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Abstract

This paper studies polar sets of anisotropic Gaussian random fields,
i.e. sets which a Gaussian random field does not hit almost surely. The
main assumptions are that the eigenvalues of the covariance matrix are
bounded from below and that the canonical metric associated with the
Gaussian random field is dominated by an anisotropic metric. We
deduce an upper bound for the hitting probabilities and conclude that
sets with small Hausdorff dimension are polar. Moreover, the results
allow for a translation of the Gaussian random field by a random field,
that is independent of the Gaussian random field and whose sample
functions are of bounded Hölder norm.
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Hausdorff dimension · European option · Jump diffusion · Calibration
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1 Introduction

Anisotropic Gaussian random fields arise naturally in stochastic partial dif-
ferential equations, image processing, mathematical finance and other areas.
Let X = {X(t)|t ∈ I ⊂ RN} be a centered Gaussian random field with val-
ues in Rd, where I is bounded. We will call X an (N, d)-Gaussian random
field. The distance in the canonical metric associated with the Gaussian ran-
dom field is

√
E [‖X(s)−X(t)‖2], where ‖ · ‖ denotes the Euclidean metric.

Polar sets of Gaussian random fields are investigated in [5] under the assump-
tions that the components are independent copies of the same random field,
∗This research was supported by the Deutsche Forschungsgemeinschaft through the
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that the variance is constant and that
√

E [‖X(s)−X(t)‖2] ≤ c‖s − t‖β
holds with constants c, β > 0. The recent works [7] and [2] consider the
anisotropic metric

ρ(s, t) :=
N∑
j=1

|sj − tj |Hj (1)

with H ∈]0, 1]N and assume
√

E [‖X(s)−X(t)‖2] ≤ cρ(s, t). In addition
they require for the variance only to be bounded from below. In this paper
the assumptions on the variance and on the independent copies in the com-
ponents are substituted by the milder assumption that the eigenvalues of the
covariance matrix are bounded from below. The random fields in the com-
ponents neither need to be identical distributed nor independent. Hence, we
require weaker assumptions on the dependency structure of the components
of the Gaussian random field than [5], [7] and [2]. It follows from an upper
bound on the hitting probabilities of X that sets with Hausdorff dimension
smaller than d −

∑N
j=1 1/Hj are polar. Our results allow for a translation

of the Gaussian random field X by a random field, that is independent of
X and whose sample functions are Lipschitz continuous with respect to the
metric ρ.

As an application we show that an estimator in [1], which calibrates an
exponential Lévy model by option data, is almost surely well-defined.

2 Main results

Let X be an (N, d)-Gaussian random field. Recall that we suppose the index
set I to be bounded. We will assume the following two conditions.

Condition 1. There is a constant c > 0 such that for all s, t ∈ I we have√
E [‖X(s)−X(t)‖2] ≤ cρ(s, t).

Condition 2. There is a constant λ > 0 such that for all t ∈ I and for all
e ∈ Rd with ‖e‖ = 1 we have E[(

∑d
j=1 ejXj(t))2] ≥ λ.

Condition 1 bounds the canonical metric in terms of the anisotropic
metric ρ. Condition 2 bounds the eigenvalues of the covariance matrix from
below. It excludes, for example, cases where X takes values only in some
vector subspace.

We will use a uniform modulus of continuity, see (69) in [7, p. 167]. We
restate this result in the next inequality. A weaker formulation suffices for
our purpose and is proved in the Appendix. Let X be an (N, d)-Gaussian
random field, that satisfies Condition 1. Then there is a version X ′ of X
and a constant c̃ > 0 such that almost surely the following inequality holds:

lim sup
ε↓0

sup
s,t∈I,ρ(s,t)≤ε

‖X ′(s)−X ′(t)‖
ε
√

log(ε−1)
≤ c̃. (2)

2



We will always assume that X is a version, which satisfies (2). We
define by Lipρ(L) := {f : I → Rd| ‖f(s) − f(t)‖ ≤ Lρ(s, t) ∀s, t ∈ I} the
L-Lipschitz functions with respect to the metric ρ. In each direction j the
functions in Lipρ(L) are Hölder continuous with exponent Hj . We denote
by Bρ(t, r) := {s ∈ RN |ρ(s, t) ≤ r} the closed ball of radius r around t.

Lemma 1. Let X be an (N, d)-Gaussian random field, that satisfies Con-
ditions 1 and 2. Then for each L ≥ 0 there is a constant C > 0 such that
for all t ∈ I, for all r > 0 and for all functions f ∈ Lipρ(L) we have

P
(

inf
s∈Bρ(t,r)∩I

‖X(s)− f(s)‖ ≤ r
)
≤ Crd. (3)

Proof. For all integers n ≥ 1 we define εn := r exp(−2n+1) and denote by
Nn := Nρ(Bρ(t, r)∩I, εn) the covering number, that is the minimum number
of ρ-balls with radii εn and centers in Bρ(t, r) ∩ I that are needed to cover
Bρ(t, r) ∩ I. We have the inclusion Bρ(t, r) ⊆

∏N
j=1[tj − r1/Hj , tj + r1/Hj ].

On the other hand each set
∏N
j=1[sj , sj + (εn/N)1/Hj ] can be covered by a

single ball with radius εn. Hence there is a constant c1 > 0 independent
of n such that Nn ≤

∏N
j=1((2rN/εn)(1/Hj) + 1) ≤ c1 exp(Q2n+1) where

Q =
∑N

j=1 1/Hj .

We denote by {t(n)
i ∈ Bρ(t, r) ∩ I|1 ≤ i ≤ Nn} a set of points such that

the balls with the centers {t(n)
i } and radii εn cover Bρ(t, r) ∩ I. We define

rn := βεn2
n+1

2 ,

where β > c̃ is some constant to be determined later. For all integers n, k ≥ 1
and 1 ≤ i ≤ Nk, we define the following events

A
(k)
i :=

{
‖X(t(k)i )− f(t(k)i )‖ ≤ r +

∞∑
l=k

rl

}
, (4)

A(n) :=
n⋃
k=1

Nk⋃
i=1

A
(k)
i = A(n−1) ∪

Nn⋃
i=1

A
(n)
i , (5)

where the last equality only holds for n ≥ 2. We will show that the prob-
ability in (3) can be dominated by the limit of the probabilities of the sets
A(n)

P
(

inf
s∈Bρ(t,r)∩I

‖X(s)− f(s)‖ ≤ r
)
≤ lim

n→∞
P(A(n)). (6)

For all s ∈ Bρ(t, r)∩ I and all n ≥ 1 there exists in such that ρ(s, t(n)
in

) ≤ εn.
By (2) we obtain almost surely

lim sup
n→∞

sup
s∈I

‖X(s)−X(t(n)
in

)‖
rn

≤ c̃

β
< 1,
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where the supremum over s is to be understood such that in varies according
to s. Let κ ∈ ]c̃/β, 1[. Especially there is N such that for all n ≥ N we have

sup
s∈I

‖X(s)−X(t(n)
in

)‖
rn

≤ κ. (7)

By going over to a possibly greater constant N we ensure that (1−κ)c̃2
N+1

2 ≥
L. On the event infs∈Bρ(t,r)∩I ‖X(s)−f(s)‖ ≤ r there exists s0 ∈ Bρ(t, r)∩I
such that

‖X(s0)− f(s0)‖ ≤ r +
∞∑

l=N+1

rl. (8)

Choose iN such that ρ(s0, t
(N)
iN

) ≤ εN . Using (7), (8) and the Lipschitz
continuity of f we obtain

‖X(t(N)
iN

)− f(t(N)
iN

)‖

≤‖X(t(N)
iN

)−X(s0)‖+ ‖X(s0)− f(s0)‖+ ‖f(s0)− f(t(N)
iN

)‖

≤κrN + r +
∞∑

l=N+1

rl + Lρ(s0, t
(N)
iN

)

≤κrN + r +
∞∑

l=N+1

rl + (1− κ)c̃2
N+1

2 εN ≤ r +
∞∑
l=N

rl

and (6) is established.
Trivially we have for n ≥ 2

P(A(n)) ≤ P(A(n−1)) + P(A(n)\A(n−1))

and by (5) we have

P(A(n)\A(n−1)) ≤
Nn∑
i=1

P(A(n)
i \A

(n−1)
i′ ),

where i′ is chosen such that ρ(t(n)
i , t

(n−1)
i′ ) < εn−1. We note that for n ≥ 2

P(A(n)
i \A

(n−1)
i′ ) (9)

=P

(
‖X(t(n)

i )− f(t(n)
i )‖ ≤ r +

∞∑
l=n

rl, ‖X(t(n−1)
i′ )− f(t(n−1)

i′ )‖ > r +
∞∑

l=n−1

rl

)
≤P
(
‖X(t(n)

i )− f(t(n)
i )‖ ≤ c2 r, ‖X(t(n)

i )−X(t(n−1)
i′ )‖ > rn−1 − Lεn−1

)
≤P
(
‖X(t(n)

i )− f(t(n)
i )‖ ≤ c2 r, ‖X(t(n)

i )−X(t(n−1)
i′ )‖ > (β2

n
2 − L)εn−1

)
,
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where c2 = 1+β
∑∞

l=1 2
l+1
2 exp(−2l+1). We ensure (β2

n
2−L) > 0 by choosing

β > L/2. The idea is to rewrite X(t(n)
i )−X(t(n−1)

i′ ) as a sum of two terms,
one expressed by X(t(n)

i ) and the other independent of X(t(n)
i ).

Lipρ(L) is invariant under orthogonal transformations. By the spectral
theorem we may choose new coordinates such that the covariance matrix
at t(n)

i is diagonal. Then the components of X(t(n)
i ) are independent. By

assumption σj(s) :=
√

E [Xj(s)2] > 0. We define the standard normal
random variables

Yj(s) :=
Xj(s)
σj(s)

.

Note that E[Y (t(n)
i )Y (t(n)

i )>] = Id holds. If E
[
(Xj(s)−Xj(t))2

]
> 0 we

define
Yj(s, t) :=

Xj(s)−Xj(t)√
E [(Xj(s)−Xj(t))2]

and Yj(s, t) := 0 otherwise. We further define a matrix η and a random
vector Z by

η := E
[
Y (t(n)

i , t
(n−1)
i′ )Y (t(n)

i )>
]
,

Z(t(n)
i , t

(n−1)
i′ ) := Y (t(n)

i , t
(n−1)
i′ )− ηY (t(n)

i ).

We observe that |ηjk| ≤ 1 and hence in the operator norm ‖η‖ ≤ d. The
random vectors Z(t(n)

i , t
(n−1)
i′ ) and Y (t(n)

i ) are independent because the co-
variance matrix is the zero matrix. By the definition of Y (t(n)

i ) we see
that Z(t(n)

i , t
(n−1)
i′ ) and X(t(n)

i ) are independent, too. We want to bound
P(A(n)

i \A
(n−1)
i′ ). If t(n)

i = t
(n−1)
i′ then P(A(n)

i \A
(n−1)
i′ ) = 0 holds. Thus we

may assume that ρ(t(n)
i , t

(n−1)
i′ ) > 0. (9) is bounded by

P

(
‖X(t(n)

i )− f(t(n)
i )‖ ≤ c2 r, ‖Y (t(n)

i , t
(n−1)
i′ )‖ > (β2

n
2 − L)εn−1

c ρ(t(n)
i , t

(n−1)
i′ )

)

≤P

(
‖X(t(n)

i )− f(t(n)
i )‖ ≤ c2 r, ‖Z(t(n)

i , t
(n−1)
i′ )‖+ ‖ηY (t(n)

i )‖ > β2n/2 − L
c

)

≤P

(
‖X(t(n)

i )− f(t(n)
i )‖ ≤ c2 r, ‖Z(t(n)

i , t
(n−1)
i′ )‖ > β2n/2 − L

2c

)

+P

(
‖X(t(n)

i )− f(t(n)
i )‖ ≤ c2 r, d‖Y (t(n)

i )‖ > β2n/2 − L
2c

)
:=I1 + I2.

Each component of Z(t(n)
i , t

(n−1)
i′ ) is a weighted sum of at most d+1 standard

normal random variables with weights in [−1, 1]. Hence the variance of each
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component is at most (d + 1)2. In the following cl with l ∈ N will denote
positive constants. By the independence of X(t(n)

i ) and Z(t(n)
i , t

(n−1)
i′ ) we

have

I1 =P
(
‖X(t(n)

i )− f(t(n)
i )‖ ≤ c2 r

)
P

(
‖Z(t(n)

i , t
(n−1)
i′ )‖ > β2n/2 − L

2c

)

≤c3 rdP

(
‖Z(t(n)

i , t
(n−1)
i′ )‖ > β2n/2 − L

2c

)

≤c3 rd
2d√
2π

2
√
d(d+ 1)c
β2

n
2 − L

exp

(
− (β2

n
2 − L)2

8c2d(d+ 1)2

)

≤c4 rd exp

(
− (β2

n
2 − L)2

8c2d(d+ 1)2

)
.

By the definition of Y (t(n)
i ) we have with the abbreviation σj = σj(t

(n)
i )

I2 ≤
∫
{‖u−f(t

(n)
i )‖≤c2 r, ‖(

uk
σk

)k‖>β2n/2−L
2dc

}

(
1

2π

) d
2 1
σ1 · · ·σd

e
− 1

2

(
u2
1
σ2
1
+···+u2

d
σ2
d

)
du

≤
∫
{‖u−f(t

(n)
i )‖≤c2 r}

(
1

2π

) d
2 1
σ1 · · ·σd

e
− 1

4

(
u2
1
σ2
1
+···+u2

d
σ2
d

)
du e

− 1
4

(
(β2

n
2 −L)2

4d2c2

)

≤c5 rd exp

(
−(β2

n
2 − L)2

16d2c2

)
.

To sum it up

P(A(n)) ≤P(A(n−1)) + c6 r
dNn exp

(
− (β2

n
2 − L)2

16d(d+ 1)2c2

)

≤P(A(1)) + c6 r
d
∞∑
k=2

Nk exp

(
− (β2

k
2 − L)2

16d(d+ 1)2c2

)

≤c7rd + c6 r
d
∞∑
k=2

c1 exp

(
Q2k+1 − (β2

k
2 − L)2

16d(d+ 1)2c2

)
.

We choose β > max(c̃, L/2) such that β2

16d(d+1)2c2
> 2Q. Then the sum

converges and the lemma follows by (6).

Let Hα denote the α-dimensional Hausdorff measure, see the definition,
for instance, in [4, p. 129]. Recall that Q =

∑N
j=1 1/Hj with Hj as in the

definition of the metric ρ.
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Theorem 1. Let X be an (N, d)-Gaussian random field that satisfies Con-
ditions 1 and 2. If Q < d, then for each L ≥ 0 there is a constant C > 0 such
that all Borel sets F ⊆ Rd and all random fields Y which are independent
of X and whose sample functions are all in Lipρ(L) satisfy

P (∃s ∈ I : X(s) + Y (s) ∈ F ) ≤ CHd−Q(F ). (10)

Proof. By Fubini’s theorem it suffices to show for all functions f ∈ Lipρ(L)

P (∃s ∈ I : X(s) + f(s) ∈ F ) ≤ CHd−Q(F ).

We choose some constant γ > Hd−Q(F ). By definition of the Hausdorff
measure there is a set of balls {B(xl, rl) : l = 0, 1, 2, . . . } such that

F ⊆
∞⋃
l=0

B(xl, rl) and
∞∑
l=0

(2rl)d−Q ≤ γ. (11)

For all j we cut the bounded index set I orthogonal to the j-axis with
distance (rl/N)1/Hj between the cuts. Each piece of I can be covered by a
single ball of radius rl in the metric ρ. Hence there is a constant c8 > 0 such
that I can be covered by at most c8r

−Q
l balls. We apply Lemma 1 to these

balls. By summing up we obtain

P (∃s ∈ I : X(s) + f(s) ∈ B(xl, rl)) ≤ c9rd−Ql . (12)

By (11) and (12) we have

P (∃s ∈ I : X(s) + f(s) ∈ F )

≤
∞∑
l=0

P (∃s ∈ I : X(s) + f(s) ∈ B(xl, rl)) ≤ c10γ.

We have P (∃s ∈ I : X(s) + f(s) ∈ F ) ≤ c10Hd−Q(F ), since γ > Hd−Q(F )
was chosen arbitrarily.

3 Application

In this section we apply our results to nonparametric statistics. Observations
in the Gaussian white noise model lead to a Gaussian process to which then
Theorem 1 is applied. We conclude that a certain estimator is almost surely
well-defined. Existing results on Gaussian random fields have too restrictive
assumptions for the application considered here.

The common approach to the estimation of Lévy processes is to take
advantage of the Lévy-Khintchine representation. This often involves taking
a complex logarithm of the empirical characteristic function, see e.g. [1]

7



and [3]. The branch of the logarithm needs to be taken such that the log-
characteristic function is continuous. This is referred to as the distinguished
logarithm. To this end the empirical characteristic function has to be distinct
from zero everywhere which means that zero needs to be a polar set. For
instance in the set-up of [1] the following function is estimated:

ψ : R→ C, v 7→ 1
T

log (1 + iv(1 + iv)FO(v)) ,

where T > 0, O is some L1(R) function modeling option prices and F de-
notes the Fourier transform. The argument of the logarithm is distinct from
zero for all v ∈ R and the logarithm is taken such that ψ is continuous with
ψ(0) = 0. The function O(x) is dominated by an exponentially decaying
function for |x| → ∞. Especially xO(x) is integrable. To simplify matters
we suppose that O is continuously observed as in the Gaussian white noise
model, cf. [1]. For ε ∈ L2(R) we observe

dÕ(x) = O(x)dx+ ε(x) dW (x) for all x ∈ R.

Taking the Fourier transform yields

F(dÕ)(v) = FO(v) +
∫ ∞
−∞

eivxε(x) dW (x).

Thus the canonical estimator for ψ is

ψ̃(v) :=
1
T

log
(

1 + iv(1 + iv)F(dÕ)(v)
)

for all v ∈ R.

In [1] a trimmed log-function is used to bound the real part. But this is of
no importance for the question whether the estimator ψ̃ is well-defined. We
require the following condition on ε.

Condition 3. There is a p > 1 such that
∫∞
−∞(1 + |x|)pε(x)2dx <∞.

For example, if ε ∈ L2(R) and ε(x) = O(|x|−p) for |x| → ∞ with
p > 1, then the condition is satisfied. Condition 3 and Lemma 4 in the
Appendix imply the uniform modulus of continuity (2) for a version of
X(v) :=

∫∞
−∞ e

ivxε(x) dW (x). We will assume that X is a version that
satisfies (2). Thus in the definition of ψ̃ the argument of the logarithm is
almost surely continuous.

Lemma 2. Let ε fulfill Condition 3. Let O ∈ L1(R) such that xO(x) is
integrable. Then the estimator ψ̃ is almost surely well-defined.

Proof. We have to show that almost surely the argument of the logarithm
does not hit zero. The process 1 + iv(1 + iv)F(dÕ)(v) equals 1 at v = 0. It
suffices to consider the process on R\{0}. We rewrite the process as

iv(1 + iv)
(

1
iv(1 + iv)

+ FO(v) +
∫ ∞
−∞

eivxε(x) dW (x)
)
.

8



We define

f(v) :=
1

iv(1 + iv)
+ FO(v) and X(v) :=

∫ ∞
−∞

eivxε(x) dW (x).

On a bounded index set X is an (1,2)-Gaussian random field. We will apply
Theorem 1 to X, Y = f and F = {0}. It is proved in the Appendix that
under Condition 3 there is a constant c > 0 such that for all u, v ∈ R the
inequality √

E[‖X(u)−X(v)‖2] ≤ c|u− v|min(p/2,1). (13)

holds. This gives reason to the definition ρ(u, v) := |u − v|H with H =
min(p/2, 1) ∈ ]1/2, 1]. Thus Condition 1 is satisfied and we have d − Q =
2− 1/H > 0.

It remains to show that Condition 2 is fulfilled and that f is Lipschitz
continuous with respect to the metric ρ. For ε = 0 ∈ L2(R) we have ψ̃ = ψ
and thus ψ̃ is well-defined. We will now show that the covariance matrix of
X(v) is not degenerated if ε 6= 0 ∈ L2(R) and v 6= 0. Let e ∈ R2 such that
e21 + e22 = 1. Then there is ϕ ∈ [0, 2π] such that e1 = sinϕ and e2 = cosϕ.
Consider X as a R2-valued stochastic process. The Itô isometry yields

E[(e1X1(v) + e2X2(v))2] = E

[(∫ ∞
−∞

(e1 cos(vx) + e2 sin(vx))ε(x) dW (x)
)2
]

=
∫ ∞
−∞

(e1 cos(vx) + e2 sin(vx))2ε(x)2 dx

=
∫ ∞
−∞

(sin(ϕ+ vx))2ε(x)2 dx > 0.

The function

R× [0, 2π]→ R, (v, ϕ) 7→
∫ ∞
−∞

(sin(ϕ+ vx))2ε(x)2dx

is continuous by dominated convergence. On ([−V,−1/V ]∪[1/V, V ])×[0, 2π]
it takes a minimum λV > 0 for V > 0. Hence Condition 2 is fulfilled on the
index set IV = [−V,−1/V ] ∪ [1/V, V ].

Since xO(x) is integrable we have that FO is Lipschitz continuous on R.
1/(iv(1+iv)) is Lipschitz continuous on sets bounded away from zero. Hence
f is Lipschitz continuous on IV . Since IV is bounded it follows that f is
Lipschitz continuous with respect to the metric ρ on IV .

Thus we may apply Theorem 1 to the index set IV = [−V,−1/V ] ∪
[1/V, V ]. Since Hd−Q({0}) = 0 we obtain P (∃v ∈ IV : X(v) + f(v) = 0) =
0. Because V > 0 was chosen arbitrarily the Lemma follows.
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Appendix

Lemma 3. Let X be an (N, d)-Gaussian random field that fulfills Condi-
tion 1. Then there is a version X ′ of X and a constant c̃ > 0 with the
following property. If εn ↓ 0 satisfies

∑∞
n=1 ε

ϑ
n <∞ for each ϑ > 0 then

lim sup
n→∞

sup
s,t∈I,ρ(s,t)≤εn

‖X ′(s)−X ′(t)‖

εn

√
log(ε−1

n )
≤ c̃

holds almost surely.

Proof. We define the Gaussian random field Y = {Y (t, s)|t, (t + s) ∈ I} by
Y (t, s) := X(t+ s)−X(t). By Condition 1 we have

d((t, s), (t′, s′)) :=
√

E[‖Y (t, s)− Y (t′, s′)‖2]
≤ c1 min(ρ(0, s) + ρ(0, s′), ρ(s, s′) + ρ(t, t′)).

Let ε ∈ ]0, 1/4[. We denote by Dε the diameter of Tε := {(t, s) ∈ I ×
Bρ(0, ε)|t + s ∈ I}, where Bρ(0, ε) := {s ∈ RN |ρ(s, 0) ≤ ε}. By the first
argument of the minimum Dε ≤ 2c1ε holds. For δ ∈ ]0, ε[ denote by Nd(Tε, δ)
the covering number of Tε in the metric d, i.e. the minimum number of d-
balls with radius δ that are needed to cover Tε. By the second argument of
the minimum the covering number satisfies Nd(Tε, δ) ≤ c2ε

Q/δ2Q. By the
previous estimates we obtain with the substitution y = δ/(c1/2Q2

√
ε)

∫ Dε

0

√
logNd(Tε, δ)dδ ≤

√
2Qc1/2Q2

√
ε

∫ 2c1
√
ε/c

1/2Q
2

0

√
log y−1 dy.

By choosing a possibly larger constant c1 or c2 we may assume 2c1 = c
1/2Q
2 .

The integral is solved by∫ x

0

√
log y−1 dy =

√
π

2
−
√
π

2
Erf(

√
log x−1) + x

√
log x−1,

where Erf(y) = 2√
π

∫ y
0 e
−t2dt. Estimating Erf(y) from below yields some

constant c3 > 0 such that for all x ∈ ]0, 1/2[∫ x

0

√
log y−1 dy ≤ c3x

√
log x−1.

Thus for ε ∈ ]0, 1/4[∫ Dε

0

√
logNd(Tε, δ)dδ ≤ c4ε

√
log ε−1/2
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holds. By Lemma 2.2 in [6] there is a constant K > 0 such that for all
u ≥ 2Kc4ε

√
log ε−1/2 we obtain

P

(
sup

(t,s)∈Tε
‖X ′(t+ s)−X ′(t)‖ ≥ u

)
≤ exp

(
− u2

(2KDε)2

)
.

Using the Borel-Cantelli lemma the statement follows.

Lemma 4. Let ε fulfill Condition 3. Then there exists a number c > 0
such that for all u, v ∈ R the stochastic process X(v) =

∫∞
−∞ e

ivxε(x) dW (x)
satisfies

√
E[‖X(u)−X(v)‖2] ≤ c|u− v|min(p/2,1).

Proof. Condition 3 is satisfied for q := min(p, 2) as well. We conclude that:

E
[
‖X(u)−X(v)‖2

]
=E

[∣∣∣∣∫ ∞
−∞

(eiux − eivx)ε(x)dW (x)
∣∣∣∣2
]

=
∫ ∞
−∞
|eiux − eivx|2ε(x)2dx

≤
∫ ∞
−∞

min(4, (u− v)2x2)ε(x)2dx

=
∫
|x|≥2|u−v|−1

4ε(x)2dx+
∫
|x|<2|u−v|−1

(u− v)2x2ε(x)2dx

≤
∫
|x|≥2|u−v|−1

4
(

|x|
2|u− v|−1

)q
ε(x)2dx

+
∫
|x|<2|u−v|−1

(
2|u− v|−1

|x|

)2−q
(u− v)2x2ε(x)2dx

=22−q|u− v|q
∫ ∞
−∞
|x|qε(x)2dx

This shows the lemma.
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