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Abstract. This review deals with several microscopic models of financial markets
which have been studied by economists and physicists over the last decade: Kim-
Markowitz, Levy-Levy-Solomon, Cont-Bouchaud, Solomon-Weisbuch, Lux-Marchesi,
Donangelo-Sneppen and Solomon-Levy-Huang. After an overview of simulation ap-
proaches in financial economics, we first give a summary of the Donangelo-Sneppen
model of monetary exchange and compare it with related models in economics lit-
erature. Our selective review then outlines the main ingredients of some influential
early models of multi-agent dynamics in financial markets (Kim-Markowitz, Levy-
Levy-Solomon). As will be seen, these contributions draw their inspiration from the
complex appearance of investors’ interactions in real-life markets. Their main aim
is to reproduce (and, thereby, provide possible explanations) for the spectacular
bubbles and crashes seen in certain historical episodes, but they lack (like almost
all the work before 1998 or so) a perspective in terms of the universal statisti-
cal features of financial time series. In fact, awareness of a set of such regularities
(power-law tails of the distribution of returns, temporal scaling of volatility) only
gradually appeared over the nineties. With the more precise description of the for-
merly relatively vague characteristics ( e.g. moving from the notion of fat tails to
the more concrete one of a power-law with index around three), it became clear
that financial markets dynamics give rise to some kind of universal scaling laws.
Showing similarities with scaling laws for other systems with many interacting sub-
units, an exploration of financial markets as multi-agent systems appeared to be a
natural consequence. This topic was pursued by quite a number of contributions
appearing in both the physics and economics literature since the late nineties. From
the wealth of different flavors of multi-agent models that have appeared by now, we
discuss the Cont-Bouchaud, Solomon-Levy-Huang and Lux-Marchesi models. Open
research questions are discussed in our concluding section.

1 Introduction

Physicists not only know everything, they also know everything better. This
indisputable dogma does not exclude, however, that some economists pub-
lished work similar to what physicists now celebrate as “econophysics”, only
much earlier, like Nobel laureate Stigler [162]. Are econophysicists like Christo-
pher Columbus, rediscovering something which others had found earlier, and
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also getting things somewhat wrong, but nevertheless changing human his-
tory? As the team of authors of this survey collects scientists from both
disciplines, we do not attempt to give a definite answer to this question, but
simply review some influential models by both physicists and economists, to
allow a fair comparison.

Stylized facts is the economist’s name for universal properties of markets,
independent of whether we look at New York, Tokyo, or Frankfurt, or whether
we are concerned with share markets, foreign exchange markets or derivative
markets. The following is a collection of those “stylized facts” that are now
almost universally accepted among economists and physicists:

(i) There is widespread agreement that we cannot predict whether the
price tomorrow will go up or down, on the base of past price trends or other
current information. (ii) If today the market had been very volatile, then the
probability for observing a large change (positive or negative) tomorrow is
also higher than on average (volatility clustering). (iii) The probability to
have a large change in the market, by at least x%, decays with a power law
in 1/x. Fact (iii) has first been discovered by Mandelbrot [121] who proposed
the Levy stable model for financial returns. Over the recent years, the major-
ity opinion among researchers in the field has, however, converged to the view
that the tails of the cumulative distribution of returns are characterized by a
power-law with exponent around 3. The underlying data would, hence, pos-
sess finite variance in contradiction to the Levy stable model. (iv) The q-th
moments of the distribution of price changes are multifractal, i.e., their expo-
nent is not a linear function of this index q (a rather new observation). Facts
(i) to (iii) can be found in surveys on the econometrics of financial markets, cf.
de Vries [169] and Pagan [131]. Fact (iv) has been first partially documented
in Ding et al. [52] and has meanwhile also obtained the status of an universal
feature of all markets in the empirical finance literature (Lobato and Savin
[111]). Similar research on multiscaling (multifractality), albeit with different
analytical tools, was conducted in numerous econophysics papers, starting
with Mandelbrot et al. [122], Vandewalle and Ausloos [166].

After the pioneering microscopic market models from economists like
Stigler [147], numerous such models were published in the physics litera-
ture since 1992. We concentrate here on those models which have raised
enough interest to be also investigated by others than the original authors
themselves. These include the models of (i) Kim and Markowitz [91], of (ii)
Levy, Levy, Solomon [109,103,104,108,107,105,106], of (iii) Solomon, Levy
and Huang [80], of (iv) Cont and Bouchaud [48], of (v) Solomon and Weis-
buch [151] (see also [152]), and of (vi) Lux and Marchesi [119,120], all con-
ceived as models for modern (financial) markets, as well as the model for
ancient barter and self-organization of monetary exchange by Donangelo and
Sneppen [54] (see also [53,16,17].

We start with the latter one since it (in its literal interpretation) refers to
prehistoric times. We neglect the now (in physics circles) widespread Minority
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Games, as they arose from the question when best to visit the El Farol bar
in Santa Fe to avoid overcrowding. The weighted majority of the present
authors prefers to drink experimentally instead of simulating drinks, and
thus we leave these minority games to another review in this book.

2 Overview

Research applying microscopic simulations in economics and finance stems
from several sources. First, a number of authors in the economics “main-
stream” have resorted to some type of microscopic simulation in the course of
their work on certain economic problems and models. The framework of Kim
and Markowitz [91], explored in detail in section 4, may serve as a prominent
example. Like many economists of that time, the authors were interested
in explaining the sudden drop of the U.S. stock market on 17th October
1987. A widespread explanation for this event was the automatic overreac-
tion of computer-based “dynamic hedging” strategies that had become pop-
ular strategies of institutional investors in the years before. However, models
including the market interactions of many investors following such strate-
gies are clearly hard to solve in an analytical manner. Therefore, Kim and
Markowitz decided to investigate the destabilizing potential of dynamic hedg-
ing strategies via Monte Carlo simulations of a relatively complicated model
of price formation in an “artificial” financial market (cf. Markowitz [124]).
They were, however, not the first to rely on simulations of economic pro-
cesses. During the fifties, the well-known economist A. W. Phillips -who first
recovered the so-called Phillips curve (i.e., the inverse relationship between
unemployment and inflation rate)- used a hydraulic machine for simulation
of macroeconomic processes (Phillips [133], see also [129]). Even earlier, we
can find simulations via electronic circuits published in economics journals
(Morehouse et al. [126]).

However, the first simple Monte Carlo simulation of a financial market
appeared in Stigler [162], who generated trading orders as random variables.
Two decades later, simulations of different trading mechanisms played an
important role in the literature on the “microstructure” of financial markets
(Cohen et al. [46]). The interest here was mainly in questions of efficiency and
stability of different forms of market organization and regulation as well as
the impact of introducing computer-assisted trading. Like in the approach of
Kim and Markowitz a few years later, the sheer complexity of the models, be-
cause of the aim to reproduce many features of real-life market, necessitated a
simulation approach. Interestingly, the microstructure literature later moved
on to other questions, namely, analysis of asymmetric information among
traders. Luckily, Bayesian learning methods allowed to tackle large classes
of asymmetric information models in a rigorous mathematical manner. As a
consequence, the leading textbook of the nineties, “Market Microstructure
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Theory” by O’Hara [130], only reviews theoretical work and lacks any refer-
ence to microscopic simulations.

Of course, it was only a matter of time, until models became so com-
plicated that they could not be solved analytically anymore and had to be
supported by numerical analysis. In the asymmetric information literature,
interesting recent contributions coming close to microscopic simulations deal
with learning in financial markets (de Fontnouvelle [65], Routledge [139,140]).
Using different variants of adaptive learning mechanisms, these authors study
how agents learn to use signals about future market prices and how to make
inferences from these signals. The key interest is in whether or not the learn-
ing dynamics converges to a time-invariant equilibrium that would obtain
under “rational” (i.e., correct) expectations.

With its focus on the extraction of information from imperfect signals by
fully rational or learning investors, the dominant branch of models in financial
economics neglected some of the most striking observations in real financial
markets. Namely, there was no role at all in these models for features like
chartist strategies (i.e., strategies looking for patterns in the plots of past
prices) or herd behavior among traders. In some sense, all traders in tradi-
tional microstructure models behave like fundamentalists in that they try to
infer the correct “fundamental” value of an asset from the limited amount of
information they have. However, the existence of both chartists and funda-
mentalists in real markets is too obvious to be neglected and a long tradition
of modeling the interaction of these two types of traders exists in economics
literature. In fact, we can find interesting papers on this subject back in the
fifties (Baumol [21]) showing the destabilizing potential of chartist strategies
in a rigorous analytical analysis. The chartist versus fundamentalist topic was
later dropped because of the seeming lack of “rationality” of agents’ behav-
ior in this models, that means, the apparent ad-hoc nature of the description
of individual behavior. Nevertheless, we can still find some contributions to
this strand of literature in the seventies and eighties (Zeeman [181], Beja and
Goldman [22]) and as of the early nineties starting with Day and Huang [50]
the chartists-fundamentalists interaction regained its place as an important
research topic. The literature of the nineties has an abundant diversity of in-
teracting agent models incorporating these features in one or the other way.
An early application to foreign exchange markets is Frankel and Froot [66,67]
who combine a standard monetary model of open economy macroeconomics
with a chartist-fundamentalist approach to expectation formation (replacing
the usual assumption of “rational” expectations in earlier models). Their aim
is to provide a possible explanation of the well-known episode of the dollar
bubble over the first half of the eighties. They show that a deviation from
the fundamental value can set into motion a self-reinforcing interplay between
forecasts and actual development: the initial deviation between price and fun-
damental value will trigger the switch of some agents from fundamentalist
to chartist behavior. However, the more the market composition changes in
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favor of the chartist group, the less pressure will exist for prices to revert to
their fundamental anchor values.

An important subsequent variation on Frankel and Froot’s theme is the
more elaborate model by DeGrauwe et al. [51] who show that this type of
dynamics can lead to chaotic behavior of exchange rates. Their model is one of
the first able to explain some stylized facts other than the mere deviation from
the fundamental value. In particular, they show that their chaotic dynamics
is hard to distinguish from a pure random walk process and that it helps to
explain the forward premium puzzle (the finding, that forward rates are a
poor and biased predictor for subsequent exchange rate movements).

Chaotic dynamics derived from the interaction of agents with different
prediction functions for future price movements are the topic of a compre-
hensive research project on “adaptive belief systems” starting with Brock and
Hommes [30] and extended in Brock and Hommes [29,31,32], Gaunersdorfer
[68], Gaunersdorfer and Hommes [69], Gaunersdorfer et al. [70], and Chiarella
et al. [44] (see also Hommes [77] for a review). While the early papers of this
literature are mainly concerned with various bifurcation routes of chaotic at-
tractors in such systems, the recent papers by Gaunersdorfer and Hommes
[69] and Gaunersdorfer et al. [70] are concerned with a possible mechanism
for volatility clustering emerging from this theoretical set-up. They show that
co-existence of different attractors (e.g., a fixed point and a cycle or chaotic
attractor) in a deterministic dynamics will lead to repeated switches between
these attractors when small amounts of noise are introduced. Since different
attractors are characterized by different degrees of volatility of prices, their
varying influence on the overall time series generates a perplexingly realis-
tic picture of switches of the market from tranquil to volatile phases and
vice versa. Gaunersdorfer and Hommes [69] show that estimates of GARCH
models can produce quite similar results as with empirical data.

The adaptive belief dynamics has agents switching between predictors
according to their past performance. A group of alternative learning models
have used modern computer-learning techniques as models of human adap-
tation. The best-known variant in the context of financial markets is surely
the Santa Fe Artificial Stock Market (Arthur et al. [14], LeBaron et al. [102],
Palmer et al. [132]),the authors of which included a statistical physicist. In
this model, traders are equipped with a set of classifiers basically consisting
of simple chartist and fundamentalist rules. Particular forecasts of future re-
turns are connected with certain combinations of classifiers. Classifiers and
forecasts are subjected to genetic operations (selection, cross-over, mutation).
Over time, successful combination of rules (classifiers) should be maintained,
whereas poor ones should be skipped in favor of better ones. The set-up of
this and similar models is notably different from most other applications of
machine learning techniques: whereas usually classifier systems, genetic pro-
gramming, and neural networks are used to recover regularities in data sets
that are independent from their own learning activity, the artificial financial
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market application deals with interacting agents, who naturally influence the
performance of each others’ attempt at learning the market’s rules. The main
finding of the early work at the Santa Fe Institute was that the dominance
of either chartist or fundamentalist classifiers depends on the frequency of
activation of the genetic operations. With more frequent activation, chartist
behavior was found to be dominating. LeBaron et al. [102] showed that the
model reproduces some empirical features like leptokurtosis of returns and
correlation between volume and volatility. Other artificial markets include
Chen and Yeh [42,43], who instead of classifiers systems use genetic pro-
grams as evolving models of their agents and also can show consistency of
simulated data with some empirical findings. Cincotti et al. [45] construct a
more general framework that is designed to accommodate various learning
devices. Related research using genetic algorithm learning in prominent eco-
nomic models can be found in Arifovic [10], Arifovic and Masson [11], Dawid
[49], Szpiro [163] and Georges [71]. Le Baron [100,101] has models closely
related to the SFI model, but with learning via neural networks and the
interesting addition of variable memory length of the agents (cf. the Levy-
Levy-Solomon model reviewed in section 5).

Another strand of economic literature proposed to cope with the diver-
sity of behavioral variants using a statistical approach cf. Kirman [93], Aoki
[6,8], Ramsey [137], Lux [113], Foley [64] and Kaizoji [87–89]. Only part of
this work is concerned with financial applications. A wealth of applications
of statistical physics tools to other branches of economics can be found in
Aoki’s books. As concerns finance, perhaps the first attempt at a micro-
scopic approach with stochastic features guided by work in statistical physics
is Landes and Loistl [99]. Later work includes Youssefmir et al. [180], who
reconsider the destabilizing potential of trend-following behavior, and Kir-
man [92] combining the statistical modeling of herding among speculators
with an expectation formation à la Frankel and Froot. Similarly, Farmer and
Joshi [63] reconsider the impact of several frequently used trading strategies
in price formation, and Carvalho [35] shows that in a particular simplified
variant of their model, emergence of a power-law for extreme returns can
be rigorously demonstrated. Another highly relevant contribution is Aoki [9]
who deals with a stochastic framework for market participation with infinitely
many strategies or trading rules. Deriving the partition vector (the number
of types or clusters of agents) from a rather general specification of the entry
and exit dynamics, he shows that often the sum of the fractions of agents in
the two largest groups will be close to 1. This may provide a theoretical ratio-
nale for the confinement to two trader groups in many models of speculative
dynamics.

Another example of a statistical approach towards interacting agent dy-
namics in finance is the work by Lux and Marchesi, reviewed below (section
9). The latter group of models is, in fact, not too far from those proposed in
the physics literature. Prominent early examples are the threshold dynamics
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(in the form of trigger values for agents’ buy or sell decisions) by Takayasu
et al. [164] and Bak et al. [18]. Their analysis is also concerned with scal-
ing behavior of the resulting price dynamics and reports some interesting
features. A somewhat related model leading to intermittent bursts of activ-
ity is Ponzi and Aizawa [135]. Later additions to that literature include the
Cont-Bouchaud percolation model (reviewed in section 7), and related lattice-
based set-ups by Iori [84] and Bornholdt [26]. Interestingly, contributions in
this vein have recently also been applied to other financial phenomenon like
contagion of bankruptcies and systemic risk in the inter-bank lending system
(Heymann et al. [76], Iori and Jafarey [85], Aleksiejuk and Holyst [2]).

3 The Dynamics of Monetary Exchange

Before money was invented, exchange of goods would have required barter
between agents with coincident endowments and wants. However, at a more
advanced level of division of labor, one may trade by getting something one
does already possess but which, as judged from past experience, one will be
able to sell later easily to others. Donangelo and Sneppen [54] in this sense
started with traders who initially have a random endowment of products.
They then try to fill the gaps in their inventories by bartering with other
traders, and keep in mind how often some specific product was asked from
them. In the case a trader has something to sell but already has the product
which the partner offers for barter, the first trader may opt to get a product
already in his/her inventory. This is done with a probability proportional to
the number of times this product was asked from this trader in recent times,
and this product then plays the role of money: we cannot eat the money we
earn, but we hope to buy food from it later.

For a suitable range of the number of units per trader and the number of
differentiated products available, traders have enough holes in their invento-
ries to barter, but after some time also trades involving money (in the above
sense) play an important role; and sometimes no trade at all is possible in
an encounter of two randomly selected traders. Which product evolves as the
most desired “money” thus depends on the random dynamics of the mar-
ket, without outside interference and without any special property of that
product at the beginning. This result conforms to physics ideas that “every-
thing” can be described by randomness, whether it is Boltzmann statistics
for thermodynamics, the built-up of social hierarchies [25], or the value of
the European currency. Economists may regard this view as over-simplified.

For one variant of the model, the time-dependence could be quantified: A
stationary state is reached if every trader had several chances to trade with
every possible other trader. The distribution of times for which one currency
stays on top, then appears to follow a stretched exponential [160]. Other
models for the “statistical mechanics of money” are surveyed in [74].
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From the economists’ point of view, the informational content of some
of these studies is somewhat questionable as there are practically no mea-
surements of the corresponding quantities in real economies. It is neverthe-
less interesting to note that quite similar models have been brought up by
economists some time ago. Looking up contributions like the work by Jones
[86] or the seminal paper by Kiyotaki and Wright [94], one finds almost the
same structure as in the Donangelo and Sneppen approach. This is not too
surprising insofar as - although Donangelo and Sneppen do not quote the
rich literature that emerged from Kiyotaki’s and Wright’s search model -
their work can, in fact, be traced back to these sources. A careful reading
reveals that they draw their inspiration from an earlier paper in the physics
literature, Yasutomi [177], who studied a model along the lines of Kiyotaki
and Wright. It might have been useful to consult the by now voluminous
literature on search-equilibrium models in economics rather than start from
scratch with a similar pursuit. Be that is it may, the style of analysis in
the early papers by economists was clearly different from that of Donangelo
and Sneppen. Following the then prevalent style of reasoning in their sub-
ject they were theoretical investigations into the nature of equilibria in an
economy with a large number of goods rather than truely dynamic model of
the emergence of money. The question pursued was under what conditions
one would find a “monetary” equilibrium in which one of the available goods
emerges as a medium of exchange and under what conditions the economy
remains stuck in a situation of barter trade. Like in many other areas in
economics, the demonstration of existence of multiple equilibria (barter vs.
monetary equilibrium, as well as different monetary equilibria) pointed to the
necessity of investigating out-of-equilibrium dynamics.

To give the reader a feeling of the typical approach pursued in economics,
we give a short sketch of the basic ingredients of the seminal Kiyotaki and
Wright model that has stimulated a whole branch of recent economics litera-
ture. The set-up by Kiyotaki and Wright is, in fact, more that of an example
than a general model of a multi-good economy. In particular, it is assumed
that there are three commodities in the economy which are called goods 1, 2,
and 3. There is also an infinite number of individuals who are specialized in
both production and consumption: type i (i = 1, 2, 3) agents derive pleasure
(utility) only from consumption of good i, and are able to produce only good
i′ 6= i. A typical example used in many of the pertinent contributions has the

following structure of consumption and production:
i 1 2 3
i′ 2 3 1

.

This implies that there is no double “coincidence of wants” in the econ-
omy. Therefore, intermediate trading of goods by agents who do not desire
them as consumption goods is required for the satisfaction of the need of
these agents. It is furthermore assumed that in every period there is a ran-
dom matching process that assigns every agent to a pair with one other agent
within the economy. Pairs of agents then have the chance to trade with each
other (exchange their goods). In the theoretical papers on this subject, the
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focus is on the detection and characterization of steady state Nash equilibria:
sets of trading strategies of each type of agents together with the steady state
distribution of goods resulting from these strategies, so that each individual
maximizes its expected utility under full information (rational expectations)
about the strategies pursued by other individuals. There are also storage costs
per period for goods that are not consumed by their owners. The distribution
of both the instantaneous utilities derived from consumption and the storage
costs are crucial for the types of Nash equilibria that exist in this model. A
particular interesting situation is co-existence of so-called “fundamental” and
“speculative” equilibria. In the former, only goods with lower storage costs
are accepted by the agents (and, hence, they can be said to concentrate on
fundamentals in their trading decisions) while in the latter case also some
low-storage costs are traded against high-storage commodities. The motiva-
tion for this at first view unattractive exchange is higher marketability of the
high-cost good. Accepting high-storage costs in the hope of higher chances to
exchange these goods against their preferred one, the agents could be said to
act out of a speculative motivation. This second case is the more interesting
one as it corresponds to the “emergence of money”: certain goods are not
traded because of their intrinsic values, but purely because they are accepted
by other agents. To solve for steady state equilibria requires to consider the
development of expected life time utility for each group of agents:

E

∞∑
t=0

βt[Iu
i (t)Ui − ID

i′ (t)Di − IC
ij (t)cij ] (1)

where Ui is instantaneous utility from consumption, Di instantaneous
disutility from production (i.e., production costs), and cij the storage costs
of good j for type i. β < 1 is the discount factor and Iu

i , ID
i and Ic

ij are
indicator functions assuming the value 1 at any period t in which consump-
tion, production or exchange take place and 0 otherwise. Bellman’s approach
to dynamic programming allows to express this problem in terms of value
functions of certain states. For example,

Vi(j) = −cij + max βE[Vi(j′)|j] (2)

could be used to denote the value for an individual of group i to currently own
one unit of good j. The value, Vi(j), of this scenario consists of an instanta-
neous disutility, −cij , the negative storage costs incurred by this agent plus
the discounted value of the expected change of its situation in the next period,
E[Vi(j′)|j]. Here j′ could be identical to j (if he does not accept the exchange
possibilities offered in the next period), to i (if he is offered his preferred
good), or some j′ 6= i and j′ 6= j (if he accepts another good offered to him).
Although this formalism greatly facilitates the analysis, rigorous derivation of
the type of Nash equilibria sketched above is still a combinatorial nightmare.
Of course, having demonstrated the potential of this kind of model to gen-
erate speculative equilibria as steady state solutions, the question emerges
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whether agents could detect these profitable trading possibilities. A num-
ber of authors have taken up the question of whether reasonable dynamics
could lead to a self-organization of the Kiyotaki and Wright economy con-
verging to either a fundamental or speculative equilibrium. Contributions
to the dynamics of exchange economies made use of classifier systems [123]
or genetic algorithms in order to describe the evolution of conventions and
self-organization of monetary exchange within an ensemble of uncoordinated
agents.

Besides articles with a computational approach of artificial and boundedly
rational agents one can also find contributions with real agents in controlled
laboratory environments being rewarded with real money in dependence on
their utility gains [33,57]. To the surprise and dissappointment of some au-
thors, both in experiments with artificial agents [123] and human subjects
one often [33,56] only finds emergence of fundamental equilibria. Strangely
enough a kind of fundamental steady state even appeared in some set-ups in
which the “speculative” scenario is the unique equilibrium. Somewhat more
favorable results concerning the “emergence of money” are obtained in a
recent paper by Basci [20] who allows for imitative behavior.

Duffy [56] tried to combine artificial, agent-based simulations with labora-
tory experiments with a view to the above mentioned problem. He uses results
of preliminary laboratory experiments for his computational approach which
leads to an improvement with respect to the speed of learning compared with
earlier experimental Kiyotaki-Wright environments [94].

Furthermore, Aoki [7] uses tools from statistical mechanics in his re-
investigations of the Kiyotaki-Wright approach. In this perspective, the Do-
nangelo and Sneppen approach appears to fit well into an established line of
economics research, on the intriguing question: how could agents develop the
idea of “money”? The early stage of the study of out-of-equilibrium dynamics
in this context warrants that a great deal of collaborative work could still be
done in this area in the future.

4 The First Modern Multi-Agent Model:
Kim-Markowitz and the Crash of ’87

After this digression into very fundamental questions of economic theorizing,
we turn to the major playground of multi-agent models in economics: artifi-
cial economic life in the sense of computer-based stock or foreign exchange
markets. Besides some early Monte Carlo simulations like Stigler [162] or
Cohen et al. [46], the first “modern” multi-agent model is the one proposed
by Kim and Markowitz [91]. The major motivation of their microsimulation
study was the stock market crash in 1987 when the U.S. stock market de-
creased by more than twenty percent. Since this dramatic decrease could
not be explained by the emergence of significant new information, ensuing
research concentrated on factors other than information-based trading in de-
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termining stock price volatility (cf. [144]). But although hedging strategies,
and portfolio insurance in particular, have been blamed to have contributed
to the crash by increasing volatility [47], the theoretical work on the link
between portfolio insurance and stock market volatility was rather limited at
that time (e.g., [28]). In their simulation analysis, Kim and Markowitz, there-
fore, tried to explore the relationship between the share of agents pursuing
portfolio insurance strategies and the volatility of the market.

4.1 The Model

The simulated market contains two types of investors, “rebalancers” and
“portfolio insurers”, and two assets, stocks and cash (with interest rate equal
to 0). The wealth w of each agent at time t is given as

wt = qtpt + ct (3)

where qt is the number of stocks the agent holds at time t, pt is the price of
the stock at time t and ct denotes the cash holdings of the agent at time t.
Rebalancers aim at keeping one half of their wealth in stocks and the other
half in cash, i.e.

target of rebalancers : qtpt = ct = 0.5wt. (4)

Thus, the rebalancing strategy has a stabilizing effect on the market: in-
creasing prices induce the rebalancers to raise their supply or reduce their
demand; decreasing prices have the opposite effect. Portfolio insurers, on the
other hand, follow a strategy intended to guarantee a minimal level of wealth
(the so-called “floor” f) at a specified insurance expiration date. They use
the “Constant Proportion Portfolio Insurance” (CPPI) method proposed by
Black and Jones [24]. The method can be described as keeping the value of
the risky asset in a constant proportion to the so-called “cushion” s, which
is the current portfolio value less the floor, i.e.

target of portfolio insurers : qtpt = kst = k(wt − ft) (5)

where the CPPI multiple k is chosen greater than 1. Setting the multiple
above 1 allows the investor to choose his exposure to the risky asset in ex-
cess of the cushion, and hence to extend his gains if prices increase. In case
of falling prices, the cushion also decreases and the stock position is reduced
accordingly. Given a more or less continuous revaluation of the portfolio struc-
ture, the floor is therefore (quite) safe. In this way, the Black-Jones formula
imitates the effect of put options often applied in dynamic hedging strate-
gies. Contrary to the rebalancing strategy, the portfolio insurance strategy
implies a procyclical and therefore potentially destabilizing investment be-
havior: when prices fall, portfolio insurers will strive to protect their floor by
reducing their stock position, and conversely, if prices increase, they will try
to raise their stock position in order to realize additional gains.
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Stock price and trading volume evolve endogenously according to demand
and supply. However, trading does not proceed continuously but at discrete
points in time. Each investor reviews his portfolio at random intervals. He
rates his asset positions using an individual price forecast computed according
to the current demand and supply situation in the following way:

1. If only asks (i.e. buy orders) exist, the investor estimates the price at
101% of the highest ask price,

2. if only open bids (i.e. sell orders) exist, the investor estimates the price
at 99% of the lowest bid price,

3. if both open asks and bids exist, the investor assumes that the price
agreed upon by buyers and sellers will be placed somewhere between
open bid and ask prices. More precisely it is assumed that his estimate
of the new price is the average between the highest ask and the lowest
bid price of the previous period, and

4. if neither asks nor bids exist, the investor assumes next period’s price to
equal the previous trading price.

Summarizing, the above assumptions amount to:

pi
est,t =





1.01max(p1
ask,t, · · · , pn

ask,t),
if pi

bid,t = 0 for all i = 1, ..., n

and pi
ask,t 6= 0 for at least one i,

0.99min(p1
bid,t, · · · , pn

bid,t) for pi
bid > 0,

if pi
ask,t = 0 for all i = 1, ..., n

and pi
bid,t 6= 0 for at least one i,

0.5
[
max(p1

ask,t, · · · , pn
ask,t) + min(p1

bid,t, · · · , pn
bid,t)

]

for pi
bid > 0,

if pi
ask,t 6= 0 for at least one i

and pi
bid,t 6= 0 for at least one i,

pt−1, if pi
ask,t = 0 and pi

bid,t = 0 for all i = 1, ..., n,

(6)

where i denotes the agent and n is the number of investors. In case the esti-
mated ratio between stocks and assets (relevant for rebalancers) or between
stocks and cushion (relevant for portfolio insurers) is higher than the tar-
get ratio (0.5 or k for rebalancers and portfolio insurers respectively), the
investor will place a sale order with pi

bid,t = 0.99pi
est,t (i.e. pi

ask,t = 0). Con-
versely, he will place a buy order if the evaluated ratio is smaller than the
target ratio with pi

ask,t = 1.01pi
est,t (i.e. pi

bid,t = 0).1 If matching counter-
offers exist, incoming buy or sell orders are executed immediately (at the
1 Strictly speaking, agents allow for deviations from the target value within a

certain which they tolerate.
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price of the particular counter-offer). Otherwise, they are put on a list and
may be filled later during the trading day if suitable offers are made by other
agents. Agents whose orders are open until the end of the day have the pos-
sibility to re-evaluate their portfolio structure the next day and to place a
new order. A trading day is over when every agent who reviewed his portfolio
has had the chance to place an order and to trade. At the end of each day
agents who have lost their complete wealth (i.e., their cash plus the value of
stocks rated at the closing price) are eliminated and, thus, excluded from any
further trading activities.

4.2 Results

Every agent starts the simulation with the same value of his portfolio (i.e.,
100,000 $), half of it in stocks and half in cash. The price level at the start
of the simulation is 100 $. The CPPI multiple k and the insurance level g
(i.e., the proportion of floor to initial assets) are chosen in a way that port-
folio insurance agents start with their portfolio structure in equilibrium. The
parameters for the insurance plans are set at g = 0.75 (i.e., at expiration
date the losses should not exceed 25 % of the initial wealth) and k = 2. The
duration of the insurance plans is 65 trading days for every plan and each
portfolio insurer. Exogenous market influences are modeled by deposits and
withdrawals of cash occurring at randomly determined points in time (expo-
nentially distributed with a mean time of 10 trading days) and in random
amounts (uniformly distributed between -8,000 and +8,000 $) for each in-
vestor. The time intervals between the portfolio reviews are also determined
by random draws for each investor (exponentially distributed with a mean
time of 5 trading days).

In the following, we provide the details of simulations in which we have
replicated and extended the results of Kim and Markowitz. Figure 1 and
2 show the daily development of (closing) prices and trading volume for 0,
50 and 75 CPPI agents, respectively, out of a total of 150 agents for the
first 800 trading days. Compared with no CPPI agents, both trading volume
and price fluctuations are generally higher in the cases of 50 and 75 CPPI
investors. However, the time series for 50 and 75 CPPI agents exhibit a
cyclical behavior inconsistent with empirical data. We have also studied
the standard deviation of daily returns per trading period each consisting of
65 trading days. As can be seen in Figure 3, for the first periods the volatility
for 75 CPPI agents is much higher than for 0 or for just 25 CPPI agents.
But after about 15 trading periods the volatility for 75 CPPI agents declines
remarkably. We have observed a similar decline of volatility in the case of
50 CPPI agents (not displayed in the figure). The reason, however, for this
strong decrease in volatility in case of a high proportion of CPPI agents is
simply that a significant number of agents become bankrupt in the course of
the simulations.
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Figure 4 shows a positive relationship between the proportion of bankrupt
agents and the initial share of CPPI agents. Moreover, there is also a positive
relation between the share of bankrupt CPPI agents in the total number
of bankrupt agents and the initial rate of CPPI agents. Thus, in the case
of 25 CPPI agents we had 13 bankrupt CPPI and 50 bankrupt rebalancing
agents after 100 trading periods (i.e., 6500 days), whereas, in the case of 75
CPPI agents the ratio was 67 CPPI agents to 11 rebalancers (Figure 4, upper
panel). The number of bankrupt investors is generally lower if we raise the
total number of agents to 1500 (Figure 4, lower panel). Thus, it appears to
be a kind of finite-size effect. Nevertheless, in this setting we still observe a
reduction of volatility in the case of a CPPI agents’ proportion equal to one
half (i.e., 750 CPPI agents, cf. Figure 5). Compared to the previous setting,
the level of volatility is now significantly higher with CPPI agents (both 250
and 750 CPPI agents) than without CPPI agents. From these experiments
we conjecture that the impact of the portfolio insurance strategy on market
volatility generally increases with growing market size.

Nevertheless, given that the model is intended to study the influence of
portfolio insurance on the market, the strong reduction in the number of ac-
tive market participants and, especially, the positive dependence of bankrupt-
cies on the initial share of CPPI agents, constitutes a serious deficit of the
model design. Presumably however, the quality of the results could be im-
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proved by allowing bankrupt agents to be replaced by new solvent agents.2

For a further set of simulations we replaced the individual bid and ask prices
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Fig. 5. The standard deviation of daily returns per trading period (total number
of agents: 1500)

by one uniform market price which is set by a market maker reacting on
the difference between supply and demand.3 Thus, in case of excess demand
(supply) prices rise (fall) proportional to the ratio of excess demand (supply)
to the total number of shares with proportionality factor β:

pt = pt−1(1 + β
EDt

STt
) (7)

where ED is the excess demand and ST the total number of stocks in the
market. As shown in Figure 6, after about 15 trading periods, the volatility
in case of 75 CPPI agents for a price adjustment speed β = 4 hardly differs
from the case with no CPPI agents. By increasing the price adjustment speed
to β = 8 the volatility generally tends to increase (for both 0 and 75 CPPI
agents). As in the previous setting, in this modified setting the strong decline

2 Another way to prevent a large number of bankrupt agents is to choose an asym-
metric distribution for the amounts withdrawn and deposited on the accounts
of the agents. Actually, by just extending the limit of deposits from 8000 to
9000$ (and keeping the limit for withdrawals at -8000$) we discovered a strong
reduction in the number of bankrupt agents.

3 A similar modification of the model is described in Egenter et al. [60].
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of volatility in the case of 75 CPPI agents is again due to the large number of
bankrupt agents. Also similar to the original setting, we find almost cyclical
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Fig. 6. The standard deviation of daily returns per trading period for β = 4 and
β = 8 (total number of agents: 150)

price movements for a high proportion of CPPI agents among our market
participants (Figure 7).

4.3 Conclusions

Deviating from our parameter setting, the original simulations by Kim and
Markowitz start with the rebalancers’ portfolio structure in disequilibrium,
i.e., rebalancers initially have either too many or too few stocks. Additionally,
in their setting, deposits are higher on average than withdrawals. The basic
result of this approach is the demonstration of the destabilizing potential of
portfolio insurance strategies. Kim and Markowitz, therefore, provide a the-
oretical foundation for the academic discussions on the sources of the 1987
crash. Their model, of course, was not designed to address other puzzles in
empirical finance, like the “stylized facts” summarized in the introduction. A
comprehensive simulation study and statistical analysis of model-generated
data, in fact, showed that the time series characteristics exhibit hardly any
similarities with empirical scaling laws [142]. Taking into account the pio-
neering character of this model and the intention of the authors to provide
a partial explanation of the crash of October ’87, the stakes should however
not be set too high.
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5 An Early ’Econophysics’ Approach:
Levy-Levy-Solomon

Kim and Markowitz obviously tried to simulate a market populated by traders
who pursue strategies found in real-life markets, and, therefore, gave a quite
detailed description of activity at the microscopic level. In contrast to this
highly specific set-up, more recent models deal with much more stylized and
simple descriptions of traders’ behavior. Historically, one of the first of these
approaches is a collaboration of a group at Hebrew University including both
economists and physicists. The first publication of their approach appeared
in an economics journal in 1994 [103] which was followed later by more de-
tailed reports in physics and computer science journals as well as a book
[104,108,107,105,106].

5.1 The Model Set-Up

The model contains an ensemble of interacting speculators whose behavior
is derived from a rather traditional utility maximization scheme. At the be-
ginning of every period each investor i needs to divide up his entire wealth
W (i) into shares and bonds. Cash, credit, or short sales of stocks are not
allowed. With X(i) denoting the share of stocks in the portfolio of investor
i, his wealth can be decomposed as follows:
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Wt+1 = X(i)Wt(i)︸ ︷︷ ︸
sum of shares

+ (1−X(i))Wt(i)︸ ︷︷ ︸
sum of bonds

(8)

with superimposed boundaries 0.01 < X(i) < 0.99.

Additionally, the model assumes that the number of investors n as well as
the supply of shares NA are fixed. In addition to an identical utility function
U(Wt+1), investors at the beginning also possess the same wealth and the
same amount of stocks. Whereas the bond, assumed to be riskless, earns a
fixed interest rate r, the stock return Ht is composed of two components
(bonds are riskless in economics just like planets are point masses in the first
physics lectures). On the one hand, either capital gains or losses can be the
results of price variations pt. On the other hand, the shareholder receives a
daily or monthly 4 dividend payment Dt which grows by a constant rate over
time:

Ht =
pt − pt−1 + Dt

pt−1
(9)

In the base-line model, the preferences of investors are given by a logarithmic
utility function U(Wt+1) = ln Wt+1. This function fulfills the usual charac-
teristics of a positively diminishing marginal utility. The consequence is an
absolutely diminishing risk aversion, so that the amount of money invested
in stocks increases with the wealth of an investor. The so-called “relative risk
aversion” is constant and the share of stocks, therefore, remains constant.

Investors are assumed to form their expectations of future returns on the
basis of their recent observations. Their memory span contains the past k
total stock returns Ht. All investors with the same memory length k form an
investor group G. They expect that the returns in question will reappear in
the next period with a probability of 1/k. The corresponding expected utility
function EU(XG(i)) has to be maximized with respect to the share of stocks
XG:

EU =
1
k




t−k+1∑

j=t

ln [(1−XG(i))Wt(i)(1 + r) + XG(i)Wt(i)(1 + Hj)]


 (10)

f(XG(i)) =
∂EU(XG(i))

∂XG(i)
=

t−k+1∑

j=t

1
XG(i) + 1+r

Hj−r

= 0 (11)

Like in most models, neither short-selling of assets nor buying financed
by credit is allowed to the agents, so that the space of admissible solutions
is restricted to a share of stocks in the interval [0, 1]. Levy, Levy, Solomon,
furthermore, impose minimum and maximum fractions of shares equal to 0.01

4 The notion of the underlying time steps differs in the available publications.
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and 0.99 in cases where the optimal solution of the optimization problem
would imply a lower (higher) number. We, hence obtain either inner or outer
solutions for XG(i) which are depicted in Table 1.

Table 1. Inner and outer solutions
f(0) f(1) XG(i)

< 0 − 0.01

> 0 < 0 0.01 < X(i) < 0.99

> 0 > 0 0.99

When the optimum share of stocks is calculated for an investor group
XG(i), a normally distributed random number εi is added to the result in
order to derive each individual investor’s demand or supply. This stochas-
tic component may be interpreted as capturing the influence of idiosyn-
cratic factors or of individual deviations from utility maximization from the
economists’ point of view. However, in the original papers it is motivated
from a physics perspective as the influence of the “temperature” of the mar-
ket. From aggregation of the stochastic demand functions of traders, the
new stock price (and therefore, the total return Ht), can be calculated as an
equilibrium price. One now eliminates the “oldest” total return from the in-
vestors’ memory span and adds the “new” entry when the simulation process
is finished for period t.

5.2 Previous Results

Models with only one investor group show periodic stock price developments
(Figure 8) whose cycle length depends on the memory span k. This price
development can be explained as follows: Let us assume that, at the beginning
of the simulation, a random draw of the k previous total stock returns Ht

occurs that encourages investors to increase the proportion of shares held in
their portfolio. The larger total demand, then, causes an increase in price
and therefore a new positive total return results. According to the updating
of data the oldest total return will be dropped. This positive return causes
the investor group to raise their stock shares successively up to a maximum
of 99%. At this high price level the price remains almost constant for a little
longer than k periods until the extremely positive return of the boom period
drops from the investors’ memory span. As explained above, the total return
is composed of the capital gains or losses and of the dividend. Since the
real dividend is relatively small because of the considerably high stock price,
a relatively small (negative) total stock return (caused by the noise term
εi) suffices to make the riskless bond appear more attractive. The desired
share of stocks and with it the stock price, then, break down. If such a crash
happens with an ensuing extremely negative total return the desired share of
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stocks drops to a minimum of 1%. Again, it takes another k periods for the
investors to forget about this extremely negative entry. Because of the then
available high real dividend rate, investing in shares becomes more attractive
compared to bonds. The total demand and the stock price start rising again
and a new price cycle begins. If two groups with different memory spans
are considered, strict periodicity still remains a possible outcome. However,
depending on the choice of the memory spans, other dynamic patterns can
appear. Looking at the distribution of total wealth, a dominating influence
on the share price development by one group then does not necessarily mean
that it also gains a dominant share of total wealth.

The model outcome becomes more irregular with three (and more) in-
vestor groups. For example, for the combination k = 10, 141, 256 and n = 100,
Levy and Solomon claimed to have found chaotic motion in stock prices. How-
ever, Hellthaler [75] has shown that if the number of investors is increased
from n = 100 to, for example, n = 1000, these chaotic stock price devel-
opments are replaced by periodic motion again. This effect persists if more
than one type of stocks is traded [95]. Furthermore, Zschischang and Lux
[184] found that the results concerning the wealth distribution for k = 10,
141 and 256 are not stable. While Levy, Levy and Solomon argued that the
group with k = 256 usually turned out to be the dominant one, it is also
possible that the investor group k = 141 will achieve dominance (Figure 9).
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This shows an interesting extreme type of dependence of the model outcome
on initial conditions brought about by seemingly minor differences within the
first few iterations: depending solely on the random numbers drawn as the
“history” of the agents at t = 0, we get totally different long-run results for
the dynamics.
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Fig. 9. Development of the distribution of wealth with three groups characterized
by k = 10, 141, and 256, respectively. Depending on the initial conditions, either
the group with k = 256 or the group with k = 141 as in the present case may
happen to dominate the market

Of course, one would like to have microscopic models to provide an ex-
planation of the power-law behavior of both large returns and the time-
dependence in various powers of absolute returns. However, when investigat-
ing the statistical properties of Levy, Levy and Solomon’s model, the out-
come is as disappointing as with the Kim and Markowitz framework: none
of the empirical scaling laws can be recovered in any of our simulations (see
Zschischang [183] who investigates about 300 scenarios with different utility
functions, memory spans and varying number of groups). As exemplified in
Figure 10, models which are claimed to have a chaotic price development of-
ten have stock returns that appear to follow a Normal distribution (Figure 10)
and do not account for “clustered volatilities” (Figure 11). These results are
supported by standard tests of the Normal distribution and for the absence of
correlations of stock returns. Zschischang and Lux argue that in these cases
the Levy, Levy, Solomon model, instead of giving rise to low-dimensional
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memory spans k = 10, 36, 141, 193, 256, and 420. This is an example with a
stock price development described as “chaotic” in [107]. However, it seems that
the result is rather similar to pure randomness. The histogram is drawn for 20,000
observations after an initial transient of 100,000 time steps. The close similarity to
the Normal distribution is confirmed by statistical measures: Kurtosis is 0.043 and
skewness is -0.003. This yields a Jarque-Bera statistic of 1.55 which does not allow
to reject the Normal distribution (significance is 0.46%)

chaotic dynamics and strange attractors, can effectively be viewed as a ran-
dom number generator [184].

The original papers are not entirely clear about the lengths of the time
increments of the model: they are sometimes denoted by “days” and some-
times by “months”. Since at low frequencies, returns in real markets seem to
approach a Gaussian distribution, in such an interpretation, the Normality of
returns generated from the model might even appear to be a realistic feature.
However, the mechanism for the emergence of a Gaussian shape is still differ-
ent from its origin in monthly returns in reality. The latter seems to be the
consequence of the aggregation of high-frequency returns whose distribution
is within the domain of attraction of the Normal distribution (because of
its power-law exponent above 2). In the LLS model, on the other hand, the
Gaussian shape seems to originate from the aggregation of random demand
functions within the same period.
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10

6 Financial Markets and the Distribution of Wealth:
Solomon-Levy-Huang

Again, the unrealistic time series characteristics of both the Kim and Marko-
witz and the Levy, Levy, Solomon approach should not be taken too seriously:
both models are among the first attempts at microscopic simulations of fi-
nancial markets and their aims were more to provide mechanisms for bubbles
and crashes than to look at statistical features of the so generated time se-
ries. At least in the case of Levy, Levy, Solomon, the authors initially were
not aware at all of the scaling laws characterizing financial markets (personal
communication by Sorin Solomon). However, later on their model served
as inspiration and starting point for the analysis of statistical properties of
simulated data. As an interesting example, the inherent wealth dynamics in
Levy, Levy, Solomon inspired a more thorough analysis of the development
of traders’ wealth in some kind of generalized Lotka-Volterra systems.

This extension is based on a 1996 model [109,149] which was re-investigated
more recently. The pertinent results have been presented in a series of recent
papers by Huang, Solomon and others. We thus call it the SLH model. Its
mechanics can be described as a random multiplicative process for the wealth
of each trader, with different traders coupled through their average wealth
somewhat similar to predator-prey models.
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Assume that all traders start with the same wealth but later each of them
speculates differently on the market and gains or loses amounts proportional
to his current wealth:

wi(t + 1) = λwi(t) (i = 1, 2, . . . , N) (12)

where λ is a number fluctuating in a small interval centered about unity. This
random multiplicative process has been discussed before. The new ingredient
in SLH is the “welfare state”: Nobody is allowed to fall below some poverty
level wi = qW where W = W (t) =

∑
i wi(t)/N is the average wealth per

trader at that time. Thus this model is very simple, but nevertheless possesses
many realistic properties. Physicists can identify it with a random walk on a
logarithmic wealth scale with one repelling boundary.5 Instead of this cut-off,
the authors also investigate the rule

wi(t + 1) = λwi(t) + aW (t), (13)

which represents a rich society engaging in even redistribution of a certain
fraction of overall wealth.

In the infinite N limit the same relative wealth distribution

P
(wi

W

)
∝

(wi

W

)−2−2a/D

exp
[−aW

Dwi

]
(14)

is obtained [138] for a more general and realistic model:

wi(t + 1) = λw(i) + aW (t)− c(W, t)wi(t) (15)

where the arbitrary function c(W, t) parameterizes the general state of the
economy: time periods during which −c(W, t) is large and positive correspond
to boom periods while periods during which it is negative correspond to re-
cessions. Complementarily, if one thinks of wi as the real wealth (as opposed
to the nominal number of dollars which could increase solely because of in-
flation) of each individual, an increase of the total amount of dollars in the
system W (t) means that an agent with individual wealth wi will suffer from a
real loss due to inflation in an amount proportional to the increase in average
wealth and proportional to one’s own wealth: −c(W, t)wi(t).

The following results are obtained: For infinite markets, a power law ∝
1/wα was obtained for the probability of traders with wealth larger than
w. The exponent for this power law is given by the cut-off: α = 1/(1 − q).
Thus if q ∼= 1

3 we have α ∼= 1.5 in agreement with well-known empirical
findings. It would be interesting to see if in real economies this exponent and

5 This passage, having been contributed by D.S., obviously reflects the tendency
of physicists to know everything better. In fact, the remaining authors (although
they are only economists) see no reason why they should be unable to recognize
a random walk with a reflecting boundary.
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the analogous one for the price fluctuations depend on the lower cut-off for
wealth: The more egalitarian or socialist a country is, the higher will be q,
and the higher will be the exponent α, making extreme wealth inequalities
and market fluctuations less probable.

The amount trader i invests on the stock market is proportional to the
wealth wi : George Soros produces more price changes than the present au-
thors together (we expect this to change in the near future). Thus the fluctua-
tions of the market price were at first thought to have the same tail exponent
α as the wealth distribution. However, this is not true because the different
traders are not statistically independent: the cut-off wi ≥ qW introduces a
coupling via the average wealth W .

Moreover, real markets are finite, and according to a 1999 review of mi-
croscopic market models [156], the majority of these models get unrealistic
properties like periodic oscillations, if the market size goes to infinity. In
short, a few hundred professional speculators and not the millions of non-
speculative families dominate most of the market movements. The thermody-
namic limit, so traditional in statistical physics where a glass of beer contains
1025 molecules and where 16× 1012 sites were already simulated [165], may,
therfore, be very unrealistic for markets.

Indeed, simulations of the SLH model for 102 . . . 104 traders gave effective
exponents α ' 3, i.e. close to the desired one for the price flcutuations (not
the wealth distribution). These exponents are valid only in some intermediate
range: For small wealth the cut-off is important, and nobody can own more
wealth than is available in the whole market. We refer to the SLH papers for
more details on this approach [80,148,81,23,82,150,138,112].

A somewhat related recent strand of literature has analysed simple mon-
etary exchange models. The main question pursued in this area is emergence
of inequality within a pool of agents due to the randomness of their fortunes
in economic interactions. This line of research is represented, among others
by [27], [38], [55]. The structure of all these models is very simple: agents are
randomly matched in pairs and try to catch some of the other agents wealth
in this encounter. A random toss decides which of both opponents is the win-
ner of this match. The successful agent, then, leaves the battle field with his
wealth having increased by a fraction of the other agent’s previous belongings.
The above papers show that this simple random exchange model (with only
minor differences in the stochastic formalisation in the above papers) leads
to an endogeneous emergence of inequality within an initially homogenous
population. It is, however, worthwile to point out that exactly the same pro-
cess had already been proposed in [3] by sociologist John Angle and has been
extended in various ways in the pertinent literature over the years ([4,5]).
Needless to say that physicists would have gained by first consulting the lit-
erature on the subject before starting to duplicate well-established lines of
research. It might also be remarked that in the recent economics literature, a
number of more realistic models of wealth formation and agend-based models
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exist (e.g. [146]). A more extensive discussion of this class of model can be
found in [117].

7 Percolation Theory Applied to Finance:
Cont-Bouchaud

Together with the random walk model of Bachelier [15] hundred years ago,
and the random multiplicative traders of SLH, the Cont-Bouchaud model is
one of the simplest models, having only a few free parameters (compared,
e.g., to the “terribly complicated” Lux-Marchesi model reviewed below).
Economists like biologists may bemoan this tendency of physicists, but the
senile third author from the physics community likes it. Also, it is based on
decades of percolation research in physics, chemistry and mathematics, just
as Iori’s random-field Ising model uses many years of physics experience in
that area [83]. Obviously, with this type of models, “econophysicists” have
introduced new tools of analysis to financial modeling. As recent research
in economics has focused on communication and information among traders
(e.g., [93,19]), the random-field and percolation models might be welcome
means for the investigation of information transmission or formation of opin-
ions among groups of agents.

In percolation theory, invented by the later chemistry Nobel laureate Paul
Flory in 1941 to explain polymer gelation (cooking of your breakfast egg),
and later applied by Broadbent and Hammersley to coal-dust filters, and by
Stuart Kauffman to the origin of life, each site of a large lattice is either
occupied (with probability p), or empty (with probability 1− p).

Clusters are groups of occupied neighbors. A cluster is infinite if its mass
s (the number of occupied sites belonging to that cluster) increases with a
positive power of the lattice size (and not only logarithmically). When the
density p increases from zero to one, at some sharp percolation threshold pc

for the first time (at least) one infinite cluster appears; for all p > pc we
have exactly one infinite cluster for large and not too anisotropic lattices,
filling a positive fraction p∞ of the whole lattice. For all p < pc we have no
infinite cluster. At p = pc we find incipient infinite clusters which are fractal.
If p approaches pc from above, the fraction p∞ vanishes as (p − pc)β with
some critical exponent β varying between zero and unity for dimensionality
going from one to infinity. The Hoshen-Kopelman and the Leath algorithm to
produce and count percolation clusters are well documented with complete
programs available from DS.

The average number ns of clusters containing s sites each follows a scaling
law for large s close to the threshold pc

ns = s−τf [(p− pc)sσ] (16)

where the exponent τ varies from 2 to 2.5 if d goes from one to infinity, and the
exponent σ stays close to 1/2 for 2 ≤ d ≤ ∞. The previous exponent β equals
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(τ−2)/σ. The details of the lattice structure do not matter for the exponents,
only for the numerical value of pc(∼= 0.5927464 for nearest neighbors on the
square lattice). On a Bethe lattice (Cayley tree), τ = 5

2 , σ = 1
2 , β = 1, and

the above scaling function f for the cluster numbers is a Gaussian; these
exponents are also found for 6 < d ≤ ∞ and for the case that each site is a
neighbor to all other sites (i.e., a “random graph”) [127].

The above model is called site percolation; one can also keep all sites occu-
pied and instead break the links between neighboring sites with a probability
(1−p). This case is known as bond percolation and has the same exponents as
site percolation. Computer programs to count percolation clusters were pub-
lished by many, including the senile co-author [158,159]. All this knowledge
was available already before percolation was applied to market fluctuations.

In the Cont-Bouchaud market model, originally restricted to the math-
ematically solvable random graph limit and later simulated, as reviewed in
[157], on lattices with 2 ≤ d ≤ 7, each occupied site is a trader. A cluster
is a group of traders making joint decisions; thus the model simulates the
herding tendency of traders. At each time step, each cluster either trades
(with probability 2a) or sleeps (with probability 1− 2a), and when it trades
it either buys or sells an amount proportional to the size s of the cluster i;
thus a usually is the probability for the member of a cluster to be a buyer.
The market price is driven by the difference between the total supply and
demand; the logarithm of the price changes proportionally to this difference
(or later [161,182] to the square-root of the difference). The concentration
p is either fixed or varies over the whole interval between zero and unity,
or between zero and pc. The results deteriorate [37,40] if the price change
is no longer proportional to the difference between demand D and supply
S, but to the relative difference (D− S)/(D + S) or to a hyperbolic tangent
tanh[const·(D−S)]. However, the latter has been found to be a more realistic
description of the price impact of demand variations [134]. Some results are:
If the activity a increases from small values to near its maximum value 1/2,
the histogram of the price fluctuations changes from an asymptotic power
law to something close to a Gaussian, similar to the crossover in real markets
when the observation time goes to infinity. For small activities, the cumula-
tive probability to have a change by at least x%, varies in its tail as 1/xµ,
with [161,157] µ = 2(τ +σ−1) if we use Zhang’s square-root law and average
over all p between 0 and pc. This exponent µ varies from 2.9 and 3.3 to 4 if
d increases from two and three to infinity. Thus in the realistic dimensions
of a city or bank building, d = 2 or 3, we get the desired µ ∼= 3. Figure 12
shows simulations giving this power law, except for flattening at small x and
a cut-off due to finite market sizes at large x. The curve through the data is
the Student-t distribution following from Tsallis statistics [154].

Volatility clustering, positive correlations between trading volume and
price fluctuations, as well as the observed asymmetry between sharp peaks
and flat valleys is seen if the activity increases (decreases) in a time of increas-
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Fig. 12. Distributions of price changes from the Cont-Bouchaud percolation model.
The figure also compares P (x) with const/(3+0.06∗x2)2. The underlying data are
averages from many 301× 301 square lattices

ing (decreasing) market prices. Nearly log-periodic oscillations are seen if a
non-linear restoring force (buy if the price was low) is combined with some
hysteria (buy if the price was rising). For more details we refer to the original
papers following [48] reviewed in [157]. After this review, more effects were
understood and variations were tried. The crossover towards a Gaussian re-
turn distribution for increasing activity was explained [97]. Instead of lattices
of various dimensions, the Barabasi network was assumed as the home of the
Cont-Bouchaud traders, with good results [98]. Thermodynamic Ising-like
modifications [145], in the direction of the Iori model [83] were proposed and
gave reasonable histograms of price fluctuations. The lack of time-reversal
invariance was recovered by putting some risk aversion psychology into the
buying and selling probabilities [39]. Multifractality was found [36] in the
higher moments of the return distributions for different time intervals. Also
a combination of these various modifications worked reasonably though not
ideally [40]; see e.g. Figure 13.

Applications included triple correlations between Tokyo, Frankfurt and
New York markets [143] and the effects of a small Tobin tax on all trans-
actions [61,176]. Two physicists, Ehrenstein and Stauffer and an economist,
Westerhoff first independently simulated how such a tax would influence the
market. Depending on parameters, either the total tax revenue has a maxi-
mum in the region of up to one percent taxation, or it increases monotonically.
Taking into account the tendency of governments to overexploit available
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Fig. 13. Examples of price versus time in a modified Cont-Bouchaud model, show-
ing sharp peaks and flat valleys [40]

sources of tax income, they recommend the Tobin tax only for the first case,
not the second. It then would reduce the amount of speculation, but not by
an order of magnitude [62]. Summarizing, it therefore appears that the Cont-
Bouchaud models and the subsequent variations on their theme contributed
by other authors have gone some way in explaining important stylized facts of
financial markets. Nevertheless, economists often feel somewhat uneasy about
this approach. The reason is that its starting point is known knowledge about
the characteristics of certain graph-based dynamics (i.e., percolation models
in statistical physics). The “explanation” of stylized facts in economics is,
then, achieved to some extend via a mere relabeling of known physical quan-
tities into new ones with an economic interpretation. Economists, of course,
would like to start with basic facets of economics interaction of real-life mar-
kets rather than with a lattice-based architecture. Furthermore, the many
attempts at “improvements” of the model outlined above show that realistic
results are only obtained under extremely specific settings. Hence, it appears
questionable whether this framework really allows an explanation of empiri-
cal findings that is “independent of microscopic details” as postulated in an
econophysics manifesto (Stanley et al. [155]).

8 Social Percolation and Marketing: Solomon-Weisbuch

Nevertheless, scientists have a natural tendency to apply what they have
learned to as many different problems as possible (maximizing thereby the
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number of their publications). Percolation theory seems to be one of the
discoveries one can use in quite a number of fields. Besides financial markets,
another application concerns “social percolation” and its use in marketing
[151] which we review in the following (departing shortly from our central
subject of financial markets).

As in the previous section, every site of a large lattice is randomly either
occupied or empty, and a cluster is a set of occupied neighbors. Now we
identify occupied sites with potential customers of one specific product, say,
a Hollywood movie. Each site i has a certain quality expectation pi, and
the product has a certain quality q. The values of pi are homogeneously
distributed between zero and unity. Only those people visit this movie (or
more generally, buy this product) who regard its quality as sufficient, i.e. who
have pi < q. We thus define as occupied a site with pi < q, and then a site is
occupied with probability q. All sites i in a cluster have pi < q.

If all potential customers are immediately informed about the new prod-
uct and its quality q, then a fraction q of all sites will buy, a trivial problem.
But since we get so much advertising, we may mistrust it and consider buying
a movie ticket only if we hear from a neighbor about its quality q. Thus a site
i buys if and only if one of its nearest neighbors on the lattice has bought
before, if i has not bought before, and if pi < q (customers are assumed to
have the same perception of the quality of the product, i.e. the quality assess-
ment q they tell their neighbors is the same for all customers.) Initially, all
occupied sites on the top line of the lattice (top plane in three dimensions)
are regarded as customers who have bought and who thus know the quality
q. In this way, geometry plays a crucial role, and only those sites belonging
to clusters which touch the upper line get informed about the movie and see
it. If and only if one cluster extends from top to bottom of the lattice, we
say that the cluster percolates or spans. And standard percolation theory
then predicts a spanning cluster if the occupation probability (or quality) q
is larger than some threshold pc, which is about 0.593 on the square lattice
[158,141,34]. (Instead of starting from the top and moving towards the bot-
tom, one may also start with one site in the center and move outwards. The
cluster then percolates if it touches the lattice boundary.)

In this way the decades-old percolation theory divides new products into
two classes: Hits and flops [173], depending on whether or not the quality
was high enough to produce a spanning cluster. For a flop, q < pc, only sites
near the initially occupied top line get informed that the new cluster exists,
while for a hit, q > pc, also customers “infinitely” far away from the starting
line buy the movie ticket. In the case of a hit, except if q is only very slightly
larger than pc, nearly all customers with pi < q get the information and go
to the movie; only a few small clusters are then isolated from the spanning
network and have no chance to react. Figure 13 shows three examples, where
one time step corresponds to one search through all neighbors of previously
occupied sites (Leath algorithm [159]). In traditional marketing theories, as
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Fig. 14. Examples of social percolation starting with one central site occupied;
q = pc − 0.05 (plus signs), q = pc (middle line), q = pc + 0.05 (upper line). We
plot logarithmically the number of new buyers in each time interval [72]. For the
first four time steps the three buying curves agree, since the same random numbers
have been used

discussed in [72], one neglects the spatial structure, and a growing market has
an exponential time dependence until saturation sets in. For averages over
lattices with spanning clusters, instead we have power laws in time [72]. In
reality, both cases have been observed, in addition to complicated behavior
somewhat similar to the curve q = pc of Figure 13.

The first modification of this static percolation model is to assume that
the quality q changes in time: When a movie was successful (i.e. when the
cluster percolated), the producer lowers the quality of the next movie slightly;
when it was a flop (no percolating cluster), q is slightly increased. With this
dynamics, like q → q ± 0.001, the q automatically moves to the threshold
pc, an example of self-organized criticality. In addition, we may assume [151]
that also the pi change: pi increases by a small amount if i just has seen a
movie, and it decreases by the same amount if the agent did not see a movie
previously (in the second case one has to distinguish whether the customer
refused to buy because of pi > q or merely was not informed about the movie.)
In this case also the pi can move towards pc , though slower than q, or they
may be blocked at some intermediate value; also instabilities can occur where
q and all pi move towards infinity. These difficulties were clarified by Huang
[79], who also applied this model to stock markets [78].
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Information through advertising influences the percolative phase transi-
tion [136]. We refer to the literature cited above as well as to [73,1,175,172]
[174,147] for further details and modifications.

There is (of course) also a large body of economic research dealing with
similar problems. In fact, the analysis of irreversible lock-in and path de-
pendence in the adaption of new goods or new technologies is often based on
mass-statistical models. A prominent example is Arthur [12] who used nonlin-
ear Polya urn models as an abstract model of such processes. The application
of similar ideas as an explanation for geographical concentration of economic
activity led to a remarkable revival of the formerly dormant field of regional
economics over the nineties (cf. Arthur [13], Krugman [96]). Multi-agent ap-
proaches to “hits” and “flops” in the movie industry (using Bose-Einstein
dynamics) with empirical applications can be found in De Vany and Walls
[168] and De Vany and Lee [167].

With the next (and last) model we come back to financial markets.

9 Speculative Interaction and the Emergence of
Scaling Laws: Lux-Marchesi

The model of Lux and Marchesi [119] has its roots in earlier attempts of
economists at introducing heterogeneity into stochastic models of specula-
tive markets. Inspired by the analysis of herd behavior in ant colonies [93]
and earlier applications of statistical mechanics to various problems in sociol-
ogy and political sciences (Weidlich and Haag [170,171]), a stochastic model
of trading in financial markets has been developed in [113]. The basic ingre-
dient of this contribution was a kind of mean-field dynamics for the opinion
formation process among speculators together with a phenomenological law
for the ensuing price adjustment in the presence of disequilibria. Using the
Master equation formalism, it could be shown that the model is capable of
generating “bubbles” with over- or undervaluation of the asset as well as pe-
riodic oscillations with repeated market crashes. A detailed analysis of the
dynamics of second moments (variances and co-variances) was added in [116]
where the potential explanatory power of multi-agent models for the typical
time-variations of volatility in financial markets was pointed out.

The group interactions in this model have been enriched in [115] by al-
lowing agents to switch between a chartist and fundamentalist strategy. This
more complicated dynamics was shown to give rise to chaotic patterns in
mean values of the relevant state variables (the number of agents in each
group plus the market price). Numerical analysis of simulated chaotic attrac-
tors showed that they came along with leptokurtosis (fat tails) of returns,
hence providing a possible explanation of one of the ubiquitous stylized facts
of financial data.

Both microscopic simulations as well as more detailed quantitative anal-
yses of the resulting time series appeared in Lux and Marchesi [119,120] and
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Chen et al. [41]. The fact that these key issues were approached quite lately in
the development of this market model to some extent reflects a broader trend
in the related literature: As already pointed out above, almost all the early
simulation models developed in economics had the initial goal of investigating
the formation of expectations of economic agents in out-of-equilibrium situa-
tions (where it is hard to form “rational”, i.e., correct expectations about the
future) and analyzing the selection of equilibria in the presence of multiple
consistent solutions of a static framework. Interestingly, a development simi-
lar to that of the Lux-Marchesi model can also be observed in the case of the
Santa Fe Artificial Stock Market. Although the latter was constructed by a
group of researchers from economics, physics, biology and computer science
already in the eighties, an analysis of the statistical properties of the resulting
time series only appeared recently (LeBaron et al., [102]).

The dynamics of the “terribly complicated” (D.S.) Lux-Marchesi model
is illustrated in Figure 15. It is a kind of feedback between group dynamics
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Fig. 15. Flowchart of dynamics of the Lux-Marchesi model: agents are allowed to
switch between different behavioral alternatives. The number of individuals in these
groups determines excess demand (the difference between demand and supply).
Imbalances between demand and supply cause price adjustments which in turn
affect agents’ choices of strategies

and price adjustment in the presence of imbalances between demand and
supply. Starting with basic definitions we denote by N the total number of
agents operating in our artificial market, nc the number of noise traders, nf

the number of fundamentalists (nc + nf = N), n+ the number of optimistic
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noise traders, n− the number of pessimistic noise traders (n+ + n− = nc); p
is the market price, pf the fundamental value.

The dynamics of the model are composed of the following elements:
1. noise traders’ changes of opinion from a pessimistic to an optimistic

mood and vice versa: the probabilities for these changes during a small time
increment ∆t are given by π+−∆t and π−+∆t and are concretised as follows:

π+− = v1
nc

N
exp(U1)

π−+ = v1
nc

N
exp(−U1)

U1 = α1x +
α2

v1

dp

dt

1
p

(17)

Here, the basic influences acting on the chartists’ formation of opinion are
the majority opinion of their fellow traders, x = n+−n−

nc
, and the actual price

trend, dp
dt

1
p . Parameters v1, α1, and α2 are measures of the frequency of reval-

uation of opinion and the importance of “flows” (i.e. the observed behaviour
of others) and charts, respectively. Furthermore, the change in asset prices
has to be divided by the parameter v1 for the frequency of agents’ revision
of expectations since for a consistent formalization one has to consider the
mean price change over the average interval between successive revisions of
opinion. The transition probabilities are multiplied by the actual fraction of
chartists (that means, it is restricted to such a fraction) because chartists are
also allowed to interact with fundamental traders in the second component
of the group dynamics that follows below.

2. switches between the noise trader and fundamentalist group are for-
malised in a similar manner. Formally, one has to define four transition prob-
abilities, where the notational convention is again that the first index gives
the subgroup to which a trader moves who had changed her mind and the
second index gives the subgroup to which she formerly belonged (hence, as
an example, π+f gives the probability for a fundamentalist to switch to the
optimistic chartists’ group):

π+f = v2
n+

N
exp(U2,1), πf+ = v2

nf

N
exp(−U2,1) (18)

π−f = v2
n−
N

exp(U2,2), πf− = v2
nf

N
exp(−U2,2). (19)

The forcing terms U2,1 and U2,2 for these transitions depend on the difference
between the (momentary) profits earned by using a chartist or fundamentalist
strategy:

U2,1 = α3

{
r + 1

v2

dp
dt

p
−R− s ·

∣∣∣pf − p

p

∣∣∣
}

(20)

U2,2 = α3

{
R− r + 1

v2

dp
dt

p
− s ·

∣∣∣pf − p

p

∣∣∣
}

(21)
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The first term of the U functions represents the profit of chartists from the n+

group and n− group. The second term is the profit of the fundamentalists.
The parameters v2 and α3 are reaction coefficients for the frequency with
which agents reconsider appropriateness of their trading strategy, and for
their sensitivity to profit differentials, respectively. Excess profits (compared
to alternative investments) enjoyed by chartists from the optimistic group
are composed of nominal dividends (r) and capital gains due to the price
change (dp/dt). Dividing by the actual market price gives the revenue per
unit of the asset. Excess returns compared to other investment opportunities
are computed by substracting the average real return (R) received by the
holders of other assets in our economy. Fundamentalists, on the other hand,
consider the deviation between price and fundamental value pf (irrespective
of its sign) as the source of arbitrage opportunities from which they may
profit after a return of the price to the underlying fundamental value. As the
gains of chartists are immediately realised whereas those claimed by funda-
mentalists occur only in the future (and depend on the uncertain time for
reversal to the fundamental value) the latter are dicounted by a factor s < 1.
Furthermore, neglecting the dividend term in fundamentalists’ profits is jus-
tified by assuming that they correctly perceive the (long-term) real returns
to equal the average return of the economy (i.e. r/pf = R) so that the only
source of excess profits in their view is arbitrage when prices are “wrong”
(p 6= pf ). As concerns the second U-function, U2,2 one considers profits from
the viewpoint of pessimistic chartists who in order to avoid losses will rush
out of the market and sell the asset under question. Their fall-back position
by acquiring other assets is given by the average profit rate R which they
compare with nominal dividends plus price change (which, when negative,
amounts to a capital loss) of the asset they sell. This explains why the first
two items in the forcing term are interchanged when proceeding from U2,1 to
U2,2.

3. price changes are modelled as endogenous responses of the market
to imbalances between demand and supply. Assuming that optimistic (pes-
simistic) chartists enter on the demand (supply) side of the market, excess
demand (the difference between demand and supply) of this group is:

EDc = (n+ − n−)tc (22)

with tc being the average trading volume per transaction. Fundamentalists’
sensitivity to deviations between market price and fundamental value leads
to a law of the type:

EDf = nf · γ pf − p

p
(23)

with γ being a parameter for the strength of reaction. In order to conform
with the general structure of our framework, we also formalise the price ad-
justment process in terms of (Poisson) transition probabilities. In particular,
we use the following transition probabilities for the price to increase or de-
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crease by a small percentage ∆p = ±0.001p during a time increment ∆t:6

π↑p = max[0, β(ED + µ)] , π↓p = −min[β(ED + µ), 0] (24)

where β is a parameter for the price adjutment speed and ED = EDc +EDf

is overall excess demand (the sum of excess demand by both noise traders
and fundamentalists).

This probabilistic rule for price adjustments is, in fact, equivalent to the
traditional Walrasian adjustment scheme. It can be shown that the mean
value dynamics of the price can be depicted by the textbook differential
equation for the dependence of price changes on overall excess demand:

dp/dt

p
= β · ED = β · (EDc + EDf ) (25)

Note that these price changes feed back on agents’ decisions to follow one or
the other trading strategy: a price increase will reinforce optimistic beliefs
and will make formerly pessimistic chartists join a bullish majority. Simi-
larly, price changes might bring p closer to an assumed fundamental value,
pf , which strengthens fundamentalist beliefs, or they might lead to larger
deviations from pf which reinforces the position of chartists. All in all, the
resulting confirmation or disappointment of agents’ opinions together with
changing profitability of strategies will lead to switches between groups al-
tering the composition of the population and effecting excess demand of the
following period. The model also allows for exogeneous changes of the funda-
mental value:

4. changes of fundamental value: in order to assure that none of the
stylised facts of financial prices can be traced back to exogenous factors, we
assume that the log-changes of pf are Gaussian random variables: ln(pf,t)−
ln(pf,t−1) = εt and εt ∼ N(0, σε). The Poisson type dynamics of asyn-
chronous updating of strategies and opinions by the agents can only be ap-
proximated in simulations. In particular, one has to choose appropriately
small time increments in order to avoid artificial synchronicity of decisions.
In [35, 108, 109] a simulation program with some flexibility in the choice of
the time increment is used. Namely, time increments ∆t = 0.01 are used for
“normal times”, while during volatility bursts the precision of the simulations
was automatically increased by a factor 5 (switching to ∆t = 0.002) when
the frequency of price changes became higher than average. This procedure
requires that all the above Poisson rates be divided by 100 or 500, (depending
on the precision of the simulation) in order to arrive at the probability for
any single individual to change his behaviour during [t, t + ∆t]. Similarly, it
is assumed that the auctioneer adjusts the prevailing price by one elementary

6 The increment ∆p has been chosen as small as possible in order to avoid artificial
lumpiness of price changes with concentration of the distribution of returns at a
few values only.
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unit (one cent or one pence) with probabilities w↑p or w↓p during one time
increment. For the time derivative, dp/dt, the average of the prices changes
during the interval [t − 10∆t, t] has been used. Furthermore, occurence of
the “absorbing states” nc = 0 (nf = N) and nc = N (nf = 0) was excluded
by setting a lower bound to the number of individuals in both the group of
chartists and fundamentalists.

The overall results of this dynamics is easily understood by investigation
of the properties of stationary states (cf. [120]), i.e., situations in which there
are no predominant flows to one of the groups and the price remains constant.
Such a scenario requires that there is a balanced disposition among (chartist)
traders, i.e., we neither have a dominance of optimists over pessimists (nor
vice versa) and that the price is equal to the fundamental value (which makes
fundamentalists inactive). A little reflection reveals that in such a situation,
there is no advantage to either the chartist or fundamentalist strategy: no
misprizing of the asset nor any discernible trends exist. Hence, the compo-
sition of the population becomes indeterminate which implies that, in the
vicinity of these stationary states, the group dynamics is governed only by
stochastic factors. 7 Hence, to a first approximation one can abstract from the
economic forces which apparently become relevant only in out-of-equilibrium
situations. As detailed in [119,120], the stationary states described above may
either be locally stable or unstable with the number of chartists acting as a
bifurcation parameter. Simulations show that temporary deviations into the
unstable region can be interpreted as intermittent behavior which generates
clusters of volatility and numerically accurate power laws for the tail behav-
ior of raw returns as well as long-term dependence in absolute and squared
returns. Figure 16 illustrates the interplay between the dynamics of relative
price changes and the development of the number of chartists among traders.
As can be directly inferred from the graph, an increase of the number of
chartists leads to intermittent fluctuations. Note also that the model incor-
porates self-stabilizing forces leading to a reduction of the number of chartists
after a period of severe fluctuations. The reason is that large deviations of
the price from its fundamental value lead to high potential profits of the
fundamentalist strategy which induces a certain number of agents to switch
away from chartism. Chen et al. [41] also show that the motion of the market
price appears totally random (judged by standard tests for determinism and
nonlinearity) in tranquil times but shows traces of non-linear structure dur-
ing more volatile episodes [41]. This feature appears to be in harmony with
findings for the U.S. stock market [110].

7 A similar indeterminacy in the number of agents in different groups has been
found in a model of resource extraction (Youssefmir and Huberman [179]). They
also emphasize that this indeterminacy can lead to burst of activity (temporary
large fluctuations).
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Fig. 16. Time series of returns (relative price changes, upper panel) and the fraction
of chartists (lower panel) from a typical simulation of the Lux-Marchesi model

10 Discussion

While early attempts at microscopic simulations of financial markets ap-
peared unable to account for the ubiquitous scaling laws of returns (and were,
in fact, not devised to explain them), some of the recent models seem to be
able to explain some of the statistical properties of financial data (usually
denoted as “anomalies” in economics). Nevertheless, there is still a number
of important topics left to future research: first, the recent surge of newly
available data on the intra-daily level has opened a Pandora’s box of new
regularities on very small time scales (cf. Dunis and Zhou [58]). While the
ubiquitous scaling laws found in all markets might be explained well by sim-
ple mechanisms beloved by physicists, the more delicate intra-daily patterns
may require more detailed models (denoted as “monsters” in a workshop
presentation of a recent paper by Maslov [125]). If physicists do not want
to stop half-way in their contribution to economics, they may probably have
to develop, as is typically done in economics, models with more institutional
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background.8 Second, although we have a bunch of models for power-laws,
their generality is still restricted in one very important respect: the “interest-
ing” dynamics does only apply for a certain range of the population size N
of speculators and in most cases does not survive for N →∞. This has been
shown for the Kim and Markowitz and Lux and Marchesi models in Egen-
ter et al. [60] and probably applies to most alternative approaches. A recent
investigation of Chen and Yeh’s artificial stock market also shows that their
interesting results tend to vanish when the number of traders increases (cf.
Yeh [178]). In Lux and Marchesi, the finite size effect immediately becomes
apparent by realizing that the overall number of agents affects excess demand
and, therefore, the right-hand side of the price-adjustment equation. However,
although one might expect that this leads to more severe fluctuations with
increasing N , the contrary is the case: fluctuations become dampened with
higher N and finally die out altogether with a cross-over of returns to a Nor-
mal distribution. Of course, linear dependence of excess demand on N is not
realistic. The task for future research is, therefore, to look for self-organizing
forces in the market (maybe via the addition of wealth dynamics) which may
lead to an effective confinement of the level of excess demand.

Have the econophysics papers reviewed here brought anything new to
economics? Certainly they did not invent microscopic computer modeling
of markets or empirical analysis of market fluctuations. But the large num-
ber of enonophysicists pushed these areas since physicists are more famil-
iar with computer simulation and empirical analysis than many mainstream
economists more interested in exact mathematical solutions. Of course, per-
colation and random field Ising models are clear physics contributions, and
the introduction of multi-fractal processes as stochastic models of financial
prices (a topic which is outside the scope of the present review) is conceived
as an important innovation by many economists. Here again, we find that
economists have been aware of the multi-scaling of returns for some time
[52,114], but suffered from a lack of appropriate models in their tool-box (cf.
[118] for more details on this issue).

Have econophysists made any predictions which were later confirmed? If
we define as “prediction” something which has appeared in a journal on paper
before the predicted event was over, we exclude all private communications
or e-prints, and know only three cases: The warning published in September
1997 that a “krach” should occur before the end of November [59] (it occurred
in October)[144]; the assertion that the Nikkei index in Tokyo should go up
in 1999, which it did by roughly the predicted amount, and the prediction
that the U.S. stock market should reach a lower turning point in early 2004
which did not happen [153]. Even if “successful” relatively vague predictions
like the above are, of course, at best interpreted as anecdotical evidence, but
are surely not significant from a statistical perspective.

8 Similar probably to the development of statistical models of traffic flows, cf. Nagel
et al. [128]
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Have we become rich in this way? The senile co-author gained 50% in half
a year by believing the above predictions, and similar anecdotal evidence ex-
ists from others. Interestingly, in this way the one contributer with a physics
background seems to show show a better performance in private portfolio
management than the three economists who rather concentrated on their
academic careers. Of course success is often reported proudly while failures
are kept as a secret. In this way, certain strategies might appear successful
simply because of a bias in awareness of positive outcomes versus negative
ones. More than half of a century ago, the prominent economist Nicholas
Kaldor [90] explained the prevalence of chartist strategies by such a misper-
ception of their track record. But more reliable are the flourishing companies
like Prediction Company (New Mexico) or Science-Finance (France) founded
by physicists Farmer and Bouchaud, respectively, together with economists,
giving employment to 102 people. This seems quite a success for theoretical
physicists.
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Superior Técnico Lisbon, University College London, 2001. Manuscript.

36. F. Castiglione and Stauffer D. Multi-scaling in the Cont-Bouchaud micro-
scopic stock market model. Physica A, 3000:531–538, 2001.

37. A. Chakraborti. Market application of the percolation model: Relative price
distribution. International Journal of Modern Physics C, 13:25–29, 2002.

38. A. Chakraborti and B. Chakrabarti. Statistical mechanics of money: How sav-
ing propensities affects its distribution. European Physical Journal B, 17:167–
170, 2000.

39. I. Chang and D. Stauffer. Time-reversal asymmetry in Cont-Bouchaud stock
market model. Physica A, 299:547–550, 2001.

40. I. Chang, D. Stauffer, and R. B. Pandey. Asymmetries, correlations and fat
tails in percolation market model. International Journal of Theoretical and
Applied Finance, 5:585–597, 2002.

41. S. H. Chen, T. Lux, and M. Marchesi. Testing for nonlinear structure in an
’artificial’ financial market. Journal of economic Behaviour and Organization,
46:327–342, 2001.

42. S. H. Chen and C. H. Yeh. Evolving traders and the business school with
genetic programming: A new architecture of the agent-based stock market.
Journal of Economic Dynamics and Control, 25:363–393, 2001.

43. S. H. Chen and C. H. Yeh. On the emergent properties of artificial stock
markets: The Efficient Market Hypothesis and the Rational Expectations Hy-
pothesis. Journal of Economic Behavior and Organization, 49:217–239, 2002.

44. C. Chiarella, R. Dieci, and L. Gardini. Speculative behaviour and complex as-
set price dynamics. Journal of Economic Behavior and Organization, 49:173–
197, 2002.

45. S. Cincotti, S. Focardi, M. Marchesi, and M. Raberto. Agent-based simulation
of a financial market. Physica A, 299, 2001. 319-327.

46. K. J. Cohen, S. F. Maier, R. A. Schwartz, and D. K. Whitcomb. The Mi-
crostructure of Securities Markets. Prentice-Hall, Englewood Cliffs New Jer-
sey, 1986.

47. The Brady Commission. Report of the Presidential Task Force on Market
Mechanisms. U.S. Government Printing Office, Washington, DC, 1988.



Microscopic Models of Financial Markets 45

48. R. Cont and J. P. Bouchaud. Herd behaviour and aggregate fluctuations in
financial markets. Macroeconomic Dynamics, 4:170–196, 2000.

49. H. Dawid. On the convergence of genetic learning in a double auction market.
Journal of Economic Dynamics and Control, 23:1545–1567, 1999.

50. R. H. Day and W. Huang. Bulls, bears, and market sheep. Journal of Eco-
nomic Behavior and Organization, 14:299–329, 1990.

51. P. DeGrauwe, Dewachter H, and M. J. Embrechts. Exchange Rate Theory:
Chaotic Models of Foreign Exchange Market. Blackwell, Oxford, 1993.

52. Z. Ding, R. Engle, and C. Granger. A long memory property of stock market
returns and a new model. Journal of Empirical Finance, 1:83–106, 1993.

53. R. Donangelo, A. Hansen, K. Sneppen, and S. R. Souza. Modelling an imper-
fect market. Physica A, 283:469–478, 2000.

54. R. Donangelo and K. Sneppen. Self-organization of value and demand. Physica
A, 276:572–580, 2000.
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