Sample selectivity and the validity of international student achievement tests in economic research

Hanushek, Eric Alan; Woessmann, Ludger

CESifo Working Paper, No. 3007

Suggested Citation: Hanushek, Eric Alan; Woessmann, Ludger (2010) : Sample selectivity and the validity of international student achievement tests in economic research, CESifo Working Paper, No. 3007, Center for Economic Studies and Ifo Institute (CESifo), Munich

This Version is available at:
http://hdl.handle.net/10419/39018

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Sample Selectivity and the Validity of International Student Achievement Tests in Economic Research

Eric A. Hanushek
Ludger Woessmann

CESifo Working Paper No. 3007
Category 5: Economics of Education
March 2010

An electronic version of the paper may be downloaded
• from the SSRN website: www.SSRN.com
• from the RePEc website: www.RePEc.org
• from the CESifo website: www.CESifo-group.org/wp
Sample Selectivity and the Validity of International Student Achievement Tests in Economic Research

Abstract

Critics of international student comparisons argue that results may be influenced by differences in the extent to which countries adequately sample their entire student populations. In this research note, we show that larger exclusion and non-response rates are related to better country average scores on international tests, as are larger enrollment rates for the relevant age group. However, accounting for sample selectivity does not alter existing research findings that tested academic achievement can account for a majority of international differences in economic growth and that institutional features of school systems have important effects on international differences in student achievement.

JEL-Code: I20, O40, C83.

Keywords: sample selection, international student achievement tests, economic growth, educational production.

Eric A. Hanushek
Hoover Institution
Stanford University
USA - Stanford, CA 94305-6010
hanushek@stanford.edu

Ludger Woessmann
Ifo Institute for Economic Research at the
University of Munich
Poschingstrasse 5
Germany - 81679 Munich
woessmann@ifo.de

March 26, 2010

Woessmann gratefully acknowledges the hospitality and support provided by the W. Glenn Campbell and Rita Ricardo-Campbell National Fellowship of the Hoover Institution, Stanford University. Support has also come from the Pact for Research and Innovation of the Leibniz Association. Hanushek has been supported by the Packard Humanities Institute.
1. Introduction

Economic research has made increasing use of international student achievement data,¹ but critics suggest that underlying sampling issues might compromise any comparability across countries. Non-random differences in patterns of school enrollment, sample exclusions, and non-response are clearly able to influence rankings of countries on international league tables of average student achievement. The extent, however, to which such sample selection also affects results of analyses that use the international test score data is currently unknown. This research note draws on detailed information on sampling quality to estimate whether international differences in sample selection affect the outcomes of typical economic analyses.

We find that countries having more schools and students excluded from the targeted sample, having schools and students who are less likely to participate in the test, and having higher overall school enrollment at the relevant age level tend to perform better on the international tests. However, none of these sampling patterns affect the results of typical growth regressions and education production functions, implying that they are unrelated to the associations of interest in economic analyses.

In the political debate, poor performance on international achievement tests famously motivated the National Commission on Excellence in Education (1983) to declare the United States “A Nation at Risk”. Others have suggested, however, that this is a myth created by biased samples in other countries (Berliner and Biddle (1995)). To such critics, “The basic problem is student selectivity: The fewer the students who take the test, the higher the average score. That score … simply reflects the fact that the students represented in the test comparisons have been much more highly selected in some countries than in others” (Rotberg (1995), p. 1446; see also Bracey (1996); Prais (2003)).² But others disagree with the view that sample selection is a major source of bias in international achievement comparisons (e.g., Baker (1997); Adams (2003)).

² The tests included in our analyses have been devised in an international cooperative process between all participating countries with the intent of making the assessments independent of the culture or curriculum in any particular country. Yet, another criticism that is sometimes raised against international comparisons of student
Simple calculations indicate that in fact sampling bias certainly has the potential to move country mean test scores substantially. For example, if the exclusion propensity and student achievement are bivariate normally distributed and correlated at 0.5, exclusion rates of 10 percent – not uncommon in some countries – lead to an upward bias in the resulting country mean score of 10 percent of a standard deviation (see Organisation for Economic Co-operation and Development (2007)). Of course, the extent to which exclusion and performance are correlated is unknown. If exclusion is random, it does not bias results at all. But the calculation suggests that differential sampling quality may well affect overall country rankings despite the stringent technical standards and extensive efforts of quality assurance by the international testing organizations (e.g., Organisation for Economic Co-operation and Development (2009)).

The basic notion of measurement error in econometric analyses tells us that it is another matter whether and how such mismeasurement of country mean performance biases results of econometric analyses of relationships. First, any bias depends on whether sample selectivity is idiosyncratic or persistent over time – i.e., whether some countries have systematically more selective samples than others or not. If it is idiosyncratic, sample selectivity introduces classical measurement error that works against finding statistically significant associations: It attenuates the estimated coefficient on test scores for errors in an explanatory variable and reduces statistical power, increasing standard errors, for errors in the dependent variable. But, in applications that use averages of performance across several tests (as in most economic growth applications), the importance of any idiosyncratic measurement error will be lessened since the error variance is reduced by averaging. When sample selectivity is persistent across time, the second issue is whether it is correlated with the error term of the estimation equation. If it is orthogonal to the (conditional) variable whose association with test scores is of interest, even systematic sample selectivity simply works against finding statistically significant results. Only

achievement is that test items may be culturally biased or inappropriate for specific participating countries (e.g., Hopmann, Brinek, and Retzl (2007)). Adams, Berezner, and Jakubowski (2010) show that overall country rankings are remarkably consistent when countries are compared using just those PISA-2006 items that representatives of each specific country had initially expressed to be of highest priority for inclusion, and presumably most appropriate for their own school system. From the opposite perspective, one set international comparison (not employed here) was built on tests directly taken from the assessments used in the United States, but the results from these comparisons did not alter the low ranking of U.S. students (see Lapointe, Mead, and Phillips (1989)).

3 This statement refers to standard deviations at the student level. While varying across specific tests, this is roughly equivalent to twice the standard deviation in country mean scores.
if it is correlated with the error term of the equation of interest does systematic sample selectivity introduce bias to econometric analyses.

The next section investigates the correlation of sample selectivity with test scores. The subsequent sections provide evidence whether accounting for sample selectivity affects results of typical growth regressions and international education production functions, respectively.

2. Sample Selection and Average Test Scores

2.1 The Three Sources of Sample Selection in International Tests

It is useful to distinguish three main sources of discrepancies between the sample of students tested in a country and its total population of children at the age of interest. First, testing is always focused on students in school. Part of the children in the tested age range may no longer be in school, which eliminates them from the official target population of the international tests. This first problem is not associated with the testing so much as with the character of schooling in each country. Second, to a limited extent, national testing authorities are allowed to exclude certain schools and students from their national target population, mostly excluding small remote schools, schools serving students with disabilities, and individual students with disabilities or limited proficiency in the test language. Third, once the national sampling frame is set, non-responses may reduce the testing of students. Some of the sampled schools may not participate in the test, and some of the sampled students may be absent on the testing day. We will separately deal with each of these sources of sample selectivity, because each may have very different impacts on the validity of the testing and the importance of statistical bias.

Our empirical analysis focuses on the five international tests in mathematics and science conducted at the lower secondary level between 1995 and 2003. For consistency with the most recent economic growth research, we do not consider tests beyond 2003. We further restrict attention to tests in math and science, which are most readily comparable across countries. While documentation on the quality of sampling is mostly missing on the early international student achievement tests, since the mid-1990s the organizations responsible for the major international testing cycles – the International Association for the Evaluation of Educational

4 Studies such as Hanushek and Woessmann (2009) that include country fixed effects deal with possible bias from systematic sampling errors by removing time-invariant factors for each country.
Achievement (IEA) and the Organisation for Economic Co-operation and Development (OECD) – provide detailed documentation of the extent to which each participating country covered the underlying student population in its sampling. In 1995, 1999, and 2003, the IEA conducted the Trends in International Mathematics and Science Study (TIMSS), whose common target population is students enrolled in the upper of the two adjacent grades that contain the largest proportion of 13-year-old students. In 2000 and 2003, the OECD conducted the Programme for International Student Assessment (PISA), whose target population is 15-year-old students.

Both tests allow exclusions for small geographically remote schools, for schools focused on students with intellectual or functional disabilities, and for individual students in the latter group within schools. Excluding students from the target sample is generally permissible for students who are unable to follow the general instruction of the test, but not simply because of poor academic performance or normal disciplinary problems. To limit such exclusions, the tests generally require participating countries to keep exclusion rates below 5 percent (see Mullis, Martin, Gonzalez, and Chrostowski (2004) and Organisation for Economic Co-operation and Development (2004) for details).

Sampled schools in many nations are not required to participate. Moreover, individual students may be absent on the day of the assessment. Again, to limit the extent of such non-participation, response rates are generally deemed acceptable only if they reach 85 percent both at the school level and at the student level (80 percent at the student level in PISA). Substantial breaches of these sampling requirements led the Netherlands and the United Kingdom to be excluded from PISA reporting in 2000 and 2003, respectively, and several countries to be annotated as not meeting sampling guidelines in the TIMSS results tables.

Given the nature of the permissible exclusions – small, remote schools and students with special needs or language deficiencies – higher exclusion rates are likely to introduce positive selection bias into estimates of national mean performance. The direction of selection bias is not as obvious for non-response rates, but if weaker performing schools and students are less likely to participate in the test, it would go in the same direction as for exclusion rates.

Even less clear is the direction of bias for enrollment rates in tested ages. Given our focus on tests in lower secondary school, virtually all developed countries have close to universal enrollment. As a consequence, sampling differences mostly come into play when comparing developed to less-developed countries. It is generally the case that students with higher ability or
other background features supportive of higher achievement are more likely to be enrolled in school, introducing bias similar to exclusion rates. But at the country level, this bias is likely to be overwhelmed by the fact that low enrollment rates in lower secondary education are a sign for a generally underdeveloped or dysfunctional education system. On net, both biases are likely to be at work, giving rise to the possibility of a positive association between enrollment rates and test performance.

The first two columns of Table 1 report descriptive statistics of the data on sample coverage for the 196 country observations on the five international tests.\(^5\) Average school enrollment at testing age is 91.8 percent. With the exceptions of Mexico and Turkey, though, all OECD countries come close to universal enrollment at the age range of the underlying tests. Other countries with relatively low enrollment rates include Albania, Brazil, Ghana, Macedonia, Morocco, and Peru. The average exclusion rate (from elimination of schools by the central testing authorities) is 3.1 percent. The exclusion rate is higher than 10 percent on three occasions – Israel in TIMSS 1999 and 2003 (16 and 22.5 percent) and Macedonia in TIMSS 2003 (12.5). On an additional nine occasions exclusion rates fall between 7 and 10 percent, covering nine different countries and all five tests (except TIMSS 1999). The average non-response rate, which arises at the school level, is 11.6 percent. The non-response is higher than 30 percent on eight occasions: Israel in TIMSS 1995 (54.9 percent), the United States in PISA 2000 and 2003 (40.2 and 43.6), the United Kingdom in PISA 2000 and TIMSS 2003 (33.4 and 39), and the Netherlands (40.2), South Africa (37.9), and Bulgaria (36.4) in TIMSS 1995.

2.2 The Correlation of Sample Coverage with National Mean Test Scores

Table 1 (column 3) also reports the correlations of the components of sample selection with reported mean test performance of countries across the five international tests. The correlations reveal that exclusion rates and non-response rates are as expected significantly positively associated with reported test scores: The larger the share of schools and students excluded by the

\(^5\) The sources for the data on population coverage and participation rates in the different TIMSS and PISA tests are Beaton et al. (1996), Mullis et al. (2000), Mullis, Martin, Gonzalez, and Chrostowski (2004), and Organisation for Economic Co-operation and Development (2003, 2004). Because the TIMSS tests did not report school enrollment rates, we draw on data on gross enrollment rates in lower secondary education available from the World Bank (2010) to measure enrollment rates relevant for the TIMSS tests in countries where we do not have enrollment information from PISA. We predict comparable enrollment rates for countries not participating in PISA based on a regression of enrollment rates reported by PISA on the gross enrollment rates (capped at full enrollment) for the 37 countries with both measures available.
national testing authority and the larger the share of schools and students sampled but not participating, the higher the reported country mean test score. At the same time, enrollment rates are also positively correlated with test scores, suggesting that there is no simple upward bias in the test scores of countries where a substantial share of the age group is not enrolled in school.

These overall results are quite robust. The significant correlation of the three measures of sample coverage with test scores is robust to controlling for fixed effects for the five underlying tests. The reported correlations are similar when test scores in math and science are used separately. Looking at correlations within each of the five international tests, enrollment rates are always positively significantly correlated with test scores. Correlations with exclusion rates are significant in PISA 2003, marginally significant in PISA 2000 and TIMSS 2003, and not otherwise. Correlations with non-response rates are significant in the PISA tests but not in the TIMSS tests. As the last two columns of Table 1 show, exclusion rates and non-response rates are significantly correlated with enrollment rates but not with each other. When all three are entered in a regression to predict test scores, only enrollment rates remain significant.

To test whether some countries systematically sample smaller shares of the population than others, Table 2 reports correlations of exclusion rates and non-response rates across tests. (Of course, enrollment rates are relatively constant over the short time period and are not reported in the table). Non-response rates are positively correlated across the five tests. By contrast, exclusion rates are significantly correlated in only three of the ten pairs of tests. Thus, sample selectivity is only to a limited degree systematic over time and has a substantial idiosyncratic component, particularly in terms of exclusion decisions made by national testing authorities.

6 When subdividing exclusion and non-response rates into a school-level and a within-school student-level component each, both components of the non-response rate are positively correlated with test scores, whereas only the student-level component of the exclusion rate is significantly correlated with test scores.

7 Combining exclusion and non-response rates into one non-participation rate per country also yields a positive correlation with test scores. Combining all three measures of sample coverage into one measure of total non-participation yields a negative correlation with test scores, i.e., the total is dominated by the negative correlation of non-enrollment with test scores.

8 In PISA 2003, subcategories of student exclusions are reported for students with functional disability, intellectual disability, limited assessment language proficiency, and other. Exclusions due to functional disability are most closely correlated with test scores, exclusions due to intellectual disability and limited language proficiency only in some subjects, and the residual other category not.

9 Note, however, that Hanushek and Woessmann (2009) find that changes in enrollment rates of over longer periods of time are uncorrelated with trends in test scores.
3. Sample Selection and the Results of Growth Regressions

Economists have focused on two uses of international test scores: modeling cross-country growth differences and modeling how educational institutions affect student achievement (see Hanushek and Woessmann (forthcoming)). It is possible to illustrate the impact of sample selection on results in both areas by introducing measures of test participation rates into representative published models of each type. In this section, we analyze the effect of potentially biased testing on the analysis of long-term economic growth.

We employ the basic growth regression framework of Hanushek and Woessmann (2008), where the average annual growth rate in real GDP per capita over 1960-2000 is expressed as a function of initial GDP per capita, initial years of schooling, and a test score measure that combines performance on all international student achievement tests from primary through upper secondary school between 1964 and 2003. The first column of Table 3 replicates the basic model of Hanushek and Woessmann (2008). The second column reports the same model for the sample of 45 countries for which we have information on sampling quality. Test scores have a significant positive effect on economic growth, with a one standard deviation increase in test scores associated with 1.74-1.98 percentage points of additional average annual growth.10

Column (3) adds our three measures of sample coverage – enrollment, exclusion, and non-response rates – to the growth model. They enter statistically insignificantly, individually or jointly, and do not significantly affect the coefficient on test scores. That is, the variation in the extent to which sampling is selective across countries is orthogonal to the variation in conditional economic growth. Thus, the positive association between test scores and economic growth cannot be explained by international differences in sample selectivity.11

10 Concerns about identification of causal impacts frequently arise in such growth models. While not conclusive, instrumental-variable, first-differenced, and differences-in-differences models are developed in Hanushek and Woessmann (2009) to rule out commonly hypothesized threats to the identification of causal effects of test scores on economic growth.

11 The same results hold if exclusion rates and non-response rates are summed up to a joint non-participation measure, and if all three measures of sample coverage are combined into a measure of total non-participation. When entering measures of school-level and within-school student-level non-response separately, neither enters significantly or affects qualitative results. When entering measures of school-level and within-school exclusions separately, school-level exclusions tend to enter marginally significantly negatively, without affecting the coefficient on test scores. None of the exclusion subcategories available in PISA 2003 – functional disability, intellectual disability, limited language proficiency, and other – captures statistical significance or affects the test score result. Controlling for limited coverage of national populations due to exclusion of certain regions or non-test-language schools from the national desired population, as is the case in a few countries in the TIMSS tests, also does not affect the qualitative results.
To this point, the test score measure refers to all international achievement tests, whereas our sampling information refers only to the five international tests conducted since 1995. In column (4), we therefore use a test score measure created from just the five tests at the lower secondary level in 1995-2003 for which we have sampling information. While the point estimate on this test score measure is slightly (but not significantly) smaller – presumably because of attenuation when using a measure based on fewer test information – qualitative results on the effect of including sampling information are the same.12

To ensure that the latter specification does not just capture test score variation that emerged towards the end (1995-2003) of the growth period of our analysis (1960-2000), column (5) uses the average test score of all international tests (1964-2003) as an instrument for the recent tests. Qualitative results are unchanged in this two-stage least-squares regression. In column (6), we restrict the analysis to only that part of the variation in recent test scores that is related to test score variation on the early tests (1964-1985), ensuring that only test score variation that can be traced back to the early tests is used in the analysis. While this reduces the sample to the 20 countries that participated in the early tests, the qualitative result on the effect of test scores on economic growth is unaffected. The same is true if we use only growth rates from 1980-2000 in this final specification (coefficient on test score equals 1.707). This final specification uses only test score variation in the identification that mostly pre-dates the growth rates while at the same time using only variation related to tests for which we have the relevant sampling information as control variables.

In additional analyses, we tested whether results are affected by how often countries participated in international tests, which might be another source of differential reliability of international test information across countries. Qualitative results are unaffected by controlling for how often countries participated and for indicators of participation in early or recent tests, by looking at sub-samples of countries participating fewer than or at least five times and participating in the early tests or not, and by weighting regressions by the number of test participations per country.13

12 Hanushek and Woessmann (2009) present extensive sensitivity tests on the use of varying specifications, different assessments of performance, and different time periods for tests and growth.

13 Detailed results are available from the authors on request.
4. Sample Selection and the Results of Education Production Functions

A second use of international test data is focused on how institutional features of national school systems affect student outcomes, a central question in the analysis of educational production functions using international data. This estimation has systematically found that institutional features of school systems capturing choice, accountability, and autonomy account for a substantial part of the cross-country variation in student achievement, whereas measures of school resources generally do not (see Hanushek and Woessmann (forthcoming) for a review). In this context, sample selectivity may be a particular issue. For example, evidence from Florida suggests that schools may respond to high-stakes test-based school accountability by excluding low-performing students from counting on the accountability test through reclassifying them as disabled (Figlio and Getzler (2006)). On the other hand, the tests that provide the internationally comparable achievement data are not the tests underlying the accountability systems, mitigating worries that incentives for sample selection affect the international testing.

The first column of Table 4 replicates a basic set of estimates of international education production functions based on Woessmann, Luedemann, Schuetz, and West (2009)). These estimates employ PISA-2003 math data at the student level and pool all OECD countries with available data. Apart from the institutional measures reported here – two measures of choice, six measures of accountability, and four measures of autonomy and their interaction with external exit exams – the model includes 15 student control variables such as age, gender, and immigrant status; 17 family-background controls such as family status, parental occupation, and the number of books at home; and 10 school-input controls such as educational expenditure, class size, shortage of materials, and teacher education (not shown here). The main pattern of results on the institutional effects is a positive association of student achievement with the share of privately operated schools, government funding, external exit exams, and school-level accountability measures. Several school-level measures of school autonomy are negatively related to achievement in systems without accountability, but positively in those with accountability.

Column (2) adds our three measures of sample coverage. Enrollment, exclusion, and non-response rates are jointly insignificant, and the pattern of results remains unaffected.14 Again, the non-response rate is actually marginally significant, but negative, i.e., countries with higher non-response rates perform worse, rather than better, after controlling for the components of the production function. Analyses using the school-level and within-school student-level components of exclusion and non-response rates

14
the results suggest that sample selectivity is orthogonal to the associations of interest in international education production functions and thus does not affect their results.

In line with the results reported above, column (3) shows that enrollment rates are in fact positively related to student achievement in PISA 2003 as long as the components of the production function are not controlled for. (Exclusion rates and non-response rates are not significantly related to test scores in this OECD country sample, also when entered individually.) However, as column (4) shows, this association is driven solely by the two countries with enrollment rates below 90 percent (Mexico and Turkey).

5. Conclusions

Enrollment, exclusion, and non-response rates are positively correlated with reported country mean scores on international student achievement tests. But the sample selectivity indicated by these measures does not affect the results of typical research on economic growth and educational production. The international variation in selectivity of student samples is orthogonal to the associations of interest in these economic literatures.

separately reveal that the negative coefficient on the non-response rate is solely due to its school-level component. Qualitative results remain unaffected when including the components separately. Combined versions of the three sample coverage measures do not enter the model significantly and do not affect the main results about the importance of institutional features.
References

Hopmann, Stefan Thomas, Gertrude Brinek, and Martin Retzl, eds. 2007. PISA zufolge PISA: Hält PISA, was es verspricht? / PISA according to PISA: Does PISA keep what it promises? Vienna: LIT Verlag.

Table 1: Sample coverage – descriptive statistics and correlation with test scores

<table>
<thead>
<tr>
<th>Source of sample</th>
<th>Mean (Std. dev.)</th>
<th>Min</th>
<th>Max</th>
<th>Correlation with</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>Test score (4)</td>
</tr>
<tr>
<td>Enrollment rate</td>
<td>91.8 (11.3)</td>
<td>42.7</td>
<td>103.0</td>
<td>0.571***</td>
</tr>
<tr>
<td>Exclusion rate</td>
<td>3.1 (2.8)</td>
<td>0.0</td>
<td>22.5</td>
<td>0.133*</td>
</tr>
<tr>
<td>Non-response rate</td>
<td>11.6 (9.4)</td>
<td>0.0</td>
<td>54.9</td>
<td>0.198***</td>
</tr>
</tbody>
</table>

Table 2: Sample coverage – correlation across tests

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMSS 1999</td>
<td>0.132</td>
<td>0.670***</td>
<td>-0.036</td>
<td>-0.266</td>
<td>PISA 2000</td>
<td>0.531***</td>
<td>-0.365</td>
</tr>
<tr>
<td></td>
<td>(0.519)</td>
<td>(0.000)</td>
<td>(0.866)</td>
<td>(0.163)</td>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>TIMSS 2003</td>
<td>0.514***</td>
<td>0.336</td>
<td>0.531***</td>
<td>0.577***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.100)</td>
<td>(0.003)</td>
<td>(0.001)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PISA 2000</td>
<td>0.132</td>
<td>0.670***</td>
<td>-0.036</td>
<td>-0.266</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.519)</td>
<td>(0.000)</td>
<td>(0.866)</td>
<td>(0.163)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PISA 2003</td>
<td>0.514***</td>
<td>0.336</td>
<td>0.531***</td>
<td>0.577***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.100)</td>
<td>(0.003)</td>
<td>(0.001)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Columns (1)-(4): correlations among exclusion rates across tests. Columns (5)-(8): correlations among non-response rates across tests. p-values in parentheses. Significance level: *** 1 percent, ** 5 percent, * 10 percent.
Table 3: Sample coverage and the role of test scores in growth regressions

<table>
<thead>
<tr>
<th>Test-score measure</th>
<th>All grades and years (AA)</th>
<th>Lower secondary, 1995-2003 (LR)</th>
<th>LR instrumented by AA before 1985 (LR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)(^a)</td>
<td>(3)</td>
</tr>
<tr>
<td>Test score</td>
<td>1.980(***)</td>
<td>1.741(***)</td>
<td>1.690(***)</td>
</tr>
<tr>
<td></td>
<td>(0.217)</td>
<td>(0.228)</td>
<td>(0.278)</td>
</tr>
<tr>
<td>Years of schooling 1960</td>
<td>0.026</td>
<td>0.041</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>(0.078)</td>
<td>(0.074)</td>
<td>(0.079)</td>
</tr>
<tr>
<td>GDP per capita 1960</td>
<td>-0.302(***)</td>
<td>-0.294(***)</td>
<td>-0.310(***)</td>
</tr>
<tr>
<td></td>
<td>(0.055)</td>
<td>(0.051)</td>
<td>(0.052)</td>
</tr>
<tr>
<td>Enrollment rate</td>
<td>0.009</td>
<td>0.011</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.010)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>Exclusion rate</td>
<td>-0.055</td>
<td>-0.050</td>
<td>-0.049</td>
</tr>
<tr>
<td></td>
<td>(0.058)</td>
<td>(0.057)</td>
<td>(0.057)</td>
</tr>
<tr>
<td>Non-response rate</td>
<td>0.016</td>
<td>0.012</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.015)</td>
<td>(0.015)</td>
</tr>
<tr>
<td></td>
<td>(0.855)</td>
<td>(0.863)</td>
<td>(0.962)</td>
</tr>
<tr>
<td>No. of countries</td>
<td>50</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>R(^2) (adj.)</td>
<td>0.728</td>
<td>0.685</td>
<td>0.680</td>
</tr>
<tr>
<td>F-test (3 coverage rates)</td>
<td>0.79</td>
<td>0.74</td>
<td>0.68</td>
</tr>
<tr>
<td>p-value</td>
<td>(0.505)</td>
<td>(0.533)</td>
<td>(0.571)</td>
</tr>
<tr>
<td>F-test (instr. in 1(^{st}) stage)</td>
<td>311.92</td>
<td>32.14</td>
<td></td>
</tr>
</tbody>
</table>

a. Sample of countries with available information on measures of sample coverage.
b. Two-stage least-squares regression.
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share of privately operated schools</td>
<td>57.585***</td>
<td>56.610***</td>
<td>(8.355)</td>
<td>(9.239)</td>
</tr>
<tr>
<td>Share of government funding</td>
<td>81.839***</td>
<td>81.677***</td>
<td>(22.327)</td>
<td>(25.595)</td>
</tr>
<tr>
<td>External exit exams (EEE)</td>
<td>25.338</td>
<td>21.625</td>
<td>(10.054)</td>
<td>(10.283)</td>
</tr>
<tr>
<td>Assessments used for retention/promotion</td>
<td>12.185***</td>
<td>12.430***</td>
<td>(1.631)</td>
<td>(1.663)</td>
</tr>
<tr>
<td>Internal monitoring of teacher lessons</td>
<td>4.557***</td>
<td>5.601***</td>
<td>(1.343)</td>
<td>(1.391)</td>
</tr>
<tr>
<td>External monitoring of teacher lessons</td>
<td>3.796***</td>
<td>3.793***</td>
<td>(1.415)</td>
<td>(1.416)</td>
</tr>
<tr>
<td>Assessments used for external comparisons</td>
<td>2.134*</td>
<td>3.172**</td>
<td>(1.259)</td>
<td>(1.291)</td>
</tr>
<tr>
<td>Assessments used to group students</td>
<td>-6.065***</td>
<td>-5.344***</td>
<td>(1.301)</td>
<td>(1.325)</td>
</tr>
<tr>
<td>Autonomy in formulating budget</td>
<td>-9.609***</td>
<td>-10.332***</td>
<td>(2.178)</td>
<td>(2.215)</td>
</tr>
<tr>
<td>EEE x Autonomy in formulating budget</td>
<td>9.143***</td>
<td>8.746***</td>
<td>(3.119)</td>
<td>(3.154)</td>
</tr>
<tr>
<td>Autonomy in establishing starting salaries</td>
<td>-8.632***</td>
<td>-5.478*</td>
<td>(3.251)</td>
<td>(3.280)</td>
</tr>
<tr>
<td>EEE x Autonomy in establishing starting salaries</td>
<td>5.868</td>
<td>3.810</td>
<td>(3.980)</td>
<td>(3.988)</td>
</tr>
<tr>
<td>Autonomy in determining course content</td>
<td>0.175</td>
<td>0.669</td>
<td>(1.907)</td>
<td>(1.915)</td>
</tr>
<tr>
<td>EEE x Autonomy in determining course content</td>
<td>3.224</td>
<td>3.405</td>
<td>(2.858)</td>
<td>(2.876)</td>
</tr>
<tr>
<td>Autonomy in hiring teachers</td>
<td>20.659***</td>
<td>20.896***</td>
<td>(2.249)</td>
<td>(2.299)</td>
</tr>
<tr>
<td>EEE x Autonomy in hiring teachers</td>
<td>-28.935***</td>
<td>-27.005***</td>
<td>(3.365)</td>
<td>(3.425)</td>
</tr>
<tr>
<td>Enrollment rate</td>
<td>0.143</td>
<td>2.424***</td>
<td>(0.300)</td>
<td>(0.382)</td>
</tr>
<tr>
<td>Exclusion rate</td>
<td>0.577</td>
<td>-3.225</td>
<td>(0.300)</td>
<td>(2.091)</td>
</tr>
<tr>
<td>Non-response rate</td>
<td>-0.523*</td>
<td>0.291</td>
<td>(0.302)</td>
<td>(0.440)</td>
</tr>
<tr>
<td>Students</td>
<td>219,794</td>
<td>219,794</td>
<td>219,794</td>
<td>184,956</td>
</tr>
<tr>
<td>Schools</td>
<td>8,245</td>
<td>8,245</td>
<td>8,245</td>
<td>6,962</td>
</tr>
<tr>
<td>Countries</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>27</td>
</tr>
<tr>
<td>R^2</td>
<td>0.390</td>
<td>0.391</td>
<td>0.070</td>
<td>0.005</td>
</tr>
<tr>
<td>F-test (3 coverage rates)</td>
<td>0.98</td>
<td>14.42</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.419</td>
<td>0.000</td>
<td>0.470</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Dependent variable: PISA 2003 international mathematics test score. Sample: OECD countries. Least-squares regressions weighted by students’ sampling probability. The models additionally control for 15 variables of student characteristics, 17 variables of family background, 10 variables of school inputs, imputation dummies, and interaction terms between imputation dummies and the variables. See Woessmann, Luedemann, Schuetz, and West (2009) and Hanushek and Woessmann (forthcoming) for details on the basic specification. Robust standard errors adjusted for clustering at the school level in parentheses (clustering at country level for all country-level variables, which here are private operation, government funding, external exit exams, and the three measures of sample coverage). Significance level (based on clustering-robust standard errors): *** 1 percent, ** 5 percent, * 10 percent. a. Sample of countries with enrollment rates of at least than 90 percent (excludes Mexico and Turkey).
2941 Peter Debaere, Holger Görg and Horst Raff, Greasing the Wheels of International Commerce: How Services Facilitate Firms’ International Sourcing, February 2010

2942 Emanuele Forlani, Competition in the Service Sector and the Performances of Manufacturing Firms: Does Liberalization Matter?, February 2010

2943 James M. Malcomson, Do Managers with Limited Liability Take More Risky Decisions? An Information Acquisition Model, February 2010

2944 Florian Englmaier and Steve Leider, Gift Exchange in the Lab – It is not (only) how much you give …, February 2010

2945 Andrea Bassanini and Giorgio Brunello, Barriers to Entry, Deregulation and Workplace Training: A Theoretical Model with Evidence from Europe, February 2010

2946 Jan-Emmanuel De Neve, James H. Fowler and Bruno S. Frey, Genes, Economics, and Happiness, February 2010

2947 Camille Cornand and Frank Heinemann, Measuring Agents’ Reaction to Private and Public Information in Games with Strategic Complementarities, February 2010

2948 Roel Beetsma and Massimo Giuliodori, Discretionary Fiscal Policy: Review and Estimates for the EU, February 2010

2949 Agnieszka Markiewicz, Monetary Policy, Model Uncertainty and Exchange Rate Volatility, February 2010

2950 Hans Dewachter and Leonardo Iania, An Extended Macro-Finance Model with Financial Factors, February 2010

2951 Helmuth Cremer, Philippe De Donder and Pierre Pestieau, Education and Social Mobility, February 2010

2952 Zuzana Brixiová and Balázs Égert, Modeling Institutions, Start-Ups and Productivity during Transition, February 2010

2953 Roland Strausz, The Political Economy of Regulatory Risk, February 2010

2954 Sanjay Jain, Sumon Majumdar and Sharun W. Mukand, Workers without Borders? Culture, Migration and the Political Limits to Globalization, February 2010

2955 Andreas Irmen, Steady-State Growth and the Elasticity of Substitution, February 2010

2956 Bengt-Arne Wickström, The Optimal Babel – An Economic Framework for the Analysis of Dynamic Language Rights, February 2010
2957 Stefan Bauernschuster and Helmut Rainer, From Politics to the Family: How Sex-Role Attitudes Keep on Diverging in Reunified Germany, February 2010

2959 Betsey Stevenson, Beyond the Classroom: Using Title IX to Measure the Return to High School Sports, February 2010

2960 R. Quentin Grafton, Tom Kompas and Ngo Van Long, Biofuels Subsidies and the Green Paradox, February 2010

2961 Oliver Falck, Stephan Heblich, Alfred Lameli and Jens Suedekum, Dialects, Cultural Identity, and Economic Exchange, February 2010

2962 Bård Harstad, The Dynamics of Climate Agreements, February 2010

2963 Frederick van der Ploeg and Cees Withagen, Is There Really a Green Paradox?, February 2010

2964 Ingo Vogelsang, Incentive Regulation, Investments and Technological Change, February 2010

2965 Jan C. van Ours and Lenny Stoeldraijer, Age, Wage and Productivity, February 2010

2966 Michael Hoel, Climate Change and Carbon Tax Expectations, February 2010

2967 Tommaso Nannicini and Roberto Ricciuti, Autocratic Transitions and Growth, February 2010

2968 Sebastian Brauer and Frank Westermann, A Note on the Time Series Measure of Conservatism, February 2010

2969 Wolfram F. Richter, Efficient Education Policy – A Second-Order Elasticity Rule, February 2010

2970 Tomer Blumkin, Yoram Margalioth and Efraim Sadka, Taxing Children: The Redistributive Role of Child Benefits – Revisited, February 2010

2971 Chang Woon Nam and Georg Wamser, Application of Regionally Varying Additionality Degrees in the Practice of EU Cohesion Policy, February 2010

2972 Ali Bayar, Frédéric Dramais, Cristina Mohora, Masudi Opese and Bram Smeets, Modeling Russia for Climate Change Issues, February 2010

2973 Magnus Söderberg, Informal Benchmarks as a Source of Regulatory Threat in Unregulated Utility Sectors, March 2010

2974 Piotr Wdowiński and Marta Malecka, Asymmetry in Volatility: A Comparison of Developed and Transition Stock Markets, March 2010
2975 Frans van Winden, Michal Krawczyk and Astrid Hopfensitz, Investment, Resolution of Risk, and the Role of Affect, March 2010

2976 Hyun-Ju Koh and Nadine Riedel, Do Governments Tax Agglomeration Rents?, March 2010

2977 Johann K. Brunner and Susanne Pech, Optimum Taxation of Bequests in a Model with Initial Wealth, March 2010

2978 Guglielmo Maria Caporale and Nicola Spagnolo, Stock Market Integration between three CEECs, Russia and the UK, March 2010

2979 Florian Englmaier, Ales Filipi and Ravi Singh, Incentives, Reputation and the Allocation of Authority, March 2010

2980 Konstantinos Angelopoulos, George Economides and Apostolis Philippopoulou, What is the Best Environmental Policy? Taxes, Permits and Rules under Economic and Environmental Uncertainty, March 2010

2981 Frederick van der Ploeg, Rapacious Resource Depletion, Excessive Investment and Insecure Property Rights, March 2010

2982 Wolfram F. Richter and Christoph Braun, Efficient Subsidization of Human Capital Accumulation with Overlapping Generations and Endogenous Growth, March 2010

2983 Francesco Cinnirella, Marc Piopiunik and Joachim Winter, Why Does Height Matter for Educational Attainment? Evidence from German Pre-Teen Children, March 2010

2984 Bernard Van Praag, Well-being Inequality and Reference Groups – An Agenda for New Research, March 2010

2985 Francesca Barion, Raffaele Miniaci, Paolo M. Panteghini and Maria Laura Parisi, Profit Shifting by Debt Financing in Europe, March 2010

2988 Emanuele Massetti and Lea Nicita, The Optimal Climate Policy Portfolio when Knowledge Spills across Sectors, March 2010

2989 Helmut Rainer and Thomas Siedler, Family Location and Caregiving Patterns from an International Perspective, March 2010

2990 Toru Kikuchi and Ngo Van Long, A Simple Model of Service Offshoring with Time Zone Differences, March 2010
Assaf Razin, Efraim Sadka and Benjarong Suwankiri, Migration and the Welfare State: Dynamic Political-Economy Theory, March 2010

Bård Harstad, Buy Coal! Deposit Markets Prevent Carbon Leakage, March 2010

Sven Neelsen and Thomas Stratmann, Effects of Prenatal and Early Life Malnutrition: Evidence from the Greek Famine, March 2010

Claude Hillinger and Bernd Süßmuth, The Quantity Theory of Money: An Assessment of its Real Linchpin Prediction, March 2010

Matthew M. Chingos and Martin R. West, Do More Effective Teachers Earn More Outside of the Classroom?, March 2010

Laurence Jacquet and Dirk Van de gaer, A Comparison of Optimal Tax Policies when Compensation or Responsibility Matter, March 2010

Valentina Bosetti, Carlo Carraro, Romain Duval and Massimo Tavoni, What Should we Expect from Innovation? A Model-Based Assessment of the Environmental and Mitigation Cost Implications of Climate-Related R&D, March 2010

Scott Alan Carson, Nineteenth Century Stature and Family Size: Binding Constraint or Productive Labor Force?, March 2010

Jukka Pirttilä and Ilpo Suoniemi, Public Provision, Commodity Demand and Hours of Work: An Empirical Analysis, March 2010

Bertrand Candelon and Franz C. Palm, Banking and Debt Crises in Europe: The Dangerous Liaisons?, March 2010

Joan Costa-i-Font and Marin Gemmill-Toyama, Does Cost Sharing really Reduce Inappropriate Prescriptions?, March 2010

Scott Barrett, Climate Treaties and Backstop Technologies, March 2010

Hans Jarle Kind, Tore Nilssen and Lars Sørgard, Price Coordination in Two-Sided Markets: Competition in the TV Industry, March 2010

Jay Pil Choi and Heiko Gerlach, Global Cartels, Leniency Programs and International Antitrust Cooperation, March 2010

Aneta Hryckiewicz and Oskar Kowalewski, Why do Foreign Banks Withdraw from other Countries? A Panel Data Analysis, March 2010

Eric A. Hanushek and Ludger Woessmann, Sample Selectivity and the Validity of International Student Achievement Tests in Economic Research, March 2010