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Investment, Income, and Incompleteness

Abstract: The utility-maximizing consumption and investment strategy of an in-
dividual investor receiving an unspanned labor income stream seems impossible to
find in closed form and very difficult to find using numerical solution techniques. We
suggest an easy procedure for finding a specific, simple, and admissible consump-
tion and investment strategy, which is near-optimal in the sense that the wealth-
equivalent loss compared to the unknown optimal strategy is very small. We first
explain and implement the strategy in a simple setting with constant interest rates,
a single risky asset, and an exogenously given income stream, but we also show
that the success of the strategy is robust to changes in parameter values, to the
introduction of stochastic interest rates, and to endogenous labor supply decisions.

Keywords: Optimal consumption and investment, labor income, incomplete markets,
artificially completed markets, welfare loss

JEL-Classification: G11



Investment, Income, and Incompleteness

“However, the largest component of wealth for most households is human capital, which
is nontradable.” (John Campbell on Household Finance in his Presidential Address to
the American Finance Association on January 7, 2006.)

1 Introduction

Human wealth is a dominant asset of most individuals and households and is known to have po-
tentially large effects on the optimal consumption and investment decisions over the life-cycle.
However, since labor income is typically not spanned by financial assets and the income insurance
contracts offered by governments and insurance companies are far from perfect, human wealth
is a non-traded asset. Due to this fact, it seems impossible to find closed-form expressions for
the dynamic consumption and investment strategies maximizing the life-time utility of an indi-
vidual consumer-investor. In fact, most of the portfolio choice literature disregards labor income
completely (e.g. Samuelson (1969), Merton (1969), Kim and Omberg (1996), Sørensen (1999),
Campbell and Viceira (2001), Brennan and Xia (2002), and Liu (2007)) or assumes that labor
income is deterministic or spanned by traded assets (e.g. Hakansson (1970) and Bodie, Merton,
and Samuelson (1992)). Some recent papers do allow for unspanned labor income but they have
to resort to coarse and computationally intensive numerical solution techniques that can handle
only low-dimensional problems, have an unknown precision, and do not provide much understand-
ing of the economic forces driving consumption and portfolio decisions (e.g. Cocco, Gomes, and
Maenhout (2005), Van Hemert (2009), and Koijen, Nijman, and Werker (2009)).4 In this paper
we suggest an easy procedure for finding a simple consumption and investment strategy, which
is near-optimal in the sense that the wealth-equivalent loss compared to the unknown optimal
strategy is very small.

Throughout the paper we take a continuous-time framework where uncertainty is generated by a
number of standard Brownian motions. The labor income is spanned when the standard Brownian
motions driving income changes contemporaneously affect the returns of sufficiently many traded
financial assets. In that case the entire labor income stream can be seen as the dividend stream
from a trading strategy in those assets so that the human wealth, i.e. the present value of all future

4Explicit solutions have been found for special and unrealistic cases involving negative exponential utility, a

normally distributed income stream, and very simple asset price dynamics, cf. Svensson and Werner (1993) and

Henderson (2005). Duffie and Jackson (1990) and Teplá (2000) derive similar solutions for investors receiving an

unspanned income only at the terminal date.
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labor income, is uniquely valued by the no-arbitrage principle. The optimal consumption and
portfolio decisions of an investor will then follow from the (often well-known) solution to the same
problem without labor income basically by replacing financial wealth by the sum of financial and
human wealth. In the more realistic case of unspanned labor income, the dynamics of the income
rate is affected by a standard Brownian motion unrelated to the returns on traded financial assets.
Since the market price of risk, λI , associated with that Brownian motion cannot be read off the
prices of financial markets, the market is incomplete so that the no-arbitrage valuation of human
wealth breaks down, and it is no longer possible to derive the optimal decisions with income from
the optimal decisions without income.

The specific consumption and investment strategy we propose to follow with unspanned income
is motivated by the optimal decisions in a set of artificially completed markets, a concept originally
introduced by Karatzas, Lehoczky, Shreve, and Xu (1991) and Cvitanić and Karatzas (1992). For
any given market price of risk λI (which may in general be a stochastic process), we define an
artificially completed market where the individual can invest in the same assets as in the original
incomplete market and a hypothetical asset completing the market. The risk-return tradeoff of
the hypothetical asset is governed by λI . When the price dynamics of the traded assets is suffi-
ciently simple, i.e. interest rates and risk premia have affine or quadratic dynamics (see e.g. Liu
(2007)), and λI is a deterministic function of time, we can derive a simple, closed-form expression
for the optimal strategy of a power-utility maximizer in the artificially completed market. We
transform this strategy into an admissible strategy in the true, incomplete market by disregarding
the investment in the hypothetical asset and modifying the remaining strategy slightly to ensure
non-negative wealth. Each specification of λI leads to one specific strategy. We then optimize
over λI to find the best of those strategies. In the optimization we compute the expected utility
generated by a given strategy using straightforward Monte Carlo simulation. In order to evaluate
the strategy we propose, we would like to compare the expected utility it generates to the max-
imum expected utility, but the whole problem is that the latter and the associated strategies are
unknown. However, we can easily compute an upper bound on the maximum expected utility in
the incomplete market by taking a minimum of the expected utilities obtainable in the artificially
completed markets considered. Comparing the expected utility of the specific strategy with this
upper bound on the maximum expected utility, we derive an upper bound on the wealth-equivalent
loss associated with the specific strategy.

Although our approach is not restricted to low-dimensional problems, we explain and test our
strategy in a simple setting with constant interest rates, a single risky asset, and an exogenously
given income stream. First, we consider only the artificial markets corresponding to different
constant values of λI . With our benchmark parameter values we find that a long-term, moderately
risk-averse investor following our proposed strategy will suffer a loss less than 2.3% of total wealth
for a zero correlation between shocks to labor income and stock returns. When the correlation is
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increased, the upper bound on the loss becomes even smaller, e.g. roughly 0.9% for a income-stock
correlation of 0.6. Second, we generalize to the case where λI is a deterministic, affine function of
time. This leads to a significant reduction of the upper bound on the loss, e.g. 1.04% for a zero
correlation and 0.04% for a correlation of 0.6. These results are robust to changes in key parameter
values. We generalize the idea and the procedure to the case, where the investor endogenously
determines his labor supply at a stochastic, unspanned wage rate. We find that the bound on the
welfare loss is slightly bigger than in the exogenous income case, but still only 1% or lower when
the wage-stock correlation is 0.4 or higher. Finally, we generalize our approach to a setting with
stochastic interest rates where the individual can invest in a long-term bond in addition to the
stock and short-term deposits. We find that the wealth-equivalent losses are also very small in
this case. In sum, our numerical results demonstrate that the simple consumption and investment
strategy we propose is near-optimal.

As mentioned above, a number of related papers assume that labor income is spanned by
traded assets in order to obtain closed-form solutions for the optimal consumption and investment
strategies or to reduce the dimension of the numerical solution scheme. If the labor income is really
unspanned, the misspecified strategy derived assuming spanning is no longer optimal. We evaluate
the performance of this particular strategy in the same way as explained above for our near-optimal
strategy. We find that an investor following this misspecified strategy will suffer a significant loss
when the true income-asset correlation is low, but minor losses if the true correlation is higher. For
example, in our benchmark case the loss is approximately 14% of total wealth if the true income-
stock correlation is zero and approximately 3.2% if the correlation is 0.6. Empirical estimates of the
correlation between individual household income and returns on broad stock indices are typically
close to zero (see, e.g, Cocco, Gomes, and Maenhout 2005) so a strategy derived from a complete
market model will perform quite badly.5

The remainder of the paper is structured as follows. Section 2 describes the consumption and
portfolio choice problem of the investor and summarizes the solution for the case where labor
income is spanned by traded assets. Section 3 describes the artificially completed markets and
derives the optimal consumption and investment strategies in such markets. Section 4 explains
how we transform the optimal strategies in the artificial markets into admissible strategies in the
real market, how we find the best of such strategies, and how we evaluate the performance of these
strategies. Section 5 discusses numerical results from an implementation of our procedure. Section
6 shows that our ideas and strong numerical results extend to the case of endogenous labor supply,
while Section 7 covers the case of stochastic interest rates. Finally, Section 8 concludes. All proofs
can be found in the Appendix.

5House prices are more highly correlated with labor income so in a setting where investors are allowed to invest

in houses in addition to stocks, a complete market assumption will be less harmful, cf., e.g., Cocco (2005) and Kraft

and Munk (2008).
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2 The problem

We are going to analyze the life-cycle consumption and portfolio problem of a utility-maximizing
investor receiving uncertain labor income until retirement. For simplicity we assume for now
that the individual can only invest in a bank account offering a constant risk-free rate of r (with
continuous compounding) and a single stock (e.g. representing the stock market index). The time t
price of the stock is denoted by St and the price dynamics is assumed to be

dSt = St [(r + σSλS) dt+ σS dWt] , (1)

where W = (Wt) is a standard Brownian motion. Hence, σS is the volatility of the stock and λS

is the Sharpe ratio of the stock, both assumed constant.
We assume in our main analysis that the individual earns an exogenously given labor income

until a predetermined retirement date T̃ after which the individual lives on until time T > T̃ . The
labor income rate at time t is denoted by Yt and we assume that

dYt = Yt

[
αdt+ β

(
ρ dWt +

√
1− ρ2 dW̃t

)]
, 0 ≤ t ≤ T̃ , (2)

where W̃ = (W̃t) is another standard Brownian motion, independent of W . For t > T̃ , yt = 0. The
parameter α is the expected growth rate of labor income, β is the income volatility, and ρ is the
instantaneous correlation between stock returns and income growth. We assume that α, β, and ρ

are all constants, but our analysis goes through with deterministic age-related variations in α and
β, as documented by e.g. Cocco, Gomes, and Maenhout (2005). Note that, except for |ρ| = 1, the
investor faces an incomplete market, since he is not able to fully hedge against unfavorable income
shocks.

The individual has to choose a consumption strategy represented by a stochastic process c = (ct)
and an investment strategy represented by a stochastic process πS = (πSt), where πSt is the fraction
of financial wealth invested in the stock at time t with the remaining financial wealth being invested
in the bank account. Let Xt denote the financial wealth at time t. For a given consumption and
portfolio strategy (c, πS), the wealth dynamics is given by

dXt = Xt [(r + πStσSλS) dt+ πStσS dWt] + (Yt − ct) dt. (3)

We will say that a strategy (c, π) is admissible, if it is adapted and XT ≥ 0 (almost surely). We
denote the set of admissible strategies from time t and onwards by At.

The individual has preferences consistent with time-additive expected utility of consumption
and terminal wealth. An admissible consumption and investment strategy (c, πS) generates the
expected utility

J(t, x, y; c, πS) = Et

[∫ T

t

e−δ(s−t)U(cs) ds+ εe−δ(T−t)U(XT )

]
, (4)
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where the expectation is conditional on Xt = x and Yt = y, δ is the subjective time preference rate,
and ε models the relative weight of terminal wealth (bequests) and intermediate consumption. The
indirect utility function is given by

J(t, x, y) = max
(c,πS)∈At

J(t, x, y; c, πS). (5)

We assume throughout that the utility function exhibits a constant relative risk aversion γ > 1,
i.e. U(c) = c1−γ/(1− γ).

If the market is indeed complete, that is |ρ| = 1, the problem has the following simple solution:

Theorem 1 (Solution in a truly complete market) Assume |ρ| = 1. Then the indirect util-
ity function is given by

Jcom(t, x, y) =
1

1− γ
(gcom(t))γ(x+ yF com(t))1−γ , (6)

where

gcom(t) =
1
rg

(
1− e−rg(T−t)

)
+ ε1/γe−rg(T−t), (7)

F com(t) = 1{t≤T̃}
1
rF

(
1− e−rF (T̃−t)

)
, (8)

and we have introduced the constants6

rg =
δ

γ
+
γ − 1
γ

r +
1
2
γ − 1
γ2

λ2
S , (9)

rF = r − α+ ρβλS . (10)

The optimal consumption and investment strategy is given by

ct =
Xt + YtF

com(t)
gcom(t)

, (11)

πSt =
λS
γσS

Xt + YtF
com(t)

Xt
− βρ

σS

YtF
com(t)
X(t)

. (12)

In the complete market, the labor income can be uniquely valued as a stream of dividends. Due
to the assumptions about the dynamics of labor income and asset prices, the time t value of all
future income will be given by YtF

com(t). The function gcom captures the non-wealth dependent
parts of the individual’s indirect utility. Compared to a problem without labor income, the initial
financial wealth is simply adjusted by adding the initial value of human wealth yF com. The optimal
consumption strategy is to consume the fraction 1/gcom(t) out of total wealth at any date. The

6In the case rg = 0, the term 1
rg

(1 − e−rg(T−t)) is interpreted as its limit as rg → 0, which is simply T − t.
Similarly for rF .
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optimal investment strategy can be deduced in the following way. First, determine the optimal
riskiness of total wealth with respect to the exogenous shock, which was originally determined
by Merton (1969, 1971). Then subtract the risk exposure of human wealth in order to find the
optimal exposure of financial wealth, which pinpoints the investment strategy. The same intuitive
approach holds with more general asset price dynamics, as long as the income is spanned by the
traded assets, cf. e.g. Munk and Sørensen (2008).

For the more reasonable situation of unspanned labor income risk, i.e. |ρ| < 1, it is impossible
to value the human wealth as a traded asset so that the separation (6) and the associated intuitive
derivation of the optimal strategy break down. This is demonstrated in the following theorem.

Theorem 2 (Expected Utility in the Incomplete Market) Assume |ρ| < 1. Then, for any
admissible consumption and investment strategy (c, πS) for which the consumption and portfolio at
any time t depends at most on t, Xt, and Yt, the associated expected utility function J(t, x, y; c, πS)
will not satisfy the separation (6) for any functions g(t) and F (t).

In particular, this theorem implies that a separation like (6) does not hold for the optimal con-
sumption and investment strategy in the incomplete market case.

To summarize, a closed-form solution for the optimal consumption and investment strategy
and the investor’s indirect utility does not seem to be available when labor income risk is not fully
spanned. Consequently, one has to resort to numerical methods to find an optimal strategy. The
numerical methods appropriate for problems of this type are quite intricate and, by the nature
of numerical techniques, can only produce an approximation to the optimal strategy. See Cocco,
Gomes, and Maenhout (2005), Munk and Sørensen (2008), Koijen, Nijman, and Werker (2009),
and Van Hemert (2009) for examples of numerical approaches to consumption/investment choice
problems with labor income. Note that little is known about the precision of such methods and,
since the methods are based on finite difference lattice techniques, they suffer from the curse of
dimensionality. Below we introduce a specific consumption and investment strategy, which is very
simple to compute and implement, and we demonstrate that this strategy is close to optimal in
a certain, very reasonable metric. The consumption and investment strategy we suggest for the
incomplete market will be motivated from the optimal solution in an artificially completed market
to which we turn now.

3 The artificially completed markets

Now make the realistic assumption that labor income shocks are not fully hedgeable by traded
financial assets, i.e. the income-asset correlation is less than perfect, |ρ| < 1. Following an idea
originally introduced by Karatzas, Lehoczky, Shreve, and Xu (1991) and Cvitanić and Karatzas
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(1992), we will consider an artificially completed market, which consists of the original risk-free
bank account and the stock, augmented by an asset making the market complete. Clearly, the
individual can do at least as well in any artificially completed market as in the original incomplete
market. Karatzas, Lehoczky, Shreve, and Xu (1991) and Cvitanić and Karatzas (1992) show that
the solution to the incomplete market problem is identical to the least favorable of solutions in
artificially completed markets, but this does not facilitate the actual computation of the optimal
solution. We take the following approach. We look at a subset of artificially completed markets in
which fairly simple closed-form expressions for the optimal consumption and investment strategies
exist. By ignoring the investment in the hypothetical asset which these strategies involve, we obtain
a family of consumption and investment strategies admissible in the true incomplete market. We
then perform a utility maximization over this family of strategies. That will define a specific
consumption and investment strategy in the incomplete market. While this strategy is presumably
different from the unknown optimal strategy, we show that it provides almost as high a utility level
as the optimal one. The utility generated by the optimal incomplete market strategy is unknown,
but certainly lower than the utility obtained in any of the artificially completed markets. We can
therefore derive an upper bound on the maximum obtainable utility in the incomplete market
by minimizing expected utility over our family of artificially completed markets. We show that
the difference between the expected utility induced by our specific strategy and this upper bound
on the maximum expected utility is very small (in certainty equivalent terms), implying that our
strategy is near-optimal.

More specifically, until retirement we will let the individual trade in a hypothetical asset with
time t price It having dynamics

dIt = It

[
(r + λI) dt+ dW̃t

]
. (13)

Note that, for simplicity and without loss of generality, we assume that this asset only depends on
the income-specific motion and has a unit volatility. We can interpret λI as a market price of risk
associated with the unspanned income shock represented by dW̃t. We focus for now on a constant
λI , but we discuss generalizations later. After retirement, the labor income is assumed to be zero so
that the market is already complete. Shiller (1993) suggested to establish so-called macro markets
where, for instance, claims on (aggregate) income are traded. While Shiller’s suggestion has been
implemented in the housing market, claims on labor income remain hypothetical. In the following,
we will refer to the above hypothetical asset as a Shiller contract. The fraction of wealth invested
in the Shiller contract will be denoted by πIt.

In the artificially completed market, the investor’s wealth dynamics for a given consumption-
investment strategy (c, πS , πI) is given by

dXt = Xt

[(
r + πStσSλS + 1{t≤T̃}πItλI

)
dt+ πStσS dWt + 1{t≤T̃}πIt dW̃t

]
+
(
1{t≤T̃}Yt − ct

)
dt.
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For a given market price of risk λI , the indirect utility in the artificially completed market is

Jart(t, x, y;λI) = max
(c,πS ,πI)

{∫ T

t

Et
[
e−δ(s−t)U(cs)

]
ds+ εe−δ(T−t)Et[U(XT )]

}
, (14)

where U is still the power utility function. The indirect utility and the corresponding optimal
strategy can be derived in closed form as summarized by the following theorem.

Theorem 3 (Solution with Shiller Contracts) If the investor has access to Shiller contracts
with constant λI until retirement, then his indirect utility is given by

Jart(t, x, y;λI) =
1

1− γ
gart(t;λI)γ(x+ yF art(t;λI))1−γ , (15)

where

gart(t;λI) =


1
rartg

(1− e−r
art
g (T̃−t)) + gcom(T̃ )e−r

art
g (T̃−t), t < T̃ ,

gcom(t), t ≥ T̃ ,
(16)

F art(t;λI) = 1{t≤T̃}
1
rart
F

(1− e−r
art
F (T̃−t)), (17)

with

rart
F = rF + βλI

√
1− ρ2 = r − α+ β(λSρ+ λI

√
1− ρ2),

rart
g = rg +

1
2
γ − 1
γ2

λI =
δ

γ
+
γ − 1
γ

r +
1
2
γ − 1
γ2

(λ2
S + λ2

I).

The optimal consumption and investment strategies are

cart
t (λI) =

Xt + YtF
art(t;λI)

gart(t;λI)
, (18)

πart
St (λI) =

λS
γσS

Xt + YtF
art(t;λI)

Xt
− βρ

σS

YtF
art(t;λI)
Xt

, (19)

πart
It (λI) = 1{t≤T̃}

{
λI
γ

Xt + YtF
art(t;λI)

Xt
− β

√
1− ρ2

YtF
art(t;λI)
Xt

}
. (20)

Note that after retirement, t ≥ T̃ , the portfolio problem collapses into a problem without labor
income and without Shiller contracts. In particular, this implies that the solutions for the complete
and incomplete case coincide after retirement.

For any choice of λI , the solution in the artificially completed market will be at least as good
as the unknown solution in the truly incomplete market. Given Theorem 3, it is easy to find
λ̄I = arg minλI J

art(t, x, y;λI), which defines an upper bound for the truly incomplete market, i.e.

J(t, x, y) ≤ J̄(t, x, y) ≡ Jart(t, x, y; λ̄I). (21)

8



Although we only minimize over constant market prices of risk associated with the unspanned
income risk, it follows from our numerical results below that this upper bound will be very tight.
We will also discuss an extension to the class of deterministic market prices of risk that are affine
in time. Even for that class, we can compute the upper bound J̄(t, x, y) explicitly. In principle,
the ideas could be extended to stochastic market prices of risk, but then it will be very difficult
to find closed-form solutions, and given the excellent results with simpler specifications the extra
trouble is not worthwhile.

4 A simple, near-optimal strategy with unspanned income

risk

While we are not able to derive the optimal consumption and investment strategy in the truly
incomplete market, we can evaluate the performance of any admissible consumption and investment
strategy (c, πS) in the following way. We compare the expected utility generated by the strategy,
J(t, x, y; c, πS), to the upper bound J̄(t, x, y) on the maximum utility. If the distance is close,
the strategy is near-optimal. More precisely, we can compute an upper bound on the welfare loss
L = L(t, x, y; c, πS) suffered when following the specific strategy (c, πS) by solving the equation

J(t, x, y; c, πS) = J̄(t, x[1− L], y[1− L]). (22)

L(t, x, y; c, πS) is interpreted as an upper bound on the fraction of total wealth (current wealth and
future income) that the individual would be willing to throw away to get access to the unknown
optimal strategy, instead of following the strategy (c, πS). Given Theorem 3,

J̄(t, x[1− L], y[1− L]) = Jart(t, x[1− L], y[1− L]; λ̄I) = (1− L)1−γJart(t, x, y; λ̄I),

so the upper bound on the welfare loss becomes

L(t, x, y; c, πS) = 1−
(
J(t, x, y; c, πS)
Jart(t, x, y; λ̄I)

) 1
1−γ

. (23)

Our basic idea for finding good strategies is the following. For any given λI , we have found the
optimal consumption and investment strategy in the artificially completed market in the preceding
section. Disregarding the investment in the hypothetical Shiller contract leaves us with a specific
strategy for consumption and investments in the stock and the bank account, namely the strategy

ct =
Xt + YtF

art(t;λI)
gart(t;λI)

, πSt =
λS
γσS

Xt + YtF
art(t;λI)

Xt
− βρ

σS

YtF
art(t;λI)
Xt

. (24)

After retirement, the strategy is identical to the known optimal strategy without income, cf. Theo-
rem 1. Since this specific strategy is derived from the optimal strategy in a closely related market,
it seems reasonable to conjecture that it will perform well.

9



However, we have to modify the suggested strategy (24) slightly to ensure that it is admissible,
i.e. that it generates a non-negative terminal wealth, XT ≥ 0 (almost surely). With unspanned
income risk, this requires non-negative financial wealth at any date, Xt ≥ 0, as future income may
dry out due to negative shocks to W̃t and the investor cannot hedge that by financial investments.
Hence, there is no way to ensure that a negative financial wealth is made up by future labor income.
In the artificial complete market, the strategy stated in Theorem 3 is admissible exactly because
of the hedge term. The strategy (c, πS) stated above is not admissible in the true, incomplete
market as Xt can become negative. In fact, Xt + YtF

art(t;λI) can become negative. To see this,
substitute the strategy (24) into (3) and apply Itô’s lemma to find that

d(Xt + YtF
art(t;λI)) = (Xt + YtF

art(t;λI))

[(
r +

λ2
S

γ
− 1
gart(t;λI)

)
dt+

λS
γ
dWt

]
︸ ︷︷ ︸

(i)

+ YtF
art(t;λI)λI

√
1− ρ2 dt︸ ︷︷ ︸

(ii)

+YtF
art(t;λI)β

√
1− ρ2 dW̃t︸ ︷︷ ︸

(iii)

.

The term (i) alone would be a geometric Brownian motion (with deterministic drift) and thus stays
positive. The term (ii) has a sign determined by λI . The term (iii) is normally distributed and can
thus become negative enough to pull Xt+YtF art(t;λI) to a negative value. Since YtF art(t;λI) ≥ 0,
the financial wealth will be negative in that case. We modify the strategy as follows. As long as
Xt > k for some small positive k, we follow the strategy (24). Whenever Xt ≤ k, we replace
F art(t;λI) by zero in the expression for the stock investment, and if ct from (24) exceeds Yt, we
set consumption equal to some fraction ζ ∈ (0, 1] of current income, i.e. ct = ζYt. The full strategy
is therefore

ct(λI) =


Xt+YtF

art(t;λI)
gart(t;λI) , if Xt+YtF

art(t;λI)
gart(t;λI) < Yt or Xt > k,

ζYt, otherwise,

πSt(λI) =
λS
γσS

Xt + 1{Xt>k}YtF
art(t;λI)

Xt
− 1{Xt>k}

βρ

σS

YtF
art(t;λI)
Xt

.

(25)

Whenever Xt is below k, the dynamics becomes

dXt = Xt

[(
r +

λ2
S

γ

)
dt+

λS
γ
dWt

]
+ (1{t≤T̃}Yt − ct) dt, Xt < k,

that is a geometric Brownian motion plus a non-negative net income, and therefore Xt stays non-
negative. In the following numerical implementation, the boundary Xt ≥ k was rarely violated for
our choice of k.7

7Note that when consumption and investments are really adjusted continuously in time, we can put k = 0 in the
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For any given λI , we can compute the expected utility J(t, x, y; c(λI), πS(λI)) generated by
the strategy (25) by Monte Carlo simulation of the processes X = (Xt) and Y = (Yt). Since the
market is complete in the retirement phase, the dynamic programming principle and Theorem 1
imply that

J(t, x, y; c(λI), πS(λI)) =
1

1− γ
Et
[ ∫ T̃

t

e−δ(s−t)(cs(λI))1−γ ds+ e−δ(T̃−t)(gcom(T̃ ))γX1−γ
T̃

]
,

where XT̃ is the time T̃ wealth generated by the strategy (c(λI), πS(λI)). Consequently, we only
need to simulate until the retirement date T̃ . In our implementation we use 10,000 paths and
along each path the consumption and investment strategy is reset with a frequency of ∆ = 0.004,
i.e. 250 times a year (roughly corresponding to the number of trading days), unless mentioned
otherwise.8 We maximize over λI to find the best strategy in this family of strategies parameterized
by λI . Define λ̂I = arg maxλI J(t, x, y; c(λI), πS(λI)). This defines a specific admissible strategy

(ĉ, π̂S) =
(
c(λ̂I), πS(λ̂I)

)
, (26)

with associated expected utility Ĵ(t, x, y) ≡ J(t, x, y; ĉ, π̂S). The unknown optimal expected utility
is now bounded from below and above by

Ĵ(t, x, y) ≤ J(t, x, y) ≤ J̄(t, x, y).

An upper bound on the welfare loss L̂ = L̂(t, x, y) associated with the strategy (ĉ, π̂S) follows
from (23) as

L̂(t, x, y) = 1−

(
Ĵ(t, x, y)

Jart(t, x, y; λ̄I)

) 1
1−γ

. (27)

In order to reduce any simulation bias in the loss, we also compute Jart(t, x, y; λ̄I) by Monte Carlo
simulation using the same set of random numbers as used in the computation of Ĵ(t, x, y).

5 Numerical results

This section contains a quantitative study of the consumption and investment strategy suggested
in (26) above. Our benchmark values for the parameters describing the characteristics of the indi-

modified strategy defined above. However, we will have to evaluate the performance of that strategy by a simulation

study with non-continuous decisions, hence a strictly positive k is needed to avoid that simulated wealth drops

below zero. The value of k can be lowered, if the frequency of decisions is increased, but that will be at the expense

of increased computation time.
8We find that rebalancing the portfolio 250 times per year leads to indirect utilities that are virtually indistin-

guishable from the optimal indirect utilities that we can calculate explicitly and that obtain when the individuum

rebalances his holdings continuously. For a portfolio problem with stocks only, a similar pattern was observed by

Rogers (2001). We thus conclude that the bounds resulting from the Monte Carlo simulations are very close to the

explicit ones, which is also supported by very low standard errors.
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Investor Characteristics Financial Market Labor Income

δ γ t T̃ T x r λS σS α β y

0.03 4 0 20 40 2 0.02 0.25 0.2 0.02 0.1 2

Table 1: Benchmark parameter values. The table shows the values of the model parameters
used in the numerical computations unless mentioned otherwise. Time is measured in years. The
initial wealth x = 2 and income y = 2 are interpreted as USD 20,000.

vidual, the income process, and the financial market are summarized in Table 1. The benchmark
values are similar to those used in the existing literature, cf. Munk and Sørensen (2008) and the
references therein. Whenever we need to use levels of current wealth, labor income etc., we use a
unit of USD 10,000 scaled by one plus the inflation rate in the perishable consumption good. As
the benchmark we put x = 2 and y = 2, which represents the initial endowment of an investor
having USD 20,000 in financial wealth and an annual income of USD 20,000. We will study the
sensitivity of our results with respect to various parameter values below. Note that we consider
an individual with a relative risk aversion of 4 who receives income for the next 20 years and
subsequently lives for another 20 years.

5.1 Basic results

Table 2 reports the upper bounds on the welfare losses for different correlations ρ between stock
market and labor income as well as for three different weights ε of terminal wealth. For all
combinations of ε and ρ, the welfare loss from implementing the simple strategy (ĉ, π̂S) is very
small and at most 2.3%. As can be seen in Table 2, the effect from changing the weight ε of
bequest is negligible. The impact of the correlation ρ between income and stock market shocks
is more pronounced, and the welfare loss increases with increasing incompleteness (decreasing ρ).
This is not surprising because the investor implements a strategy in the incomplete market that
was derived from a complete market setting.9

Figure 1 provide additional information on the small welfare loss. The graphs show how the
various expected utilities depend on the parameter λI for the case where ρ = 0.4 and ε = 1.10 The

9Part of the loss is due to the introduction of the strictly positive wealth level k at which we force the investor

to switch to a more prudent strategy. As mentioned earlier, with truly continuous decision making we could let

k = 0. To gauge the importance of k for the magnitude of the loss, we have also performed simulations with a lower

k, namely k = 0.15. In that case, we increased the number of time steps to 1000 per year. For an income-stock

correlation of zero and ε = 0, the upper bound on the welfare loss was reduced to 2.05% (from 2.27%) and the losses

for positive correlation were slightly reduced.
10The curves are similar for ε = 0.1 and ε = 10. The figures depict the utility functions multiplied by δ = 0.03,

but this is without loss of generality.
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Income-stock correlation ρ

0 0.2 0.4 0.6 0.8

ε = 0.1 2.18% 1.53% 1.19% 0.86% 0.46%

ε = 1 2.27% 1.55% 1.20% 0.86% 0.48%

ε = 10 2.22% 1.56% 1.22% 0.88% 0.48%

Table 2: Welfare loss for the near-optimal strategy with constant λI . The table shows the
upper bound L̂ on the welfare loss associated with the strategy (ĉ, π̂S) defined in (26) for different
values of the income-stock correlation ρ and the parameter ε capturing the relative weight of
terminal weight in the preferences. We use k = 0.3, ζ = 0.5, and the benchmark parameter values
of Table 1. The expected utility from the near-optimal strategy is computed by Monte Carlo
simulations involving 10,000 paths and 250 time steps per year.

dark-blue curve is the graph of Jart(t, x, y;λI) as a function of λI using Theorem 3. The yellow
curve depicts the same expected utility computed by Monte Carlo simulation, and the fact that the
two curves are almost coinciding indicates that the simulation procedure is correctly implemented.
The diamond on the dark-blue curve marks the minimum value J̄(t, x, y), which defines the upper
bound for the obtainable utility in the incomplete market. The red curve shows how the expected
utility J(t, x, y; c(λI), πS(λI)) of our simple strategy varies with λI . The diamond on the red curve
marks the maximum value Ĵ(t, x, y) obtained for the best of the simple strategies. The light-blue
curve shows the upper bound on the welfare loss associated with implementing the given strategy
(c(λI), πS(λI)), compared to the smallest upper bound on the obtainable expected utility, J̄(t, x, y).
The welfare loss is measured on the vertical axis on the right-hand side of the diagram. Although
the red curve seems to be very flat around its maximum, the welfare loss does vary somewhat with
λI and, by definition, achieves its minimum exactly where the red curve has its maximum. Still
the loss curve is quite flat around its minimum, which indicates that the success of the suggested
strategy does not require that the best λI is determined very precisely.

To check the robustness of our results, we now vary the parameters of our benchmark case. The
results are reported in Table 3. First, consider the relative risk aversion γ. For low [high] income-
stock correlations the welfare loss is decreasing [increasing] in γ. Our procedure implicitly involves
approximations of both the hedge portfolio and the valuation of future income and, consequently,
approximations of both components of the optimal portfolio. The quality of these approximations
depend on the degree of incompleteness and on investor-specific parameters and variables. For high
risk aversion the intertemporal hedge term has a higher weight and it is thus more important to
use the right hedge. On the other hand, for low risk aversion the speculative part of the portfolio
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Figure 1: Expected utilities and the welfare loss for a correlation of ρ = 0.4. The dark-
blue curve depicts the optimal expected utility in the artificially completed market, Jart(t, x, y;λI)
stated in (15), as a function of λI . The yellow curve (almost coinciding with the dark-blue curve)
depicts the same expected utility computed by Monte Carlo simulation using 10,000 paths and
250 time steps per year. The diamond on the dark-blue curve marks the minimum value J̄(t, x, y)
defining the upper bound on the obtainable utility in the incomplete market. The red curve shows
the expected utility J(t, x, y; c(λI), πS(λI)) of the simple strategy (25) as a function of λI . The
diamond on the red curve marks the maximum value Ĵ(t, x, y) obtained for the best of the simple
strategies. The expected utilities have been multiplied by δ = 0.03 and can be read off the vertical
axis to the left. The light-blue curve shows the upper bound on the welfare loss associated with
the strategy (c(λI), πS(λI)) and is read off the vertical axis to the right. All graphs are generated
assuming k = 0.3, ζ = 0.5, the benchmark parameters in Table 1, an income-stock correlation of
ρ = 0.4, and ε = 1.
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Income-stock correlation ρ

0 0.2 0.4 0.6 0.8

γ = 2 5.71% 3.46% 1.89% 0.89% 0.35%

γ = 6 2.43% 2.14% 1.77% 1.32% 0.77%

y = 1 1.74% 1.32% 1.06% 0.76% 0.41%

y = 3 2.40% 1.64% 1.25% 0.90% 0.49%

β = 0.05 1.52% 0.87% 0.49% 0.24% 0.11%

β = 0.15 4.00% 3.25% 2.67% 2.02% 1.31%

T̃ = 30, T = 50 3.79% 2.16% 1.50% 1.13% 0.71%

Table 3: Robustness of the welfare loss for the near-optimal strategy with constant λI .

The table shows the upper bound L̂ on the welfare loss associated with the strategy (ĉ, π̂S) defined
in (26) with k = 0.3 and ζ = 0.5, when key input variables are varied one by one. Other parameter
values are taken from Table 1 and we put ε = 1. The expected utility from the near-optimal
strategy is computed by Monte Carlo simulations involving 10,000 paths and 250 time steps per
year.

has a higher weight and this term is highly sensitive to the valuation of future income. The total
dependence of the welfare loss on the risk aversion coefficient for the different correlations is a
mix of the varying quality of the approximations of the two portfolio components and the relative
weights of those components. From the table we also see that the welfare loss increases with the
initial level of income y, the riskiness of the income stream measured by its volatility β, and the
length of the life-cycle measured by T̃ and T . The effects of variations in y and T̃ stem from the fact
that increasing these parameters leads to a higher value of the individual’s labor income and thus
makes labor income relatively more important. Consequently, the welfare loss of strategies that are
derived from simplifying assumptions about the income stream becomes more significant. Finally,
the volatility of the labor income stream also increases the sensitivity of the individual’s life-cycle
problem towards suboptimally specified strategies. To summarize, the welfare losses remain very
small even for fairly extreme parameter values.

5.2 An improvement

Although the welfare losses for strategies based on constant market prices of risk λI are already
small, we now analyze whether these results can be further improved if we work with a time-
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dependent market prices of risk of the affine form

λI(t) = Λ1t+ Λ0, Λ1,Λ0 ∈ R. (28)

The closed-form solution of Theorem 3 carries over to this case with a slight modification of gart(t)
and F art(t):

gart(t;λI) =


∫ T̃
t
e−r

art
g (s−t)+h(t,s) ds+ gcom(T̃ )e−r

art
g (T̃−t)+h(t,T̃ ), t < T̃ ,

gcom(t), t ≥ T̃ ,
(29)

F art(t;λI) = 1{t≤T̃}

∫ T̃

t

e−r
art
F (s−t)− 1

2β
√

1−ρ2Λ1(s2−t2) ds, (30)

with

h(t, s) =
1− γ
2γ2

Λ0Λ1(s2 − t2) +
1− γ
6γ2

Λ2
1(s3 − t3),

rart
F = rF + βΛ0

√
1− ρ2 = r − α+ β(λSρ+ Λ0

√
1− ρ2),

rart
g = rg +

1
2
γ − 1
γ2

Λ0 =
δ

γ
+
γ − 1
γ

r +
1
2
γ − 1
γ2

(λ2
S + Λ2

0).

Of course, we can do at least as well with the affine specification as with the constant market price
of risk considered above. Intuitively, when the investor is young and has a long working life ahead,
he should be more concerned with the market incompleteness caused by labor income than when
he is close to retirement. Therefore, it seems relevant to let the market price of risk and thus the
consumption and investment strategy depend on time.

We can find an upper bound on the obtainable utility by minimizing the closed-form indi-
rect utility in the artificially completed market over (Λ0,Λ1). Let Λ̄0, Λ̄1 denote the minimizing
coefficients. On the other hand, for any constants (Λ0,Λ1), we can therefore define a strategy
c(Λ0,Λ1), πS(Λ0,Λ1) very similar to (25) and evaluate that strategy by Monte Carlo simulation
and compute (an upper bound on) the associated welfare loss. In principle, by maximizing the
expected utility over Λ0,Λ1, we could find the best of these simple strategies. However, this is
quite time-consuming due to the Monte Carlo procedure. For simplicity, we thus take the strat-
egy defined by the coefficients Λ̄0, Λ̄1 defining the lowest upper bound on expected utility. The
resulting upper bounds L on the welfare losses are reported in Table 4. Losses are significantly
reduced compared to the case of a constant λI and for moderate and high values of the correlation
the loss is virtually zero. This demonstrates how close we can get to the optimum by allowing for
time-dependent market prices of risk λI . Since assumption (28) already leads to very small welfare
losses, we have not tried to improve the results further.
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Income-stock correlation ρ

0 0.2 0.4 0.6 0.8

Λ̄1 -0.0165 -0.0163 -0.0154 -0.0135 -0.0102

Λ̄0 0.4059 0.3947 0.3675 0.3207 0.2415

L 1.04% 0.36% 0.12% 0.04% 0.01%

Table 4: Welfare loss for the near-optimal strategy with affine λI(t). The table shows, for
different values of the income-stock correlation ρ, the coefficients Λ̄1, Λ̄0 defining the lowest upper
bound on expected utility obtainable when λI(t) has the affine form (28) and the upper bound
L on the welfare loss associated with the specific strategy c(Λ̄0, Λ̄1), πS(Λ̄0, Λ̄1). The benchmark
parameter values of Table 1 and ε = 1 are used. The expected utility from the specific strategy is
computed by Monte Carlo simulations involving 10,000 paths and 250 time steps per year.

5.3 The welfare loss from assuming market completeness

In the literature on optimal consumption and investment strategies with labor income some papers
assume that the labor income is spanned by traded assets so that markets are complete and a
closed-form solution can often be found, cf., e.g., Bodie, Merton, and Samuelson (1992) and Kraft
and Munk (2008). We now evaluate the welfare loss from using the consumption and investment
strategy derived under a complete market assumption, when the labor income is really unspanned
so that the true market is incomplete. It follows from Theorem 1 that an investor believing in a
complete market with perfect income-stock correlation, ρ = 1, would follow the strategy

ct =
Xt + YtF

com(t)
gcom(t)

, πSt =
λS
γσS

Xt + YtF
com(t)

Xt
− β

σS

YtF
com(t)
X(t)

,

where gcom and F com are given by (7) and (8) and where ρ is replaced by 1 in the expression for rF .
Again, such a strategy is not admissible in an incomplete market as it may lead to bankruptcy. We
modify the strategy just as in Section 4 to ensure admissibility. Note that the modified strategy
is identical to the strategy ct(λI), πS(λI) defined in (25) if we put λI = 0 and use ρ = 1 in the
coefficient rart

F entering the function F art(t). With our parametrization, this modification becomes
active only very rarely. We will refer to the strategy (c̃, π̃S) defined this way as the misspecified
strategy. We compute the expected utility generated by this strategy using Monte Carlo simulation
and let L̃ denote the upper bound on the associated welfare loss.

Table 5 shows the welfare loss from the misspecified strategy for different combinations of the
true income-stock correlation ρ and the terminal wealth coefficient ε. If the true correlation is
small, there are significant welfare losses of up to 14.4%, which is much higher than for the near-
optimal strategy defined in (26). On the other hand, the welfare loss from the misspecified strategy
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Income-stock correlation ρ

0 0.2 0.4 0.6 0.8

ε = 0.1 14.41% 9.95% 6.21% 3.25% 1.15%

ε = 1 14.43% 9.93% 6.21% 3.24% 1.14%

ε = 10 14.39% 9.94% 6.20% 3.24% 1.15%

Table 5: Welfare loss for the misspecified strategy. The table shows, for different values
of the true income-stock correlation ρ and the parameter ε, the upper bound L̃ on the welfare
loss associated with the misspecified strategy, i.e. the strategy followed by an investor believing
that labor income is perfectly correlated with stock returns. We use k = 0.3, ζ = 0.5, and the
benchmark parameter values of Table 1. The expected utility from the misspecified strategy is
computed by Monte Carlo simulations involving 10,000 paths and 250 time steps per year.

is closer to that of the near-optimal strategy and closer to zero if the correlation approaches unity
(see ρ = 0.8). The latter result follows from two facts: Firstly, for ρ = 0.8 the assumption of having
a perfect correlation is less problematic. Secondly, the indirect utility function interpreted as a
function of λI becomes flatter if ρ increases. Therefore, the error from setting λI equal to zero,
which is what the investor implementing π̃S is doing, also becomes less pronounced. Consequently,
both effects go in the same direction bringing down the differences in the welfare losses of the two
strategies as ρ approaches 1. Additional numerical experiments have shown that the welfare loss
associated with the misspecified strategy increases significantly with the initial labor income rate,
the income volatility, and the time until retirement.

6 Extension: flexible labor supply

In the previous sections we have assumed that labor supply is exogenously fixed. In this section we
relax this assumption by allowing the individual to decide on how much time he wishes to work.
Let wt denote the wage rate and assume that

dwt = wt[αdt+ β(ρ dWt +
√

1− ρ2 dW̃t)], (31)

where the Brownian motions W and W̃ are uncorrelated. If lt denotes the fraction of time that
the individual chooses to work over a short time period [t, t + dt], the total labor income earned
in that period is ltwt dt. We continue to assume that the individual retires from the labor market
at the predetermined date T̃ so that lt ≡ 0 for t > T̃ . As before, the dynamics of the stock
price is given by (1) and the risk-free bank account offers a constant rate of return of r. Given a

18



consumption-labor-investment strategy (c, l, πS), the dynamics of financial wealth is

dXt = Xt [(r + πStσSλS) dt+ πStσS dWt] + (ltwt − ct) dt, (32)

and the expected utility is

J(t, x, w; c, l, πS) = Et

[∫ T

t

e−δ(s−t)U
(
cξs[1− ls]1−ξ

)
ds+ εe−δ(T−t)U(XT )

]
,

where ξ ∈ (0, 1) defines the relative weight of consumption and leisure, and U(x) = x1−γ/(1−γ) as
before. We assume ξ = 1 after retirement. Again, it seems impossible to find a closed-form solution
for the strategy (c, l, πS) maximizing the expected utility, and numerical solution techniques will
be complicated and of unknown precision.11 However, as before, we can find a closed-form solution
in an artificially completed market, where the individual can invest in Shiller contracts with price
dynamics (13).

Theorem 4 (Solution With Shiller Contracts and Endogenous Labor Supply) If, until
retirement, the investor can endogenously control his labor supply and invest in Shiller contracts
with a constant λI , his indirect utility is given by

Jart(t, x, w;λI) =
1

1− γ
gart(t, w;λI)γ(x+ wF art(t;λI))1−γ , (33)

where F art is given by (17), and

gart(t, w;λI) =

ξ−ξ(γ−1)/γ(1− ξ)−kwk 1
Rg

(
1− e−Rg(T̃−t)

)
+ gcom(T̃ )e−r

art
g (T̃−t), t < T̃ ,

gcom(t), t ≥ T̃ ,
(34)

with k = (γ−1)(1−ξ)
γ and Rg = rart

g + 1
2β

2k(1−k)−k
(
α− γ−1

γ β
[
λSρ+ λI

√
1− ρ2

])
. The optimal

consumption, labor supply, and investment strategy is given by

cart
t =

ξ1−ξ(γ−1)/γ(1− ξ)−kwkt
Xt+wtF

art(t;λI)
gart(t,wt;λI) , t < T̃

Xt
g(t) , t ≥ T̃

(35)

lart
t = 1{t<T̃}

{
1− ξ−ξ(γ−1)/γ(1− ξ)1−kwk−1

t

Xt + wtF
art(t;λI)

gart(t, w;λI)

}
, (36)

πart
St =

λS
γσS

Xt + wtF
art(t;λI)

Xt
+
βρ

σS

[
wtg

art
w (t, wt;λI)

gart(t, wt;λI)
Xt + wtF

art(t;λI)
Xt

− wtF
art(t;λI)
Xt

]
, (37)

πart
It = 1{t<T̃}

{
λI
γ

Xt + wtF
art(t;λI)

Xt

+ β
√

1− ρ2

[
wtg

art
w (t, wt;λI)

gart(t, wt;λI)
Xt + wtF

art(t;λI)
Xt

− wtF
art(t;λI)
Xt

]}
. (38)

11Only few papers have solved dynamic utility maximization problems with endogenous labor supply. Bodie,

Merton, and Samuelson (1992) derive a closed-form solution for the case of perfect wage-stock correlation, while

Cvitanić, Goukasian, and Zapatero (2007) consider a slightly different setting with a fixed wage rate.
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Note that, in contrast to the case of exogenous income, the function gart now depends on the
income stream via the wage level, which is stochastic. Also note gart

w = 0 after retirement, i.e. for
t ≥ T̃ , so that the entire solution collapses to the solution in the truly complete market summarized
in Theorem 1.

From the above solution in the artificially completed market, we can define a consumption, labor
supply, and investment strategy c(λI), l(λI), πS(λI) in the true, incomplete market. As before, we
do that by ignoring the investment in the hypothetical Shiller contract and by modifying the
remaining elements of the strategy to ensure admissibility. The expected utility generated by such
a strategy is computed with Monte Carlo simulation and an optimization over λI gives us our
candidate for a near-optimal strategy. We can also obtain an upper bound on the expected utility
by computing the minimum of Jart(t, x, w;λI) over λI , i.e. J̄(t, x, w) = minλI J

art(t, x, w;λI) ≡
Jart(t, x, w; λ̄I). Analogously to the exogenous income case, we define an upper bound L on the
welfare loss associated with any given strategy (c, l, πS) as the solution to

J(t, x, w; c, l, πS) = J̄(t, x[1− L], w[1− L])

=
1

1− γ
gart(t, w[1− L]; λ̄I)γ

(
x+ wF art(t; λ̄I)

)1−γ (1− L)1−γ .

Note that, in contrast to the situation with exogenous income, the function gart depends on the
wage rate, and thus we cannot completely separate out L on the right-hand side but have to solve
the equation numerically for L.

We perform a numerical analysis along the lines of the case with exogenous income using the
same benchmark parameter values as in Table 1 together with ξ = 0.5. We assume an initial wage
rate of w = 6 (instead of an exogenous income starting at y = 2) so that, with the optimal initial
labor supply, the initial income rates will be about the same as in the exogenous income case.
Table 6 shows the upper bound on the welfare loss for various combinations of the wage-stock
correlation ρ and the preference coefficient ε on terminal wealth. The welfare losses are still very
small for high correlations. However, for zero or low correlations, the welfare loss is now bigger,
although still not dramatically high. This increase in the welfare loss may in part be due to the
discretization needed to evaluate the suggested strategy. To avoid negative wealth in the simulation
we need to set the critical wealth level k to 0.5, which is higher than in the case with exogenous
income. This is due to the fact that the wealth dynamics (32) involves the term ltwt instead of yt
in the case with endogenous income so when wealth is low, the individual wants to work harder
(increase lt) but is then also hit more severely by adverse, non-hedgeable shocks to the wage rate.
In Table 7 we generalize to an affine market price of risk (28). Here we maximize over Λ0,Λ1 to
find the best of our simple strategies and minimize over Λ0,Λ1 to find the lowest upper bound
from the artificially completed markets. As in the case with exogenous income, we see a significant
reduction in the loss, in particular for high correlations.

20



Wage-stock correlation ρ

0 0.2 0.4 0.6 0.8

ε = 0.1 5.72% 2.63% 1.11% 0.41% 0.17%

ε = 1 5.56% 2.59% 1.09% 0.41% 0.17%

ε = 10 5.47% 2.50% 1.03% 0.41% 0.16%

Table 6: Welfare loss for the near-optimal strategy with endogenous income and con-

stant λI . The table shows the upper bound on the welfare loss associated with the near-optimal
consumption-labor-investment strategy for different values of the wage-stock correlation ρ and the
parameter ε capturing the relative weight of terminal weight in the preferences. Only constant
market prices of risk λI are considered. The benchmark parameter values of Table 1 are used
together with a consumption-leisure weight of ξ = 0.5. The expected utility from the near-optimal
strategy is computed by Monte Carlo simulations involving 10,000 paths and 700 time steps per
year, and the wealth level at which the investor switches to a more prudent strategy is set to
k = 0.5.

Wage-stock correlation ρ

0 0.2 0.4 0.6 0.8

Λ1(AC) -0.0075 -0.0072 -0.0069 -0.0065 -0.0049

Λ0(AC) 0.2893 0.2821 0.2632 0.2294 0.1722

Λ1(I) -0.01634 -0.01612 -0.01591 -0.01504 -0.01408

Λ0(I) 0.5523 0.5021 0.3945 0.3658 0.3156

L 5.18% 2.12% 0.73% 0.12% 0.03%

Table 7: Welfare loss for the near-optimal strategy with endogenous income and affine

λI(t). The two upper rows show the values of the coefficients Λ1,Λ0 that defines the lowest upper
bound on expected utility obtainable when labor supply is endogenous and λI(t) has the affine
form (28). The third and fourth rows show the values of the coefficients Λ1,Λ0 that produce the
highest utility of the simple, admissible strategies. The lower row shows the upper bound on the
corresponding welfare loss. The benchmark parameter values of Table 1 are used together with
a consumption-leisure weight of ξ = 0.5 and ε = 1. The expected utility from the near-optimal
strategy is computed by Monte Carlo simulations involving 10,000 paths and 700 time steps per
year, and the wealth level at which the investor switches to a more prudent strategy is set to
k = 0.5.
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Income-stock correlation ρ

0 0.2 0.4 0.6 0.8

ε = 0.1 12.33% 8.20% 4.86% 2.34% 0.70%

ε = 1 12.33% 8.20% 4.85% 2.34% 0.70%

ε = 10 12.33% 8.20% 4.85% 2.34% 0.70%

Table 8: Welfare loss for the misspecified strategy with endogenous income. The table
shows, for different values of the true income-stock correlation ρ and the parameter ε, the upper
bound on the welfare loss associated with the misspecified consumption-labor-investment strategy,
i.e. the strategy followed by an investor believing that the wage rate is perfectly correlated with
stock returns. The benchmark parameter values of Table 1 are used together with a consumption-
leisure weight of ξ = 0.5 and ε = 1. The expected utility from the misspecified strategy is computed
by Monte Carlo simulations involving 10,000 paths and 700 time steps per year, and the wealth
level at which the investor switches to a more prudent strategy is set to k = 0.5.

In our formulation of the problem and our solution for the artificially completed market, we
did not impose the very natural constraint lt ≤ 1 on the labor supply of the individual, but in our
numerical experiments this constraint was never violated.

Finally, we have again considered the misspecified strategy that an investor assuming perfect
wage-stock correlation would follow, modified to ensure admissibility. This strategy corresponds
to the strategy c(λI), l(λI), πS(λI) with λI = 0 and ρ = 1. Table 8 illustrates that the welfare loss
induced by the misspecified strategy is much larger than for our near-optimal strategy, but even
the misspecified strategy performs quite well for fairly high wage-stock correlations.

7 Extension: stochastic interest rates

Until now we have assumed a simple Black-Scholes type financial market, but our approach applies
to more general settings. As an example we consider now the case where interest rates are stochastic
as described by the Vasicek (1977) model so that the short-term interest rate rt has dynamics

drt = (ϑ− κrt) dt− σr dWrt,

where ϑ, κ, and σr are constants, and Wr is a standard Brownian motion. The price Bt of any
bond has dynamics of the form

dBt = Bt
[(
rt + λBσB(rt, t)

)
dt+ σB(rt, t) dWrt

]
,
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where λB is a constant market price of interest rate risk. For a zero-coupon bond with a time-to-
maturity of τ , the price is of the form Bt = exp{−A(τ)−B(τ)rt}, where B(τ) = (1−e−κτ )/κ and A
is another deterministic function of minor importance for what follows, so that σB(rt, t) = σrB(τ).
The dynamics of the stock price and the labor income is now assumed to be

dSt = St [(rt + λSσS) dt+ σS(ρSB dWrt + ρ̂S dWSt)] ,

dYt = Yt

[
αdt+ β(ρY B dWrt + ρ̂Y S dWSt + ρ̂Y dW̃t)

]
, t < T̃ ,

where Wr,WS , W̃ are independent standard Brownian motions and

ρ̂S =
√

1− ρ2
SB , ρ̂Y S =

ρY S − ρSBρY B√
1− ρ2

SB

, ρ̂Y =
√

1− ρ2
Y B − ρ̂2

Y S

where ρSB , ρY B , and ρY S are the pairwise stock-bond, income-bond, and income-stock correlations.
Income is zero after the retirement date T̃ . Before retirement the market is incomplete unless
ρ̂Y = 0. Again we will artificially complete the market by introducing a Shiller contract on the
unspanned income component, i.e. an asset with price dynamics

dIt = It

[
(rt + λI) dt+ dW̃t

]
.

Let πBt, πSt, and πIt denote the fractions of financial wealth invested in the bond, the stock, and
the Shiller contract, respectively. As before, ct denotes the consumption rate at time t. The
dynamics of financial wealth Xt is now

dXt = Xt

[
(rt + πBtσB(rt, t)λB + πStσSλS + πItλI) dt+ (πBtσB(rt, t) + πStρSBσS) dWrt

+ πStρ̂SσS dWSt + 1{t≤T̃}πIt dW̃t

]
+ (Yt − ct) dt,

(39)

while the indirect utility function reads

Jart(t, x, y, r;λI) = max
(c,πS ,πB ,πI)

{∫ T

t

Et
[
e−δ(s−t)U(cs)

]
ds+ εe−δ(T−t)Et[U(XT )]

}
.

The indirect utility and the corresponding optimal strategy in the artificially completed market
can be derived in closed form as summarized by the following theorem.

Theorem 5 (Solution with Shiller Contracts and Stochastic Interest Rates) If the investor
has access to Shiller contracts on his labor income until retirement, his indirect utility is given by

Jart(t, x, y, r;λI) =
1

1− γ
gart(t, r;λI)γ

(
x+ yF art(t, r;λI)

)1−γ
, (40)
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where

F art(t, r;λI) = 1{t≤T̃}

∫ T̃

t

e−A(s−t)−B(s−t)r ds (41)

gart(t, r;λI) =


∫ T̃
t
e−D(s−t)− γ−1

γ B(s−t)r ds+ gart(T̃ , r;λI)e−D(T̃−t)− γ−1
γ B(T̃−t)r, t < T̃∫ T

t
e−D̃(s−t)− γ−1

γ B(s−t)r ds+ ε
1
γ e−D̃(T−t)− γ−1

γ B(T−t)r, t ≥ T̃
(42)

and A, D, and D̃ are deterministic functions stated in Equations (69), (70), and (61) in the
Appendix.

The optimal consumption and investment strategies are

cart
t (λI) =

Xt + YtF
art(t, r;λI)

gart(t, r;λI)
, (43)

πart
St (λI) =

λS
γσS(1− ρ2

SB)
Xt + YtF

art(t, r;λI)
Xt

− β(ρY S − ρSBρY B)
σS(1− ρ2

SB)
YtF

art(t, r;λI)
Xt

, (44)

πart
Bt (λI) =

λB − ρSB
(1−ρ2SB)

λS

γσB

Xt + YtF
art(t, r;λI)
Xt

− β(ρY B − ρSBρY S)
σB(1− ρ2

SB)
YtF

art(t, r;λI)
Xt

+
σr
σB

(
YtF

art
r (t, r;λI)
Xt

− gart
r (t, r;λI)
gart(t, r;λI)

Xt + YtF
art(t, r;λI)
Xt

)
, (45)

πart
It (λI) = 1{t≤T̃}

{
λI
γ

Xt + YtF
art(t, r;λI)
Xt

− βρ̂Y
YtF

art(t, r;λI)
Xt

}
. (46)

After retirement, the solution collapses to the well-known solution for the corresponding no-
income case, cf. Sørensen (1999).

Disregarding the investment in the Shiller contract and modifying the remaining strategy to
ensure admissibility, we can again define a strategy c(λI), πS(λI), πB(λI) for any constant λI .
Each strategy can be evaluated by Monte Carlo simulation and maximizing over λI produces
our candidate strategy ĉ, π̂S , π̂B in the incomplete market. The expected utility generated by this
strategy is again compared with the minimum of Jart(t, x, y, r;λI) over λI and the utility difference
is transformed in to a wealth-equivalent loss. For those parameters that were also included in our
basic, constant interest rate case, we use the same values, cf. Table 1. The values of the parameters
in the interest rate dynamics we use κ = 0.2, ϑ = 0.004, and σr = 0.01, and the initial short rate is
set to its long-term average of ϑ/κ = 0.02. The market price of interest rate risk is λB = 0.1, the
stock-bond correlation is fixed at ρSB = 0.25, and the income-bond correlation at ρY B = 0.1. In
the implementation, we assume that the bond in which the investor trades is a 50-year zero-coupon
bond. The utility weight on terminal wealth is assumed to be ε = 1. Table 9 tabulates the upper
bound on the welfare loss for different values of the income-stock correlation ρY S . Clearly, the
losses are also very small in the stochastic interest rate setting.
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Income-stock correlation ρY S

0 0.2 0.4 0.6 0.8

Loss 1.56% 1.19% 0.90% 0.61% 0.26%

Table 9: Welfare loss for the near-optimal strategy with exogenous income, stochastic

interest rates, and constant λI . The table shows the upper bound L̂ on the welfare loss
associated with the strategy (ĉ, π̂S , π̂B) derived from (43)–(45) as explained in the text. We use
k = 0.3, ζ = 0.5, and the benchmark parameter values of Table 1 together with ε = 1, κ = 0.2,
ϑ = 0.004, σr = 0.01, λB = 0.1, ρSB = 0.25, and ρY B = 0.1. The expected utility from the near-
optimal strategy is computed by Monte Carlo simulations involving 1000 paths and 1000 time steps
per year.

8 Conclusion

This paper has suggested and tested an easy procedure for finding a simple, near-optimal con-
sumption and investment strategy of an investor receiving an unspanned labor income stream.
This procedure is valuable since it appears to be impossible to find the truly optimal solution in
closed form and very difficult to approximate it precisely using numerical solution techniques. For
illustrative purposes we have focused on fairly simple models of the price dynamics of traded assets.
However, we emphasize that the procedure can be generalized to models of the affine or quadratic
classes considered in many recent papers on portfolio choice in the absence of labor income, since
in those settings (i) we would still be able to find explicit solutions in the artificially completed
markets and (ii) we can still evaluate the performance of a specific strategy by Monte Carlo simu-
lations. Therefore, our approach shows how to include a realistic (unspanned) specification of the
highly important human wealth in the recent literature finding closed-form solutions to optimal
consumption and investment problems.

Our ideas should be applicable to other portfolio problems with incomplete markets, e.g. prob-
lems with stochastic volatility or stochastic market prices of risk not spanned by traded assets.
Some papers find closed-form solutions in such settings (Chacko and Viceira 2005; Kim and Omberg
1996), but only for utility of terminal wealth only, whereas it seems impossible to find optimal
strategies in closed form when intermediate consumption is introduced. We conjecture that our
approach would lead to near-optimal strategies for investors with utility of intermediate consump-
tion in those models.
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A Proofs

Proof of Theorem 1. In the retirement phase, the problem is identical to the problem solved by
Merton (1969) with the well-known solution

J(t, x, y) =
1

1− γ
g(t)γx1−γ , t ∈ [T̃ , T ],

where g(t) is given by (7), and with ct = Xt/g(t) and πS = λS/(γσS). By dynamic programming,
we can write the indirect utility before retirement as

J(t, x, y) = max
(c,πS)

Et

[∫ T̃

t

e−δ(s−t)
1

1− γ
c1−γs ds+

1
1− γ

g(T̃ )γX1−γ
T̃

]
.

The Hamilton-Jacobi-Bellman equation associated with this problem is

δJ = L1J + L2J + L3J, (47)

where

L1J =
∂J

∂t
+ Jxr([x+ yF ]− yF ) + Jxy + Jyyα+

1
2
Jyyy

2β2, (48)

L2J = max
c

{
1

1− γ
c1−γ − cJx

}
, (49)

L3J = max
πS

{
JxxπSσSλS +

1
2
x2Jxxπ

2
Sσ

2
S + JxyxyβρσSπS

}
, (50)

and ρ is either +1 or −1. We handle each of these terms separately and then combine them
afterwards. We conjecture that the indirect utility function is of the form J(t, x, y) = 1

1−γ g(t)γ(x+
yF (t))1−γ .

With the conjecture for J , we get

L1J =gγ(x+ yF )1−γ
(
r +

γ

1− γ
g′

g

)
+ gγ(x+ yF )−γy (F ′ − (r − α)F + 1)

− γ

2
gγ(x+ yF )−γ−1y2F 2β2.

(51)

The first-order condition for c implies that c = J
−1/γ
x , which leads to (11) and

L2J =
γ

1− γ
gγ−1(x+ yF )1−γ . (52)

The first-order condition for πS implies that

πS = −λS
σS

Jx
xJxx

− βρ

σS

yJxy
xJxx

, (53)

26



which with the conjecture leads to (12) and

L3J = gγ(x+ yF )1−γ λ
2
S

2γ
− gγ(x+ yF )−γyFρβλS +

γ

2
gγ(x+ yF )−γ−1y2F 2β2ρ2. (54)

Substituting the above expressions back into the HJB-equation (47), we see that the terms involving
(x+yF )−γ−1 clearly cancel out (since ρ2 = 1). Moreover, the terms involving (x+yF )γ disappear
due to the fact the function F = F com defined in (8) satisfies the ordinary differential equation
F ′ − rFF + 1 = 0 and F (T̃ ) = 0. All the remaining terms involve (x + yF )1−γ . For these terms
to cancel out, we need the function g to satisfy the ordinary differential equation g′ − rgg+ 1 = 0,
which is satisfied by the same function g(t) as in the retirement phase, namely the function stated
in (7), and thus clearly has the appropriate value at time T̃ . 2

Proof of Theorem 2. For any admissible strategy (c, πS), the expected utility function
J(t, x, y; c, πS) will, under mild technical conditions, satisfy the partial differential equation12

0 = U(c)− δJ +
∂J

∂t
+ x(r + πSσSλS)Jx + (y − c)Jx +

1
2
x2σ2

Sπ
2
SJxx + yαJy (55)

+
1
2
y2β2Jyy + yβxρσSπSJxy

for t < T̃ . Without loss of generality, the proportion invested in stock can be written as

πS = −λS
σS

Jx
xJxx

− h

xσS
, (56)

for some function h(t, x, y). Rewriting (55) leads to

0 = U(c)− δJ + (y − c)Jx +
∂J

∂t
+ xrJx + yαJy −

1
2
λ2
S

J2
x

Jxx
− yβρλS

JxJxy
Jxx

(57)

+
1
2
y2β2Jyy +

1
2
h2Jxx − yβρJxy

Applying the separation (6) and simplifying the resulting equation, three types of terms occur: (i)
terms involving (x+ yF )1−γ , (ii) terms involving (x+ yF )−γ , and (iii) terms that involve neither
(x + yF )1−γ nor (x + yF )−γ . The first, second, and third terms have to cancel out separately,
otherwise the separation is wrong (F or g would depend on x or y, which violates the assumption
that both functions are only time-dependent). To be more precise, we rewrite (57) as

0 = H1 g +H2 g +H3 g + U(c)− cgγ(x+ yF )−γ ,

12See, e.g., Duffie (2001, p. 343). Notice that the PDE differs from a Hamilton-Jacobi-Bellman equation only

because the controls πS and c are fixed.

27



where

H1 g =
(

δ

γ − 1
− γ

γ − 1
gt/g + r +

λ2
S

2γ

)
gγ(x+ yF )1−γ ,

H2 g = (1 + F ′ − (r − α+ βρλS)F ) ygγ(x+ yF )−γ ,

H3 g = −γ
2
(
h2 − 2yβρhF + y2β2F 2

)
gγ(x+ yF )−γ−1.

Depending on the choice of c, the terms U(c) and cgγ(x+ yF )−γ can be included into H1 g, H2 g,
or H3 g which then have to be zero separately. To show this, we distinguish between two cases.
Let c̄ be a deterministic function.

1st case: c = (x + yF )c̄/g. Then U(c) and cgγ(x + yF )−γ is of the same type as the terms of
H1 g. But then H3 g 6= 0 for |ρ| 6= 1 and thus the separation (6) is violated.

2nd case: c 6= (x+ yF )c̄/g. Then U(c) and cgγ(x+ yF )−γ cannot be included into H1 g, H2 g,
or H3 g at the same time. However, since for γ > 1 and |ρ| 6= 1, we have

H3 g < 0 and U(c)− cgγ(x+ yF )−γ < 0,

the separation (6) is again violated. 2

Proof of Theorem 3. In the retirement phase, the market is complete and Theorem 1 applies.
By dynamic programming, we can write the indirect utility function in the artificially completed
market before retirement as

J(t, x, y) = max
(c,πS ,πI)

Et

[∫ T̃

t

e−δ(s−t)
1

1− γ
c1−γs ds+

1
1− γ

gcom(T̃ )γX1−γ
T̃

]
.

The Hamilton-Jacobi-Bellman equation associated with this problem is

δJ = L1J + L2J + L3J + L4J, (58)

where L1J , L2J , and L3J are given by (48)–(50), and

L4J = max
πI

{
JxxπIλI +

1
2
x2Jxxπ

2
I + Jyxyxβ

√
1− ρ2πI

}
.

Since we again conjecture a solution of the form J(t, x, y) = 1
1−γ g(t)γ(x + yF (t))1−γ , we ob-

tain (51)–(54) and the optimal consumption and stock investment stated in (18)–(19). The first-
order condition for πI implies that

πI = −λI
Jx
xJxx

− β
√

1− ρ2
yJxy
xJxx

, (59)

which with the conjectured J leads to (20) and

L4J = gγ(x+ yF )1−γ λ
2
I

2γ
− gγ(x+ yF )−γyF

√
1− ρ2βλI +

γ

2
gγ(x+ yF )−γ−1y2F 2β2(1− ρ2).
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Substituting the expressions for LiJ back into the HJB-equation (58), we see that the terms
involving (x + yF )−γ−1 cancel out. The terms involving (x + yF )γ disappear due to the fact the
function F (t) defined in (17) satisfies the ordinary differential equation F ′ − rart

F F + 1 = 0 and
F (T̃ ) = 0. All the remaining terms involve (x + yF )1−γ . For these terms to cancel out, we need
g(t) to satisfy the ordinary differential equation g′ − rart

g g + 1 = 0 and g(T̃ ) = gcom(T̃ ). This is
satisfied by the function stated in (16). 2

Proof of Theorem 4. After retirement, the market is complete and the solution from Theo-
rem 1 applies. By dynamic programming, the indirect utility function J(t, x, w) in the artificially
completed market is therefore

J(t, x, w) = max
c,l,πS ,πI

Et

[∫ T̃

t

e−δ(s−t)
1

1− γ
cξ(1−γ)
s [1− ls](1−ξ)(1−γ) ds+

1
1− γ

gcom(T̃ )γX1−γ
T̃

]
.

Given the wage dynamics (31) and the wealth dynamics

dXt = Xt

[
(r + πStσSλS + πItλI) dt+ πStσS dWt + πIt dW̃t

]
+ (ltwt − ct) dt, t ≤ T̃ ,

the Hamilton-Jacobi-Bellman equation associated with the dynamic maximization problem be-
comes

δJ = L1J + L2J + L3J + L4J, (60)

where

L1J = Jx(rx+ w) +
∂J

∂t
+ Jwαw +

1
2
Jwww

2β2,

L2J = max
c,l

{
1

1− γ
cξ(1−γ)[1− l](1−ξ)(1−γ) − Jx(c+ [1− l]w)

}
,

L3J = max
πS

{
JxxπSσSλS +

1
2
x2Jxxπ

2
Sσ

2
S + JwxwxβρσSπS

}
,

L4J = max
πI

{
JxxπIλI +

1
2
x2Jxxπ

2
I + Jwxwxβ

√
1− ρ2πI

}
.

We handle each of these terms separately and then combine them afterwards.
Substitution of all relevant derivatives of the conjectured J in (33) into the expression for L1J ,

we obtain

L1J = gγ(x+ wF )1−γ

{
γ

1− γ
gt
g

+
γ

1− γ
α
wgw
g
− γ

2
β2

(
wgw
g

)2

+ r +
γ

2(1− γ)
β2w

2gww
g

}

+ gγ(x+ wF )−γw
{

1 + F ′(t) + (α− r)F + γβ2wgw
g

F

}
− γ

2
β2w2F 2gγ(x+ wF )−γ−1.
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The first-order conditions for the maximization over c and l in L2J imply that

c = ξ1−ξ(γ−1)/γ(1− ξ)−kwkJ−1/γ
x , 1− l =

1− ξ
ξ

w−1c.

With the conjecture for J , we have Jx = gγ(x+wF )−γ . Substituting this into the above expressions
for c and l, we obtain (35) and (36), and find

L2J = − γ

γ − 1
ξ−ξ(γ−1)/γ(1− ξ)−kwkgγ−1(x+ wF )1−γ .

The first-order condition for πS in L3J implies (53). With the conjectured J , we have Jxx =
−γgγ(x−wF )−γ−1 and Jwx = γgγ−1(x+wF )−γ−1(gw(x+wF )− gF ), so that we get the optimal
stock investment stated in (37). Tedious, but straightforward, computations lead to

L3J = gγ(x+ wF )1−γ

{
λ2
S

2γ
+ ρβλS

wgw
g

+
1
2
γρ2β2

(
wgw
g

)2
}

− gγ(x+ wF )−γwF
{
ρβλS + γρ2β2wgw

g

}
+

1
2
gγ(x+ wF )−γ−1w2F 2γρ2β2.

The first-order condition for πI in L4J implies (59). Substituting in the derivatives of the conjec-
tured J , we easily get (38), and after further straightforward computations, we find

L4J = gγ(x+ wF )1−γ

{
λ2
I

2γ
+
√

1− ρ2βλI
wgw
g

+
1
2
γ(1− ρ2)β2

(
wgw
g

)2
}

− gγ(x+ wF )−γwF
{√

1− ρ2βλS + γ(1− ρ2)β2wgw
g

}
+

1
2
gγ(x+ wF )−γ−1w2F 2γ(1− ρ2)β2.

When we substitute the above expressions back into the HJB-equation (60), we first note that
the terms involving (x+wF )−γ−1 cancel out. Collecting terms involving (x+wF )−γ , we see that
they also cancel, because of the fact that F (t) = F art(t) satisfies the ordinary differential equation
F ′(t) − rart

F F (t) + 1 = 0. All the remaining terms involve gγ(x + wF )1−γ . For our conjecture to
be verified, we therefore need these terms to cancel as well, which implies that the function g(t, w)
has to satisfy the partial differential equation

1
2
β2w2gww +

(
α− γ − 1

γ
β[ρλS +

√
1− ρ2λI ]

)
wgw − rart

g g + gt + ξ−ξ(γ−1)/γ(1− ξ)−kwk = 0.

In order to ensure that J(T̃ , x, w) = 1
1−γ g

com(T̃ )γx1−γ , we need g(T̃ , w) = gcom(T̃ ). It is easily
verified that the solution is given by (34). 2
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Proof of Theorem 5. In the retirement phase, the market is complete and it is well-known13

that the solution is
Jcom(t, x, r) =

1
1− γ

gcom(t, r)γx1−γ , t ≥ T̃ ,

where

gcom(t, r) =
∫ T

t

e−D̃(s−t)− γ−1
γ B(s−t)r ds+ ε

1
γ e−D̃(T−t)− γ−1

γ B(T−t)r

with

D̃(τ) =
(
δ

γ
+
γ − 1
2γ2

Λ̃2

)
τ +

ϑ+ γ−1
γ λBσr

κ

γ − 1
γ

(τ − B(τ))

− σ2
r

2κ2

(
γ − 1
γ

)2 (
τ − B(τ)− κ

2
B2(τ)

)
,

(61)

where Λ̃2 = λ2
B +

(
λS

1−ρ2SB

)2

− 2ρSBλB λS
1−ρ2SB

. Fix λI and write the indirect utility function before
retirement as

J(t, x, y, r) = max
(c,πS ,πB ,πI)

Et

[∫ T̃

t

e−δ(s−t)
1

1− γ
c1−γs ds+

1
1− γ

gcom(T̃ , r)γX1−γ
T̃

]
.

The Hamilton-Jacobi-Bellman equation associated with this problem is

δJ = L1J + L2J + L3J + L4J, (62)

where

L1J =
∂J

∂t
+ Jxr([x+ yF ]− yF ) + Jxy + Jyyα+

1
2
Jyyy

2β2

+ Jr(ϑ− κr) +
1
2
Jrrσ

2
r − JryyβρY Bσr, (63)

L2J = max
c

{
1

1− γ
c1−γ − cJx

}
, (64)

L3J = max
πS ,πB

{
Jxx(πBσBλB + πSσSλS) +

1
2
x2Jxx(π2

Bσ
2
B + π2

Sσ
2
S + 2πBπSρSBσBσS)

+ Jxyxyβ(ρY BπBσB + ρ̂Y SπSσS)− Jxrxσr(πBσB + πSρSBσS)
}
, (65)

L4J = max
πI

{
JxxπIλI +

1
2
x2Jxxπ

2
I + Jxyxyβρ̂Y πI

}
. (66)

We conjecture a solution of the form J(t, x, y, r) = 1
1−γ g(t, r)γ(x+ yF (t, r))1−γ . Substituting the

13See Sørensen (1999) for the case of terminal wealth only and see Wachter (2002) and Liu (2007) for how to

extend such solutions to intermediate consumption.
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relevant derivatives into L1J , we obtain

L1J =gγ(x+ yF )1−γ

(
r +

γ

1− γ
gt
g

+
γ

1− γ
gr
g

(ϑ− κr)− γ

2
σ2
r

(
gr
g

)2

+
γ

2(1− γ)
σ2
r

grr
g

)

+ gγ(x+ yF )−γy
(
Ft + (α− r)F + Fr(ϑ− κr − βρY Bσr) + γσr[σr − βρY B ]

gr
g
Fr +

1
2
σ2
rFrr + 1

)
+ gγ(x+ yF )−γ−1y2γ

(
−1

2
β2F 2 − 1

2
σ2
rF

2
r + βρY BσrFrF

)
.

As in the preceding proofs, the first-order condition for c implies that c = J
−1/γ
x , which leads

to (43) and
L2J =

γ

1− γ
gγ−1(x+ yF )1−γ .

Concerning L3J , the first-order conditions for πS , πB form a system of two equations. Solving
those we find

πS = − Jx
xJxx

λS
σS(1− ρ2

SB)
− yJxy
xJxx

β(ρ̂Y S − ρSBρY B)
σS(1− ρ2

SB)
,

πB = − Jx
xJxx

λB(1− ρ2
SB)− ρSBλS

σB(1− ρ2
SB)

+
Jxr
xJxx

σr
σB
− yJxy
xJxx

β(ρY B − ρSBρY S)
σB(1− ρ2

SB)
,

and inserting the derivatives of the conjectured indirect utility function we obtain (44) and (45).
Very tedious, but straightforward, computations lead to

L3J =gγ(x+ yF )1−γ

(
γ

2
σ2
r

(
gr
g

)2

− σrλB
gr
g

+
1

2γ

[
λ2
B +

(
λS

1− ρ2
SB

)2

− 2ρSBλB
λS

1− ρ2
SB

])

+ gγ(x+ yF )−γy
(
σrλBFr − β(λY − ρ̂Y λI)F − γσ2

r

gr
g
Fr + γρY Bσrβ

gr
g
F

)
+ gγ(x+ yF )−γ−1y2γ

(
1
2
σ2
rF

2
r +

1
2
β2(1− ρ̂2

Y )F 2 − ρY BσrβFFr
)
.

The first-order condition for πI implies that

πI = −λI
Jx
xJxx

− βρ̂Y
yJxy
xJxx

,

which with the conjectured J leads to (46) and

L4J = gγ(x+ yF )1−γ λ
2
I

2γ
− gγ(x+ yF )−γyF ρ̂Y βλI + gγ(x+ yF )−γ−1 γ

2
y2F 2β2ρ̂2

Y .

Substituting the expressions for LiJ back into the HJB-equation (62), we see that the terms
involving (x + yF )−γ−1 cancel out. The terms involving (x + yF )−γ cancel out exactly when F

satisfies the PDE

1
2
σ2
rFrr +

(
ϑ− κr + σr[λB − βρY B ]

)
Fr + Ft − (r − α+ βλY )F + 1 = 0, (67)
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where
λY = λB

ρY B − ρSBρSY
1− ρ2

SB

+ λS
ρSY − ρSBρY B

1− ρ2
SB

+ λI ρ̂Y .

The remaining terms all involve (x + yF )1−γ . They will cancel out exactly when g satisfies the
PDE

1
2
σ2
rgrr +

(
ϑ− κr +

γ − 1
γ

σrλB
)
gr + gt −

(
δ

γ
+
γ − 1
γ

r +
γ − 1
2γ2

Λ2

)
g + 1 = 0, (68)

where Λ2 = λ2
B+
(

λS
1−ρ2SB

)2

−2ρSBλB λS
1−ρ2SB

+λ2
I . The appropriate values at time T̃ are F (T̃ , r) = 0

and g(T̃ , r) = gcom(T̃ , r). Note that these PDEs are very similar to the bond pricing PDE in the
Vasicek model, which makes it natural to guess on exponential-affine solutions (integrated due to
the constant term 1 appearing in both the above PDEs). It is straightforward to check that the
solutions are indeed given by the expressions (41) and (42) with

A(τ) =
ϑ+ σr[λB − βρY B ]

κ
(τ − B(τ))− σ2

r

2κ2

(
τ − B(τ)− κ

2
B2(τ)

)
+ (λY β − α)τ, (69)

D(τ) =
(
δ

γ
+
γ − 1
2γ2

Λ2

)
τ +

ϑ+ γ−1
γ λBσr

κ

γ − 1
γ

(τ − B(τ))

− σ2
r

2κ2

(
γ − 1
γ

)2 (
τ − B(τ)− κ

2
B2(τ)

)
. (70)

This completes the proof. 2
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