., 2010]

We focus on the first task - finding vectors from the EDR subspace. The
proof of the original method is based on the special representation of the
density function. A serious limitation is that the representation involves
the covariance matrix of the noise component, which cannot be consistently
estimated from the data. This fact is an obstacle in real-world applications
of the method.

In this article, we describe the new representation of the density func-
tion. Our representation doesn’t involve the noise covariance matrix; it only
includes the covariance matrix of the observations, which can be assessed.

This paper is organized as follows. Subsection 2.1 explains the new rep-
resentation. Then we formulate the main results of NGCA using this form
and discuss practical issues. Afterwards we discuss advantages of the new
representation. All proofs can be found in the appendices, as well as some
examples of practical applications.
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1. Set-up and General Scheme

This section gives a formal description of the method.
Assume that a high-dimensional random variable ~X ∈ Rd can be repre-

sented as a sum of two independent components - a low-dimensional signal
and a noise component. More precisely,

~X = ~S + ~N, (1)

where

• ~S belongs to some low-dimensional subspace S, dimS = m < d;

• ~N is a normal vector with zero mean and a covariance matrix Γ;

• ~S is independent of ~N .

The original aim of NGCA is to recover the subspace (KerT )⊥. Theoret-
ical framework is presented in [1], [5], [13]. It can be split into the following
steps:

(T1) A proof of the formula for the density function of X:

p(~x) = g(T~x)φΓ(~x)

where

i) T is a linear transformation from Rd to some subspace S◦ that has
dimensionality m;

ii) g is some function from S◦ to R;
iii) φΓ(~x) is the density function for the normal distribution with zero

mean and covariance matrix equals Γ.

So, the density function of ~X can be represented as a product of two
functions. The first one is a superposition of the linear transformation
T from Rd to some low-dimensional subspace S◦ and some function
from S◦ to R. The second function is the density function of the normal
distribution.

(T2) A proof of the key result: if function ψ : Rd → R is such that

E
[
~Xψ( ~X)

]
= ~0, (2)
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then
~β := E

[
∇ψ( ~X)

]
∈ (Ker T )⊥ .

This result gives a method for estimating vectors from (Ker T )⊥. It
means that if one can construct a function that satisfies (2) then one
can estimate a vector from the subspace (Ker T )⊥.

(T3) Finding a method for constructing a basis of (KerT )⊥ from vectors
that were obtained on the previous step.

One can develop a method for estimating the EDR subspace, based on
(T1)-(T3):

(P1) Estimate vectors from (Ker T)⊥; the corresponding fact is proved in
(T2).

(P2) Construct a basis of S using vectors from previous step; see item (T3).

This paper has a slightly different focus: the aim is to recover the sub-
space S. Relation between the subspace S and the subspace (KerT )⊥ uses
an unknown matrix Γ (covariance matrix of noise). This means that it is
impossible to estimate vectors from S using only estimates of vectors from
(KerT )⊥; in other words, original approach produces estimates vectors from
S only in the case of white noise.

This article is organized as follows:
Subsection 2.1: a new ”convenient” form of the density function of ~X

(alternative version of the item (T1)), which doesn’t use the matrix Γ; the
proof is given in Appendix A.1.

Subsection 2.2: the key result for the new representation of the density
function (a generalization of the original key result is given); the proof can
be found in Appendix A.2.

Subsection 2.3: studying a relation between S and (KerT )⊥; this rela-
tion also doesn’t include matrix Γ.

Section 3: discussion about the advantages of the new form.
Appendix A: proofs of the main results.
Appendix B: some ideas about application of NGCA in multidimen-

sional statistical analysis.

2. Main results

2.1. Density representation

The new representation for the density function is given in Theorem 1.
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Theorem 1. Let the structural assumption (1) be fulfilled. Then the density

function of the random vector ~X can be represented in the following way:

p(~x) = g(T~x)φΣ(~x), (3)

where

• T : Rd → S ′, S ′ := Σ−1/2S, dimS ′ = m,

T~x = PrS′{Σ−
1
2~x}, (4)

by Σ we denote the matrix E
[
~X ~XT

]
.

• g : S ′ → R,

g(~t) = |Σ−1/2|
q
(
PrS′{~t}

)
φm
(
PrS′{~t}

) , (5)

where q(·) is the density function of the random variable Pr S′{Σ−1/2 ~X}.

The proof is given in Appendix A.1.

Remark 1. One can find similar results in [1], [5], and [14]. Usually such
facts are stated in the following form: if assumption (1) is fulfilled, then

∃ T : Rd → S̃, dim S̃ = m, ∃g : S̃ → R such that

p(~x) = g(T~x)φΓ(~x) (6)

with some linear transformation T and some function g. Main difference
between (3) and (6) is that (6) uses the covariance matrix Σ while (3) relies
on the covariance matrix of the Gaussian component.

Advantages of the new form will be discussed later, see subsection 3 for
details.

Remark 2. The linear transformation T acts on ~x in the following way:

1. firstly, S and ~x are transformed by matrix Σ−1/2;

2. secondly, transformed ~x is projected on transformed S.

Figure 1 illustrates this action.

5



Figure 1: The action of the linear transformation T: 1. ~x is transformed by S; 2. trans-
formed ~x is projected on transformed S.

2.2. Key result of NGCA

The key result of NGCA can be found e.g. in [14]. We state this result
in a slightly different form.

Theorem 2. Assume that the density function of a random vector ~X ∈ Rd

can be represented in the following way:

p(~x) = g(T~x)φA(~x), (7)

where T : Rd → E is any linear transformation (E - any subspace), g : E → R
- any function, and A - any d× d symmetric positive matrix.

Let a function ψ : Rd → R be such that

E
[
~Xψ( ~X)

]
= 0.

Then
E
[
∇ψ( ~X)

]
∈ (Ker T )⊥ .

The proof is given in Appendix A.2.
This theorem applies to the representation from the previous subsection

(see (3)) and to the former versions of theorem 1 (see (6)). In the next
section, we explain why this result is useful for finding vectors from S.

2.3. What is (KerT)⊥ ?

The previous section gives us the method for finding vectors from the
subspace (KerT)⊥. Now we explain, why it is useful for our purposes (that
is, finding vectors that belong to S).

The following lemma plays the key role in practical use of NGCA.
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Lemma 3. Let T be the linear transformation defined by (4). Then

(KerT)⊥ = Σ−1S.

Proof. By definition, for any x

T~x = PrΣ−1/2S{Σ−
1
2~x}.

It is easy to see that

KerT =
{
~x : Σ−1/2~x ⊥ Σ−1/2S

}
=
{
~x : ∃~s ∈ S | ~x>

(
Σ−1/2

)>
Σ−1/2~s = 0

}
=
{
~x : ∃~s ∈ S | ~x> Σ−1~s = 0

}
=
{
~x : ~x ⊥ Σ−1S

}
.

Here we use the symmetry of the matrix Σ−1/2.

From a practical point of view, the last lemma means that one can obtain
estimates for vectors from the subspace S using the key result. In fact, one
can estimate vectors from the space Σ−1S using the key result. Denote these
vectors by β̂i. Then one can estimate vectors from the space S by Σ̂β̂i, where
Σ̂ is an estimator of the matrix Σ.

3. Discussion

This section discusses the novelty of the proposed approach relative to
the original papers about NGCA ([1], [5]).

Theorem 1 stands that in our set-up the density function of ~X can be
represented in the following way:

p(~x) = g(T~x)φΣ(~x),

where the linear transformation T is given by (4) and the function g is given
by (5). In the previous papers about NGCA, another result is proved (it has
been already mentioned, see remark 1):

p(~x) = g(T~x)φΓ(~x).

The new representation has only one principal difference - the covariance
matrix of the normal component is equal to Σ while in the original version
it is equal to Γ.

The new approach has some advantages.
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1. One doesn’t need any knowledge of Γ. In fact, the representation from
Theorem 1 involves only the unknown subspace S; on the other hand,
the former form involves the subspace S and the matrix Γ.

2. It is clear what the linear transformation T and the subspace (KerT)⊥

are, see figure 1, remark 2, and section 2.3 for details.
In the contrary of the new version, action of the linear transformation
T from the former version is much more involved. The explanation of
this action is given below. Consider three cases.

(i) Γ = Id and S is a span of first m basis vectors. Then the linear
transformation T is simply a projector onto the first m compo-
nents; denote this projector by Πm.

(ii) The noise covariance matrix Γ is still the identity matrix Id; S is a
span of some m orthogonal vectors. Denote a transaction matrix
by U . Then

T = Πm U.

(iii) Γ is not necessary equal to the identical matrix; S is any subspace
with dimensionality m. In this case

T = Πm U Γ−1/2. (8)

In the first and in the second cases and even in the third (general) case
with a diagonal matrix Γ, one can show that

(KerT )⊥ = S.

If Γ is not diagonal, then the formula for the subspace (KerT )⊥ includes
the matrix Γ, which cannot be estimated from the data. This fact is
an obstacle in real-world applications of the method.

3. The new presentation for the density function allows us to apply NGCA
to the classification problem. According to this method given in Ap-
pendix B.1, one has to test the assumption

Σ1 = Σ2,

where Σ1 and Σ2 are the covariance matrices for the first and the second
groups correspondingly. This assumption is widely used and the testing
problem can be solved by different methods ([6], [9]).
Possible applications of NGCA in the previous versions lead to the as-
sumption of equality of the noise covariance matrices. Such hypothesis
are more difficult to test.
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Appendix A. Proofs of the main results

Appendix A.1. Proof of Theorem 1

Step 1. Denote by ~X ′ = Σ−1/2 ~X the standardized vector,

Σ−1/2 ~X = Σ−1/2~S + Σ−1/2 ~N. (A.1)

Introduce the notation

~S ′ = Σ−1/2~S, ~N ′ = Σ−1/2 ~N. (A.2)

The first component in (A.1) belongs to the subspace S ′ := Σ−1/2S.
Denote by N′ the subspace that is orthogonal to S ′,

N′ = Σ1/2S⊥.

Studying a relation between the subspaces S ′ and N′ can be found in Ap-
pendix A.3.

Vector N′ can be decomposed into the sum of two vectors,

~N ′ = ~NS′ + ~NN′ ,

where ~NS′ ∈ S ′, ~NN′ ∈ N′.
So, up to now the following decomposition of ~X ′ is proved:

~X ′ = ~S ′ + ~NS′︸ ︷︷ ︸
∈ S ′

+ ~NN′︸︷︷︸
∈ N′

.

It is worth mentioning that the density function doesn’t depend on a basis.
This means that for a calculation of the density function the basis can be
changed arbitrarily. Let us choose the basis such that the first m vectors
~v1, ..., ~vm compose a basis of S ′ and the next d−m vectors ~vm+1, ..., ~vd compose
a basis of N′. In the following we assume that this change is already made.

Step 2. By definition, ~X ′ is a standardized vector. This step shows that
the vectors ~Z ′ = ~S ′ + ~NS′ and ~NN′ are also standardized.

Id = Cov ~X ′ = E
[
~X ′ ~X ′T

]
= E

[
~Z ′ ~Z ′T

]
+E

[
~NN′

~NT
N′

]
+E

[
~S ′ ~NT

N′

]
+E

[
~NS′ ~N

T
N′

]
+E

[
~NN′

~S ′T
]
+E

[
~NN′

~NT
S′

]
(A.3)

Note some facts:
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(i) By the change of the basis, the last d −m components of the vectors
~S ′, ~Z ′, ~NS′ and the first m components of the vector ~NN′ are equal to
zero.

(ii) The vectors ~S ′ = Σ−1/2~S and ~NN′ = Pr N′{Σ−1/2 ~N} are independent as

functions of the independent vectors ~S and ~N .

(iii) E ~NN′ = E
[
PrN′{Σ−1/2 ~N}

]
= 0, because of E ~N = 0 and (i).

Now it’s easy to see that the third and the fifth summands in (A.3) are
equal to zero. In fact,

E
[
~S ′ ~NT

N′

]
= E~S ′ ENT

N′ = 0.

So, one can rewrite (A.3) in the following way

Id = E
[
~Z ′ ~Z ′T

]
+ E

[
~NN′

~NT
N′

]
+ E

[
~NS′ ~N

T
N′

]
+ E

[
~NN′

~NT
S′

]
. (A.4)

Decompose the vectors ~Z ′, ~NS′ and ~NN′ into the basis ~v1, .., ~vd:

~Z ′ =
m∑
i=1

zi~vi; ~NS′ =
m∑
i=1

ni~vi; ~NN′ =
d∑

i=m+1

ni~vi, (A.5)

where all coefficients zi and ni are random values.
Equality (A.4) can be rewritten as follows:

Id =
m∑

i,i′=1

E [zizi′ ]~vi~v
>
i′ +

d∑
i,i′=m+1

E [nini′ ]~vi~v
>
i′

+
m∑
i=1

d∑
i′=m+1

E [nini′ ]~vi~v
>
i′ +

d∑
i=m+1

m∑
i′=1

E [nini′ ]~vi~v
>
i′

Then the second term in the right hand side is equal to Id−m, i.e.

E
[
~NN′

~NT
N′

]
=

d∑
i,i′=m+1

E [nini′ ]~vi~v
>
i′ = Id−m.

Thus, the (d−m) - dimensional vector ~NN′ has the standard normal distri-
bution. Denote the density function by φd−m(x).
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Step 3. Denote by F ′(~x′) and p′(~x′) the distribution function and the

density function of the vector ~X ′.

F ′(~x′) = P
{
~X ′ 6 ~x′

}
= P

{
~Z ′ + ~NN′ 6 ~x′

}
(A.6)

Note some facts:

(i) Vectors ~Z ′ = ~S ′ + ~NS′ and ~NN′ are independent. In fact, vectors
~S ′ = Σ−1/2~S and ~N ′ = Σ−1/2 ~N are independent. Then vectors ~S ′,
~NN′ and ~NS′ are jointly independent (this follows from the choice of

the basis). Finally, ~Z ′ and ~NN′ are independent as functions of inde-
pendent variables.

(ii) The basis choice (A.5) enables us to split the inequality

~Z ′ + ~NN′ 6 ~x′ =
d∑
i=1

xi~vi

into two:

~Z ′ 6
m∑
i=1

xi~vi, ~NN′ 6
d∑

i=m+1

xi~vi.

In the sequel, the following notation is used

~xS′ :=
m∑
i=1

xi~vi, ~xN′ :=
d∑

i=m+1

xi~vi

The function F ′ can be rewritten in the following way:

F ′(~x′) = P
{
~Z ′ + ~NN′ 6 ~x′

}
= P

{
~Z ′ 6 ~xS′ , ~NN′ 6 ~xN′

}
= P

{
~Z ′ 6 ~xS′

}
P
{
~NN′ 6 ~xN′

}
.

Taking derivatives of the both parts of the last formula gives the representa-
tion of the density function of ~X ′.

p(~x′) = q(~xS′)φd−m(~xN′) =
q (~xS′)

φm (~xS′)
φd(~x

′) =
q(PrS′{~x′})
φm(PrS′{~x′})

φd(~x
′),
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where by q(·) denote the density function of the random vector ~Z ′ = ~S ′ +
~NS′ = PrS′{ ~X}.

Step 4. The last step derives representation of the density function of
the vector ~X = Σ1/2 ~X from the density function of ~X ′. According to the
well-known formula for a density transformation,

p(~x) = |Σ−1/2| p′(Σ−1/2~x) = |Σ−1/2|
q
(
PrS′{Σ−1/2~x}

)
φm (PrS′{Σ−1/2~x})

φd(Σ
−1/2~x).

The remark φd(Σ
−1/2~x) = φΣ(~x) concludes the proof.

Appendix A.2. Proof of Theorem 2

Integration by parts yields

E ∇ψ( ~X) =

∫
∇ [ψ(~x)] p(~x)dx = −

∫
ψ(~x)∇ [p(~x)] dx. (A.7)

The gradient of the density function can be represented as a sum of two
components:

∇p(~x) = ∇ [log p(~x)] p(~x) = ∇ [log g(T~x)] p(~x) +∇ [log φA(~x)] p(~x).

The summands in the right hand side can be transformed in the following
way:

∇ [log g(T~x)] p(~x) =
∇g(T~x)

g(T~x)
p(~x)

= ∇ [g(T~x)]φA(~x) = T>∇{T~x} [g(T~x)]φA(~x)

∇ [log φA(~x)] p(~x) = −Σ−1~xp(~x).

Substitution of these expressions into (A.7) yields:

E ∇ψ( ~X) = −T>
∫
ψ(~x)∇{T~x} [g(T~x)]φA(~x)p(~x)dx+ Σ−1

∫
ψ(~x)~xp(~x)dx

= T>~Λ + Σ−1E
[
~Xψ( ~X)

]
= T>~Λ

∈ Im(T>) = (KerT )⊥ ,

where ~Λ = −
∫
ψ(~x)∇{T~x} [g(T~x)]φA(~x)p(~x)dx. This completes the proof.
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Appendix A.3. Some facts about subspaces

Denote the subspace ΓS⊥ by N. Motivation of introducing this subspace
is given in [14]: it turns out, that oblique projection onto S along N is in
some sense the optimal mapping onto S.

Lemma 4.
N := ΣS⊥.

Proof.

ΣS⊥ = E
[
~x~x⊥

]
S⊥

= E
[
~s~s⊥
]
S⊥ + E

[
~s~n⊥ + ~n~s⊥

]
S⊥ + E

[
~n~n⊥

]
S⊥ = E

[
~n~n⊥

]
S⊥,

because mathematical expectations in the first and in the second summands
are equal to zero.

This result means that the space N can be described without any knowl-
edge of Γ.

Lemma 5. Let S1 be any subspace, A - any symmetric matrix. Then the
subspace A−1/2S1 is orthogonal to the subspace A1/2S⊥1 .

Proof. It suffices to mention that two arbitrary elements of these subspaces
are orthogonal.

Corollary 6. The subspace Σ−1/2S is perpendicular to the subspace Σ−1/2N.

Proof.
Σ−1/2N = Σ−1/2Σ S⊥ = Σ1/2S⊥.

According to lemma 5, this subspace is perpendicular to the subspace Σ−1/2S.

The last fact plays the key role in the proof of Theorem 1.

Appendix B. Examples of possible applications

Appendix B.1. Classification problem

In this section we discuss how one can use NGCA algorithm for solving
the classification problem.
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Figure B.2: Non-Gaussian component analysis for the classification problem. We assume
that the useful signal for both populations belongs to the same low-dimensional subspace
S; rest parts have normal distribution, but with different covariance matrices.

Lemma 7. Consider two populations presented by vectors ~X1 and ~X2 from
Rd. Assume that

~X1 = ~S1 + ~N1, ~X2 = ~S2 + ~N2,

where

• the useful signals ~S1 and ~S2 belong to the same low-dimensional sub-
space S, dim(S) = m;

• the noise components ~N1, ~N2 are normal vectors with covariance ma-
trices Γ1 and Γ2;

• ~S1 is independent of ~N1, ~S2 is independent of ~N2;

• covariance matrix of ~X1 is equal to covariance matrix of ~X2; denote
this matrix by Σ.

Then the density functions of ~X1 and ~X2 can be represented in the following
form:

p1(~x) = g1(T~x)φΣ(~x)

p2(~x) = g2(T~x)φΣ(~x)

where

14



• T : Rd → S ′, S ′ := Σ−1/2S, dimS ′ = m,

T~x = PrS′{Σ−
1
2~x}

• g1,g2 : S ′ → R,

g1(~t ) = |Σ−1/2|
q1

(
PrS′{~t}

)
φm
(
PrS′{~t}

)
g2(~t ) = |Σ−1/2|

q2

(
PrS′{~t}

)
φm
(
PrS′{~t}

)
where qi(·) are the density functions of the random variables Pr S′{Σ−1/2 ~Xi},
i = 1, 2.

Remark 3. The fourth assumption is widely used in classical methods for
solving the classification task, for example in Fisher discriminant analysis.

Proof. This lemma is a straightforward corollary of Theorem 1. One has to
separately apply Theorem 1 for each population.

So, the density functions of the random vectors ~X1 and ~X2 can be represented
in the following form:

p1(~x) = |Σ−1/2|
q1

(
PrΣ−1/2S{Σ−1/2~x}

)
φm (PrΣ−1/2S{Σ−1/2~x})

φΣ(~x) (B.1)

p2(~x) = |Σ−1/2|
q2

(
PrΣ−1/2S{Σ−1/2~x}

)
φm (PrΣ−1/2S{Σ−1/2~x})

φΣ(~x) (B.2)

It is worth mentioning that these representations differ only in one place:
the function q1 for the first group and the function q2 for the second.

Lemma 7 yields that one can estimate the space S using the following
algorithm:

1. estimating vectors from S using the first population (by the key result)

2. estimating vectors from S using the second population (by the key
result)

3. constructing a basis of S; here one can use all vectors that were obtained
on the first and on the second steps
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Consider a new object ~x◦ and classify it into one category. Standard way
for solving this problem - comparison of the density functions p1(·) and p2(·)
at the point ~x◦. So, one has to compare

g1 (T~x◦)φΣ(~x◦) vs g2 (T~x◦)φΣ(~x◦).

According to (B.1) and (B.2), it is equivalent as to compare

q1

(
Pr

Σ−
1
2 S
{Σ−

1
2~x◦}

)
vs q2

(
Pr

Σ−
1
2 S
{Σ−

1
2~x◦}

)
. (B.3)

If the EDR subspace S is already estimated, then the data can be projected
on the low-dimensional subspace Σ−

1
2S. Afterwards task (B.3) is a well-

known problem of comparison of the two densities of some low-dimensional
variables.

Appendix B.2. Portfolio Value at Risk

This subsection discusses possible applications of NGCA in the estimating
of Value at Risk.

At time t an investor has some endowment Wt and an additional reserve
amount Rt. An endowment can be calculated in the following way:

Wt = ~b T ~pt,

where ~b is a fixed allocation (a portfolio) and ~pt - market prices at time t (or
logarithms of market prices). The reserve amount is supposed to compensate
potential changes in the market price. Investor selects this reserve amount
from the following condition:

P {Wt+h +Rt < 0} = α, (B.4)

where α is some some fixed constant; h is some fixed amount of time points
(usually h = 10 days).

Value at Risk is defined as the required capital at time t; actually it is
the sum of the endowment and the reserve amount at time t:

VaRt = Wt +Rt.

The economical meaning of Value at Risk can be briefly explained as the
maximal loss for h days. This meaning becomes clear if one rewrites (B.4)
as follows:

P {Wt+h < Wt − VaRt} = α.
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On the other hand, one can rewrite the last formula as

P {Wt+h −Wt < −VaRt} = α,

and statistical meaning of Value at Risk becomes also clear: (−VaRt) is in
fact the α - quantile of the distribution of Wt+h −Wt.

Let us denote the deference ~pt+h−~pt by ~Xt, the correspondent α - quantile

of the random variable ~b T ~Xt by qα

(
~b T ~Xt

)
.

The aim is to estimate qα, see [7], [8]. In this article, we follow the
proposal from [2] based on Independent Component Analysis (ICA). ICA is
used to represent the portfolio loss as a result of several independent non
- Gaussian factors. Independence allows to estimate and study each factor
independently from the others. To be more specific, let us decompose this
method into two steps:

• find statistically independent components Yt such that

Xt = AYt;

• simulate independent components N times (we denote this simulations

by ŷ
(k)
t , k = 1..N) and estimate VaRt

VaRt = − 1

N

N∑
k=1

q̂α

({
~b T Aŷ

(k)
t

})
.

The main idea of this approach is to reduce a sampling from a high-
dimensional to a low-dimensional variate. In the sequel, two methods for
finding such variates using NGCA are discussed.

The first method based on NGCA
Assume that the random variable ~Xt can be represented as a sum of two

components - a low-dimensional useful component and a Gaussian noise:

~Xt = ~St + ~Nt. (B.5)

Then
Rt = ~b T ~Xt = ~b T ~St + ~b T ~Nt︸ ︷︷ ︸

N(0,~b T Γ~b)

.

Note that the second variable has a normal distribution; the first component
is the scalar product of the fixed vector and the low-dimensional random
vector. This means that one can
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• generate N samples {s(k)
i }di=1, k = 1..N from the distribution of ~St;

• generate N samples {n(k)
i }di=1, k = 1..N from N

(
0,~b T Γ~b

)
;

• estimate Value at Risk

VaRt = − 1

N

N∑
k=1

q̂α

(
{~b T s(k)

i + n
(k)
i }
)
.

The second method based on NGCA
Assume that a random variable ~X satisfies (B.5). Then the density func-

tion of ~X can be represented in the following way:

p(~x) = g(T~x)φΣ(~x) = |Σ−1/2|
q
(
PrΣ−1/2S{Σ−1/2~x}

)
φm (PrΣ−1/2S{Σ−1/2~x})

φΣ(~x).

If the subspace S is already estimated, than all elements in this representation
are already known. This means that one can sample from this distribution
and estimate Value at Risk via

VaRt =
1

N

N∑
k=1

q̂α

({
~b T x(k)

a

})
.
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