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1 Introduction1

1.1 Overview

As pointed out by Bullard [1991], in the three decades since the publication
of the seminal work on rational expectations (RE) in the early 1960s, a
steely paradigm was forged in the economics profession regarding acceptable
modelling procedures. Simply stated, the paradigm was that economic actors
do not persist in making foolish mistakes in forecasting over time.

Since the late 1980s researchers have challenged this paradigm by exam-
ining the idea that how systematic forecast errors are eliminated may have
important implications for macroeconomic policy. Researchers who have fo-
cused on this question have been studying what is called ‘learning’, because
any method of expectations formation is known as a learning mechanism.
Thus, since the late 1980s a learning literature, or learning paradigm, de-
veloped. An excellent introduction to - and survey of - this paradigm is
presented in Evans and Honkapohja [2001]. Here recent papers that have
applied (private sector) learning in a monetary policy context are Bullard
and Mitra [2002], Bullard and Schaling [2006], and Orphanides and Williams
[2002].

A different strand of literature in the economics profession has been dealing
with optimal control or dynamic optimization. There is a now a growing
number of papers that combines the themes of learning and (optimal) control.
Examples are Wieland [2000b], Wieland [2000a], Wieland [2006], Beck and
Wieland [2002] and recent work by Gaspar and Vestin [2006] and Ellison
[forthcoming]. Gaspar, Smets and Vestin (2006) and Ellison (2006).

In a pioneering paper, Wieland [2000b] analyzes the situation where a
central bank has limited information concerning the transmission channel of
monetary policy. Then, the central bank is faced with the difficult task of
simultaneously controlling the policy target and estimating (learning) the
impact of policy actions. Thus, the so-called separation principle does not

1Eric Schaling thanks CentER for Economic Research at Tilburg University and the
Research Department of the Bank of Finland for hospitality during the formative stages
of the research for this paper. Earlier versions of this paper have been presented at the
Bank of Finland CEPR Workshop ’Heterogeneous Information and Modeling of Monetary
Policy’, 2-3 October 2003 Helsinki, Finland, Tilburg University, the Bank of England,
the University of Johannesburg, and the 2004 North American Summer Meeting of the
Econometric Society. We thank Seppo Honkapohja, Martin Ellison, James Bullard and
seminar/conference participants for helpful comments.
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hold, and a trade-off between estimation and control arises because policy
actions influence estimation (learning) and provide information that may
improve future performance. Wieland analyses this trade-off in a simple
model with parameter uncertainty and conducts dynamic simulations of the
central bank’s decision problem.

1.2 Recent related literature

Several recent studies have revived the issues of active learning and opti-
mal monetary policy under multiplier uncertainty. The literature typically
constructs the problem of learning and control around a simple regression
model where the explanatory variable is also the control variable, a policy
instrument such as the interest rate, whose coefficient has to be estimated
and at the same time decisions have to be made about the appropriate level
of the instrument that minimizes the expected loss from the variability of
the dependent variable, say inflation, around a desired target level.

In particular, the central bank can affect its own learning possibilities
through its current choice of the policy instrument. But in doing so it sac-
rifices short-term goals to carry out experiments. In this case, one has to
differentiate between three policy rules: certainty equivalence, myopic, and
optimal (Prescott [1972]). The first two rules ignore the dynamic link be-
tween learning and control. While the certainty equivalence rule ignores pa-
rameter uncertainty, the myopic rule allows for uncertainty surrounding the
unknown parameters. On the other hand, the optimal policy incorporates
active learning.

A careful reading of this strand of literature shows that most studies as-
sume the presence of uncertainty in the policy multiplier. The policy multi-
plier can be modeled as the coefficient on the money supply, the rate of in-
terest (Ellison [forthcoming]), or inflation (Yetman [2002], Ellison and Valla
[2001]). A common feature of these studies is that the linear economic pro-
cess subject to central bank control is static, as in Brainard [1967]. Thus all
dynamics in the economy are only due to central bank learning.

Under uncertainty in the policy multiplier, experimentation may require
the central bank to be more responsive to new information on the state of
the economy (thus higher variability of the policy instrument). This turns
out be the case in Beck and Wieland [2002]. This conclusion undermines the
basic Brainard [1967] result that calls for more cautious policy (implying a
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lower variability of the policy instrument).2 What drives these recent results
(calling for a more active policy) is the possibility that the central bank can
learn about the unknown parameter and thus improve performance in the
future.

However, Ellison and Valla [2001] argue in favor of a more cautionary pol-
icy under active learning by appealing to strategic considerations. They show
that strategic interactions between the central bank and the private sector
introduce additional costs associated with activist policy. More specifically,
while activist monetary policy may generate valuable information, it can lead
to volatile inflation expectations that in turn hinder the central bank from
holding inflation and output stable around their targets. Ellison and Valla
[2001] thus restore the main message of Brainard [1967], although for reasons
related to optimal learning.

1.3 Organization

Our model, although linear, differs from most of the above mentioned stud-
ies in two respects. First, the structural equations in our model are dynamic
even if one assumes that there is no learning by the central bank. This is
due to the presence of endogenous persistence (inertia) in the economy in the
sense that future economic conditions depend in part on the current state of
the economy. Second, while the literature typically studies uncertainty about
a policy multiplier, the nature of information symmetry in our term struc-
ture equation implies that the persistence parameter in the linear process is
unknown to the central bank.3

More specific, we incorporate the term structure of interest rates in a stan-
dard inflation forecast targeting framework. Learning about the transmission
process of monetary policy is introduced by having heterogeneous agents -
i.e. the central bank and private agents - who have different information sets
about the future sequence of short-term interest rates. We analyze inflation
forecast targeting in two environments. One in which the central bank has

2However, Schaling [2004] calls for a more aggressive policy response in a framework
that modifies Svensson [1997] with a non-linear Phillips curve, which gives rise to uncer-
tainty in the policy multiplier even if the model has only additive demand shocks. Under
strict inflation targeting, he shows that policy is more aggressive than implied by cer-
tainty equivalence. Thus under multiplier uncertainty, Brainard’s result does not always
go through when there are inherent non-linearities in the economy.

3In a generic model, Beck and Wieland [2002] analyze uncertainty in the policy mul-
tiplier when there is endogenous persistence in the state variable. Levin and Moessner
[2005] also study uncertainty about (inflation) persistence.
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perfect knowledge, in the sense that it understands and observes the process
by which private sector interest rate expectations are generated, and one in
which the central bank has imperfect knowledge and has to learn the private
sector forecasting rule for short-term interest rates. In the case of imperfect
knowledge, the central bank has to learn about private sector interest rate
expectations, as the latter affect the impact of monetary policy through the
expectations theory of the term structure of interest rates. Here following
Evans and Honkapohja [2001], the learning scheme we investigate is that of
least-squares learning (recursive OLS) using the Kalman filter.

We find that that under flexible inflation targeting and uncertainty in the
degree of persistence in the economy, allowing for active learning possibilities
has effects on the optimal interest rate rule followed by the central bank.
For a wide range of possible initial beliefs about the unknown parameter,
the dynamically optimal rule is in general more activist, in the sense of
responding aggressively to the state of the economy, than the myopic rule for
small to moderate deviations of the state variable from its target. On the
other hand, for large deviations, the optimal policy is less activist than the
myopic and the certainty equivalence policies.

The remainder of this paper is organized as follows. In section 2 we present
the model and compare that with the popular New Keynesian framework.
Strict inflation targeting under perfect knowledge is analyzed in section 3.
Flexible inflation targeting and learning is discussed in section 4. Section 5
compares certainty equivalence and myopic rules. Optimal policy–as well as
a sensitivity analysis–is presented in section 6, whilst section 7 concludes.

2 The Environment

In this section we describe the inflation forecast targeting framework, with
the transmission mechanism that incorporates the term structure of interest
rates. First, the current period rate of inflation is determined by its lagged
level and the lagged output gap.

πt+1 = πt + α1zt − ηt+1 (1)

where zt is the (log of) the output gap and α1 > 0 is the slope of the
Phillips curve. The output gap is defined as the difference between actual
output and potential output, the latter of which is conveniently normalized
to zero, and η is a normally distributed white noise supply shock.
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The output gap is autoregressive and is affected by the long-term real
interest rate:

zt+1 = β1zt − β2Rt + dt+1 (2)

where Rt is the long-term real interest rate and dt+1 is a white noise
demand shock that is also assumed to be normally distributed. Moreover,
the two coefficients satisfy the restriction β1 > 0 and β2 > 0.4

The short-term ex-ante real interest rate, rt, which can perfectly be con-
trolled by the central bank,5 and the long real rate are related by the expec-
tations theory of the term structure

rt = Rt −D(ÊtRt+1 −Rt) (3)

where ÊtRt+1 denotes private sector expectations (where the hat sign ‘ ˆ ’
denotes a possibly nonrational expectation) of next period’s long real rate.6

Here rt represents the real yield to maturity on a one-period bond which is
traded on the interbank money market. This yield must be equal to the (one-
period) real holding period return on a long-term bond. The parameter D
is defined such that D + 1 is equal to what is known as Macaulay’s duration
(see Eijffinger et al. [2000] for details). For our purposes it turns out to be
convenient to rewrite (3) so that the current long real rate is expressed as a
linear combination of rt and ÊtRt+1:

Rt = (1− k)rt + kÊtRt+1 + ζt (4)

where k ≡ D/(D + 1). We have added a normally distributed white noise
term ζt, where ζt ∼ N(0, σ2

ζ ), to capture an unobserved term premium.

Note that equation (4) can be rewritten as Rt = (1−k)
∑∞

τ=t k
τ−tÊtrτ +ζt;

or alternatively, as

Rt = (1− k)rt + (1− k)
∞∑

τ=t+1

kτ−tÊtrτ + ζt (5)

4This relationship is similar to the one used by Rudebusch and Svensson [2002]. The
differences are that here the output gap depends on the long-term real interest rate rather
than the short-term real interest rate, and that they consider an additional lagged z term.

5The central bank has perfect control over the real short rate, rt, because rt = it −
Etπt+1 where Etπt+1 is predetermined at time t.

6This will be relevant when discussing central bank learning under imperfect knowledge.
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Thus the long term real interest rate is a weighted average of the current
ex ante real short rate and the expected future sequence of future short real
rates over the t + 1–infinity horizon.7

The current short-term real interest rate will be equal to:

rt = it + Etπt+1 (6)

Here it is the nominal interest rate on the inter-bank money market and
represents the expected rate of inflation in period t+1 conditional on the
information set in period t.

2.1 The Role of Forward-looking Elements and Com-
parison with the New Keynesian Model

Before we proceed to solve the model for an inflation targeting central bank,
it is worthwhile to point out the similarity between this model, implied by
equations (1) to (6), and the forward-looking New Keynesian (FLNK) model.
The FLNK allows for a central role for forward-looking inflation and output
expectations in the transmission mechanism.

Of course, if the term structure equation is switched off, (i.e., k = 0), then
there is no distinction between short and long-term interest rates, and there
is no role for forward-looking private sector interest rate expectations.

As pointed out by Clarida et al. [1999], in the FLNK model, the IS equa-
tion is obtained by log-linearizing the consumption Euler equation that arises
from households’ optimal saving decisions. Translated into this paper’s no-
tation, the New Keynesian IS equation is given by:

zt = Êtzt+1 − β2(it − Êtπt+1) + dt (7)

This equation differs from equation (2) mainly because current output
depends on expected future output as well as the (ex ante) short real interest
rate. Absent a term structure equation, the IS curve of the FLNK model
differs in two ways from the purely backward-looking model of Svensson
[1997]. First, current output depends on expected future output rather than
on past output, and second, the parameter β2 is micro founded, namely it is

7It follows that ÊtRt+1 =
(

1−k
k

) ∑∞
τ=t+1 kτ−tÊtrτ .
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no longer a free ad hoc parameter but is equal to the intertemporal elasticity
of substitution.

Iterating (7) forward gives:

zt = Êt

∞∑

j=0

[−β2(it+j − πt+1+j) + dt+j] (8)

According to Clarida et al. [1999], this equation illustrates the degree to
which beliefs about the future affect current aggregate activity within the
FLNK model. The output gap depends not only on the current real rate
and the demand shock, but also on the expected future paths of these two
variables.

At this stage it is interesting to compare equation (8) with the IS equation
in our model that includes the forward-looking term structure equation. To
keep things simple, set β1 = 0 in our IS equation (2) and ignore the term
premium. Then, using equations (??) and (??) in equation (2), we have:

zt+1 = −β2(1− k)Êt

∞∑

j=0

kj(it+j − πt+j+1) + dt+1 (9)

Comparing (9) with (8) from Clarida et al. [1999], we see that in (8) the
current level of activity depends on private sector expectations about future
short real interest rates and the demand shock. In our model - with the
term structure switched on, (k > 0), the future level of output also depends
on beliefs about future short real rates.8 The reason that the ’dependent
variable’ is future rather than current output is because of the control lag
of monetary policy. Current period policy affects the next year’s level of
output, not the present level, as in Clarida et al. [1999]. So, apart from the
fact that beliefs about the future do not include the demand shock, the only
difference between our IS curve and the IS curve in the FLNK model is the
one-year control lag of monetary policy.9

8It is easy to see that if the term premium were included, the future level of output
would also depend on forecasts of future term premiums.

9So far the comparison has been made for simple versions of the two models. A similar
comparison can also be made when both models incorporate a more complicated inter-
action of forward and backward-looking elements. For example, a good empirical fit for
inflation based on the FLNK model usually includes lagged inflation, resulting in what is
known as a hybrid New Keynesian Phillips curve. The hybrid variant reflects some inertia
in the rate of inflation and nests the purely FLNK model considered here [see Clarida
et al., 1999].
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3 Strict Inflation Targeting under Perfect Knowl-

edge

It remains to specify the preferences of the central bank. The central bank
chooses a sequence of current and future short-term nominal interest rates to
meet its objectives. Since Etπt+1 is predetermined, we write the optimization
problem in terms of choosing {rτ}∞τ=t.

min
{rτ}∞τ=t

Et

∞∑

τ=t

δτ−t 1

2
(πτ − π∗)2 (10)

subject to (1), (2), (4) and (6). Here, π∗ is the central bank’s inflation
target and δ is the discount rate with (0 < δ < 1). The expectations operator
Et refers to the central bank’s expectations conditional on the information
set in period t. It is obvious that the derivation of the optimal short rate
depends on the assumed information structure, including model and data
uncertainty faced by the central bank.

To get some straightforward results, this section assumes that the central
bank can observe and respond directly to private sector expectations and
moreover that the private sector and the central bank have rational expecta-
tions.10 In this section, we also set ζt = 0 for all t without loss of generality.

The timing of events is such that the central bank chooses its interest rate
policy after private sector expectations are set. In the terminology of game
theory, the private sector is a Stackelberg leader and the central bank is a
Stackelberg follower. In each period, the sequence of events is summarized
as follows:

Sequence of events in period t
zt, πt realize → private sector sets → central bank chooses

ÊtRt+1 rt = r(zt, πt, ÊtRt+1)

The first-order condition in terms of expected inflation is thus (see Ap-
pendix A of Eijffinger et al. [2004] for details)11

Etπt+2 = π∗ (11)

10So, the central bank knows how much policy is ’in the pipeline’ according to financial
markets.

11See also Svensson [1997]. Even though the first-order condition in terms of Etπt+2 is
equivalent to that in Svensson [1997], our optimal level of the short rate responds to three
state variables– πt, zt, and ÊtRt+1, which are part of the central bank’s information set.
In Svensson [1997] the state variables are πt and zt.
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Thus, optimal policy for a strict inflation targeting regime defined by (10)
implies inflation forecast targeting in the sense of Svensson [1997]. That is,
the best the central bank can do is to set the short rate such that it expects
inflation two-period ahead to be on target. The first-order condition, together
with the structural constraints, leads to the following closed form solution
for the short-term ex ante real interest rate:

rt =
1

α1β2(1− k)
(πt − π∗) +

1 + β1

β2(1− k)
zt − k

1− k
ÊtRt+1 (12)

Note that rule (12) is in the form of the Evans and Honkapohja [2003b]
(hereafter EH) expectations-based optimal rule. By construction, it imple-
ments what EH label “optimal discretionary policy” in every period and for
all values of private sector expectations.

Rule (12) differs from simple (non-optimal) Taylor-type rules, which are
widely used for policy analysis, as policy responds directly to ÊtRt+1, the
private sector’s forecast of the long real rate. This modification is a result
of the forward-looking term structure equation that has been embedded in
an otherwise backward-looking model.It is easy to check that if k = 0 and
the term structure equation vanishes, the policy rule collapses to a version of
the Taylor rule analyzed by Svensson [1997] (hereafter the Svensson-Taylor
rule).12

An interesting characteristic of this solution is that the central bank’s
optimal choice of rt is inversely related to private sector expectations about
its future short rates. In the words of Mervyn King, Governor of the Bank
of England, such a rule would imply “letting the market do the work for us.”

For example, if the private sector expects rates to go up (down) in the
future, as a consequence current real short rates are lowered (raised) today.
The property that if the private sector expects future short rates to go down
the central bank raises the current short real rate (or talks about raising it)
reminds us of the old joke about the Bundesbank (BuBa): ”The BuBa is
just like cream, the more you stir it, the thicker it gets.”13 The reason for
this inverse relationship is that the central bank’s inflation forecast– given the
current period inflation rate and the output gap– depends on the present level
of the real long-term interest rate. So, an optimal inflation forecast implies

12Taylor rules are often written in terms of the it. Given the definition of rt one can
easily derive the optimal level of it from (12).

13In addition, the Bundesbank always considered the long-term interest rate as a reflec-
tion of its credibility.
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an optimal level of the current long real rate. Since the optimal long real rate
(consistent with strict inflation targeting) is a weighted average of the current
ex ante optimal short rate r∗t and ÊtRt+1, i.e. R∗

t = (1 − k)r∗t + kÊtRt+1, a
higher value of ÊtRt+1 necessitates a lower value of r∗t , and vice versa.14

3.1 The Rational Expectations Equilibrium

Next, we study the rational expectations equilibrium. Inserting the reaction
function (12) in the term structure (4) implies that Rt has the following
reduced form solution:

Rt =
1

α1β2

(πt − π∗) +
1 + β1

β2

zt (13)

Importantly, this solution shows that the effects of private sector expec-
tations of the long rate are completely offset when the central bank observes
and responds optimally to those expectations. We can of course derive the
exact form of those expectations. Inserting (13) in the output equation gives
the reduced form solution:

zt+1 = − 1

α1

(πt − π∗)− zt + dt+1 (14)

Next, leading (13) one period and using equations (14) and (1) we get:

Rt+1 = − β1

α1β2

(πt − π∗) +
β1

β2

zt + ut+1 (15)

where ut+1 ≡ 1+β1

β2
dt+1 − 1

β2
ηt+1 is a composite white noise shock. Taking

private sector expectations as of time t gives:

ÊtRt+1 = − β1

α1β2

(πt − π∗)− β1

β2

zt (16)

This result represents the rational expectations solution under symmetric
information, where private sector expectations are consistent with the solu-
tion for the long-term real interest rate implied by strict inflation targeting.

14In other words, if the private sector expects a looser monetary policy in the future,
this leads to a tighter policy stance today to compensate.
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Alternatively, we can express rt in reduced form by plugging (16) into the
reaction function (12):

rt =
1 + kβ1

α1β2(1− k)
(πt − π∗) +

1 + β1(k + 1)

β2(1− k)
zt (17)

This is what Evans and Honkapohja [2003b] call the fundamentals-based
form of the optimal policy rule. Note that this rule is more specific than
the expectations-based rule, as it is obtained by substituting the rational
expectations solution for the future long real rate into the expectations-based
rule.

As can be seen from (17) the ex ante real rate, rt, is now expressed in
terms of current inflation and output. In this way we can compare the
behavior of rt in (17) with the Svensson-Taylor rule that results by setting
k = 0. We can easily check that when 0 < k < 1 and the term structure is
relevant, rt becomes more sensitive to changes in the state variables πt and
zt. Moreover the higher the value of k, the more volatile rt. The intuition for
this result is as follows. If k increases the term structure says that private
sector expectations become more important in determining Rt, a variable
that directly affects aggregate demand. To offset the decrease in the policy
leverage over Rt, the central bank needs to be more aggressive in responding
to changes in πt and zt.

4 Imperfect Knowledge, Beliefs and Learning

The previous section looked at a benchmark case of perfect knowledge where
the central bank perfectly observes and responds to private sector expecta-
tions of the long real rate. Although the model extends Svensson [1997],
endowing the central bank with perfect knowledge of private sector expec-
tations is hardly realistic. Central banks typically observe private sector
expectations with error, and these observation errors can be large [Evans
and Honkapohja, 2003a].15

Suppose that the private sector’s forecasting function for the long real rate
takes the same form as the rational expectations solution under full informa-
tion, namely, equation (16). That is, expectations respond to information on

15We continue to assume that the central bank knows the structural model of the econ-
omy, including the parameters.
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the current period state variables–inflation and output. Specifically,

ÊtRt+1 = γwt (18)

where we have defined a new variable wt ≡ −(πt + zt) and for the purpose
of tractability we have set α1 = 1 and π∗ = 0. The nature of imperfect infor-
mation is such that, the central bank knows the private sector’s forecasting
rule, but not the actual value of γ.16 Let ct denote the best forecast of γ
and pt the variance of ct, (the degree of confidence placed upon ct), of which
more will be said later.17

4.1 Learning

Since the central bank is assumed to have full knowledge of the functional
form (18), it knows that the term structure equation under imperfect knowl-
edge obeys

Rt = (1− k)rt + kγwt + ζt (19)

Observe that the unobserved term structure shock, ζt, injects additional un-
certainty and prevents the central bank from inferring, in any period, the
value of γ from (19).18 Next, substituting equation (19) in the IS and Phillips
curves gives,

wt+1 = γ̃wt − β1zt + β̃rt + νt+1 (20)

where β̃ ≡ β2(1 − k) and νt+1 ≡ β2ζt − dt+1 + ηt+1 is a composite white
noise shock. The persistence parameter γ̃ ≡ 1 + β2kγ > 0 is unknown to
the central bank because of the unknown parameter γ coming from equation
(18).

16which is equal to γ ≡ β1/β2.
17By positing a simple forecasting function for the private sector, we abstract from the

interaction of optimal monetary policy and rational expectations on the part of the private
sector. However, even though expectations are non-rational in the short-run, they turn
out to be rational in the limit since the central bank learns the unknown parameter with
probability one. The solution of the model is then identical to the full information rational
expectations equilibrium.

18This is true even if the central bank knows the parameter k, and has data on the yield
curve (rt and Rt) and the current state of the economy, wt.
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When active learning by the central bank is involved, the optimization
problem usually gets complicated as the number of state variables increases
(due to what is known as the ”curse of dimensionality”). In our case, besides
the state variable wt, the current output gap, zt, also appears as a state
variable in equation (20). Together with the beliefs about the mean and
variance of the persistence parameter, there would be four state variables in
the model. The dual control literature usually uses a constraint similar to
(20) but with β1 = 0 so that next period’s state variable, wt+1, depends on
the policy instrument, rt, and possibly lagged values of the state variable;
see Beck and Wieland [2002]. In our case, setting β1 = 0 reduces the number
of state variables to three. This makes the dynamic equation comparable to
that considered by Beck and Wieland [2002]:19

wt+1 = γ̃wt + β̃rt + νt+1 (21)

Let c̃t denote an estimate of γ̃. Now, since γ̃ = 1 + β2kγ, after c̃t has
been estimated, ct can be inferred indirectly from ct = −(1− c̃t)/kβ2. when
period t + 1 arrives, the central bank updates its estimate by including the
latest available data (wt+1, wt, rt) in the regression equation (21). Using the
widely used method of recursive least squares we have the following updating
equations for c̃t and its variance, denoted by p̃t [see for e.g. Beck and Wieland,
2002, Pollock, 2002].20

c̃t+1 = c̃t + κt+1(wt+1 − c̃twt − β̃rt)

p̃t+1 = p̃t − κt+1wtp̃t (22)

where κt+1 ≡ wtp̃tF
−1
t+1 is commonly referred to as the Kalman gain, which

is the weight assigned to new information coming from the forecast error
wt+1 − c̃twt − β̃rt. The Kalman gain in turn depends on the conditional
variance of wt+1, (based on information in period t), given by Ft+1 ≡ w2

t p̃t +
σ2

ν . As can be seen from (22), the current state of the economy, wt is part

19Note that if β1 = 0, the perfect knowledge, rational expectations solution–where
in addition we have set π = 0 and α1 = 1–gives ÊtRt+1 = (β1/β2)wt = 0. This is
inconsequential to the way learning is modeled under imperfect knowledge. The motivation
for central bank learning comes from the knowledge of the functional form of (18), where
in the case β1 = 0, the central bank would be assumed to lack information about the true
γ being actually zero.

20If the unknown parameter is time-varying, the updating equations can be modified to
allow for this variability via the Kalman filter; see for instance Sargent [1999] and Beck
and Wieland [2002].
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of the Kalman gain, and affects the path of the conditional variance of the
parameter estimate, p̃t+1. Due to the presence of autoregressive behavior in
wt+1, changes in the current state of the economy, wt, have direct effects on
the variability of wt+1, and consequently on the variability of wt+2, wt+3, ....

21

4.2 Flexible Inflation Targeting under Imperfect Knowl-
edge

Under flexible inflation targeting the central bank chooses {rτ}∞τ=t to min-
imize the discounted sum of expected current and future losses, subject to
the constraints (21) and (22).

min
{rτ}∞τ=t

Et

∞∑

τ=t

δτ−tLτ (23)

where Lt = 1
2
(w2

t + λr2
t ) and λ > 0 is the relative weight assigned to the

loss from the variability in rt, the control variable.22 As before, the discount
rate is denoted by δ, (0 < δ < 1). The expectations operator Et refers to the
central bank’s expectations conditional on information set in period t. Note
that when λ → ∞, the central bank engages in full stabilization of rt, i.e.,
rt = 0 for all t.

The updating equations in (22) capture the idea that central bank learn-
ing about the unknown parameter is influenced by policy decisions made in
period t, rt. The channel work as follows: rt affects the state variable in pe-
riod t+1, wt+1, and consequently, beliefs about the unknown parameter (i.e.
c̃t+1 = c(wt+1) and p̃t+2 = p(wt+1)). The link between current and future pol-
icy choices is established because expected future interest rate decisions by
the central bank depend on the expected future state of the economy. From
the principle of least squares estimation the precision of the estimate c̃t+2

depends positively on the variance of wt+1. One gets a more precise estimate
(in other words, a smaller value of p̃t+2) when the variance of wt+1 increases,
and vice versa. Since we recognize that the current choice of monetary pol-
icy rt affects Etwt+1, and given that Ft+1 is predetermined, the coefficient of

21The assumption that the shock is normally distributed with known variance is standard
in the learning literature. If the prior belief also have a normal distribution, then the
posterior belief is a normal distribution. This property of the posterior belief is convenient
when dealing with numerical computations (see the appendix to chapter 6 of Tesfaselassie
[2005]).

22This follows the learning and control literature. See Beck and Wieland [2002] for a
detailed discussion.
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variation, defined by the ratio
√

Ft+1/Etwt+1 is also a function of rt. This
relationship between rt, wt+1 and p̃t+2 raises a potential tension between the
urge to minimize current period loss from variability in rt (the control part)
and the need to get a more precise estimate of the degree of persistence in
the economy that would help improve future outcomes (the learning part).

When the central bank conducts policy based on passive learning, by con-
struction it disregards the potential tradeoff between estimation and control.
In other words, the central bank simply ignores the effect of current policy
actions on the degree of precision of future estimates of the unknown parame-
ter, thereby treating control and estimation separately. Formally, the passive
learning policy first calculates ct and pt and then takes these parameters to
be fixed at the stage of optimization, which means that when choosing policy,
the dynamic process of these estimates (the updating equations) are ignored.
Likewise, before choosing rt+1 in period t + 1 the central bank updates its
belief about γ to ct+1, ignoring the fact that it will have to update this es-
timate in the future.23 In this way the central bank fails to internalize the
effect of current actions on future beliefs.

Certainty equivalence is a special case of a passive learning policy since it
ignores pt by assumption. Thus, the policy maker does not incorporate pt

even if the effect of pt on the loss function could in principle be reduced by
an appropriate choice of rt.

24

In a strict inflation targeting regime with passive learning, the central bank
minimizes the inter-temporal loss function (23) setting λ = 0 and taking into
account the linear dynamic equation (21). The optimization problem would
give solutions for rt analogous to the case of perfect knowledge (section 3), as
the problem is solved period-by-period and the first-order condition sets the
conditional expectation of inflation two-period ahead equal to the desired
target. As we will see below, this is no longer true with flexible inflation
targeting (λ > 0) as future losses and the discount rate play a role in the
choice of the current policy rate.

23In the sense of Sargent [1999], passive learning implies that in any period t the central
bank pretends that its current estimate ct will apply forever, as if it is the true parameter.
But the central bank’s updating of its estimate in period t+1 falsifies this pretense.

24Note that having full confidence in ct is equivalent to assuming pt = 0.
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5 Passive Learning: Certainty Equivalence vs.

Myopic

Before considering the role of active learning in optimal policy, this section
solves for optimal policy under passive learning. There are two subcases
under passive learning– one that ignores parameter uncertainty (certainty
equivalence rule) and the one that incorporates parameter uncertainty (my-
opic rule). Both rules are passive in nature because they ignore the link
between policy choices today and future learning that is apparent from the
updating equations. From the vantage point of the current period the central
bank’s belief is not expected to be updated in the future, implying that when
choosing current policy, it anticipates the initial belief (c̃t, p̃t) to remain fixed
for all future periods. Consequently, in both cases, the non-linear updating
equations drop out of the optimization problem.25

The certainty equivalence rule is a special case of the myopic policy rule
since under the former p̃t = 0. The implication of this can be seen by
decomposing Etw

2
t+1 as follows26

Etw
2
t+1 = (Etwt+1)

2 + Ft+1 (24)

where Etwt+1 = c̃twt + β̃rt and under the myopic policy Ft+1 = w2
t p̃t +σ2

ν .
On the other hand, under certainty equivalence, p̃t = 0 ⇒ w2

t p̃t = 0, and so
Ft+1 is completely exogenous, depending only on the variance of the additive
shock, σ2

ν .

Etw
2
t+1 = (Etwt+1)

2 + σ2
ν (25)

Thus the difference in the way the conditional variance, Ft+1, is treated
is also reflected in the solution of the dynamic control problem under each
case (see below).

5.1 The Certainty Equivalence Policy (CER)

Under certainty equivalence the central bank ignores parameter uncertainty.
In other words, the central bank is fully confident about its estimate c̃t so

25Of course, when next period arrives, the bank updates its belief but then expect it to
remain fixed from that period on.

26Remember, by assumption the additive shock νt+1 is i.i.d. and thus uncorrelated with
period t estimation error, γ̃ − c̃t.
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that its current belief is given by (c̃t, p̃t) = (c̃t, 0). We can also think of this
situation as the limiting case of the updating equations, where p̃t = 0 implies
that c̃t+1 = c̃t. Thus, the state c̃t does not change and is independent from
the policy instrument. The minimization problem is

min
{rτ}∞τ=t

Et

[ ∞∑

τ=t

δτ−tLτ |(wt, c̃t)
]

(26)

subject to the linear constraint (21). Importantly, with the non linear updat-
ing equations ignored, the problem is linear-quadratic, and the derivation of
the optimal level of rt is similar to that under perfect knowledge. To get the
certainty equivalence rule, one usually proceeds in two steps. First, solve for
the optimal rule assuming perfect knowledge of γ̃ and second, simply replace
γ̃ by its recent estimate c̃t. Alternatively, first replace γ̃ by its recent estimate
c̃t in the linear constraint (21) and then solve the optimization problem tak-
ing the estimate as a fixed parameter. In any case, we can rewrite the above
minimization problem using recursive dynamic programming and then use
the ’guess and verify’ method on the value function as in Schaling [2001].27

With this in mind, one can write the Bellman equation associated with
the minimization of (26).28

V (wt) = min
rt

[L(wt, rt) + δEtV (wt+1)] (27)

subject to (21) with γ̃ replaced by its certainty equivalence estimate c̃t, which
at the stage of optimization is understood by the central bank to be a fixed pa-
rameter (and not a state variable). Because of the resulting linear-quadratic
structure of the minimization problem, the value function will be quadratic
in the state wt.

V (wt) = µ0 +
1

2
µw2

t (28)

27For a discussion of the relative merits of dynamic programming and Lagrange method
see Schaling [2001]. For applications of the latter to a non-linear optimization problem, and
a regime switching model see Schaling [2004] and Bullard and Schaling [2001], respectively.

28Note that the value function in the Bellman equation does not have time subscript.
This is because in infinite horizon problems, we are interested only in the unique time
invariant value function, V, and associated unique, stationary policy rule, that result from
repeated iterations on the Bellman equation starting from any bounded continuous V0

(e.g. V0 = 0). Convergence of the value function is guaranteed due to the contraction
mapping theorem [see Sargent, 1987]. For linear-quadratic control problems, convergence
is achieved in a single iteration if V0 is quadratic.
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where the two coefficients remain to be determined. If (28) is correct, it
follows that:

EtV (wt+1) = µ0 +
1

2
µEtw

2
t+1 (29)

where Etw
2
t+1 follows from equation (25). Using (29) in (27) and taking the

first order condition, we get

λrt + µβ̃δ(c̃twt + β̃rt) = 0 (30)

which can easily be solved for rt in the fundamentals-based form:

rt = − µδc̃tβ̃

λ + µδβ̃2
wt (31)

It is important to observe that, even though we have placed a time subscript
on c̃t, as far as passive learning is concerned, c̃t should be thought of as a
fixed parameter (not a state variable) and it is not expected to be affected by
the current policy choice. This is the sense in which forecasting and control
are separated by construction.29

In order to identify µ, first differentiate (28) with respect to wt:

Vw(wt) = µwt (32)

Next, invoking the envelope theorem on the Bellman equation (27), and
taking note of (31):

Vw(wt) = wt + δµc̃t(c̃twt + β̃rt) = f(µ)wt (33)

where f(µ) ≡ 1 + λδc̃2
t µ/(λ + δβ̃2µ). For the conjectured value function

(28) to be correct, it is required that the coefficients of (32) and (33) have to
be equalized:30

µ = f(µ) (34)

29Thus, due to the sequential nature of decision making, the updating of the parameter
estimate is kept in the background.

30Alternatively, one can work directly with the value function. Substitute (31) in (27)
and match the resulting coefficients with those in the conjectured value function (28).
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Rearrange (34) to get the following quadratic equation for µ:

δβ̃2µ2 + [λ− δ(β̃2 + c̃2
t λ)]µ− λ = 0 (35)

It is straightforward to check that limµ→0 f(µ) = 1 and limµ→∞ f(µ) =
1 + λc̃2

t /β̃
2. Thus a unique solution for µ, such that µ ≥ 1, is :

µce =
1

2

(
1− λ(1− δc̃2

t )

δβ̃2
+

√√√√(
1 +

λ(1− δc̃2
t )

δβ̃2

)2
+

4λ

β̃2

)
(36)

where superscript ’ce’ stands for certainty equivalence. We see that the esti-
mate of the persistence parameter, c̃t, which from the perspective of period t
is not expected to be updated in the future (as per passive learning), affects
the value of the coefficient µce. For future reference, note also that µce → 1
as λ → 0.

The solution (36) is similar to equation (B.6) of Svensson [1997], except
that in Svensson [1997] the persistence parameter is known with certainty
(and simply set equal to 1) and flexible inflation targeting is defined in terms
of inflation and output stabilization. To see the effect of λ on policy respon-
siveness to wt, rewrite (31), (bearing (36) in mind) so that rt = −c̃twt/(φ+β̃),
where φ = λ/(µceδβ̃); ∂φ/∂λ > 0.31 Thus given c̃t, rt is less responsive to
wt as λ increases. Moreover, as λ → 0, φ → 0 and rt = −(c̃t/β̃)wt (strict
inflation targeting). On the other hand, as λ →∞, φ →∞ implying rt = 0
(full stabilization of rt).

5.2 The Myopic Policy (MR)

A myopic policy rule differs from certainty equivalence only because the my-
opic policy takes account of the current degree of uncertainty in the current
estimate of the persistence parameter (thus p̃t > 0). The central bank con-
tinues to ignore the fact that current policy can affect future beliefs and so
treats c̃t and p̃t as fixed parameters, implying that the only state variable

31Upon simplifying

φ = 1/2

(
δβ̃2 − (1− δc̃2

t ) +

√(δβ̃2

λ
+ 1− δc̃2

t

)2

+
4δ2

λβ̃2

)

from which it is easily seen that ∂φ/∂λ > 0.
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from the central bank’s point of view is wt.
32 The conjecture for the value

function is then the same as (28) and the first order condition with respect to
rt will take the same form as (30). The difference is that now the coefficient
µ will be a function of p̃t as well as c̃t.

In identifying µ, we remember that in (29), Etw
2
t+1 is a function of p̃t via

(24). So

Vw(wt) = wt + δµc̃t(c̃twt + β̃rt) + δµptwt

=
(
1 +

λδc2
t µ

λ + δβ̃2µ
+ δp̃tµ

)
wt (37)

Thus following the steps analogous to the previous section, we match the
coefficients of (32) and (37),

µ = 1 +
λδc2

t µ

λ + δβ̃2µ
+ δp̃tµ (38)

or

(1− δp̃t)µ = 1 +
λδc2

t µ

λ + δβ̃2µ
(39)

where the certainty equivalence case arises if p̃t = 0, that is if one disre-
gards parameter uncertainty. In finding the solution for µ that satisfies (39),
we note that the expression on the right side of the equation is identical to the
corresponding term under certainty equivalence, but on the left hand side of
the equation, the coefficient on µ is 0 ≤ 1−δp̃t ≤ 1 if p̃t is not too large. This
holds if, say, the initial parameter uncertainty is such that p̃0 ≤ 1, which is
actually not that restrictive if c̃0 is also not too large. In this case, the prior
belief (c̃0, p̃0) such that p̃0 = c̃0/2 implies high initial uncertainty (see Beck
and Wieland [2002]). This means that if we restrict the central bank’s belief
such that c̃0 ≤ 2, we can reasonably assume as well that p̃0 ≤ 1.33 With this
in mind, we can easily observe that when parameter uncertainty is taken into

32One can also think of c̃t and p̃t as state variables. However, these states do not change
and are independent from the policy instrument. This means that, when optimizing, the
terms κt+1(wt+1−c̃twt−β̃rt) and κt+1wtp̃t on the right hand side of the updating equations
drop out.

33For e.g., in Beck and Wieland [2002] the prior belief about the unknown parameter is
characterized by a mean of 0.5 and variance 0.25, so that the central bank faces considerable
uncertainty.
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account, the fixed point for µ, denoted by µm, will be larger or equal to its
fixed point under certainty equivalence, µce. Thus the myopic policy is more
aggressive (in the sense of larger policy response to new information about
the state of the economy) than the certainty equivalent rule.

As before, to get the solution for µ, rewrite (39):

Aµ2 + Bµ− λ = 0 (40)

where A ≡ (1− p̃tδ)δβ̃
2, B ≡ (1− p̃tδ)λ− δ(β̃2 + c̃2

t λ). We can check that if
p̃t → 0, then A → δβ̃2 and B → λ − δ(β̃2 + c̃2

t λ), which are the coefficients
under the certainty equivalence rule.

The solution for equation (40) depends, among other things, on p̃t.

µm =
1

2

(
− B

A
+

√(
B

A

)2

+
4λ

A

)
(41)

µm ≥ 1 as long as the initial value of p̃0 is not too large. We know that p̃t

goes down in magnitude over time as more data about w and r arrive. This
is true even for policy under passive learning.34

Unlike the case of certainty equivalence, limλ→0 µm = 1/(1 − δp̃t). The
myopic case collapses to the certainty equivalence only if p̃t → 0, which also
implies that µm = µce → 1.

Remember that the central bank knows the policy multiplier, β̃, with
certainty. On the other hand, when choosing its interest rate under the
myopic policy, the central bank behaves as if its initial belief, including p̃0 >
0, will not be updated. In other words, the policy maker currently thinks that
he will live with an uncertain estimate now and in the future. This perception
somehow exaggerates actual future uncertainty because it neglects the fact
that as time goes by, the precision of c̃ will increase (p̃ will decline) with the
arrival of new economic data.

What is then the intuition behind a more aggressive rule under the myopic
policy? The control problem is dynamic, so the bank expects to incur losses
from variability in wt+1 (via its effect on Ft+2 = p̃t+1w

2
t+1 + σ2

ν). Since as of
period t the central bank does not internalize the effect of policy on future
beliefs, we have p̃t+1 = p̃t and EtFt+2 = p̃tEtw

2
t+1 + σ2

ν = p̃t(Etwt+1)
2 +

p̃tFt+1 +σ2
ν , which shows the benefits from a policy that sets Etwt+1 closer to

34See chapter 5 of Tesfaselassie [2005] for a discussion of convergence under learning.
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zero. It follows that, given λ > 0, from the perspective of the myopic policy
rt responds more strongly to deviations of wt so that Etwt+1 is closer to the
target w∗ (zero) than implied under the certainty equivalence rule.35

It is important to note that policy at time t can affect only Etwt+1, which
corresponds with the expected loss under certainty equivalence. On the other
hand, the conditional variance, Ft+1, is independent of rt since pt and wt are
predetermined as of time t. In the case where λ = 0, the myopic rule collapses
to the certainty equivalence rule. This result is different from the classic study
by Brainard [1967] and other related papers, where the policy multiplier is
assumed to be unknown, so that policy can affect the conditional variance
component, and the certainty equivalence principle breaks down even when
the control variable (policy instrument) does not enter the loss function.
What we have shown in this section is that, as long as λ > 0 the myopic
rule differs from the certainty equivalence for the case where the persistence
parameter is unknown while the policy multiplier is known with certainty.

6 Optimal Monetary Policy under Active Learn-

ing

We now formalize the active learning problem, in which the central bank does
not separate estimation and control, as future beliefs about the persistence
parameter depend on the whole history of the state variables and the interest
rate choices of the central bank, including the current one. Under optimal
policy, the policy maker can take actions now such that wt+1 is more infor-
mative and contributes to a more precise future estimate of the persistence
parameter.

More precisely, the benefits from experimenting with the policy rate are
in terms of reduced variability of the economy in the future from more pre-
cise estimates and improved control associated with less uncertainty in the
unknown parameter. Under flexible inflation targeting, optimal policy ex-
ploits the tradeoff between those future benefits and current costs from large
movements in rt.

As before, the central bank chooses a sequence of current and future short-

35Note that pt scales up the component of the loss function associated with the variability
of wt+1. The presence of pt does not matter under strict inflation targeting since the policy
instrument is set such that Etwt+1 = 0. By contrast, with flexible inflation targeting, λ > 0
implying that Etwt+1 6= 0. The presence of pt then requires a more aggressive policy that
drives Etwt+1 closer to zero.
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term nominal interest rates (note that Etπt+1 is predetermined) to minimize
the intertemporal loss function

min
{rτ}∞τ=t

Et

[ ∞∑

τ=t

δτ−tLτ |(wt, p̃t, c̃t)
]

(42)

But now, the constraint is not just the linear Phillips curve (21) but also (and
importantly) the non linear updating equations (22). The effect of current
policy on future beliefs becomes visible from the Bellman equation associated
with the dynamic programming problem (42) [see Beck and Wieland, 2002]:

V (wt, c̃t, p̃t) = min
rt

[L(wt, rt) + δEtV (wt+1, c̃t+1, p̃t+1)] (43)

subject to (21) and (22).

The following table summarizes the results under CER, MR and the fully
optimal policy.

Table 1: Summary of Key Results
Strict IT Flexible IT

Perfect Knowledge∗ rt = − γ̃

β̃
wt rt = − µδγ̃β̃

λ+µδβ̃2 wt

Imperfect Knowledge–CER rt = − c̃t

β̃
wt rt = − µCEδc̃tβ̃

λ+µCEδβ̃2 wt

Imperfect Knowledge–MR rt = − c̃t

β̃
wt rt = − µM δc̃tβ̃

λ+µM δβ̃2 wt

Imperfect Knowledge– rt = − c̃t

β̃
wt V (wt, c̃t, p̃t) = minrt [L(wt, rt)+

optimal policy δEtV (wt+1, c̃t+1, p̃t+1)]
∗µ is the same as µCE except that c̃t is replaced by γ̃.

The second term on the right side of (43) (also reproduced in the last row
of Table 1) is the expected discounted loss from period t + 1 onwards, with
time t + 1 state vector (wt+1, c̃t+1, p̃t+1) depending on current period policy
actions and state vector via the updating equations. This term thus captures
the value of information and is given by (see also the appendix to chapter 6
of Tesfaselassie [2005])

EtV (.) =
∫

V
(
wt+1, c(wt+1, c̃t, p̃t, wt, rt), p(p̃t, wt)

)
f(wt+1|.)dw (44)

where f(w|.) is the conditional density function of wt+1. Even if it has to
control a linear process (21) and its loss function is quadratic in the two

24



arguments, the policy maker faces a non-linear constraint because of the
updating equations. Thus the dynamic programming problem falls outside
the linear-quadratic formulation that is usually assumed in many economic
applications. Fortunately, using a standard contraction mapping argument,
Kiefer and Nyarko [1989] have shown the existence of a stationary policy
and a unique value function that solve the dynamic programming prob-
lem. It is thus possible to use numerical dynamic programming methods
to approximate the value function and associated policy rule. Judd [1998]
describes extensively the numerical methods for solving Bellman equations,
while Wieland [2006], and Beck and Wieland [2002], among others, apply
these methods to optimal policy under parameter uncertainty.

As pointed out by Wieland [2006], a drawback of this procedure is the so-
called curse of dimensionality, which sets in as the number of state variables
becomes large. The reason is that the number of computations increases
geometrically with the number of state variables in the optimization problem,
which in turn undermines the precision of the numerical approximation. This
will not pose a problem for us since we only have three state variables, c̃t, p̃t

and wt.

7 Numerical Results

Having described the main elements of the policy problem under active learn-
ing, we now present some numerical results. We first present our results for
benchmark values for the weight on interest rate stabilization, λ, the pol-
icy multiplier, β̃, the discount factor, δ, and the variance of the composite
exogenous shock, σ2

ν . Then we compare these results with those derived for
alternative parameter values.

Table 2: Parameter configuration
Parameter Benchmark value New value

β̃ 0.5 1
λ 0.5 0.1
δ 0.95 0.75

σ2
ν 1 0.5

Possible initial beliefs for c̃ are as high as 1.4 and as low as 0.2, while the
beliefs about the variance p̃ range from 0.1 to 0.7. The relative degree of
confidence in an estimate measured by the coefficient of variation,

√
p̃/c̃, takes

its lowest value at (c̃0, p̃0) = (1.4, 0.1) implying
√

p̃/c̃ < 0.23. In this case, the
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uncertainty associated with c̃ is quite small. As will be shown below, given
the parameter configuration, the role of parameter uncertainty in inducing an
active learning policy decreases with the coefficient of variation. Moreover, to
get an idea of how initial beliefs about the degree of uncertainty surrounding
the parameter estimate matters for policy, 16 alternative pairs of (c̃0, p̃0) are
considered from the sets c̃0 ∈ {0.2, 0.6, 1, 1.4} and p̃0 ∈ {0.1, 0.3, 0.5, 0.7}. All
the figures shown below have (πt + zt) on the horizontal axis. This follows
from the definition πt +zt = −wt. Using the original variables πt and zt helps
to interpret the results in terms of inflation and output gap.

7.1 Results under Baseline Parameters

In this section, we compare the three decision rules- certainty-equivalent,
myopic and dynamically optimal rules- given the benchmark parameter val-
ues and the central bank’s initial beliefs about the unobserved persistence
parameter. Figure 1 shows the response of interest rate rt to deviations of
the state wt from its target level of zero, for a specific belief characterized by
the mean c̃0 = 1 and variance p̃0 = 0.5.
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Figure 1: The three decision rules for initial beliefs c̃0 = 1 and p̃0 = 0.5
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Since monetary policy is conducted under a flexible inflation targeting
regime, (λ > 0), there is a tradeoff between stabilizing inflation and stabiliz-
ing the short real rate. In this case, all three decision rules do not completely
offset the predictable impact of wt on wt+1. With the model featuring autore-
gressive behavior, any random shock to wt will then have a long lasting effect
under the three policy rules. However the degree of gradualism associated
with a given level of λ differs from one decision rule to another.

As we saw in the preceding section, the myopic rule is more aggressive
than the certainty equivalent rule for all levels of the state variable. The
reason is that, under the myopic policy rule, the central bank recognizes
that, provided that there is uncertainty surrounding the belief c̃0, in other
words, p̃0 > 0, the contribution of this source of uncertainty to the variability
of wt+1 (and subsequently wt+2, wt+3, ...) increases with wt. In a dynamic
setting, stabilizing wt+1 also helps minimize the negative impact of this source
of uncertainty. Thus the rate of interest has to move more in response to wt

compared to a policy that disregards parameter uncertainty.

Now, as can be seen from Figure 1, for low to moderate deviations of the
state from the target, the dynamically optimal policy is even more aggressive
than the myopic one. But if the deviations are large, the optimal policy
responds less aggressively, even compared to the certainty equivalence pol-
icy. The intuition for this is the following. From the updating equations,
the larger the deviation of wt from zero (due to say an exogenous shock),
the smaller p̃t+1 (implying that c̃t+1 is a more precise estimate) leading to
a smaller control error when setting rt+1. Thus, in contrast to the myopic
policy, the actively learning central bank anticipates future improvements in
policy performance as |wt| increases. This shows that when realized exoge-
nous shocks, νt, that ultimately drive data generation for wt, are large there
is less of a role for deliberate probing by the central bank, more so the larger
the deviation of wt from the target.36

7.2 Sensitivity Analysis

The qualitative results shown in Figure 1 carry over to other possible initial
beliefs about the persistence parameter. In Figure 2, 16 alternative plots
are shown, each plot corresponding to a specific configuration of the initial

36At the same time, of course, Ft+1, the conditional variance of wt+1, increases with w2
t

but this component of Etw
2
t+1 is independent of rt.
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belief, c̃0 and p̃0.
37 Perhaps not surprisingly, the three rules diverge with

the magnitude of p̃0 and c̃0. For example, when parameter uncertainty is
small (say p̃0 = 0.1) and there is a small degree of expected persistence in
the economy (c̃0 = 0.2), the three decision rules tend to be identical. At the
other extreme, when both c̃0 and p̃0 are large, there are clear divergences
between the decision rules.
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Figure 2: The three decision rules for alternative initial beliefs

Next we examine how the incentives for the central bank to deviate from
the certainty equivalence and myopic rules may depend on other parameters
of interest. As can be expected, the three decision rules are affected by
changes in β̃, λ and δ. Thus when analyzing the effect of changes in these
parameters, it is not proper to compare directly the optimal policies arising

37Because the rate of interest responds symmetrically to positive and negative deviations
of the state variable from the target (i.e. zero), only positive deviations are shown in the
plots.
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from each parameter setting. Rather, one has to take the difference between
the optimal and the myopic policies. On the other hand, a change in σ2

ν affects
only the dynamically optimal policy (more about this will be said below). In
this case, we compare directly the dynamically optimal rules associated with
each value of σ2

ν .

7.2.1 Policy under Less Volatile Shocks

First, we look at the effect of a decrease in the variance of the exogenous
random shock, σ2

ν . In the benchmark case, the variance was set to 1, while
now the variance is reduced by half, standing at 0.5, which implies that, for
a given policy path, the economy is inherently more stable as it is subject to
less volatile shocks. Note here that unlike the optimal policy, the certainty
equivalence and myopic rules are not affected by σ2

ν , as the shock enters the
model additively. So only the optimal decision rules for the two alternative
values of σ2

ν are shown in Figure 3 below.

In each panel of the figure the benchmark case (σ2
ν = 1) is shown by the

dotted line while the solid line arises from the smaller variance of the shock
(σ2

ν = 0.5). As is apparent from most of the panels, optimal policy is more
aggressive when the variance σ2

ν decreases, that is when the shocks driving
the wt process are less volatile. This is especially the case with large values
of c̃ and p̃ shown in the lower right corner of the figure. The intuition is that,
with low variability in the shocks, optimal policy needs to actively manage
data generation by increasing the (conditional) coefficient of variation in
wt+1, defined here as CV =

√
Ft+1/Etwt+1. Since Ft+1 is predetermined, the

CV can be increased only by a lower value of Etwt+1, which in turn requires
a more aggressive response of rt to wt.

38

7.2.2 Policy Cares More about Inflation Stabilization

With a very small weight on interest rate stabilization, the dynamically op-
timal policy is still more aggressive than the myopic for small to moderate
deviations of the state variable, though to a lesser extent than when interest
rate stabilization is more important.The reason is that the myopic policy is
already aggressive enough when inflation stabilization receives high priority.
The incentive to deviate from the certainty equivalence policy diminishes
for a central bank that gives more attention to inflation stabilization. In the

38Quantitatively, this difference is not large when c̃ or p̃ is small.
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Figure 3: Performance of optimal policy (σ2
ν = 1 vs. σ2

ν = 0.5)

limit of strict inflation targeting optimal policy is not affected by uncertainty
in the persistence parameter.

7.2.3 The Effect of a Larger Policy Multiplier

Figure 4 shows how the degree of probing is affected by the size of the policy
multiplier, β̃ ∈ {0.5, 1}. The solid line is associated with a larger multiplier,
β̃ = 1, while the dotted line is associated with a smaller multiplier, β̃ =
0.5. From (20), we know that β̃ ≡ β2(1 − k); thus a smaller value of β̃ is
associated with a weak leverage of monetary policy on the current long real
rate, (from the term structure equation, the weight on the short real rate,
(1−k), decreases). In other words, as k gets closer to one, the model becomes
more forward-looking since the long term interest rates will be determined
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mainly by movements in private sector expectations. Due to this fact, the
importance of learning increases as well.

Using the difference between the optimal policy and the myopic policy as
a measure of experimentation, Figure 4 shows that, given small to moderate
deviations of (πt+zt), experimentation decreases as the value of β̃ gets larger.
For most of the alternative initial beliefs, experimentation is maintained over
large deviations of the state from the target when β̃ = 1. The effect on the
relative response of the optimal policy of a change in β̃ diminishes if c̃0 or p̃0

is sufficiently small.
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Figure 4: Relative performance of optimal policy (β̃ = 1 vs. β̃ = 0.5)
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7.2.4 Policy Cares Less about the Future

As said earlier, the benefits from experimenting with the policy rate are in
terms of reduced variability of the economy in the future from more pre-
cise estimates and improved control associated with less uncertainty in the
unknown parameter. Under flexible inflation targeting, optimal policy ex-
ploits the tradeoff between these future benefits and current costs from large
movements in rt. In this regard, one would expect that the incentive to ex-
periment increases as the central bank gives more weight to expected future
losses from variability in wt+τ and rt+τ , for τ = 1, 2, 3.... Thus there is more
tendency to probe for a relatively large discount factor (alternatively, for a
relatively small discount rate). Figure 5 confirms this intuition about the
effect of changes in the discount factor, δ, especially for large initial beliefs
about the persistence parameter.

In Figure 5, each plot shows the difference between the optimal and myopic
policies for two sets of values of the discount factor, δ ∈ {0.95, 0.75}. The
baseline value of 0.95 is shown by the solid line and is compared to the
smaller value 0.75 given by the dotted line. With a smaller discount factor,
the central bank cares less about the future expected losses and thus policy
tilts towards stabilizing current expected loss from variability in rt.

8 Concluding Remarks

In section 4.2 we set out to extend the analysis of section 3 to a general
case where on the one hand monetary policy faces a tradeoff in stabilizing
inflation as well as the short-term interest rate, (the policy instrument), and
on the other hand, the central bank internalizes the effects of current policy
choices on its learning possibilities about an unknown degree of persistence
in the economy.

We find that under flexible inflation targeting and uncertainty about the
degree of persistence in the economy, allowing for active learning possibilities
has effects on the optimal interest rate rule followed by the central bank. For
a wide range of possible initial beliefs about the unknown parameter, the
dynamically optimal rule is in general more activist, in the sense of responding
aggressively to the state of the economy, than the myopic rule for small to
moderate deviations of the state variable from its target. On the other hand,
for large deviations, the optimal policy is less activist than the myopic and
the certainty equivalence policies. This shows that the role of optimal policy
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Figure 5: Relative performance of optimal policy (δ = 0.75 vs. δ = 0.95)

in generating variability (increasing the coefficient of variation of the target
variable) depends on the current state of the economy. When next period’s
state of the economy is expected to deviate a lot from the target due to an
unpredictable shock, and thus generates data by itself, optimal policy does
not need to increase the coefficient of variation of the next period’s state
wt+1, while it does so when the economy is hit by a very small shock and the
state is close to the target.

On the other hand, the myopic rule does not incorporate the future ben-
efits from large deviations of the current state from its target level and thus
responds linearly and more aggressively than the certainty equivalence rule.
The intuition for the aggressiveness of the myopic rule lies in the fact that it
takes account of the additional source of uncertainty, which is compounded
by the magnitude of the state variable, as the unknown parameter is mul-
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tiplicative to the current state. By acting more aggressively to stabilize the
predictable impact of current period shocks on future aggregate demand and
inflation, the myopic reduces the impact of uncertainty associated with esti-
mating the persistence parameter.

This feature of the myopic rule differs from what one might find when the
source of parameter uncertainty lies with the policy multiplier. In that case,
policy under myopic rule tends to be less aggressive than policy under cer-
tainty equivalence. Uncertainty about the policy multiplier forces the central
bank to be cautious about using its policy instrument freely to stabilize infla-
tion. In our case, the analogous explanation is that, with uncertainty about
the persistence parameter, the central bank would like to see less variability
in next period’s state variable. Under the myopic rule, this can be achieved
only if the policy rate responds aggressively to new information.
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