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Introduction 
 
It is well known that both volatility and trading volume are characterized by a much higher 

degree of predictability than the returns of financial assets. In the huge literature on 
forecasting volatility, the vast majority of papers use variants of the GARCH family of 
stochastic processes, which provide an easy and convenient way to capture the basic auto-
regressive structure of conditional variances (see Granger and Poon, 2003, for a recent survey 
of the voluminous literature on volatility forecasting). However, results are not unanimously 
in favour of the potential of GARCH models to improve upon the forecasting performance of 
simpler models like the historical mean volatility or moving average or smoothed 
representations of it. Dimson and Marsh (1990) and Figlewski (1997), among others, find that 
simpler models can indeed outperform GARCH or related approaches at least when applied to 
low-frequency (weekly, monthly) data. On the other hand, dozens of papers investigate 
whether improvements over GARCH as a benchmark are possible using non-linear models or 
artificial intelligence techniques (e.g. West and Cho, 1995; Brailsford and Faff, 1996; 
Donaldson and Kamstra, 1997; Neely and Weller, 2002). Considering the overwhelming 
evidence for long-term dependence in volatility (i.e. hyperbolic decay of its autocorrelation 
function rather than the exponential decay characteristic of short-memory models), it also 
appears worthwhile to explore the potential value added by models sharing this feature. Long 
memory in volatility has been first pointed out as a stylised fact by Ding, Engle and Granger 
(1992). Prevalence of this feature in financial data has meanwhile been confirmed in many 
subsequent studies and counts now as one of the truly universal properties of asset markets 
(cf. Lobato and Savin, 1998). 

 
Long memory generalizations of standard short-memory time series models are available in 

the ARFIMA (Granger and Joyeux, 1980) and FIGARCH models (Baillie et al., 1996). When 
browsing the literature on volatility forecasting, it comes as a certain surprise that these 
candidate models have received relatively scant attention so far. Basically, only two papers 
with a direct comparison between GARCH and FIGARCH forecasts appear to be available at 
present, Vilasuso (2002) and Zumbach (2004), both considering volatility forecasts in foreign 
exchange markets. Vilasuso reports relatively large reductions of both mean squared errors 
and mean absolute errors over forecasting horizons of 1 to 10 days with FIGARCH compared 
to GARCH. Zumbach’s results using intra-daily data are more sobering in that he finds 
improvements in daily forecasts to be only of the order of one to two percent of MSE. Given 
that there is essentially only one study supportive of superior predictability of long-memory 
models, a more systematic analysis of this issue seems to be worthwhile.  

 
Despite the unanimous finding of hyperbolic decay of autocorrelation functions of absolute 

and squared returns, it might also be the case that it is not due to ‘genuine’ long memory (like 
in FIGARCH or ARFIMA models), but is rather a consequence of unaccounted structural 
breaks. Lamoureux and Lastrapes (1990) have already shown that the high persistence of 
estimated GARCH models is greatly reduced when allowing for structural shifts. As shown 
by Granger and Teräsvirta (1999), simple regime-switching processes with short memory can 
easily give rise to spurious findings of fractional integration. In contrast, Ryden et al. (1998) 
had shown that a Markov switching model can replicate many of the time series properties of 
raw and absolute returns, but that it leads to exponential rather than hyperbolic 
autocorrelations. LeBaron (2001), however, indicated that a calibrated short memory 
stochastic volatility model with three factors leads to spurious finding of temporal scaling, 
while Alfarano and Lux (2006) show the same phenomenon to occur in a bi-stable 
behavioural asset-pricing framework. As these contributions show, the demarcation lines 
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between long memory and regime switching models are fuzzy the more so as one can 
construct variants of regime-switching models that literally display the signatures of long 
memory (cf. the ‘thought experiments’ of Diebold and Inoue, 2001, who construct particular 
regime-switching models with hyperbolic decay of their autocorrelation functions). This 
ambiguity motivates us to include a new type of Markov-switching model into our array of 
volatility models, the Markov-switching multifractal model of Calvet and Fisher (2001). 
Despite allowing for a large number of regimes, this model is more parsimonious in 
parameterization than other regime-switching models. It is furthermore well-known to give 
rise to apparent long memory on a bounded interval (Calvet and Fisher, 2004) and it has 
limiting cases in which it converges to a ‘true’ long memory process. 

 
The exclusive focus on exchange markets also raises the question of how long-memory 

models would perform in other types of markets, e.g. in national stock markets. We attempt to 
shed light on both issues with our investigation of Japanese stocks. Our data base consists of 
daily prices and volume for more than 1,000 stocks traded in the first section of the Tokyo 
stock exchange (trading in the first section requires that certain criteria are met on outstanding 
shares, trading volume and dividend payments). Data are available at daily frequency starting 
in 1975. In the present study, we investigate daily stock prices and trading volume over the 
twenty-seven years period 01/01/1975 to 12/31/2001. A rather typical example of the 
evolution of stock price and daily trading volume is shown in Fig. 1 for the Nippon Suisan 
Company. What stands out here and in most other time series is the enormous increase of 
stock prices during the Japanese bubble in the second half of the eighties and the decline 
thereafter. Another common feature of many stocks is the increase of trading volume during 
the bubble reaching levels that are often by far the highest over the whole sample. After the 
collapse of the bubble, prices gradually fell to their levels in the early eighties while volume 
also went down to roughly its level of the pre-bubble period. As can also be observed from 
Fig. 1, both volatility and volume share similarly heterogeneous time series behaviour and 
their periods of highest activity do broadly coincide. Both also have relatively slowly 
decaying autocorrelations with those for volume exhibiting distinctly more short-run 
dependency than those for volatility. For some stocks in our data base, trading stopped before 
2001 because of bankruptcy of the company. To our knowledge, analyses of the volatility 
dynamics of Japanese stocks have so far been confined to short memory GARCH type models 
(e.g., Tse, 1991; Fong, 1997). An exception is Ray et al. (1997) who estimate ARFIMA 
models for the Tokyo Stock Price Index (TOPIX) and 15 individual stocks. However, they are 
interested in the predictability of raw returns (they find predictable components in the range 
between 5 and 15% of monthly variations), but do not explore the issue of predicting 
volatility or volume as we will do in the following. 

 
Since analysis of all stocks appeared to be too time-consuming, we selected two subsets of 

one hundred entries, respectively. The first of these subsets consisted of those stocks with the 
largest average trading volume, the second subset was composed of 100 randomly chosen 
stocks. For all these stocks we estimated four time series models for their volatility dynamics: 
GARCH, FIGARCH, ARFIMA and the ‘Markov-switching multi-fractal model’ (MSM) 
recently introduced by Calvet and Fisher (2001), another model that at least allows to ‘mimic’ 
long-term dependence (see below for details). We included ARFIMA models to see whether a 
difference exists between the performance of the original ARFIMA structure applied to 
volatility and its embedding into a GARCH framework (i.e., the FIGARCH model). The 
multi-fractal model provides an alternative formalization of long-term dependence in 
volatility and has already been found to outperform GARCH and FIGARCH in some time 
series (Calvet and Fisher, 2004; Lux, 2005). In contrast to the additive structure of the 
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GARCH dynasty, the multi-fractal model conceives volatility as a hierarchical, multiplicative 
process with heterogeneous components, but, in fact, achieves this in a rather parsimonious 
way using (in the version applied here) only two parameters. Our overall finding is that 
improvements over GARCH can be achieved by alternative models which is in contrast to 
frequent findings of the opposite in the literature (which, however, mostly does not include 
long-memory models as alternatives). 

 
Since volume is known to share the long memory property of volatility (Bollerslev and 

Jubinski, 1999; Lobato and Velasco, 2000) and to be strongly contemporaneously correlated 
with volatility, it seems to be worthwhile to also investigate its predictability along similar 
lines. Since GARCH type models are not applicable to volume, we use only the ARFIMA and 
multi-fractal models and compare their performance to ARMA models as a short-memory 
benchmark. Again, dominance of the alternative models is confirmed. As it also turns out, the 
predictable component in volume appears to be much higher on average than that in volatility 
judged by the improvements in mean-squared errors and mean absolute errors against naïve 
forecasts.  

 
 

 
 
Fig. 1: Stock price, volatility (proxied by squared returns) and volume of Nippon Suisan Company (stock 

identification number 1332). Nippon Suisan is a company processing marine food. It has been established in 
1911 and, as of September 2003, it had 1,534 employees and 36,336 shareholders. As with most other entries in 
our database, the Japanese bubble in the second half of the eighties has also affected the price evolution of this 
stock. As one typically observes, volume also reaches its maximum levels during the bubble phase. 
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In a final exercise, we use pooled parameters estimates (averages of the parameter estimates 
obtained by any particular model over the whole sample of 100 stocks) for forecasting of 
future volatility. Counterintuitively, discarding information about individual time series in this 
way leads to vast improvements of average forecast quality for volatility and, albeit to a lesser 
extent, for volume as well. 

 
Our study proceeds along the following lines: sec. 2 deals with volatility forecasts. In sec. 

2.1 we introduce the models and estimation methods, while results are presented in secs. 2.2 
and 2.3. Similarly, models and results for volume are found in secs. 3.1 and 3.2./3.3. Sec. 4, 
then, considers pooled estimates. Our conclusions are to be found in sec. 5. 

 
 
1. Forecasting Volatility of Japanese Stocks 
 
2.1.  Models 
 
In our analysis of forecastability of volatility, the standard benchmark is the GARCH (1,1) 

model, which we expand – like all other models – by allowing for a constant and first-order 
autoregressive component in raw returns (rt): 

 

tt1tt hrr ε⋅+⋅ρ+µ= −  with εt ∼ N(0, 1)     (1) 

 
with volatility dynamics being governed by: 
 

1t1
2

1t1t hh −− β+εα+ω= ,           ω > 0, α1, ß1 ≥ 0.     (2) 
 
The fractionally integrated extension of the GARCH model (FIGARCH) expands the 

variance equation by considering fractional differences. Like with the baseline GARCH 
model, we restrict attention to one lag in both the autoregressive and moving average terms, 
i.e., FIGARCH(1,d,1), which can be written as: 

 
2
t

d
111t1t ))L1)(L1(L1(hh ε−ϕ−−β−+β+ω= − .     (3) 

 
As is well known, the Binomial expansion of the fractional difference operator introduces 

an infinite number of past lags with hyperbolically decaying coefficients. In practice, the 
number of lags considered in estimating a FIGARCH model has to be truncated. We used lag 
truncation at 1,000 steps.1 Because of the time needed for FIGARCH estimation, we only 
consider FIGARCH (1,d,1). Both GARCH and FIGARCH are estimated via the standard 
MLE procedures. 

 
Since FIGARCH adopts the ARFIMA approach for modelling the dynamics of conditional 

volatility, one may ask whether one could not also use the original ARFIMA model as a 

                                                 

1 We also tried a moving lag length using all available past data plus 1,000 presample entries following the 
recommendation given in Chung (2002). However, this computationally even more burdensome practice 
produced virtually the same results. 
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possible data generating mechanism for financial volatility. The general ARFIMA model 
reads: 

 
Φ(L) (1- L)d yt = Θ(L) ηt        (4) 

 
with Φ(L) and Θ(L) the AR and MA polynomials, respectively, d the parameter of 

fractional differentiation and ηt white noise. In our present application, yt is given by squared 
residuals after filtering of linear dependence according to eq. (1). Like with GARCH and 
FIGARCH, we restrict ourselves to a maximum of one autoregressive and one MA term (i.e., 
p ≤ 1 and q ≤ 1). In contrast to FIGARCH, we also tried somewhat more parsimonious 
variants of the model allowing for p = 0 or q = 0 (this was possible because the computational 
burden for ARFIMA estimation is only a fraction of that necessary to obtain FIGARCH 
estimates). However, the specification p = q = 1 was almost always preferred. Estimation has 
first been tried via Fox and Taqqu’s frequency domain maximum likelihood approach. 
However, when estimating the whole set of the parameters in this way, preliminary analysis 
of a smaller sample of time series showed extremely volatile and often very extreme results. 
We, therefore, resorted to estimating the fractional differentiation parameter via the Geweke 
and Porter-Hudak (1983) periodogram regression and, then, estimated the remaining 
parameters via the method of Fox and Taqqu assuming lag polynomials with roots strictly 
greater than 1 in modulus (which, in fact, seems to be the most popular method for estimating 
ARFIMA models in applied work). For the ARFIMA model we allowed for non-stationary 
variants by estimating the ARFIMA model with differenced data when the initial GPH 
estimate of the fractional differencing parameter d exceeded the benchmark 0.5. Forecasting, 
then, is performed by integrating the forecasts of the differenced series. 

 
Finally, the fourth model is the Markov-Switching Multi-Fractal Model (MSM) introduced 

by Calvet and Fisher (2001). Since this is a very recent addition to the array of volatility 
models, a few more words on its genesis and motivation are in order. The main distinguishing 
feature of the MSM models is the assumption of a hierarchical, multiplicative structure of 
heterogeneous volatility components which is fundamentally different from the linear 
structure of the above volatility models. Introduction of the MSM model was motivated by 
findings of multi-scaling or multi-fractality of financial data – different degrees of long-term 
dependence in different powers of returns (Ding, Engle and Granger, 1993). While traditional 
models in financial econometrics (i.e., the GARCH family) are of a uni-fractal nature and are, 
therefore, unable to accommodate this stylized fact, the literature on turbulent fluids in 
statistical physics has developed a class of models that exhibit just such a heterogeneous 
scaling behaviour (cf., Mandelbrot, 1974). In a seminal series of working papers, Mandelbrot, 
Fisher and Calvet (1997), Fisher, Calvet and Mandelbrot (1997), and Calvet, Fisher and 
Mandelbrot (1997) have proposed an adaptation of these multi-fractal processes to financial 
data via a compound process in which the multi-fractal component enters as a time 
transformation. While this model had been shown to generate scaling behaviour of moments 
in accordance with empirical observations (Calvet and Fisher, 2002), its attractiveness for 
applied research had been limited due to the combinatorial nature of the underlying multi-
fractal time transformation and the non-stationarity of the resulting compound process. These 
limitations have been overcome by the introduction of the closely related Markov-Switching 
Multifractal Model (MSM) in Calvet and Fisher (2001). Although MSM keeps the main 
feature of a multiplicative hierarchy of volatility components, its Markovian structure 
guarantees stationarity and existence of moments and allows applying standard estimation 
techniques. To this end, Calvet and Fisher (2004) have proposed maximum likelihood 
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estimation and have demonstrated the successful performance of the model in forecasting 
exchange rate volatility. However, maximum likelihood is only applicable in the case of a 
discrete distribution for the volatility components and also becomes computationally 
unfeasible for too large a number of components. As an alternative, Lux (2005) has 
introduced GMM (generalized method of moments) estimation which is computationally 
much less demanding and is applicable to a broader range of specifications of the MSM 
model. 

 
In MSM, financial returns are modelled along the lines of stochastic volatility models: 
 

  ttt ux ⋅σ=            (5) 
  
with σt instantaneous volatility being determined from a Markov-switching process with a 

heterogeneous ‘cascade’ of volatility components and innovations ut drawn from a standard 
Normal distribution N(0, 1). The volatility process is characterized by a multiplicatively 
connected hierarchy of k random variables )i(

tm of various mean life-times: 
 

  ∏
=

⋅σ=σ
k

1i

)i(
t

k
0t m2 .        (6) 

 
Adopting the perhaps most popular choice of specification of the distribution of the 

multipliers, we follow Mandelbrot (1974) and Mandelbrot, Fisher and Calvet (1997) by 
assuming that the components )i(

tm  are drawn from a Lognormal distribution, 

( )22)i(
t )2ln(s),2ln(LN~m λ−  in which the second parameter s can be determined by the 

normalization of the mean value of each component to 0.5, 5.0]m[E )i(
t = .2 The factor 2k in 

(6), then, serves to normalize the product of volatility components so that 1m2E
k

1i

)i(
t

k =







∏
=

 

and σ0 is a scale factor. The key feature responsible for the ‘multi-fractal’ properties of this 
model is that the renewal of volatility components follows a stochastic process with different 
probabilities depending on their rank in the hierarchy of multipliers. Here we assume a very 
simple structure of these transitions probabilities, i.e. Prob(new )i(

tm ) = 2-(k-i) and that 
replacement of a multiplier j implies simultaneous renewal of all multipliers of higher rank i > 
j as well. This relatively simple and parsimonious construction allows for a variety of active 
components in current instantaneous volatility with mean live-time extending from 2(k-1) days 

for the first multiplier down to 2(k-k) = 1 day for the k-th component. The MSM, therefore, 
combines long term dependency (via constant components which might remain active for 
long time horizons) with the potential of sudden changes that is rather characteristic of 
regime-switching models. 

 

                                                 

2 Note, however, that a comparison of the Lognormal MSM models with a discrete specification with underlying 
Binomial distribution yields almost identical results in goodness-of-fit and forecasting capacity for a 
sample of exchange rates (cf., Lux, 2005). 
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Again, returns have been corrected for a constant mean and first-order serial dependence 
prior to estimation of this volatility model (i.e., xt in eq. 5 is equivalent to rt – µ – ρ rt-1 in the 
notation of eq. 1 and the squared returns yt in the ARFIMA model are identical to 2

tx ). A 
somewhat problematic feature is the choice of the number k of volatility components in the 
multifractal model which, in principle, amounts to a specification test of non-nested 
alternatives. In the absence of a convenient algorithm for the choice of the number of 
components, we resort to a simple heuristic advice: we estimate the parameter λ for k = 1 
through 20 and determine the relevant value of k as that from which onward the estimate of λ 
did practically not change any more (did not change by more than 0.001).  For both estimation 
of the Lognormal multi-fractal model and its use for forecasting purposes, we follow Lux 
(2005) by implementing the GMM estimator devised in this paper with the same moment 
conditions (first and second moments of log increments at various lags).  

 
In order to derive forecasts of future volatility (future squared returns) from the above 

models, different algorithms have to be used. While it is possible to explicitly derive 
conditional expectations for GARCH, FIGARCH and ARFIMA models which, then, give the 
most efficient forecasts, this is not possible for the Lognormal MSM model with its highly 
nonlinear structure. In the later case, we, therefore, resort to best linear forecasts computed via 
the Levinson-Durbin algorithm (cf. Brockwell and Davis (1991, chap. 5) on the base of the 
autocovariances for which closed form solutions can be obtained (cf. Lux, 2005).3 Note that, 
although the complexity of MSM in the sense of the number of volatility states increases 
hyperbolically with k, the model itself remains very parsimonious. It, therefore, enables one to 
model a very heterogeneous structure of volatility using just three parameters, λ, σ0 and k. 

 
 
2.2.  Estimated Models 
 
The parameter estimates of the GARCH, FIGARCH, ARFIMA and MSM models are 

exhibited in Tables 1 to 4. From the roughly 1,200 stocks represented in the data base we 
have selected two subsamples: one consisting of the 100 companies with largest average 
trading volume and another with a random sample of 100 firms. The appendix lists the names 
and length of the available time series for all those stocks (typically from 1975 to 2001 except 
for firms that were liquidated over the nineties). The length of the time series used for in-
sample estimation of the parameters of the various models has been restricted to the 10 year 
period from 1975 to the end of 1984. Our main aim in restricting the in-sample period to 
roughly 40 percent of the data was to leave a relatively large sample for assessment of the 
forecasting quality of our models which then could be investigated over more than 15 years. 
Assuming a stationary volatility process according to one of our models, one may argue that 
ten years of data should be sufficient to estimate the model parameters with sufficient 
reliability. 

 

                                                 

3 For the simpler Binomial MSM model of Calvet and Fisher (2004) explicit conditional expectations can be 
derived. However, this involves Bayesian updating of the conditional probabilities of the 2k volatility states 
which is computationally burdensome. A comparison between both forecasting algorithms (Lux, 2005) 
shows that the performance of best linear forecasts is only slightly inferior to Bayesian forecasting. 
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Table 1: GARCH parameter estimates 
Large volume 

 mean std min max GARCH preferred 
ω 0.345 0.320 0.004 1.978 AIC BIC 
α1 0.769 0.165 0.000 0.983 15 21 
β1 0.151 0.135 0.016 0.999   

α1+ β1 0.920 0.081 0.474 0.999   
Random sample 

 mean std min max GARCH preferred 
ω 0.376 0.315 0.002 1.978 AIC BIC 
α1 0.801 0.160 0.000 0.983 14 28 
β1 0.121 0.137 0.000 0.999   

α1+ β1 0.923 0.083 0.572 0.999   
 
 
When inspecting the distribution of parameter estimates (whose mean, standard deviation, 

minimum and maximum across the pertinent subsamples are given in Tables 1 to 4), one 
observes a relatively large variability. For example, both the parameters α1 and β1 of the 
GARCH model as well as the parameter of fractional differencing d in the FIGARCH model 
have values spread over the entirety of their admissible range [0,1]. Similarly high variability 
is observed for the ARFIMA’s d although in the later case, we have not restricted the range of 
admissible vales to d < 1.4 Table 1 also indicates how often the GARCH model would be 
preferred over FIGARCH on the base of the Akaike and Schwartz information criteria (AIC 
and BIC). As it turns out, FIGARCH is preferred by about two 70 to 85 percent of all cases 
and more so under AIC. This squares with the usual observation that BIC favours more 
parsimonious models. Table 3 also reports the order of the ARFIMA models (p,d,q) with p ∈ 
{0,1} and q ∈ {0,1} estimated by the AIC criterion. The (1,d,1) model is the preferred one 
without one single exception (results with BIC are only marginally different). 

 
 
Table 2: FIGARCH parameter estimates 

Large Volume Random sample 
 mean std min  max mean std min max 
ω 0.408 0.375 0.000 2.091 0.519 0.481 0.002 2.288 
β1 0.456 0.350 -0.583 0.987 0.572 0.328 -0.499 0.986 
φ1 0.318 0.349 -0.646 0.874 0.370 0.352 -0.621 0.972 
d 0.340 0.215 0.001 0.999 0.367 0.288 0.001 0.999 

 
 

                                                 

4 There is hardly any other choice than allowing for unrestricted d in the ARFIMA case since we cannot 
guarantee that the Geweke and Porter-Hudak estimates would fall into any prescribed interval. In contrast, 
the usual MLE estimation procedure for FIGARCH presupposes 0 ≤ d <1. 
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Table 3: ARFIMA parameter estimates: volatility 
Large volume 

Chosen models based on AIC Estimates of d 
(1,d,1) (1,d,0) (0,d,1) (0,d,0) mean std min max 

100 0 0 0 0.235 0.104 -0.040 0.532 
Random sample 

Chosen models based on AIC Estimates of d 
(1,d,1) (1,d,0) (0,d,1) (0,d,0) mean std min max 

100 0 0 0 0.200 0.114 -0.093 0.479 
 
 
Lastly, turning to our parameter estimates for the MSM model, we again see a large 

variation of parameter values. Note that the Lognormal distribution parameter λ is restricted 
to the open half line [1,∞). Estimates λ = 1 make the volatility cascade collapse to a constant 
value which leads to the benchmark case of Normally distributed returns. The mean values of 
the number of cascade steps k are about 14 and 12, for the ‘large volume’ and ‘random 
sample’ cases, respectively. It might be noted that, unlike ARFIMA and FIGARCH, the MSM 
model is not a ‘true’ long-memory model, but only mimics hyperbolic decline of the 
autocorrelation function over about 2k time lags after which one encounters an exponential 
drop-off of the ACF. Note that our average estimates of k, therefore, amount to slow decline 
of memory over up to 16,000 time steps – much more than used for estimating the model. The 
maximum estimate k = 19 even amounts to hyperbolic decline of the autocorrelation function 
over roughly half a million days, i.e. 2,000 years of daily trading. It is, therefore, obvious that 
the deviation of the MSM model from ‘true’ long memory can be arbitrarily small. On the 
other hand, the minimum k = 2 has a range of hyperbolic scaling of just 4 days which makes it 
a rather clear-cut short-memory model. 

 
 
Table 4: Multi-fractal parameter estimates: volatility 
Large volume 

Estimate of λ Estimates of k 
mean std min max mean std min max 
1.320 0.298 1.000 2.583 12.270 2.867 2 18 

Random sample 
Estimate of λ Estimates of k 

mean std min max mean std min max 
1.591 0.442 1.000 4.221 14.290 2.090 2 19 

 
 
 
 

2.3  Forecasting Performance 
 
 

Now turn to the results of our horse race for forecasting volatility: our estimated models 
have been tested out-of-sample for the 16-year period 1986 to 2001. Forecasting horizons 
start at the daily level and proceed via 5 day and 10 day forecasts up to 100 days ahead. Note 
that we have used only one set of parameter estimates and have not re-estimated the 
parameters within the out-of-sample period. The reason for not using rolling estimates is the 
computational burden of the maximum likelihood estimation of the parameters of the 
FIGARCH model – with the other models (including GMM estimation of the MSM model) it 
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would have been feasible. We have also looked at the performance in subsamples (1986-
1990, 1991-1995, and 1996-2001), but to our surprise found no remarkable differences. As 
these periods cover quite diverse financial and economic conditions in Japan (including the 
stock market bubble, its crash and the subsequent stagnation) the homogeneity of the results 
speaks in favour of very regular structure in the volatility dynamics despite large changes in 
the level of volatility over time. 

 
In order to compare the performance of the four candidate models, we apply the traditional 
concepts of mean squared error (MSE) and mean absolute error (MAE). However, since we 
want to have a meaningful measure allowing to compare the performance across stocks we 
have to standardize these statistics. We do so by reporting relative MSE and MAE obtained 
after division by the pertinent mean squared error and mean absolute error of the naïve 
predictor using historical volatility (i.e., the sample mean of squared returns over the period 
1975 to 1984). Note that in order not to compound errors in the mean equations and in the 
volatility dynamics, we have also first filtered out linear dependence so that the naïve MSE 
and MAE are also computed from the squared residuals. 
 
Our criteria for comparing predictive accuracy are, thus: 
 

relative MSE = ∑∑
==

ε−ε−
N
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22
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relative MAE = ∑∑
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1 ;    (8) 

 
with t = 1,…, N the out-of-sample observations, j = { GARCH, FIGARCH, ARFIMA, MSM 
} the estimates from the candidate time series models, the subscript n denoting the naïve 
predictions using historical volatility and εt the residuals obtained after linear filtering of 
returns (using the in-sample means and first-order autocorrelations). 
 

Table 5 compares the average relative MSEs and MAEs of our four models for the ‘large 
volume’ of 100 stocks. Since results obtained for the ‘random sample’ cases are very similar 
in most respects, we have not reproduced them here for the sake of brevity, but are prepared 
to supply them upon request. 

 
The winner in terms of average MSE reduction is the ARFIMA model (which so far has 

seldomly been considered as a model of volatility dynamics) followed by MSM lagging 
behind ARFIMA by at most one percentage point. Except for short horizons, the average 
forecasting quality of GARCH and FIGARCH is quite disappointing. Interestingly, GARCH 
performs worse than most other models even over relatively short horizons. The average 
improvement compared to naive forecasts are in the range of up to about 8 percent at daily 
horizons, 4 percent at ten days and still 2.5 percent at 100 day horizons.  

 
To provide more details, Fig. 2 shows box plots of the distribution of MSEs and MAEs over 

all 100 stocks, for all methods and time horizons. A glance at the range of results for the 
different methods reveals some interesting tendencies. It particularly shows that for all long-
memory models the inter-quartile range is below the benchmark of one for all time horizons. 
In contrast to GARCH, we, therefore, do find an improvement against the naïve prediction in 
the majority of cases with these models so that mean values above 1 in Table 5 are due to 
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very large entries in the upper end (the median is always < 1 for all methods). At the lower 
end, we find that for the one day horizon, MSE can be reduced against the naïve forecast by 
more than 30 percent in one particularly successful application of the FIGARCH model. At 
the long horizon end (100 day forecasts), ARFIMA and FIGARCH provide the best cases 
with 10 percent improvements over the naïve prediction (with MSM and GARCH only 
having slightly worse ‘best cases’).  

 
In terms of the upper end (the worst prediction within the sample), MSM is best with a 

maximum MSE that except for one marginal case at the one-period horizon never rises above 
unity (i.e., that is never worse than that of the naive forecasts). Note that it, therefore, can be 
described as the least dangerous method. This is in contrast to all other models with which 
the user always appears to face the danger of forecasts that are worse than the most naive 
ones. Note in particular how ‘dangerous’ GARCH and FIGARCH forecasts can be in certain 
cases! It is interesting to note that the most disastrous outcome under both the GARCH and 
FIGARCH models stems from the same stock. In this case, estimated GARCH parameters are 
close to the non-stationary case (i.e., α1+ β1 close to 1) while with FIGARCH the parameter of 
fractional differentiation approaches its upper boundary 0.999 (imposed for maximum 
likelihood estimation). However, inspection of other cases reveals that (closeness to) non-
stationarity does not always come along with poor forecasts (there are quite some similar 
cases in the estimated GARCH and FIGARCH models with satisfactory forecasting success 
as well as truly non-stationary ARFIMA cases with similarly satisfactory performance). 

 
 Lastly, it appears noteworthy that ARFIMA and MSM have very small variability of their 

performance which also decreases with time horizon, while the fluctuations across assets in 
the (FI)GARCH models rather show a tendency for increasing dispersion at long horizons.  

 
 
Table 5: Forecasting Volatility  

relative MSE  relative MAE 
 

horizon 
 

GARCH 
 

FIGARCH 
 

ARFIMA 
 

MSM 
 

GARCH 
 

FIGARCH 
 

ARFIMA 
 

MSM 

1 0.939 0.944 0.915 0.921 1.060 1.088 1.049 1.026 
5 0.984 0.966 0.947 0.956 1.079 1.111 1.063 1.038 
10 1.005 0.982 0.957 0.965 1.096 1.133 1.068 1.042 
20 1.028 1.003 0.963 0.971 1.123 1.167 1.068 1.042 
30 1.056 1.031 0.968 0.976 1.153 1.199 1.068 1.041 
40 1.085 1.063 0.969 0.977 1.182 1.229 1.066 1.039 
50 1.124 1.103 0.971 0.979 1.215 1.261 1.064 1.038 
60 1.170 1.152 0.973 0.981 1.248 1.293 1.063 1.037 
70 1.220 1.207 0.974 0.982 1.279 1.324 1.062 1.036 
80 1.279 1.271 0.975 0.982 1.312 1.355 1.060 1.035 
90 1.342 1.339 0.975 0.983 1.343 1.385 1.058 1.033 

100 1.413 1.418 0.975 0.983 1.375 1.417 1.057 1.032 
 

Note: the ‘winners’ under each criterion are marked by bold numbers. 
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Fig. 2a: Distribution of MSEs of volatility predictions on the base of individual parameter estimates. The boxes 

show the median of the distribution surrounded by a box that spans the centre half of the data set (the inter-
quartile range). The whiskers give the full range spanned by all 100 cases. For better comparability, we have 
chosen the same scale for all four box plots. The plots for the FIGARCH and GARCH results, therefore, do 
not show their respective maximum MSE which extends from 1.70 at lag 1 to 30.42 at lag 100 for FIGARCH 
(1.37 at lag 1 to 26.97 at lag 100 for GARCH). 

 
 

 
 
Fig. 2b: Distribution of MAEs of volatility predictions on the base of individual parameter estimates. For better 

comparability, we have chosen the same scale for all four box plots. The plots for the FIGARCH and GARCH 
results, therefore, do not show their respective maximum MAE which extends from 1.53 at lag 1 to 16.61 at 
lag 100 for FIGARCH (1.45 at lag 1 to 15.65 at lag 100 for GARCH). 
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With respect to MAE, the multi-fractal model is the winner over all time horizons. 

However, as a grain of salt, average performance of all models is worse than that of naive 
forecasts. The largest reductions of MAE achieved ranges from about 12 percent (1 day) to 8 
percent (100 days). Otherwise, results are comparable to those for the MSE criterion with a 
narrow range of entries for MSM and a wide variation for FIGARCH and GARCH. Note also 
that MSM comes closest to at least generating ‘neutral’ results under this criterion while all 
other methods have the inter-quartile range above the benchmark value of 1 and, therefore, 
lead to deterioration against naïve forecasts in the majority of cases. 

 
 
Table 6: Rank Correlations of Volatility Predictions Across Assets 
 Large volume sample: relative RMSE 

 
lead 

GARCH- 
FIGARCH 

GARCH -
ARFIMA 

GARCH-
MSM 

FIGARCH- 
ARFIMA 

FIGARCH -
MSM 

ARFIMA- 
MSM 

1 0.938 0.629 0.307 0.674 0.360 0.487 
5 0.902 0.678 0.296 0.834 0.355 0.479 

10 0.810 0.568 0.319 0.816 0.330 0.501 
20 0.608 0.419 0.207 0.817 0.282 0.460 
30 0.524 0.344 0.166 0.830 0.293 0.446 
40 0.498 0.315 0.138 0.828 0.265 0.423 
50 0.509 0.293 0.140 0.789 0.235 0.420 
60 0.498 0.279 0.129 0.811 0.251 0.418 
70 0.499 0.275 0.125 0.805 0.243 0.430 
80 0.482 0.264 0.117 0.786 0.220 0.416 
90 0.489 0.272 0.098 0.765 0.176 0.400 

100 0.491 0.274 0.116 0.768 0.194 0.406 
Large volume sample: relative MAE 
lead GARCH- 

FIGARCH 
GARCH -

ARFIMA 
GARCH-

MSM 
FIGARCH- 
ARFIMA 

FIGARCH -
MSM 

ARFIMA- 
MSM 

1 0.943 0.693 0.541 0.717 0.563 0.555 
5 0.893 0.608 0.500 0.680 0.524 0.533 

10 0.851 0.515 0.423 0.645 0.497 0.499 
20 0.733 0.346 0.327 0.601 0.451 0.449 
30 0.674 0.238 0.234 0.569 0.401 0.402 
40 0.643 0.178 0.202 0.555 0.385 0.408 
50 0.616 0.116 0.176 0.533 0.370 0.405 
60 0.609 0.098 0.149 0.527 0.364 0.400 
70 0.602 0.074 0.139 0.519 0.340 0.392 
80 0.594 0.050 0.116 0.514 0.333 0.385 
90 0.593 0.042 0.103 0.511 0.333 0.385 

100 0.582 0.028 0.091 0.502 0.326 0.380 

 
Note: At a significance level of 95 percent, the null hypothesis of no correlation in the performance of 

different methods would have to be rejected for absolute entries beyond 0.197 (=1.96 √(n-1)) with n = 100 in our 
case). 

 
 
A typical question arising in comparative studies of alternative predictors is whether the 

models under investigation use different information or not. The interesting consequence is 
that combinations of forecasts could improve results if the various models would not rely on 
the same information, whereas no such improvement appears feasible if their differences in 
performance are explained by different success in exploitation of the same underlying 
information. Typically one would use encompassing tests (Chong and Hendry, 1986) in order 
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to shed light on this issue. However, our large sample of stocks renders this approach 
somewhat unpractical. Instead, we explore this question by computing the rank correlation of 
the forecasting success across all assets for each pair of methods. A high entry would suggest 
that two methods use virtually the same information so that the difference in their relative 
MSEs and MAEs is mainly to be explained by difference in the accuracy of the conditional 
expectations. Low rank correlation, on the other hand, might suggest room for improvement 
via forecast combination. 

 
Table 6 gives the rank correlation across assets for all pairs of two methods for both relative 

MSE and relative MAE. If all methods would have the same ranking of MSEs and MAEs 
across assets, rank correlations would be 1. This is not the case: although a relatively large 
rank correlation exists at small horizons, different methods are more or less successful in 
predicting the volatility of individual assets. This implies that they are not simply using the 
same information more or less efficiently, but that they might perform differently on different 
assets. Combination of forecasts, therefore, might still improve the overall results. 
Furthermore, the highest correlations exist between FIGARCH and GARCH at small 
forecasting horizons and between FIGARCH and ARFIMA at longer horizons pointing to the 
built-in similarities in their behaviour for short and long time horizons, respectively.  
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3. Forecasting Volume 
 

3.1. Models 
 
 
The empirical finance literature has mainly concentrated on trying to predict returns and 

volatility, but has hardly paid any attention to volume: a search for pertinent contributions in 
the literature has brought about only one single entry, Kaastra and Boyd (1995). These 
authors use neural networks and ARIMA models to forecast monthly futures trading volume 
for the Winnipeg Commodity Exchange. They emphasize the practical implications of volume 
predictions for the operation of the exchange. Besides its importance for forecasting 
transaction fees and liquidity, we may add that volume forecasting is also interesting in view 
of the similarity of the time series properties of both volatility and volume. Given the 
evidence on similar long term dependence in both series (Bollerslev and Jubinski, 1999; 
Lobato and Velasco, 2000; Ray and Tsay, 2000) it seems interesting to explore whether 
models with this feature are similarly capable of predicting both future volume and volatility. 

 
We, therefore, continue our study by also using the volume entries in our data base to 

investigate the forecastability of transaction volume. To enhance comparability with the 
results obtained for volatility, we use again the same sample of stocks represented in the 
‘large volume’ selection as well as the second subsample of 100 randomly chosen stocks. 
Since results are again quite similar, we only exhibit those for the ‘high volume’ cases and 
provide additional results for the randomly selected stocks upon request. As before, we 
estimate models on the base of the eleven year period 1975 through 1985 and test the 
forecasting performance of the models for the remaining sixteen years (sometimes less) 1986 
to 2001 thus allowing an assessment of their success over a relatively long time horizon. 
When investigating volume data of stock exchanges, researchers typically find that these are 
non-stationary and have to be detrended first before they can be used to shed light on 
volatility and return dynamics. Interestingly, considering the 27 year period from 1975 to 
2001 as a whole, trends in trading volume are practically non existent in the Japanese market. 
This is readily apparent form the quite typical behaviour of the volume of the Nippon Suisan 
Kaisha share exhibited in Fig. 1: while long subsets of the data from 1975 to about 1990 
would have given rise to the impression of a positive trend, the later development suggests 
that the increase of volume in the second half of the eighties should be interpreted as an 
intermittent episode rather than the signature of a secular trend. Given this absence of clear 
trends, we use the raw volume data without any correction or detrending in our subsequent 
forecasting exercise. 

 
Because of the lack of applicability of the GARCH family, only three models have been 

estimated for the volume time series: As a short-memory benchmark we estimate an 
ARMA(p,q) model: in order to see whether a moderate number of lags suffices to capture the 
time dependence in volume records, we select an ARMA(p,q) model for forecasting within 
the range p ≤ 5 and q ≤ 5 via maximum likelihood and use the Akaike criterion for selection 
of one of these alternatives. We deliberately chose AIC rather than the typically more 
parsimonious BIC criterion in order to allow for a sizable number of lags which could suffice 
for modelling the dynamics without having to resort to genuine long memory models. 
However, despite BIC’s tendency towards more parsimonious models, results with respect to 
forecasting quality turned out to be similar. 
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Our second model is the fractionally integrated ARFIMA(p,d,q) model. Because of the 
higher computational burden and also because longer lags should be captured by the 
fractional differentiation term, we restrict ourselves again to a maximum of one 
autoregressive and one MA term (i.e., p ≤ 1 and q ≤ 1). Estimation proceeds along the same 
lines as in the application of ARFIMA to volatility. For both ARMA and ARFIMA models, 
estimation is restricted to lag polynomials with roots strictly greater than 1 in modulus. For 
the ARFIMA models we allowed for non-stationary variants by estimating the ARFIMA 
model with differenced data when the initial GPH estimate of the fractional differencing 
parameter d exceeded the benchmark 0.5. Forecasting, then, is performed by integrating the 
forecasts of the differenced series. 

 
Third, we also apply the multi-fractal cascade process as a model for volume. Since volume 

has a structure similar to volatility, we simply adopt the volatility cascade part depicted in eq. 
(5):  

 ∏
=

=θ
k

1i

)i(
t

k
t m2 ,         (9) 

 
but skip the incremental Normal distribution introduced in eq. (6) which in the volatility 

model mainly serves to randomise the sign of returns. All that is needed to use this as a model 
of the volume dynamics is an additional scaling factor to capture the different size of mean 
volume in each stock. Hence, volume can be written as volt = 0t

~σ⋅θ  where 0
~σ  is the scaling 

factor for asset i. Estimation is again based on GMM with appropriate moment conditions 
adapted from Lux (2005) and the number of cascade steps k is determined along the lines of 
the previous application of MSM to volatility. 

 
Since our short-memory benchmark is now an ARMA(p,q) model, we also do not subject 

the data to filtering out linear dependency before estimating the MSM parameters. The multi-
fractal cascade, therefore, is applied to volume in the format of the raw data (eq. 9) without 
any additional adjustments. An advantage of MSM against ARMA and ARFIMA models 
might be seen in the fact that by its very definition, it allows for positive entries only while 
negative realizations cannot be excluded in the two alternative models. We, therefore, used 
zero as the lower bound for our forecasts from ARMA and ARFIMA models (which, 
however, was hardly ever a binding constraint). 

 
In our initial tests, we also estimated ARIMA(p,1,q) models. However, since it turned out 

that their forecasting performance was almost always far worse than that of the alternative 
models, we dropped them from our final design of this forecasting exercise. 

 
 

3.2. Parameter Estimates 
 
 

Now turn to the estimation results: Table 7, first, shows that ARMA estimation tends to 
favour models with many parameters at least under the AIC criterion. Comparing the AIC and 
BIC model selection criteria for the preferred ARMA and ARFIMA models, we see that AIC 
would prefer the ARMA over the ARFIMA specification in 98 out of 100 cases for both the 
large volume and random sample. Hence, the long-term dependence seems not to be able to 
compensate for the admission of more AR and MA components in our ARMA design. The 
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BIC, however, produces fewer cases of preferred ARMA models confirming the well-known 
finding that it typically favours more parsimonious models than AIC.  

 
 
Table 7: ARMA parameter estimates 
Large volume 

Chosen models ARMA preferred 
(5,5) (5,4) (5,3) (4,5) (3,5) other AIC BIC 

26 19 10 16 6 23 98 58 
Random sample 

Chosen models ARMA preferred 
(5,5) (5,4) (5,3) (4,5) (3,5) other AIC BIC 

35 14 6 14 10 21 98 58 
 
 
Table 8 shows that the estimated parameter of fractional differentiation from the ARFIMA 

models indicates a somewhat higher average d for the ‘large volume’ sample than for the 
random sample of firms. The preferred type of model is overwhelmingly the (1,d,1) variant 
modulating the prevalent long-term dependence via additional AR and MA components. Due 
to the wide variability of the AR and MA components, their statistics are not shown but are 
available upon request.  

 
 
Table 8: ARFIMA parameter estimates: Volume 
Large volume 

Chosen models Estimate of d 
(1,d,1) (1,d,0) (0,d,1) (0,d,0) mean std min max 

91 5 4 0 0.344 0.121 0.074 0.639 
Random sample 

Chosen models Estimate of d 
(1,d,1) (1,d,0) (0,d,1) (0,d,0) mean std min max 

97 1 2 0 0.291 0.135 0.002 0.671 
 
 
Table 9 exhibits information about the parameters of the estimated multi-fractal model. One 

can infer that the estimates of the key parameter λ are all within the interval between 1.00 and 
about 1.2 (1.00 being the lower limit for this parameter). Estimated λ’s are somewhat higher 
on average for the random sample of stocks signalling larger bursts of activity. This might be 
explained by a larger increase of trading volume during the bubble for the average firm 
compared to large firms which already had relatively high trading volume before the bubble 
episode. Compared with Table 4, we see that both the estimated λ’s as well as the number of 
cascade steps are smaller on average for volume than for volatility. 
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Table 9: Multi-fractal parameter estimates: volume 
Large volume 

Estimate of λ Estimate of k 
mean std min max mean std min max 
1.089 0.027 1.050 1.195 8.950 1.617 6 12 

Random sample 
Estimate of λ Estimate of k 

mean std min max mean std min max 
1.118 0.039 1.000 1.221 9.250 2.153 2 13 

 
 
3.3. Forecasting Results 
 
 
Table 10 shows the forecasting performance of the ARMA, ARFIMA, and MSM models 

over forecasting horizons of 1, 5, 10, 20 etc. up to 100 days for the out-of-sample period 1986 
to 2001. We resort again to the criteria of relative mean squared error (MSE) and relative 
mean absolute error (MAE) for our assessment of the forecasting performance. The table 
shows the mean relative MSEs and MAEs over the 100 time series from stocks with the 
highest average trading volume (results for the random sample of stocks are again quite 
similar and can be obtained upon request). The results are perplexing: in both categories, the 
multi-fractal model has lowest average MSEs and MAEs over almost all time horizons. 
Furthermore, these means are all smaller than in the case of volatility signalling a sizable 
average gain in forecasting performance against the naïve model (i.e., the in-sample mean 
value of the time series). Roughly, MSM achieves an average improvement of 53 percent 
(MSE) or 33 percent (MAE) for one-day horizons and even over a forecasting horizon of 100 
days has a performance that is by about 6 -8 percent better in both criteria than the naïve 
model. The ARFIMA forecasts mostly reach second rank for short horizon forecasts, but falls 
back behind ARMA to third rank for the longer forecast horizons (with both models being 
worse than naïve forecasts on average beyond the 1 day or 5 day horizon anyway).  

 
A glance at the box plots in Fig. 3 also reveals that the MSM model has again the smallest 

standard deviation of its forecast errors showing that the success of this method is more 
uniform than that of ARFIMA and ARMA models. While ARFIMA is comparable to MSM 
in the lower end and in its inner-quartile range, it has much more extreme cases of ‘failure’ 
(the upper end of the whiskers). MSM’s maxima, in contrast, do at most marginally exceed 
the benchmark value of 1, so that here the danger of getting worse forecasts than with the 
naive model is almost non existent. As with GARCH and FIGARCH in the case of volatility 
forecasting, ARMA models of volume produce very unsatisfactory results. Not only does one 
face the danger of extremely poor entries (with the record being set by an MSE up to 480 
times that of the naïve model at the 10 day horizon in one case), but rather the whole 
ensemble of 100 forecasting exercises performs quite poorly. Overall, ARMA only produces 
an improvement against the naïve forecasts for the one day horizon and does hugely worse 
thereafter both in terms of the mean and the inner-quartile range. It is particularly astonishing 
that even for the one day horizon, ARMA is dominated by both ARFIMA and MSM 
throughout and that it performs the worst at the five day horizon although it typically uses 5 
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lags in either the MA or AR component or both.5 A closer inspection of the extreme cases of 
failure reveals that they occur for different stocks under the ARMA and ARFIMA models. 
The worst performing case of ARFIMA is one with an estimated d close to non-stationarity 
(the point estimate is 0.49). However, similarly as with GARCH and FIGARCH, the non-
stationary cases (remember that we allow for d > 0.5) are not necessarily those with a poor 
performance out-of-sample. With ARFIMA, for instance, satisfactory forecasts are obtained 
with some of the non-stationary estimates. 

 
The most astonishing feature is, however, the success of the MSM model which even for 

small horizons is better than its competitors – although one estimates only two parameters and 
unlike in the AR(FI)MA classes there are no parameters available in this model for fine-
tuning of short-term dependence. Nevertheless, the MSM model mostly produces better short-
term forecasts than the naïve benchmark prediction and even in its ‘bad’ cases has relative 
MSEs and MAEs only slightly above one while the ARFIMA and particularly the ARMA 
models can be far off the mark.  

 
These results are also interesting from the perspective of the theoretical literature on 

forecasting on the base of ARMA and ARFIMA models. Most perplexingly, the results 
exhibited for MSM in Table 10 (which roughly also correspond to those in the inner-quartile 
range of estimated ARFIMA models) are close to (if not better than) what one could expect to 
obtain for an ARFIMA process with known parameter values. Beran (1944, chap. 4) computes 
MSE improvements over the (known) unconditional variance from best linear forecasts with 
an infinite number of past observations. In his Table 8.8. we find for d = 0.1 und d = 0.4 
improvements by 1.91 percent and 48.82 percent (one step ahead), 0.22 percent and 27.06 
percent (ten steps), and 0.03 percent and 14.75 percent (hundred steps). A rough interpolation 
between these extremes with our mean estimates for d of about 0.34 from Table 8, in fact, 
indicates that our volume forecasts are pretty much in line with if not better than what could 
be expected with a ‘true’ underlying ARFIMA model even without accounting for parameter 
uncertainty. 

 
 

                                                 

5 ARFIMA performs worse for the large volume than for the random sample but inspection shows that the 
difference is actually only due to one extreme outlier in the large volume sample. Eliminating this entry, 
results for large volume become almost the same as for the random sample. 
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Table 10: Forecasting Volume 

relative MSE relative MAE 
horizon ARMA ARFIMA MSM ARMA ARFIMA MSM 

1 0.824 0.474 0.477 0.933 0.670 0.667 
5 3.538 2.336 0.722 1.286 0.993 0.835 

10 7.757 2.804 0.779 1.382 1.051 0.871 
20 2.527 2.825 0.829 1.221 1.084 0.899 
30 3.272 2.849 0.857 1.246 1.106 0.916 
40 2.386 2.846 0.875 1.191 1.116 0.924 
50 2.252 2.846 0.885 1.180 1.123 0.929 
60 1.985 2.847 0.892 1.153 1.126 0.931 
70 1.936 2.847 0.898 1.140 1.130 0.934 
80 1.781 2.844 0.903 1.126 1.131 0.935 
90 1.640 2.843 0.910 1.109 1.136 0.938 
100 1.540 2.845 0.915 1.105 1.138 0.940 

 
Note: the ‘winners’ under each criterion are marked by bold numbers. 
 
 

 
 
Fig. 3: Distribution of MSEs and MAEs of volume predictions on the base of individual parameter estimates. 

The boxes show the median of the distribution surrounded by a box that spans the centre half of the data set 
(the inter-quartile range). The whiskers give the full range spanned by all 100 cases. For better comparability, 
we have chosen the same scale for all four box plots. The plots for the ARMA and ARFIMA results, therefore, 
do not show their respective maximum values which extend from 4.06 at lag 1 to 50.94 at lag 100 for MSEs 
(2.179 at lag 1 to 5.23 at lag 100 for MAEs) for ARMA and from 154.73 at lag 5 to 188.44 at lag 100 for 
MSEs (11.58 at lag 5 to 12.58 at lag 100 for MAEs) in the case of ARFIMA. Interestingly, the MSEs and 
MAEs of the estimated ARMA models exhibit an inverted U shape in most cases with maximum errors at the 
5 and 10 day forecasting horizon (the maxima over all stocks at the 10 day horizon are 479.75 for MSE and 
15.17 for MAE).  
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From this perspective, however, the poor performance of the ARMA class is surprising as 

several papers show that suitably adapted ARMA models can produce forecasts comparable 
to that of ‘true’ underlying ARFIMA models (Basak et al., 2001; Man, 2003). This divergence 
might be explained by different factors: on the one hand, estimated fractional differentiation 
parameters of our data are relatively high so that it is hard to cover the persistency of the data 
by short-memory models. In fact, it has also been shown that the approximation of long-
memory models by ARMA structures works best for small values of d and becomes less 
satisfactory for strongly dependent processes (Brodsky and Hurvich, 1999; Crato and Ray, 
1996). Furthermore, our ARMA models have been chosen by the usual AIC (or BIC) criteria 
and, therefore, are not those optimally adapted for forecasting an assumed underlying long-
memory process. In any case, the results illustrate that the choice between short-memory and 
long-memory processes can crucially affect forecasting performance (even over short 
horizons). 
 

Again, we try to provide an overall assessment of the degree of complementary between 
methods. To this end, Spearman’s coefficients of rank correlation are exhibited in Table 11 
for both the MSE and MAE values achieved at various forecasting horizons by the various 
time series models. Interestingly, the correlation between the success of the MSM and 
ARFIMA models is highly significant over all forecasting horizons. This means that if MSM 
produces a high (low) reduction of MSE and MAE against the naïve model, the same is also 
likely to happen for the ARFIMA model. Hence, exploitation of information from past 
variables is quite uniform with both models: cases in which one model is particularly good 
while the other performs very poorly occur relatively seldom. Mostly, good results obtained 
from MSM coincide with relatively good forecasting performance of ARFIMA as well. In 
contrast, correlation between the long-memory models and the ARMA model is significant 
only for the one-period horizon in most cases and is uniformly much smaller than the MSM-
ARFIMA correlation. 

 
 
Table 11: Rank Correlations of Volume Forecasts Across Assets 

 MSE MAE 
lead ARMA-

ARFIMA 
ARMA- 
MSM 

ARFIMA- 
MSM 

ARMA-
ARFIMA 

ARMA- 
MSM 

ARFIMA- 
MSM 

1 0.416 0.365 0.945 0.465 0.450 0.970 
5 0.135 0.238 0.820 0.181 0.168 0.891 
10 -0.007 0.078 0.829 0.138 0.111 0.887 
20 -0.020 0.071 0.776 0.101 0.069 0.856 
30 -0.063 -0.048 0.717 0.145 0.036 0.820 
40 -0.104 -0.100 0.707 0.078 -0.062 0.812 
50 -0.073 -0.084 0.693 0.122 -0.038 0.762 
60 -0.042 -0.041 0.689 0.065 -0.053 0.736 
70 -0.012 -0.066 0.679 0.146 -0.058 0.715 
80 -0.120 -0.111 0.665 0.040 -0.134 0.685 
90 -0.087 -0.083 0.640 0.100 -0.083 0.663 
100 -0.093 -0.086 0.628 0.093 -0.111 0.640 

 
Note: At a significance level of 95 percent, the null hypothesis of no correlation in the performance of 

different methods would have to be rejected for absolute entries beyond 0.197 (= 1.96 √(n-1)) with n = 100 in 
our case). 
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4. Forecasting with Pooled Estimates 
 
Inspection of parameter estimates and forecasting results for GARCH, FIGARCH, ARMA 

and ARFIMA models across stocks shows that some of the worst results are obtained with 
extreme parameter estimates (although, as pointed out above, such ‘extreme’ parameters do in 
no way always coincide with poor forecast performance). For example, in volatility 
forecasting GARCH and FIGARCH performance is worst for some cases of nearly integrated 
processes, i.e. 111 ≈+ βα  in the GARCH and 1≈d  in the FIGARCH model, respectively. 
Similarly, the performance of the ARMA models for volume often becomes extremely poor 
when one of the roots approaches one. For ARFIMA, we also encounter relatively poor 
results for high estimates of d. Interestingly, the problem of extreme failures in some 
individual stocks seems non existent for the multifractal model which in this important sense 
appears to be much more robust – in both its application to volatility and volume – than all the 
more traditional models.  

 
The big failures of some methods with some series could have quite different sources: first, 

if some of the underlying time series were, in fact, non-stationary or almost non-stationary, it 
might simply be that their degree of forecastibility is lower than for some other series. Along 
a similar line of argument, they might simply possess some large outliers (remember that we 
included the bubble period) or other particularities, which could have affected our forecasting 
results. Interestingly, our comparative investigation of alternative forecasts seems to allow to 
safely excluding this possibility: in all cases there had at least been one method whose 
forecasts did not perform too badly for exactly the same series (i.e., the MSM model). 

 
An alternative explanation would, therefore, have to look for the fault in the parameter 

estimates of the poorly performing models. The poor forecasts might then be attributed to the 
variability of parameter estimates with extreme failures being due to rather large random 
deviations between estimated and ‘true’ parameters.6 

 
In order to see whether restricting the variability of parameter estimates allows us to avoid 

the defective results in some cases, we designed another forecasting experiment using the 
mean parameter estimates for each model obtained across our 100 stocks. 

 
These average estimates are taken from Tables 1 to 4 for the volatility models and from 

Tables 7 to 9 for the models used to forecast volume. To account for varying scale of the 
fluctuations across stocks, the following adjustments have to be made: 

 
For the GARCH models, for instance, we now forecast on the base of the average 

parameters 769.01 =α  and 151.01 =β . Since the remaining parameter, ω , gives the scale of 

fluctuations (with the unconditional variance equal to 
111 β−α−

ω ) it would hardly be useful to 

average this coefficient across stocks. Instead we compute ω  from the unconditional sample 
variance of each (linearly filtered) return series, 2σ̂ , using the average estimates of the 
remaining parameters: ( ) 2

11 ˆ1 σ⋅β−α−=ω . Alternatively, we used averages for the dynamic 

                                                 

6 To be precise, we cannot really speak of ‘true’ parameters in a comparative study of various models of which 
none will be the ‘true’ data generating mechanism. One might, therefore, rather think of the ‘true’ 
parameters as those that best represent the particular class of models for a certain purpose (forecasting). 
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parameters 1α  and 1β  but kept the previous stock-specific estimate of ω  which yielded 
practically identical results. 

 
For the FIGARCH model, the mean volatility level (the unconditional variance) is not 

defined. However, in practice one has to approximate the fractional difference operator on the 
RHS of eq. (3) by a finite approximation of its expansion. The chosen cut-off of the infinite 

sum, then, in fact guarantees existence of the unconditional variance which is given by 
( )1dδ
ω  

with ( ) ( ) ∑ ⋅δ≈−=δ
=

maxk

0k

k
k,d

d
d LL1L  where the summation up to the cut-off maxk  instead of 

the infinite theoretical sum leads to a non-vanishing ( ) 01d ≠δ  (Chung, 2002). Taking this 
implication of the practical approach to FIGARCH modelling into account, we can fix the 
parameter ω  similarly as for the GARCH model in order to capture the different scales of 
fluctuations for individual assets. Alternatively, we also tried the average ω  (along with 
average values of 11,βα  and d) for all stocks which produced practically identical results). 

 
For the multifractal model we simply took the mean estimate of the crucial parameter λ  

together with the mean of the number of cascade steps rounded to the nearest integer. Since 
the parameters σ0 and 0

~σ  define the scale of the process, the stock-specific sample standard 
deviation of returns and the sample mean of volume are used in order to maintain the different 
scales of fluctuations of different assets. Analogously, we also kept the scale parameters of 
the ARMA and ARFIMA models, but averaged over the remaining parameters. Since we 
allowed for flexible choice of the number of lags for these models, the mean estimates were 
computed for the maximum number of lags. The coefficients of the average estimates are, 
then, the means over the one hundred individual samples with cases of more parsimonious 
models contributing a zero value for their missing coefficients. 

 
The results of our exercise are quite striking: overall, we mostly see an improvement of 

forecasting performance when using average instead of individually optimised parameters. 
Table 12 details our results for volatility: as one can see, under the MSE criterion, we find 
improvements for all models under almost all perspectives. In particular, the mean MSE is 
always smaller than with the individual parameter estimates with the improvement being most 
pronounced for FIGARCH and GARCH whose performance was lacking behind ARFIMA 
and MSM when using individual parameter estimates. As a result, the three long memory 
models are now practically head to head with FIGRCH and ARFIMA heading the field and 
MSM only very slightly behind the pooled FIGARCH and ARFIMA models. Again, for all 
lags (even the smallest ones) GARCH despite its improvement falls clearly behind the long 
memory models. What is more, a look at Fig. 4 shows that their better average performance 
does not come at the price of deterioration of the best cases (the lower part of the whiskers 
shows little variation between Figs. 2 and 4). It, therefore, appears that the whole distribution 
of forecasting results seems to shift to the left. Overall, under the MSE criterion, averaging 
appears almost unambiguously superior as it not only improves forecasting performance in 
good cases but also appears to minimize the risk of poor predictions (all the maximum entries 
are now close to 1). 

 



 25

Table 12: Forecasting Volatility: Pooled Estimates 
 
relative MSE 

 
 relative MAE 

 
horizon 

 
GARCH 

 
FIGARCH 

 
ARFIMA 

 
MSM 

 
GARCH 

 
FIGARCH 

 
ARFIMA 

 
MSM 

1 0.915* 0.906* 0.905* 0.909* 1.034* 1.079* 1.051 1.028 
5 0.959* 0.945* 0.941* 0.947* 1.031* 1.102* 1.065 1.038* 
10 0.973* 0.954* 0.952* 0.958* 1.019* 1.112* 1.069 1.040* 
20 0.985* 0.958* 0.959* 0.966* 1.004* 1.116* 1.069 1.039* 
30 0.994* 0.963* 0.965* 0.971* 1.001* 1.119* 1.068* 1.038* 
40 0.997* 0.964* 0.967* 0.973* 1.000* 1.118* 1.065* 1.035* 
50 0.999* 0.966* 0.969* 0.975* 1.000* 1.118* 1.063* 1.034* 
60 1.000* 0.968* 0.971* 0.977* 1.000* 1.119* 1.062* 1.033* 
70 1.000* 0.969* 0.972* 0.979* 1.000* 1.119* 1.060* 1.032* 
80 1.000* 0.969* 0.973* 0.979* 1.000* 1.118* 1.058* 1.030* 
90 1.000* 0.969* 0.973* 0.980* 1.000* 1.117* 1.056* 1.029* 

100 1.000* 0.969* 0.974* 0.981* 1.000* 1.117* 1.055* 1.028* 

 
Note: the ‘winners’ under each criterion are marked by bold numbers. The asterisks indicate an improvement 

in average MSE and MAE against the forecasts with individual parameter estimates in sec. 2. Note that pooled 
estimates lead to improvements for all models under the MSE criterion and for all but MSM (and FIGARCH at 
10 day horizon) under the MAE criterion. 

 
 
Results are somewhat different under the MAE criterion: here we find a slight deterioration 

for MSM and ARFIMA over short horizons, but again improvements for GARCH and 
FIGARCH over all horizons and ARFIMA and MSM at medium to long horizons. The 
winner for pooled parameter estimates is the GARCH model (except for one day forecasts) 
while we had a clear dominance of the MSM model for individually optimised estimates. 
However, with the transition form the formerly winning MSM to GARCH and ARFIMA as 
the best performing alternatives in the pooled estimation exercise no real gain is achieved 
under the MAE criterion since the average GARCH prediction essentially coincides with the 
naïve forecast for horizons of 20 days and more. Therefore, the major gain consists in a 
reduction of the relative MSE of the worst performing cases. 

 
One remarkable difference between the results for the one hundred stocks with the largest 

trading volume and the second sample of randomly selected stocks is that the performance of 
pooled MSM estimates is much weaker in the later case than in the former (details are 
available upon request). Closer inspection revealed that the higher average estimate of λ in the 
random sample (1.59) generates less predictability in squared returns due to the larger 
variability of the volatility components drawn for a Lognormal distribution with a higher λ. 
Interestingly, using the average λ = 1.32 from the large volume stocks for the random sample 
as well, we recover results almost identical to those reported in Table 12. In our view, this 
rather underlines the power of averaging over estimates as the large average λ is apparently 
due to a few extreme realizations of individual estimates (maybe due to infrequent trading of 
some assets) and relying on a pool of estimates for more typical assets (the more frequently 
traded ones of our first sample) overcomes their detrimental effect. 

 



 26

 
 
Fig. 4a: Distribution of MSEs of volatility predictions on the base of pooled parameter estimates. For the 

construction of the box plot, cf. the legend of Fig. 2. Apparently, the danger of poor predictions is dramatically 
reduced. 

 
 
 

 
 
Fig. 4b: Distribution of MAEs of volatility predictions on the base of pooled parameter estimates. For the 

construction of the box plot, cf. the legend of Fig. 2.  



 27

 
Now turn to volume: again we find improvements throughout under the MSE criterion and 

the same applies under the MAE criterion when replacing the individual parameter estimates 
by pooled estimates (Table 13). Improvements are more spectacular for ARFIMA and 
particularly so for ARMA, which had a relatively poor performance with individual estimates. 
For the MSM model, improvements are also consistently observed at all time horizons but the 
magnitude of changes of MSE and MAE is relatively small. The improvement for the 
ARFIMA models are so pronounced that its pooled estimates even dominate over the pooled 
MSM forecasts. However, as can be seen from Fig. 5, the overall performance of MSM and 
ARFIMA is now very close for the MSE criterion, while MSM still has a sizable advantage 
compared to ARFIMA under the MAE criterion. Similarly as with volatility the most striking 
finding is the highly reduced danger of poor performance, particularly so for ARMA and 
ARFIMA models.  

 
 

Table 13: Forecasting Volume: Pooled Estimates 
relative MSE relative MAE 

horizon ARMA ARFIMA MSM ARMA ARFIMA MSM 
1 0.590* 0.464* 0.477* 0.757* 0.665* 0.666* 
5 0.958* 0.715* 0.721* 0.979* 0.853* 0.833* 

10 0.962* 0.769* 0.776* 0.973* 0.896* 0.867* 
20 0.989* 0.814* 0.825* 0.989* 0.929* 0.893* 
30 0.994* 0.839* 0.853* 0.993* 0.949* 0.909* 
40 0.997* 0.853* 0.870* 0.995* 0.959* 0.916* 
50 0.999* 0.860* 0.881* 0.997 * 0.964* 0.920* 
60 0.999* 0.864* 0.888* 0.997* 0.966* 0.922* 
70 1.000* 0.868* 0.895* 0.998 * 0.969* 0.924* 
80 1.000* 0.872* 0.901* 0.998* 0.971* 0.926* 
90 1.000* 0.876* 0.907* 0.998* 0.974* 0.929* 
100 1.000* 0.880* 0.913* 0.998* 0.976* 0.931* 

 
Note: the ‘winners’ under each criterion are marked by bold numbers. The asterisks indicate an improvement 

in average MSE and MAE against the forecasts with individual parameter estimates in sec. 2. Note that pooled 
estimates lead to improvements for practically all models and horizons under the MSE criterion and for all but 
ARFIMA under the MAE criterion. 
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Fig. 5: Distribution of MSEs of MAEs of volume predictions on the base of pooled parameter estimates. For the 
construction of the box plot, cf. the legend of Fig. 2. Apparently, the danger of poor predictions is dramatically 
reduced. 
 
 
Overall, it appears that using pooled estimates is more useful in improving predictive power 

for volatility models than for volume prediction, but for both volume and volatility it greatly 
reduces the danger of arriving at very poorly performing models. It is also instructive to 
compare the rank correlations between methods for pooled estimates (Tables 14 and 15) to 
those computed for our original estimates (Tables 6 and 11). In contrast to sec. 3 and 4, we 
now find a much higher correlation among the long memory models over all time horizons 
which even at a forecasting horizon of one-hundred days remains mostly above 90 percent. 
This indicates that pooled estimates of different models exploit the same features of the data. 
Combination of forecasts would, then, surely not improve upon the performance of the best 
model. In contrast, rank correlation between long memory (FIGARCH, ARFIMA and MSM) 
and short memory models (GARCH and ARMA) are decreasing much faster with increasing 
time horizon. Rank correlations between ARIMA and other models become insignificant for 
the volume forecasts while those of GARCH vis-à-vis other models for volatility show a 
somewhat disturbing coincidence of significantly positive correlation under MSE and 
simultaneously significantly negative correlation under MAE. 

 
How can we explain the superiority of pooled forecasts and the good performance of the 

MSM model for both individual parameter estimates and pooled ones vis-à-vis the dismal 
behaviour of some other models? We try to shed some light on the possible origin of our 
findings via the illustration of forecasts over various time horizons from pooled estimates 
exhibited in Fig. 6. The chosen stock (Kawasaki Steel) and the time horizon (a snapshot of 
500 days from the out-of-sample series) is accidental: the features we wish to highlight can be 
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found in all stocks, and both for volatility and volume forecasts. Comparing the forecasts over 
1 day, 10 days, 50 days and 100 days, we first see in the upper left-hand panel, that forecasts 
from all four models at the one-day horizon are hard to distinguish by the naked eye. 
Obviously, all models closely track the empirical development of volatility and the subtle 
differences in their behaviour are certainly not obvious from a visual inspection of the plot 
without a more detailed statistical analysis. Some remarkable differences emerge when one 
proceeds to longer forecasting horizons. First, and in accordance with our expectation, 
GARCH forecasts successively flatten out: while they show a few remaining spikes after 
bursts of volatility at the 50 period horizon, they show practically no variation any more at the 
100 day horizon. The same happens for ARMA forecasts of volume and both findings are in 
line with the short-memory properties of these models. 

 
All other models, however, show quite some variation even at the longest horizon. The most 

perplexing feature is perhaps that their reactions are almost perfectly synchronous which, of 
course, explains their almost identical performance in Tables 12 and 13 and the high rank 
correlation across stocks. There is nevertheless a certain hierarchy in the strength of their 
reaction to changes of volatility: ARFIMA’s reaction to an increase of contemporaneous 
volatility is most pronounced, followed by FIGARCH and MSM (in volume, ARFIMA’s 
reaction is also stronger than that of MSM). Note that the forecasts of MSM also look 
smoother than those of ARFIMA and FIGARCH at all horizons. The likely reason for this 
weaker reaction to changes of volatility is the regime-switching nature of MSM. Since 
regime-switching allows for sudden changes of volatility due to renewal of multipliers, it 
makes the model react less on contemporaneous changes of volatility. Similarly, FIGARCH 
may have less volatile forecasts than ARFIMA because of the compounding of the volatility 
process with Normally distributed increments. The absence of both additional sources of 
stochasticity in the latter model may explain why its forecasts are the most volatile. As the 
best average performance from pooled parameter estimates is obtained for the FIGARCH 
model in Table 12, one is tempted to conclude that forecasts from MSM were too smooth and 
those from ARFIMA somewhat too volatile. However, the ranking of the  three models 
depends on very tiny differences so that such a conclusion might not be warranted (after all, 
the mean MSE and MAE will also depend on the average parameter values which will change 
somewhat with the composition of the pool of stocks so that the ranking might be very 
sensitive to the number of stocks included). 

 
However, our finding of the tendency of MSM to generate relatively smooth forecasts (due 

to its ‘awareness’ of potential shifts in volatility) might also explain its nice performance for 
single stocks. We conjecture that it is this feature which makes it avoid extreme reactions on 
changes in contemporaneous volatility and volume, which occur for other models at least in 
the case of some extreme parameter estimates in the vicinity of non-stationarity. 
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Fig. 6: Forecasts over 1, 10, 50 and 100 days from GARCH, FIGARCH, ARFIMA and MSM models with 

pooled parameter estimates. The underlying stock is Kawasaki Steel, but similar patterns are found for all 
other stocks.  The upper left-hand panel exhibits squared returns alongside with its estimates from the various 
models, the other panels compare forecasts over longer horizons  
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Table 14: Rank Correlations Across Assets: Volatility Forecasts 
 MSE 
lead GARCH- 

FIGARCH 
GARCH -

ARFIMA GARCH-MSM FIGARCH- 
ARFIMA 

FIGARCH 
-MSM 

ARFIMA- 
MSM 

1 0.974 0.976 0.983 0.961 0.977 0.995 
5 0.981 0.957 0.936 0.992 0.982 0.996 

10 0.958 0.936 0.915 0.995 0.986 0.997 
20 0.929 0.907 0.893 0.995 0.989 0.998 
30 0.939 0.927 0.919 0.996 0.992 0.998 
40 0.936 0.923 0.917 0.996 0.993 0.999 
50 0.943 0.931 0.927 0.996 0.992 0.999 
60 0.959 0.951 0.947 0.995 0.992 0.999 
70 0.949 0.943 0.938 0.995 0.993 0.999 
80 0.941 0.936 0.933 0.995 0.992 0.999 
90 0.937 0.923 0.922 0.994 0.991 0.999 
100 0.908 0.892 0.890 0.995 0.992 0.999 

 MAE 
lead GARCH- 

FIGARCH 
GARCH -

ARFIMA GARCH-MSM FIGARCH- 
ARFIMA 

FIGARCH 
-MSM 

ARFIMA- 
MSM 

1 0.967 0.951 0.968 0.989 0.975 0.984 
5 0.947 0.924 0.939 0.991 0.971 0.984 

10 0.896 0.881 0.912 0.991 0.963 0.978 
20 0.708 0.692 0.768 0.983 0.954 0.974 
30 0.586 0.561 0.668 0.985 0.961 0.970 
40 0.438 0.417 0.562 0.976 0.954 0.965 
50 0.289 0.186 0.346 0.966 0.950 0.962 
60 0.341 0.205 0.376 0.961 0.946 0.961 
70 0.281 0.165 0.349 0.955 0.948 0.957 
80 -0.002 -0.171 0.018 0.948 0.948 0.958 
90 -0.353 -0.567 -0.393 0.934 0.945 0.958 
100 -0.427 -0.657 -0.483 0.922 0.942 0.956 

 
Note: At a significance level of 95 percent, the null hypothesis of no correlation in the performance of 

different methods would have to be rejected for absolute entries beyond 0.197 (= 1.96 √(n-1)) with n = 100 in 
our case). 

 
 
Table 15: Rank Correlations Across Assets: Forecasts of Volume 
 MSE MAE 
lead ARMA-

ARFIMA 
ARMA- 
MSM 

ARFIMA- 
MSM 

ARMA-
ARFIMA 

ARMA- 
MSM 

ARFIMA- 
MSM 

1 0.940 0.906 0.992 0.887 0.896 0.994 
5 0.724 0.731 0.998 0.575 0.680 0.982 

10 0.891 0.894 0.999 0.682 0.786 0.980 
20 0.841 0.845 0.999 0.669 0.772 0.965 
30 0.691 0.697 0.998 0.605 0.657 0.951 
40 0.599 0.603 0.998 0.421 0.417 0.940 
50 0.378 0.379 0.998 0.259 0.221 0.927 
60 0.247 0.251 0.997 0.143 0.060 0.906 
70 0.158 0.168 0.996 0.055 -0.058 0.891 
80 0.106 0.107 0.995 0.020 -0.110 0.874 
90 0.056 0.054 0.994 -0.014 -0.154 0.861 
100 0.026 0.031 0.994 -0.019 -0.177 0.843 

 
Note: At a significance level of 95 percent, the null hypothesis of no correlation in the performance of 

different methods would have to be rejected for absolute entries beyond 0.197 ( = 1.96 √(n-1)) with n = 100 in 
our case). 
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In any case, taking into account the better performance of the long-memory models, our 
result underscore that the data exhibit features, which are solely detected and exploited by 
models with long-term dependence. Since pooled GARCH and ARMA forecasts are mostly 
undistinguishable from naïve forecasts at long horizons, this finding speaks in favour of the 
either ‘true’ presence of long correlations or ‘apparent’ long-term dependence due to regime-
switching in both the volume and volatility data. 

 
5. Conclusions 

 
This paper has examined the potential of time series models with long memory (FIGARCH, 

ARFIMA, multifractal) to improve upon the forecasts derived from short-memory models 
(GARCH for volatility, ARMA for volume). In order to get a broad picture, we have used a 
large data-base applying the competing models to long forecasting horizons for a long out-of-
sample period. A number of interesting results emerged form this exercise: first, as concerns 
volatility, our selection of long-memory models performs better in most cases than the naive 
sample variance and GARCH forecasts. 

 
However, this potential improvement against short-memory models is overshadowed by 

occasional dramatic failures particularly by the FIGARCH model and to a lesser extent by 
ARFIMA. Interestingly, the newly proposed multifractal approach seems not to suffer at all 
from this problem. Remarkably, results are better throughout for the MSE than the MAE 
criterion (some trial runs with other data suggest that this is not a particularity of the Japanese 
market). Time series methods, thus, seem to be better suited for forecasting large realizations 
of volatility rather than small or medium ones. 

 
Second, as concerns volume, we find a much higher degree of forecastability than with 

volatility (both under the MSE and MAE criterion) and again a dominance of long-memory 
models (ARFIMA and MSM). As with volatility, MSM also provides much safer forecasts 
which hardly ever rise above the benchmark of unity under the relative MSE criterion. 

 
Third, our observation of different degrees of the variability of performance of different 

methods motivated an analysis of the forecasting quality of pooled estimates (i.e. mean values 
of estimated parameters over the one hundred selected stocks). Astonishingly, nothing was 
lost by discarding stock-specific estimates, but results improved under practically all 
perspectives. In particular, the formerly more ‘dangerous’ methods with some extremely 
poorly performing cases now also became as safe as the multi-fractal model. Using pooled 
estimates, we also saw an even more clear-cut difference between all long-memory models 
and their short-memory counterparts: as can be seen in Figs. 4 and 5, pooled GARCH and 
ARMA quickly converge to the behaviour of naïve forecasts for increasing forecasting 
horizon yielding uniform relative MSE and relative MAE equal to unity from horizons of 
about forty days onward. In contrast, the long-memory models all have a uniformly better 
performance at least with respect to the MSE criterion. It is also remarkable, that rank 
correlations over markets in the pooled estimation cases are close to unity for the long-
memory models showing that they all extract similar information. Overall, these results 
suggest the following interpretation: volatility and volume are characterized by processes 
which have strong persistency. While it is not obvious whether the origin of this persistent 
component is a ‘true’ long-memory feature or whether it is ‘apparent’ long memory stemming 
from a hierarchical regime-switching process, the phenomenology of the data can be captured 
to some degree by different time series models which have built-in long correlations. The 
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improvement form pooled estimates indicates that persistency is similar across stocks so that 
one gets a better assessment of the dependence structure by increasing the data size via 
merging all stocks rather than by the more common fine-tuning of individual estimates. Work 
in progress, in fact, confirms this view: in preliminary experiments we applied our average 
estimates from the Japanese market to data from other countries and again found a better 
performance than with individually estimates parameters. A more systematic exploration of 
these findings is left for future research. 
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Appendix: Stocks used in the analysis 
 
The 100 stocks with the highest average trading volume are (stock identification numbers in 

parentheses):    
  
 Teikoku Oil (1601), Taisei Corp. (1801), Obayashi Corp. (1802), AC Real Estate Corp. (1806), 

Kajima Corp. (1812), Kumagai Gumi (1861), Aoki Corp. (1886), Daiwa House Industry (1925), 
Kirin Brewery (2503), Toyobo (3101), Unitika (3103), Teijin (3401), Toray Industries (3402), 
Mitsubishi Rayon (3404), Asahi Kasei Corp. (3407), Sangoku Pulp (3702, until 07/92), Oji Paper 
(3861), Mitsui Toatsu Chemical (4001, until 12/96), Showa Denko K.K. (4004), Sumitomo 
Chemical (4005), Mitsubishi Chemical Corp. (4010), Ishihara Sangyo Kaisha (4028), Tosoh Corp. 
(4042), Denki Kagaku Kogyo Kabushiki Kai (4061), Ube Industries (4208), Takeda Chemical 
Industries (4502), Dainippon Ink and Chemicals (4631), Fuji Photo Film (4901), Nippon Oil Corp. 
(5001), Mitsubishi Oil (5004, until 03/99), Cosmo Oil (5007), Nippon Sheet Glass (5202), Taiheiyo 
Cement Corp. (5233), Nippon Steel Corp. (5401), Kawasaki Steel (5403),  NKK Corp. (5404), 
Sumitomo Metal Industries (5405), Kobe Steel (5406), Nisshin Steel (5407), The Japan Steel Works 
(5631), Nippon Light Metal Company (5701), Mitsui Mining and Smelting (5706), Mitsubishi 
Materials Corp. (5711), Nippon Mining (5712, until 07/91), Sumitomo Metal Mining (5713), Dowa 
Mining (5714), The Furukawa Electric (5801), Sumitomo Electric Industries (5802), Fujikura (5803), 
Komatsu (6301), Sumitomo Heavy Industries (6302), Kubota Corp. (6326), Hitachi (6501), Toshiba 
Corp. (6502), Mitsubishi Electric Corp. (6503), Fuji Electric (6504), Nec Corp. (6701), Fujitsu 
(6702), Oki Electric Industry (6703), Matsushita Electric Industrial (6752), Sharp Corp. (6753), 
Sony Corp. (6758), Sanyo Electric (6764), Mitsui Engineering & Shipbuilding (7003), Hitachi 
Zosen Corp. (7004), Mitsubishi Heavy Industries (7011), Kawasaki Heavy Industries (7012), 
Ishikawajima-Harima Heavy Indust. (7013), Nissan Motor (7201), Isuzu Motors (7202), Toyota 
Motor Corp. (7203), Mazda Motor Corp. (7261), Honda Motor (7267), Fuji Heavy Industries (7270), 
Canon (7751), Ricoh Company (7752), Itochu Corp. (8001), Marubeni Corp. (8002), Mitsui & co. 
Ltd. (8031), Mitsubishi Corp. (8058), Nissho Iwai Corp. (8063), Sakura Bank (8314, until 03/2001), 
Bank of Tokyo-Mitsubishi (8315, until 03/2001), Sumitomo Bank (8318), Asahi Bank (8322), 
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Daiwa Securities Group Inc. (8601), Yamaichi (8602, until 11/97), Nikko Cordial Corp. (8603), 
Nomura Holdings (8604), Tokio Marine & Fire Ins. (8751), Mitsui Fudosan (8801), Mitsubishi 
Estate (8802), Tobu  Railway (9001), Tokyu Corp. (9005), Keisei Electric Railway (9009), Mitsui 
O.S.K. Lines (9104), Kawasaki Kisen Kaisha (9107), The Tokyo Electric Power (9501), Tokyo Gas 
(9531), Osaka Gas (9532). 

 
The ‘random sample’ consisted of the following stocks which were randomly chosen from our data 

base (in parentheses: stock identification number):  
 
 Nippon Suisan Kaisha (1332), Hoko Fishing (1351), Fudo Construction (1813),Tekken Corp. (1815), 

Nakano Corp. (1827), Toda Corp. (1860), Penta-Ocean Construction (1893), Obayashi Road Corp. 
(1896), Daiwa House Industry (1925), Nippon Koei (1954), Morinaga (2201),  Nippon  Meat 
Packers (2282), Itoham Foods (2284), Nichirei Corp. (2871), Kawashima Textile Manufacturers 
(3009), Nisshinbo Industries (3105), Ashimori Industries (3526), Showa Denko K.K. (4004), 
Nippon Carbide Industries (4064), Sakai Chemical Industries  (4078, until 09/97), Mitsui Chemicals 
(4183), JSR Corp. (4185), Nippon Kayaku (4272), Sankyo (4501), Yamanouchi Pharmaceutical 
(4503), Daiichi Pharmaceutical (4505), Kansai Paint (4613), Tohpe Corp. (4614), Chugoku Marine 
Paints (4617), Toyo Ink Mfg. (4634), Takasago International Corp. (4914), Toyo Tire & Rubber 
(5105), Osaka Cement  (5235, until 12/93), Nippon Hume Corporation (5262), Nippon Yakin 
Kogyo (5480), Nippon Denko (5563), Suzuki Metal Industries (5657), Nihon Seiko (5729), 
Sakurada (5917), Amada Machines (6107), Koike Sanso Kogyo (6137), Kioritz Corp. (6313), Meiji 
Machines (6334), Sintokogio (6339), Sumitomo Precision Products (6355), Nippon Gear (6356), 
Sakai Heavy Industries (6358), Toyo Kanetsu K.K. (6369), Tsubakimoto Chain Co. (6371), Fuso 
Lexel (6386), Sanjo Machine Works (6437), Riken Corp. (6462), Koyo Seiko (6473), Yashakaw 
Electric Corp. (6506), Makita Corp .(6586), Nishishiba Electric (6591), Kawaden (6648, until 
09/2000), The Nippon Signal (6741), Nec Tokin Corp. (6759), Kawasaki Heavy Industries (7012), 
Shin Maywa Industries (7224), Tokyo Radiator Mfg. (7235), Daihatsu Motor (7262), Oval Corp. 
(7727), Riken Keiki (7734), Chinon Industries (7738), Pentax Corp. (7750), Canon (7751), Dantani 
Corp. (7910), Yamaha Corp. (7951), Takara Standard (7981), Daiwa Seiko (7990), Kanematsu Corp. 
(8020), Tohto Suisan (8038), Tsukiji Uoichiba (8039), Seiko Corp. (8050), Shoko (8090), Inabata 
(8098), GSI Creos Corp. (8101), Sinanen (8132), Matsuzakaya (8235), Maruzen (8236), Bank of 
Yokohama (8332), Gunma Bank (8334), Musashino Bank (8336), Hyakugo Bank (8368), Kiyo 
Bank (8370), Iyo Bank (8385), Oita Bank (8392), Sumitomo Insurance  (8753, until 09/2001), 
Nipponkoa Insurance (8754), Sompo Japan Insurance Inc. (8755), Nissan Fire & Marine Ins. (8756), 
Nissay Dowa General Insurance (8759), Nichido Fire & Marine Ins. (8760), Taiheiyo Kaiun (9123), 
KDD  (9431, until 09/2000), Chugoku Electric Power (9504), Toho Gas (9533), Shochiku (9601). 
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