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Abstract 
 
This paper shows that non-linearities imposed by a neoclassical production function alone can 
generate time-varying and asymmetric risk premia over the business cycle. These (empirical) 
key features become relevant, and asset market implications improve substantially when we 
allow for non-normalities in the form of rare disasters. We employ analytical solutions of 
dynamic stochastic general equilibrium models, including a novel solution with endogenous 
labor supply, to obtain closed-form expressions for the risk premium in production 
economies. In contrast to endowment economies, the curvature of the policy functions affects 
the risk premium through controlling the individual’s effective risk aversion. 
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1 Introduction

“... the challenge now is to understand the economic forces that determine the

stochastic discount factor, or put another way, the rewards that investors demand

for bearing particular risks.” (Campbell, 2000, p.1516)

In general equilibrium models, the stochastic discount factor is not only determined by

the consumption-based first-order condition, but also linked to business cycle characteristics.

In macroeconomics, dynamic stochastic general equilibrium models (DSGE) have been very

successful in explaining co-movements in aggregate data, but relatively less progress has

been made to reconcile their asset market implications with financial data (cf. Grinols and

Turnovsky, 1993; Jermann, 1998, 2010; Tallarini, 2000; Lettau and Uhlig, 2000; Boldrin,

Christiano and Fisher, 2001; Lettau, 2003; Campanale, Castro and Clementi, 2010).1 One

main advantage of using general equilibrium models to explain asset market phenomena is

that the asset-pricing kernel is consistent with the macro dynamics, which offers excellent

guidance to the future development of models in both macroeconomics and finance.

However, surprisingly little is known about the risk premium in non-linear DSGE models.2

At least two primary questions present themselves. Which economic forces determine the

market risk premium in general equilibrium? What are the implications of using production

based models compared to the endowment economy? This paper fills the gap by studying

asset pricing implications of prototype DSGE models analytically.3 Why is this important?

We argue that a clear understanding of the risk premium can best be achieved by working

out analytical solutions. These solutions are shown to be important knife-edge cases which

can therefore be used to shed light on our numerical results.

In a nutshell, this paper shows that a neoclassical production function alone generates

key features of the risk premium. The economic intuition is that individual’s effective risk

aversion, excluding singular cases, is not constant in a neoclassical production economy.

We use analytical solutions of DSGE models. For this purpose we readopt formulating

models in continuous-time (as in Merton, 1975; Eaton, 1981; Cox, Ingersoll and Ross, 1985)

which gives closed-form solutions for a broad class of models and parameter sets.4 Recent

research emphasizes the importance of non-linearities and non-normalities in explaining busi-

1There is an increasing interest in DSGE models in finance (cf. Kaltenbrunner and Lochstoer, 2006). A
survey of the literature on the intersection between macro and finance is Cochrane (2008, chap. 7).

2Grinols and Turnovsky (1993) and Turnovsky and Bianconi (2005) study asset pricing implications of
aggregate risk and/or idiosyncratic shocks in stochastic endogenous growth models with a quasi-linear pro-
duction technology. Our formulation focuses on non-linear DSGE models with transitional dynamics.

3Our approach differs from the ‘analytical’ approach of Campbell (1994), as we obtain exact solutions.
4Analytical solutions to continuous-time DSGE models can be found in Turnovsky (1993, 2000), Corsetti

(1997), Wälde (2005), Turnovsky and Smith (2006), and Posch (2009).



ness cycle dynamics for the US economy (Fernández-Villaverde and Rubio-Ramı́rez, 2007;

Justiniano and Primiceri, 2008; Posch, 2009). To illustrate our general equilibrium pricing

approach, the starting point is Lucas’ fruit-tree endowment economy with rare disasters.

We obtain closed-form expressions for the ‘implicit risk premium’ from the Euler equation

and relate it to the ‘market risk premium’. Subsequently the framework is extended to a

neoclassical production economy and (non-tradable) human wealth with endogenous labor

supply. Our approach still gives closed-form expressions under parametric restrictions.

The major findings can be summarized as follows. Non-linearities in DSGE models can

generate time-varying and asymmetric risk premia over the business cycle.5 Although these

key features of the risk premium are negligible in the standard real business cycle model, we

show that they become relevant, and asset market implications improve substantially, when

we allow for non-normalities in the form of rare disasters (Rietz, 1988; Barro, 2006, 2009).

Our result is based on the finding that the individual’s effective risk aversion is not constant

for non-homogeneous consumption functions (cf. Carroll and Kimball, 1996).6

One caveat of discrete-time models is the lack of analytical solutions. To some extent,

the gap between the literature of asset pricing models in finance using endowment models

and typically non-linear production economies in dynamic macroeconomics is due to the

difficulty of solving these models. In particular by focusing on the effects of uncertainty,

the traditional approach of linearization about the non-stochastic steady state does not

provide an adequate framework. Alternatively, the literature suggests the use of risk-sensitive

objectives (Hansen, Sargent and Tallarini, 1999; Tallarini, 2000) or log-linearization methods

(Campbell, 1994; Lettau, 2003). Similarly, numerical strategies employ perturbation and

higher-order approximation schemes (cf. Taylor and Uhlig, 1990; Schmitt-Grohé and Uribe,

2004; van Binsbergen, Fernández-Villaverde, Koijen and Rubio-Ramı́rez, 2010). Although

these methods usually are locally highly accurate, the effects of large economic shocks, such

as rare disasters on approximation errors, are largely unexplored.

Our continuous-time formulation does not suffer from such limitations. First, we exploit

closed-form solutions, which are available for reasonable parametric restrictions, to study the

determinants of the risk premium analytically. Second, we use powerful numerical methods to

examine the properties of the risk premium for a broader parameter range without relying on

local approximations (Posch and Trimborn, 2010). We obtain the optimal policy functions

and risk premia in the neoclassical production economy, while our closed-form solutions can

5While the time-varying feature is well documented empirically (Welch and Goyal, 2008), there is some
evidence that the risk premium increases more in bad times than it decreases in good times (Mele, 2008).

6Other contributions to Mehra and Presott’s (1985) equity premium puzzle for endowment economies, e.g.
Epstein and Zin (1989); Abel (1990, 1999); Constantinides (1990); Campbell and Cochrane (1999); Veronesi
(2004); Bansal and Yaron (2004), are generating time-varying risk aversion through different channels.
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be used to gauge the accuracy of the numerical method for large economic shocks. Thus we

propose this formulation as a workable paradigm in the macro-finance literature.

Our paper is closely related to Lettau (2003), who derives asset pricing implications in

a real business cycle model using log-linear approximations. Using this approach gives the

endogenous variables (in logs) as a linear function of the state variables (in logs). What are

we missing by using log-linear approximations? As a result, the risk premium is a function of

the (constant) elasticities of consumption with respect to the state variables, comparable to

our knife-edge solutions. But in fact the risk premium exhibits time-varying and asymmetric

behavior due to changes in effective risk aversion. Thus, we overlook potentially important

properties of the risk premium implied by the neoclassical production economy. We show

that closed-form results can be obtained in production economies for parametric restrictions,

which in turn shed light on the risk premium in the general case.

Our finding relates to Jermann (2010), who studies the determinants of the risk premium

as implied by producers’ first-order conditions. The author identifies the adjustment cost

curvature and the investment volatility as key determinants of the risk premium, similar to

our ingredients such as the policy function curvature and the consumption volatility.

There is a literature documenting that the Barro-Rietz rare disaster hypothesis generates

a sizable risk premium.7 The most fundamental critique, however, is on the calibration of rare

disasters. Although there is empirical evidence that economic disasters have been sufficiently

frequent and large enough to make the hypothesis viable (cf. Barro, 2006), we emphasize that

our results do not crucially depend on the rare disaster hypothesis. Two reasons make the

hypothesis an excellent candidate for making the implications of the neoclassical production

function visible (which for small risk premia would be negligible). First, it substantially

increases the level of the risk premium without loosing analytical tractability. Second, it does

not require other forms of non-linearities such as habit formation or recursive preferences

which allows us to obtain very sharp results. Thus we do not contribute to the debate of why

the historic equity premium seems too high given the low aggregate consumption volatility

and our priors about risk aversion. In contrast, we confirm that the ability to buffer risk

makes it even more challenging to generate sizable risk premia in production economies.

The remainder of the paper is organized as follows. Section 2 solves in closed form a

continuous-time version of Lucas’ fruit-tree model with exogenous, stochastic production

and obtains the risk premium. Section 3 studies the effects of non-linearities on the risk

premium in Merton’s neoclassical growth model. Section 4 concludes.

7Gabaix (2008) and Wachter (2009) suggest variable intensity versions together with recursive preferences,
which not only generates a time-varying risk premium but also increases the level of the premium, as a viable
explanation for several macro-finance puzzles. A more critical view is in Julliard and Gosh (2008).
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2 An endowment economy

This section illustrates our general equilibrium approach to compute the risk premium in

an endowment economy, i.e., the minimum difference an individual requires in normal times

to accept an uncertain rate of return between the expected value and the (shadow) risk-free

rate the individual is indifferent to. It also shows how rare disasters can account for the

equity premium puzzle which became known as the Barro-Rietz ‘rare disaster hypothesis’.

2.1 Lucas’ fruit-tree model with rare disasters

Consider a fruit-tree economy (one risky asset or equity), and a riskless asset in normal times

with default risk (government bond) similar to Barro (2006).

2.1.1 Description of the economy

Technology. Consider an endowment economy (Lucas, 1978). Suppose production is entirely

exogenous: no resources are utilized, and there is no possibility of affecting the output of

any unit at any time, Yt = At where At is the stochastic technology. Output is perishable.

The law motion of At will be taken to follow a Markov process,

dAt = µ̄Atdt+ σ̄AtdBt + (eν̄ − 1)At−dNt, (1)

where Bt is a standard Brownian motion, Nt is a standard Poisson process at arrival rate λ,

whereas µ̄ and σ̄ determine the conditional instantaneous mean and variance of percentage

changes in output. The jump size is assumed to be a constant fraction of output, eν̄ − 1, an

instant before the jump, At−, ensuring that At does not jump negative.

In this economy the bonds with default risk are issued exogenously by the government.

Suppose that the price of the government bill follows

dp0(t) = p0(t)rdt+ p0(t−)DtdNt, (2)

where Dt is a random variable denoting a random default risk in case of a disaster, and q is

the probability of default (cf. Barro, 2006). For illustration, we assume

Dt =

{
0 with 1 − q

eκ − 1 with q
.

Ownership of fruit-trees is determined at each instant in a competitive stock market, and

the production unit has one outstanding perfectly divisible equity share. A share entitles its

owner to all of the unit’s instantaneous output in t. Shares are traded at a competitively

determined price, pt. Suppose that for the risky asset,

dpt = µptdt+ σptdBt + pt−JtdNt, (3)
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where Jt is a random variable denoting the jump risk.

Because prices fully reflect all available information, the parameters r, µ, σ and Jt will be

determined in general equilibrium. The objective is to relate exogenous productivity changes

to the market determined movements in asset prices. In fact, the evolution of prices ensures

that assets are priced such that individuals are indifferent between holding more assets and

consuming. Given initial wealth, we are looking for the optimal consumption path.

Preferences. Consider an economy with a single consumer, interpreted as a representative

“stand in” for a large number of identical consumers. The consumer maximizes discounted

expected life-time utility discounted at the subjective rate of time preference ρ > 0,

E

∫ ∞

0

e−ρtu(Ct)dt, u′ > 0, u′′ < 0.

Assuming no dividend payments, the budget constraint reads

dWt = ((µ− r)wtWt + rWt − Ct) dt+ wtσWtdBt + ((Jt −Dt)wt− +Dt)Wt−dNt, (4)

where Wt is real financial wealth, and wt denotes a consumer’s share holdings.

Equilibrium properties. In this economy, it is easy to determine equilibrium quantities of

consumption and asset holdings. The economy is closed and all output will be consumed,

Ct = Yt, and all shares will be held by capital owners.

2.1.2 The short-cut approach

In a companion paper we solve the more comprehensive approach considering both portfolio

selection and consumption. It is straightforward to show that the portfolio selection problem

can be separated from the consumption problem - a result we use throughout the paper.

Suppose that the only asset is the market portfolio,

dpM(t) = µMpM(t)dt+ σMpM(t)dBt − ζM(t−)pM(t−)dNt, (5)

where ζM(t) is considered as an exogenous stochastic jump-size. With probability q it takes

the value ζM , and with probability 1 − q the jump size is ζ 0

M . Thus, the consumer obtains

capital income and has to finance his or her consumption stream from wealth,

dWt = (µMWt − Ct) dt+ σMWtdBt − ζM(t−)Wt−dNt. (6)

One can think of the original problem with budget constraint (4) as having been reduced

to a simple Ramsey problem in which we seek an optimal consumption rule given that income

is generated by the uncertain yield of a (composite) asset (cf. Merton, 1973).
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Define the value function as

V (W0) ≡ max
{Ct}∞t=0

E0

∫ ∞

0

e−ρtu(Ct)dt, s.t. (6), W0 > 0. (7)

Choosing the control Cs ∈ R+ at time s, the Bellman equation reads

ρV (Ws) = max
Cs

{
u(Cs) + (µMWs − Cs)VW + 1

2
σ2
MW

2
s VWW

+(V ((1 − ζM)Ws)q + V ((1 − ζ0

M)Ws)(1 − q) − V (Ws))λ
}
. (8)

Because it is a necessary condition, the first-order conditions reads

u′(Cs) − VW (Ws) = 0 ⇒ VW (Ws) = u′(Cs) (9)

for any interior solution at any time s = t ∈ [0,∞).

It can be shown that the Euler equation is (cf. appendix)

du′(Ct) =
(
(ρ− µM + λ)u′(Ct) − σ2

MWtu
′′(Ct)CW − u′(C((1 − ζM)Wt))(1 − ζM)qλ

−u′(C((1 − ζ0

M)Wt))(1 − ζ0

M)(1 − q)λ
)
dt

+πu′(Ct)dBt + (u′(C((1 − ζM(t−))Wt−)) − u′(C(Wt−)))dNt, (10)

which implicitly determines the optimal consumption path, where we define the market price

of diffusion risk as π ≡ σMWtu
′′(Ct)CW/u

′(Ct). Moreover, we define CW as the marginal

propensity to consume out of wealth, i.e., the slope of the consumption function. Using the

inverse function, we are able to determine the path for consumption (u′′ 6= 0).

To shed light on the effects of uncertainty we follow an approach similar to Steger (2005),

rewriting the Euler equation (10) and obtaining

ρ−
1

dt
E

[
du′(Ct)

u′(Ct)

]

= µM − E

[

−
u′′(Ct)

u′(Ct)
CWWtσ

2
M +

u′(C((1 − ζM)Wt))

u′(C(Wt))
ζMqλ

+
u′(C((1 − ζ0

M)Ws))

u′(C(Wt))
ζ0

M(1 − q)λ

]

. (11)

In equilibrium, the certainty equivalent rate of return, i.e., the expected rate of return on

saving (conditioned on no disasters) less the expected implicit risk premium,

RPt ≡ −
u′′(Ct)

u′(Ct)
CWWtσ

2
M + Eζ

[
u′(C((1 − ζM(t))Wt))

u′(C(Wt))
ζM(t)λ

]

, (12)

equals expected cost of forgone consumption, i.e., the subjective rate of time preference, and

the expected rate of change of marginal utility on the left-hand side in (11). It denotes the

percentage spread between the certainty equivalent rate of return (shadow risk-free rate)
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and the average rate of return of risky asset in normal times. For samples which include

sufficiently many disasters such that the observed frequency is equal to the true probability,

the (unconditional) expected rate of return on the market portfolio is µM − E(ζM(t))λ.

The implicit risk premium as from (12) extends the ‘proportional probability premium’

in static utility-of-wealth models (Pratt, 1964) to dynamic consumption-portfolio models. It

is related to the effective relative risk aversion of the indirect utility function,

RRAW = −
VWWWt

VW
= −

u′′(Ct)CWWt

u′(Ct)
. (13)

Hence, the indirect utility function, i.e., the value function, and the utility function are

intimately linked by the optimality condition (9). This condition demands that the marginal

utility of consumption equals the marginal utility of wealth (cf. Breeden, 1979, p.274).

2.1.3 General equilibrium prices

This section shows that general equilibrium conditions pin down the prices in the economy.

From the Euler equation (10), we obtain

dCt =
(
(ρ− µM + λ)u′(Ct)/u

′′(Ct) − σ2
MWtCW − 1

2
σ2
MW

2
t C

2
Wu

′′′(Ct)/u
′′(Ct)

−Eζ [u′(C((1 − ζM(t))Wt))(1 − ζM(t))]λ/u′′(Ct)
)
dt

+σMWtCWdBt + (C((1 − ζM(t))Wt−) − C(Wt−))dNt, (14)

where we employed the inverse function c = g(u′(c)) which has

g′(u′(c)) = 1/u′′(c), g′′(u′(c)) = −u′′′(c)/(u′′(c))3.

Economically, concave utility (u′(c) > 0, u′′(c) < 0) implies risk aversion, whereas convex

marginal utility, u′′′(c) > 0, implies a positive precautionary saving motive. Accordingly,

−u′′(c)/u′(c) measures absolute risk aversion, whereas −u′′′(c)/u′′(c) measures the degree of

absolute prudence, i.e., the intensity of the precautionary saving motive (Kimball, 1990b).

Because output is perishable, using the market clearing condition Yt = Ct = At,

dCt = µ̄Ctdt+ σ̄CtdBt + (eν̄ − 1)Ct−dNt. (15)

Thus, the general equilibrium approach pins down asset prices as follows. Defining optimal

jump in consumption as C̃(Wt) ≡ C((1 − ζM(t))Wt)/C(Wt), market clearing requires the

percentage jump in aggregate consumption to match the disaster size, eν̄ − 1 = C̃(Wt) − 1,

which implies a constant jump term. For example, if consumption is linearly homogeneous

in wealth (as shown for CRRA preferences below), the jump of the asset price satisfies8

C((1 − ζM(t))Wt−)/C(Wt−) = 1 − ζM(t) ⇒ ζM = ζ0

M = 1 − eν̄ . (16)

8Conditioning on no default, (ζM (t)|Dt = 0) = ζ0

M
, gives eν̄ − 1 = −ζ0

M
, whereas conditioning on default,

(ζM (t)|Dt = eκ − 1) = ζM , demands eν̄ − 1 = −ζM .

7



Similarly, the market clearing condition pins down σMWtCW = σ̄Ct, and thus

µM − r = −
u′′(Ct)C

2
t

u′(Ct)CWWt
σ̄2 −

u′(eν̄C(Wt))

u′(C(Wt))
((1 − eκ)q + eν̄ − 1)λ,

where

r = ρ−
u′′(Ct)Ct
u′(Ct)

µ̄− 1
2

u′′′(Ct)C
2
t

u′(Ct)
σ̄2 + λ− (1 − (1 − eκ)q)

u′(eν̄Ct)

u′(Ct)
λ. (17)

As a result, the higher the subjective rate of time preference, ρ, the higher is the general

equilibrium interest rate to induce individuals to defer consumption (cf. Breeden, 1986). For

convex marginal utility (decreasing absolute risk aversion), u′′′(c) > 0, a lower conditional

variance of dividend growth, σ̄2, a higher conditional mean of dividend growth, µ̄, and a

higher default probability, q, decrease the bond price and increase the interest rate.

2.1.4 Components of the risk premium

Observe that the implicit risk premium (12) in general equilibrium simplifies to

RPt = −
u′′(Ct)

u′(Ct)
CWWtσ

2
M

︸ ︷︷ ︸

diffusion risk

+
u′(eν̄C(Wt))

u′(C(Wt))
ζMλ

︸ ︷︷ ︸

total jump risk

, (18)

whereas the conditional market premium reads

µM − r = −
u′′(Ct)CWWt

u′(C(Wt))
σ2
M

︸ ︷︷ ︸

diffusion risk

+ (ζM − (1 − eκ)q)
u′(eν̄C(Wt))

u′(C(Wt))
λ

︸ ︷︷ ︸

disaster risk

= −
u′′(Ct)CWWt

u′(C(Wt))
σ2
M

︸ ︷︷ ︸

diffusion risk

+
u′(eν̄C(Ws))

u′(C(Wt))
ζMλ

︸ ︷︷ ︸

total jump risk

− (1 − eκ) q
u′(eν̄C(Wt))

u′(C(Wt))
λ

︸ ︷︷ ︸

default risk

. (19)

Note that one would expect ν̄ < 0 and κ < 0 for a ‘disaster’ hypothesis.

In the presence of default risk, the conditional market premium differs from the implicit

risk premium. The reason is that we obtain the implicit risk premium from the certainty

equivalent rate of return (shadow risk-free rate), but the government bill has a risk of default.

This default risk is not rewarded in the market as there is no truly riskless asset, but it is

reflected in the implicit risk premium. If there was no default risk, the implicit risk premium

would have the usual interpretation of the conditional market premium.

2.1.5 Explicit solutions

As shown in Merton (1971), the standard dynamic consumption and portfolio selection

problem has explicit solutions where consumption is a linear function of wealth. For later

reference, we provide the solution for constant relative risk aversion (CRRA).
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Proposition 2.1 (CRRA preferences) If utility exhibits constant relative risk aversion,

i.e., −u′′(Ct)Ct/u
′(Ct) = θ, optimal consumption is linear in wealth, Ct = C(Wt) = bWt,

where the marginal propensity to consume out of wealth is

b ≡
(
ρ+ λ− (1 − θ)µM − (1 − ζM)1−θλ+ (1 − θ)θ 1

2
σ2
M

)
/θ.

The effective relative risk aversion of the indirect utility in (13) is constant, RRAW = θ.

Proof. see Appendix A.1.3

Corollary 2.2 Use the optimal policy function, Ct = C(Wt) = bWt, and the conditional

market premium in general equilibrium (19) to obtain

µM − r = θσ2
M + e−θν̄ζMλ− e−θν̄ (1 − eκ) qλ, (20)

with the conditional variance of the market portfolio σM = σ̄, the jump size of the market

portfolio ζM = 1 − eν̄ , and the riskless rate in (17) as

r = ρ + θµ̄− 1
2
θ(1 + θ)σ̄2 + λ− (1 − (1 − eκ)q) e−θν̄λ.

The unconditional market premium, i.e., for long samples, is µM − ζMλ− (r − (1 − eκ)qλ).

Corollary 2.3 Use the optimal policy function, Ct = C(Wt) = bWt, and the implicit risk

premium in general equilibrium (18), to obtain

RP = θσ̄2 + e−θν̄(1 − eν̄)λ = µM − r + e−θν̄(1 − eκ)qλ. (21)

Similar to Barro (2006), the traditional risk premium in (21) increases by e−θν̄(1− eν̄)λ,

which can be sizable. Thus, the intuition why rare disaster may solve the equity premium

puzzle is straightforward. Even for logarithmic utility, θ = 1, and for low-probability events,

λ = 0.01, the premium for the jump risk in percentage points, e−ν̄ − 1, can be very large.

For the case of ‘disasters’ one would expect ν̄ to be negative. The more negative is the

parameter, the more severe is the disaster and ν̄ → −∞ denotes complete destruction.

As we show below, the reason that the risk premium is constant is that the consumption

function is homogeneous (of degree k = 1), which implies that effective risk aversion is

constant. A time-varying disaster size and/or arrival rate (i.e., stochastic volatility) can

even lead to a level increase of the risk premium (cf. Gabaix, 2008; Wachter, 2009).
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2.1.6 Stochastic discount factor

This section illustrates the link between the implicit risk premium and the stochastic discount

factor (SDF). Similar to the implicit risk premium, the SDF follows from the Euler equation

(10), which in general equilibrium is

du′(Ct) = (ρ− r)u′(Ct)dt+ (1 − eκ)u′(C(eν̄Wt))qλdt− (u′(C(eν̄Wt)) − u′(Ct))λdt

+πu′(Ct)dBt + (u′(C(eν̄Wt−)) − u′(C(Wt−)))dNt,

where the deterministic term consists of, firstly, the difference between the subjective rate

of time preference and the riskless rate, secondly, a term which transforms this rate into the

certainty equivalent rate of return (shadow risk-free rate) and, thirdly, the compensation

which transforms the Poisson process into a martingale. For s ≥ t, we may write

d lnu′(Ct) =

(
u′′(Ct)Ct
u′(Ct)

µ̄+ 1
2

u′′′(Ct)C
2
t

u′(Ct)
σ̄2 − 1

2
π2

)

dt

+πdBt + (ln u′(C(eν̄Wt−)) − ln u′(C(Wt−))) dNt

⇔
e−(s−t)ρu′(Cs)

u′(Ct)
= exp

(

−

∫ s

t

(

ρ−
u′′(Cv)Cv
u′(Cv)

µ̄− 1
2

u′′′(Cv)C
2
v

u′(Cv)
σ̄2 + 1

2
π2

)

dv

)

× exp

(∫ s

t

πdBv +

∫ s

t

(lnu′(C(eν̄Wt−)) − ln u′(C(Wt−))) dNv

)

,

i.e., equating discounted marginal utility in s and t. Therefore,

ms/mt ≡
e−(s−t)ρu′(Cs)

u′(Ct)
(22)

defines the stochastic discount factor (also known as the pricing kernel or state-price density)

which can be used to price any asset in this economy. For CRRA preferences, it reads

ms/mt = exp
(
−(r − e−θν̄(1 − eκ)qλ+ 1

2
(θσ̄)2 + (e−ν̄θ − 1)λ)(s− t)

)

× exp
(
θσ̄(Bs − Bt) − θν̄(Ns −Nt)

)

= exp
(
−(ρ + θµ̄− 1

2
θσ̄2)(s− t) + θσ̄(Bs − Bt) − θν̄(Ns −Nt)

)

which has the standard properties (cf. Campbell, 2000). This result illustrates that the Euler

equation (10) can be used to compute both the implicit risk premium and the SDF in any

continuous-time DSGE model without explicitly studying asset pricing implications.

3 A neoclassical production economy

This section illustrates that non-linearities in a neoclassical DSGE model imply interesting

asset market implications, in particular these can generate a time-varying risk premium. We

use a version of Merton’s (1975) asymptotic theory of growth under uncertainty.
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3.1 A model of growth under uncertainty

This section assumes that there is no truly riskless asset. We employ the certainty equivalent

rate of return - or the shadow risk-free rate - to obtain the implicit risk premium.

3.1.1 Description of the economy

Technology. At any time, the economy has some amounts of capital, labor, and knowledge,

and these are combined to produce output. The production function is a constant return to

scale technology Yt = AtF (Kt, L), where Kt is the aggregate capital stock, L is the constant

population size, and At is the stock of knowledge or total factor productivity (TFP), which

in turn is driven by a standard Brownian motion Bt,

dAt = µ̄Atdt+ σ̄AtdBt. (23)

At has a log-normal distribution with E0(lnAt) = lnA0 +(µ̄− 1
2
σ̄2)t, and V ar0(lnAt) = σ̄2t.

The capital stock increases if gross investment exceeds stochastic capital depreciation,

dKt = (It − δKt)dt+ σKtdZt + (eν − 1)Kt−dNt, (24)

where Zt is a standard Brownian motion (uncorrelated with Bt), and Nt is a standard Poisson

process with arrival rate λ. Unlike in Merton’s (1975) model, the assumption of stochastic

depreciation introduces instantaneous riskiness making physical capital indeed a risky asset

(for similar examples see Turnovsky, 2000). The fundamental difference to Lucas’ endowment

economy is that the outstanding equity shares follow a stochastic process as well, i.e., not

only the production technology but also the number of trees is stochastic.

Preferences. Consider an economy with a single consumer interpreted as a representative

“stand in” for a large number of identical consumers. The consumer maximizes expected

life-time utility

E0

∫ ∞

0

e−ρtu(Ct)dt, u′ > 0, u′′ < 0 (25)

subject to

dWt = ((rt − δ)Wt + wLt − Ct)dt+ σWtdZt + (eν − 1)Wt−dNt. (26)

Wt ≡ Kt/L denotes individual wealth, rt is the rental rate of capital, and wL
t is labor income.

The paths of factor rewards are taken as given by the representative consumer.

Equilibrium properties. In equilibrium, factors of production are rewarded with value

marginal products, rt = YK and wLt = YL. The goods market clearing condition demands

Yt = Ct + It. (27)
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Solving the model requires the aggregate accumulation constraints (23) and (24), the

goods market equilibrium (27), equilibrium factor rewards of competitive firms, and the

first-order condition for consumption. It gives a system of stochastic differential equations

which, given initial conditions, determines the paths of Kt, Yt, rt, w
L
t and Ct, respectively.

3.1.2 The short-cut approach

Define the value of the optimal program as

V (W0, A0) = max
{Ct}∞t=0

E0

∫ ∞

0

e−ρtu(Ct)dt s.t. (26) and (23), W0, A0 > 0, (28)

which denotes the present value of expected utility along the optimal program. Similar to

the endowment economy, we obtain the first-order condition for the problem as

u′(Ct) = VW (Wt, At) (29)

for any t ∈ [0,∞), making consumption a function of the state variables Ct = C(Wt, At).

It can be shown that the Euler equation is (cf. appendix)

du′(Ct) = (ρ− (rt − δ) + λ)u′(Ct)dt− u′(C(eνWt, At))e
νλdt− σ2u′′(Ct)CWWtdt

+u′′(Ct)(CAAtσ̄dBt + CWWtσdZt)

+[u′(C(eνWt−, At−)) − u′(C(Wt−, At−))]dNt, (30)

which implicitly determines the optimal consumption path. To shed some light on the effects

of uncertainty in the production economy, we rewrite the Euler equation and obtain

ρ−
1

dt
E

[
du′(Ct)

u′(Ct)

]

= E(rt) − δ − E

[

−
u′′(Ct)

u′(Ct)
CWWtσ

2 +
u′(C(eνWt, At))

u′(C(Wt, At))
(1 − eν)λ

]

.

In equilibrium, the certainty equivalent rate of return, i.e., the expected return on the risky

asset net of depreciation, E(rt − δ), less the expected implicit risk premium,

RPt ≡ −
u′′(Ct)

u′(Ct)
CWWtσ

2 +
u′(C(eνWt, At))

u′(C(Wt, At))
(1 − eν)λ, (31)

equals the cost of forgone consumption. It is remarkable that the structure is equivalent

to the endowment economy (18), but the premium in (31) has quite interesting properties.

The most obvious result is that the implicit risk premium indeed refers to the rewards that

investors demand for bearing the systematic risk, while it does not directly account for the

risk of a stochastically changing total factor productivity (23).
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3.1.3 Explicit solutions

A convenient way to describe the behavior of the economy is in terms of the evolution of

Ct, At and Wt. Similar to the endowment economy we obtain explicit solutions. Due to the

non-linearities they are available only for specific parametric restrictions. Below we use two

known restrictions where the policy function Ct = C(At,Wt) (or consumption function) is

available, and all economic variables can be solved in closed form.

Proposition 3.1 (linear-policy-function) If the production function is Cobb-Douglas,

Yt = AtK
α
t L

1−α, utility exhibits constant relative risk aversion, i.e., −u′′(Ct)Ct/u
′(Ct) = θ,

and α = θ, then optimal consumption is linear in wealth.

α = θ ⇒ Ct = C(Wt) = φWt

where φ ≡ (ρ− (e(1−θ)ν − 1)λ+ (1 − θ)δ)/θ + 1
2
(1 − θ)σ2 (32)

Proof. see Appendix A.2.2

Corollary 3.2 Using the policy function Ct = C(Wt) = φWt and (31),

RP = θσ2 + e−θν(1 − eν)λ. (33)

Proposition 3.3 (constant-saving-function) If the production function is Cobb-Douglas,

Yt = AtK
α
t L

1−α, utility exhibits constant relative risk aversion, i.e., −u′′(Ct)Ct/u
′(Ct) = θ,

and the subjective rate of time preference is

ρ̄ ≡ (e(1−αθ)ν − 1)λ− θµ̄+ 1
2

(
θ(1 + θ)σ̄2 − αθ(1 − αθ)σ2

)
− (1 − αθ)δ, (34)

then optimal consumption is proportional to current income (non-linear in wealth).

ρ = ρ̄ ⇒ Ct = C(Wt, At) = (1 − s)AtW
α
t , θ > 1, where s ≡ 1/θ (35)

Proof. see Appendix A.3.2

Corollary 3.4 Using the policy function Ct = C(Wt, At) = (1 − s)AtW
α
t and (31),

RP = αθσ2 + e−αθν(1 − eν)λ. (36)

We are now in a position to understand why the (implicit) risk premium depends on the

curvature of the policy function (or consumption function): Any homogenous consumption

function, where CW (Wt, At)Wt = kC(Wt, At) or equivalently C(cWt, At) = ckC(Wt, At) for

c, k ∈ R+, implies a constant risk premium. Technically, the policy function is homogenous

of degree k in wealth. Because these functions are obtained only for knife-edge restrictions,
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we conclude that the (implicit) risk premium generally will be dependent on wealth which

in turn implies a time-varying behavior since wealth is changing stochastically.

Economically, the reason why the risk premium depends on the curvature of the policy

function (and can vary over time) is that the optimal response to disasters or shocks depends

on the level of wealth. An individual with high levels of financial wealth will adjust his or her

optimal expenditures for consumption differently from an individual that has no financial

wealth. Though the utility function has CRRA with respect to consumption, the indirect

utility function (the value function) does not exhibit CRRA with respect to wealth except

for the knife-edge cases above. This finding is closely related to the link Kimball (1990a)

shows between the marginal propensity to consume and the effective risk aversion of the

value function. Accordingly, a higher marginal propensity to consume out of gross wealth

(inclusive of labor income) raises the effective risk aversion. A concave consumption function

implies that effective risk aversion falls more quickly with wealth than it does for the case of

a constant marginal propensity to consume (Carroll and Kimball, 1996, p.982).

There are two important differences to the earlier work. First, our consumption function

is defined by the optimal policy rule which gives consumption as a function of financial

wealth (exclusive of labor income), i.e., the only observable and tradable asset. Hence, it

cannot easily be interpreted as a function of gross wealth (inclusive of labor income) or

total wealth (i.e., financial and human wealth). Thus, the marginal propensity to consume

out of wealth is defined by the slope of the consumption function with respect to financial

wealth. In contrast, the consumption and saving rates - in the tradition of the Solow model -

refer to current income (i.e., labor and capital income). Second, the effects of uncertainty are

studied in a general equilibrium environment which allows us to obtain analytical solutions for

linear and strictly concave consumption functions in a DSGE model for certain parametric

restrictions, while Carroll and Kimball restrict their focus on partial equilibrium models

leaving the processes for labor income and capital returns exogenous.

Our finding sheds light on how total factor productivity (TFP) generally affects the risk

premium in (31) though the consumer is not interested in hedging TFP risk directly. For any

consumption function non-homogeneous in wealth, effective relative risk aversion depends

on TFP through the consumption function, e.g., for CRRA preferences,

RPt = θσ2CW (Wt, At)Wt/C(Wt, At) + (1 − eν)λ(C(eνWt, At)/C(Wt, At))
−θ. (37)

Unfortunately, an analytical study of the structural parameters in the general case is

not possible. Though clearly being knife-edge cases, our explicit solutions are important to

understand the mechanisms that affect the risk premium in DSGE models. Both solutions
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imply that the consumption function is homogenous and thus a constant risk premium.9

Below we study the implications when allowing the parameters to take different values.

3.1.4 Numerical solutions

This section implements the algorithm as in Posch and Trimborn (2010) to obtain a numer-

ical solution for the case where σ = σ̄ = µ̄ = 0, and with A = 1. As it is seen below, this

assumption does not affect our conclusions, but reduces the computational burden as the

reduced form representing the dynamics of the DSGE model can be summarized as

dWt = ((rt − δ)Wt + wLt − Ct)dt− (1 − eν)Wt−dNt,

dCt = −
u′(Ct)

u′′(Ct)
(rt − δ − ρ− λ)dt−

u′(C(eνWt))

u′′(C(Wt))
eνλdt+ [C(eνWt−) − C(Wt−)]dNt,

where rt = YK and wLt = YL. For the case of Cobb-Douglas production, Yt = AKα
t L

1−α, and

CRRA preferences with relative risk aversion θ, we obtain from (31) or (37)

RPt ≡
C(eνWt)

−θ

C(Wt)−θ
(1 − eν)λ. (38)

The numerical solution to the non-linear system of stochastic differential equations is the

policy function, Ct = C(Wt), which is obtained from the optimal paths of control and state

variables computed for the complete state space Wt ∈ R+. In particular our procedure does

not rely on local approximation methods, but directly solves the system using the Waveform

relaxation algorithm (cf. Posch and Trimborn, 2010). According to (38), we obtain the risk

premium by evaluating the optimal policy function at two points in the state space.

Figure 1 illustrates the optimal policy function and the resulting implicit risk premium

(38) for different values for the parameter of relative risk aversion. For θ = α the policy

function is a linear-homogenous function with slope φ which corresponds to the analytical

solution in (32). In this singular case the risk premium is e−θν(1 − eν)λ (equivalent to

the risk premium in the endowment economy). At each point, the change of the expected

proportional decline in marginal utility equals the change in capital rewards, implying a

constant risk premium in (38). For θ < α the policy function is convex, and the marginal

propensity to consume increases with wealth, C(eνWt) < eνC(Wt). This increase, however,

is less rapid than the increase of the consumption-wealth ratio which lowers the effective level

of risk aversion. Hence, the risk premium is convex and has the upper bound e−αν(1 − eν)λ

for wealth approaching zero. For θ > α, which is the empirically most plausible scenario,

9For α = θ, the consumption function becomes a linear function in wealth, i.e., it is linearly homogeneous
or homogeneous of degree one. In the case of ρ = ρ̄, which is only possible for values θ > 1, the consumption
function becomes homogeneous of degree α.
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Figure 1: Risk premia in a production economy
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Notes: These figures illustrate the optimal policy functions (left panel) and the risk premium (right panel) as functions of
financial wealth for different levels of relative risk aversion for the case of σ = σ̄ = µ̄ = 0. The calibrations of other parameters
is (ρ, α, θ, δ, λ, 1− eν) = (.05, .75, ·, .1, .017, .4) where θ = .5 (dotdash), θ = .75 (dotted), θ = 1 (longdash), θ = 1.9406 (twodash)
which refers to the knife-edge case ρ = ρ̄ in (35) with a constant saving rate, θ = 4 (dashed), and θ = 6 (solid).

the consumption function has the standard form, i.e., strictly concave and the marginal

propensity to consume is decreasing with wealth, C(eνWt) > eνC(Wt). In this case, the

properties of the risk premium (38) depend on whether the subjective rate of time preference

ρ exceeds or falls short of the knife-edge value ρ̄ in (34).

At the knife-edge value of ρ = ρ̄ the policy function is homogeneous of degree α which

refers to the analytical solution in (35) where the savings rate is constant, s = 1/θ, and

the risk premium is e−αθν(1 − eν)λ. For ρ < ρ̄ the individual prefers a higher savings rate,

s(Wt) > s, and the marginal propensity to consume out of wealth decreases more rapidly

than it would if the saving rate (or consumption-income ratio) were constant which lowers

the effective risk aversion. Because the saving rate is increasing in wealth and bounded by

unity, s < s(Wt) < 1, the risk premium is convex and has the upper bound e−αθν(1 − eν)λ

for wealth approaching zero. For ρ > ρ̄ the saving rate is smaller, s(Wt) < s, and the

marginal propensity to consume out of wealth decreases less rapidly than it would if the

saving rate were constant which raises the effective risk aversion. Since the saving rate is

decreasing in wealth, the risk premium in (38) is concave with lower bound e−θαν(1−eν)λ for

sufficiently risk averse individuals, θ ≥ 1. Otherwise the substitution effect dominates the
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precautionary savings effect which depresses savings and increases the marginal propensity

to consume (Weil, 1990). Since the consumption function is concave for θ > α due to the

non-linear production function, effective risk aversion remains higher than for θ = α, such

that the lower bound is e−max(θ,1)αν(1 − eν)λ for wealth approaching zero.

In our numerical study ρ̄ depends on the arrival rate, λ, the disaster size, eν − 1, the

output elasticity of capital, α, and the risk aversion, θ, which coincides with the inverse of

the intertemporal elasticity of substitution (IES), and the rate of depreciation, δ. For the

case αθ > 1, that is when the output elasticity of capital exceeds the IES, this critical value

is positive, ρ̄ > 0, and vice versa. Thus, for the empirically most plausible calibrations, e.g.,

for α ≈ 0.5 and θ ≈ 4, we have αθ > 1 and obtain a positive knife-edge value, ρ̄ > 0.

Our numerical study of the risk premium thus gives the following results. Considering

the empirically most plausible scenarios, we find that the risk premium is time-varying

and asymmetric (concave) over the ‘business cycle’. In prosperous states of the economy

with higher transitional growth rates (capital scarcity), the risk premium is higher than in

periods with lower - or even negative - growth rates (capital abundance). In other words,

immediately after a disaster has occurred, the risk premium would jump to a higher level

and then subsequently return to lower values as more capital is accumulated.

Allowing for (Gaussian) stochastic depreciation, σ > 0, and/or a second state variable

in the form of time-varying TFP, µ̄ 6= 0, σ̄ > 0, the implicit risk premium is (37), and

the same analysis could be conducted. The consumption function is concave in wealth for

θ ≥ α and the risk premium has the same properties as in Figure 1, conditioned on the

state At. However, there are three main differences. First, since the individual is willing to

hedge against the diffusion risk (stochastic investment opportunities), the risk premium will

be slightly higher.10 Second, the risk premium in general also depends indirectly on TFP

trough the optimal consumption function, as described above. Finally, the knife-edge value

ρ̄ as from (35) decreases in the mean, µ̄, but increases in the variance σ̄2 of TFP growth.

For the case αθ > 1 it increases in the variance of stochastic depreciation, σ2.

3.1.5 Human wealth and financial wealth

Economically, the individual implicitly solves an intertemporal consumption problem in a

stochastically changing investment opportunity set. In this view, the state variables which

determine investment opportunities are the aggregate capital stock, Kt, and total factor

productivity At, whereas the asset returns rt = r(At, Kt) and the wage rate wt = w(At, Kt)

depend on the state variables. The DSGE model at hand is a specific case where general

equilibrium conditions pin down asset prices as well as cost of capital and leisure (hours) in

10Since the diffusion risk is of less importance, this effect is negligible (cf. Tables A.1.3 and A.1.3).
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the economy (cf. Campbell and Viceira, 2002, chap. 6).

In particular, the optimal decisions of households can be thought of in terms of financial

wealth (physical assets) and human wealth, i.e., the present value of future labor income

(Bodie, Merton and Samuelson, 1992, p.431).11 It thus seems important to allow for flexible

labor supply when studying the risk premium. Labor flexibility introduces an additional

margin along which an individual can buffer risk (Turnovsky and Bianconi, 2005, p.325).

3.2 An extension: endogenous labor supply

This section allows for elastic labor supply in the neoclassical DSGE model. Our objective

is to study how the time-varying property of the risk premium is affected by the ability of

individuals to buffer risk through their labor-leisure choice. For reading convenience, this

section replicates some of the equations from the previous section.

3.2.1 Description of the economy

Technology. The production function exhibits constant return to scale, Yt = AtF (Kt, Ht),

where Kt is the aggregate capital stock, Ht is total hours worked and At is total factor

productivity, which in turn is driven by a standard Brownian motion Bt

dAt = µ̄Atdt+ σ̄AtdBt. (39)

The capital stock increases if gross investment exceeds stochastic capital depreciation,

dKt = (It − δKt)dt+ σKtdZt + (eν − 1)Kt−dNt, (40)

where Zt is a standard Brownian motion (uncorrelated with Bt), and Nt is a standard Poisson

process with arrival rate λ, describing a counting process for the number of disasters.

Preferences. Consider an economy with a single consumer, interpreted as a representative

“stand in” for a large number of identical consumers, such that Ct = Lct = ct, where L is

normalized to one, and Ht = 1 − lt with lt denoting the amount of leisure the individual

‘purchases’ (cf. Bodie et al., 1992). The consumer seeks to maximize

E0

∫ ∞

0

e−ρtu(Ct, Ht)dt, uC > 0, uH < 0, uCC ≤ 0, uCCuHH − (uCH)2 ≥ 0, (41)

subject to

dWt = ((rt − δ)Wt +Htw
H
t − Ct)dt+ σWtdZt + JtWt−dNt. (42)

11Bodie et al. (1992) show that the individual’s human capital, which essentially is the same as a financial
asset except that it is not traded, is valued by the individual as if it were a traded asset.
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Wt ≡ Kt/L denotes individual wealth, rt is the rental rate of capital, and Htw
H
t is labor

income. The paths of factor rewards are taken as given by the representative consumer.

Equilibrium properties. In equilibrium, factors of production are rewarded with value

marginal products, rt = YK and wHt = YH . The goods market clearing condition demands

Yt = Ct + It. (43)

Solving the model requires the aggregate accumulation constraints (39) and (40), the

goods market equilibrium (43), equilibrium factor rewards of competitive firms, and the

first-order condition for consumption and hours. It gives a system of equations which, given

initial conditions, determines the paths of Kt, Yt, rt, w
H
t , Ct and Ht, respectively.

3.2.2 The short-cut approach

Define the value function as

V (W0, A0) = max
{Ct,Ht}∞t=0

E0

∫ ∞

0

e−ρtu(Ct, Ht)dt s.t. (42) and (39), W0, A0 > 0, (44)

denoting the present value of expected utility along the optimal program. It can be shown

that the first-order conditions for any interior solution are (cf. appendix)

uC(Ct, Ht) = VW (Wt, At), (45)

−uH(Ct, Ht) = wHt VW (Wt, At), (46)

for any t ∈ [0,∞), making optimal consumption and hours functions of the state variables

Ct = C(Wt, At) and Ht = H(Wt, At), respectively. Specifically it pins down the opportunity

cost (or price) of leisure,

wHt = −
uH(Ct, Ht)

uC(Ct, Ht)
. (47)

It can be shown that the Euler equation for consumption is (cf. appendix)

duC = (ρ− (rt − δ) + λ)uCdt− uC(C(eνWt, At), H(eνWt, At))e
νλdt

−σ2 (uCC(Ct, Ht)CW + uCH(Ct, Ht)HW )Wtdt

+(CAAtσ̄dBt + CWWtσdZt)uCC + (HAAtσ̄dBt +HWWtσdZt)uCH

+

[
uC(C(eνWt−, At−), H(eνWt−, At−))

uC(C(Wt−, At−), H(Wt−, At−))
− 1

]

uC(Ct−, Ht−)dNt, (48)

which implicitly determines the optimal consumption path. To shed some light on the effects

of uncertainty in this economy, we rewrite the Euler equation and obtain

ρ−
1

dt
E

[
duC(Ct, Ht)

uC(Ct, Ht)

]

= E(rt − δ) − E

[

−
uCC(Ct, Ht)CW + uCH(Ct, Ht)HW

uC(Ct, Ht)
Wtσ

2

]

−E

[
uC(C(eνWt, At), H(eνWt, At))

uC(C(Wt, At), H(Wt, At))
(1 − eν)λ

]

.
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Similar to the previous approaches the implicit risk premium is defined as

RPt ≡ −
uCCCW + uCHHW

uC(Ct, Ht)
Wtσ

2 +
uC(C(eνWt, At), H(eνWt, At))

uC(C(Wt, At), H(Wt, At))
(1 − eν)λ. (49)

Observe that the structure is equivalent to (31), with the notable difference that the curvature

of both the policy function for consumption and hours matters for effective risk aversion,

and thus the risk premium (for consumption and leisure not being separable).

Technically, to examine whether the time-varying property survives in this economy for

utility exhibiting constant relative risk aversion, it is sufficient to examine whether consumers

have the labor-leisure choice such that uCCCW + uCHHW = uCCCt which again would yield

the constant effective risk aversion similar to the endowment economy.

3.2.3 Explicit solutions

As before, a convenient way to describe the behavior of the economy is in terms of the

evolution of Ct, Ht, At and Wt. Similar to the endowment economy there exist explicit

solutions, however, due to the non-linearities these are only available for specific parameter

restrictions. Below we use one restriction where the policy functions Ct = C(At,Wt) and

Ht = H(At,Wt), and most economic variables of interest can be solved in closed form.

In what follows, we restrict our attention to the class of utility functions which exhibits

constant relative risk aversion with respect to both consumption and leisure,

u(Ct, Ht) =
(Ct(1 −Ht)

ψ)1−θ

1 − θ
, θ > 0, ψ ≥ 0. (50)

Similar to Turnovsky and Smith (2006), the parameter ψ measures the preference for leisure.

To ensure concavity, we restrict θ− (1− θ)ψ ≥ 0. For the case where ψ = 0, the solutions in

Proposition 3.1 and Proposition 3.5 apply accordingly. For the broader case where ψ > 0,

a closed-form solution is obtained below. Both the following solution and the numerical

solution techniques used for the general case are novel in the macro literature.

Proposition 3.5 (constant-saving-function) If the production function is Cobb-Douglas,

Yt = AtK
α
t H

1−α
t , utility exhibits constant relative risk aversion with respect to both leisure

and consumption, i.e., uHHHt/uH = 1− (1− θ)ψ and −uCCCt/uC = θ, respectively, and the

subjective rate of time preference is

ρ̄ ≡ (eν(1−αθ) − 1)λ− (1 − αθ)δ − θµ̄+ 1
2

(
θ(1 + θ)σ̄2 − αθ(1 − ασ)σ2

)
,

then optimal consumption is proportional to income, and optimal hours are constant.

ρ = ρ̄ ⇒ Ct = (1 − s)AtW
α
t H

1−α, H =
θ(1 − α)

θ(1 − α) − ψ(1 − θ)
θ > 1, ψ 6= 0,

where s ≡ 1/θ
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Proof. see Appendix A.3.2

Corollary 3.6 Using the policy function Ct = C(Wt, At) = (1 − s)AtW
α
t H

1−α and (49),

RP = e−αθν(1 − eν)λ+ αθσ2. (51)

This particular rate of time preference, ρ̄, clearly is a knife-edge condition which ensures

that the optimal leisure, the saving rate and the implicit risk premium are constant. In this

singular case, the parameter measuring the preference for leisure, ψ, does not affect the risk

premium or the saving rate, though it affects hours. To study the dynamic effects of labor

supply flexibility for a broader parameter set, we employ numerical solutions.

3.2.4 Numerical solutions

This section again uses the algorithm as in Posch and Trimborn (2010) to obtain a numerical

solution for the case σ = σ̄ = µ̄ = 0 and A = 1. In particular, the reduced-form dynamics

then can be summarized by the budget constraint (42) and two Euler equations for both

consumption and hours. Moreover, the condition (47) implies that optimal consumption can

be expressed as a function of hours and wealth which again reduces the dimensionality.

For illustration, consider the case of Cobb-Douglas production, Yt = AKα
t H

1−α
t , with

A = 1 and preferences as in (50). Optimal behavior as from (47) demands

1 −H(Wt) =
ψ

1 − α

C(Wt)H(Wt)
α

W α
t

, 1 −H(eνWt) =
ψ

1 − α

C(eνWt)H(eνWt)
α

(eνWt)α
. (52)

This pins down the optimal jump terms as

C̃(Wt) =
1 − H̃(Wt)H(Wt)

1 −H(Wt)
H̃(Wt)

−αeαν , (53)

where C̃(Wt) ≡ C(eνWt)/C(Wt), and H̃(Wt) ≡ H(eνWt)/H(Wt), such that e.g. 1 − C̃(Wt)

denotes the percentage drop of optimal consumption after a disaster. As a result, we can

neglect the Euler equation for consumption since technically (52) and (53) give optimal

consumption as functions of optimal hours and financial wealth, C(Wt) = C(H(Wt),Wt)

and C̃(Wt) = C̃(H(Wt)).
12 Economically, optimal behavior of consumption is described

completely by optimal hours and financial wealth through the algebraic condition (47).

As shown in the appendix, for 0 < Ht < 1 the reduced form can thus be summarized as

dHt =
ρ− (1 − θ)rt + (1 − αθ)δ + λ− αθCt/Wt

αθH−1
t − (ψ − θψ − θ)(1 −Ht)−1

dt

−
C̃(Wt)

−θ+(1−θ)ψH̃(Wt)
(1−θ)ψαeν−(1−θ)ψανλ

αθH−1
t − (ψ − θψ − θ)(1 −Ht)−1

dt+ (H(eνWt−) −H(Wt−))dNt,

dWt = ((rt − δ)Wt +Htw
H
t − Ct)dt− (1 − eν)Wt−dNt,

12This approach requires an interior solution for optimal hours which is assumed throughout the analysis.
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which we use for our numerical solutions. Finally, the risk premium (49) is obtained from

RPt = C̃(Wt)
(1−θ)ψ−θH̃(Wt)

(1−θ)ψαe−(1−θ)ψαν(1 − eν)λ. (54)

As a result, the implicit risk premium depends on the optimal jumps in consumption and

hours immediately after a disaster. Accordingly, we obtain the jump terms and thus the risk

premium from (54) by evaluating the optimal policy functions at points in the state space.

3.2.5 Results

In what follows, we restrict our discussion to the empirically most relevant case where θ ≥ 1.

The key result is that effective risk aversion, except for the singular case ρ = ρ̄, is still a

function of financial wealth. This in turn implies a time-varying risk premium since wealth

is changing stochastically over time. As shown in the appendix, elastic labor supply, ψ 6= 0,

primarily has an effect on the optimal hours supplied, but does not substantially affect the

shape and properties of the risk premium (cf. Figures A.1 and A.2).

The knife-edge value ρ = ρ̄ ensures that the individual’s optimal choice of leisure is

constant (cf. Bodie et al., 1992). In this particular case, the expected proportional decline

of marginal utility with respect to consumption matches the expected rate of return apart

from a constant. Moreover, we obtain that the marginal propensity to save (to consume),

s(Wt) = s, the supplied hours, H(Wt) = H, and the risk premium are all constant measures

over time (consumption becomes a homogeneous function of degree α). For ρ < ρ̄ the

individual prefers a higher saving rate, s(Wt) > s, and supplies more hours, H(Wt) > H.

Because both optimal policy functions for consumption and hours are concave, the effective

risk aversion of the value function is lower than for ψ = 0. The risk premium is convex in

financial wealth and has the upper bound e−αθν(1 − eν)λ for wealth approaching zero. For

ρ > ρ̄ the marginal propensity to save is smaller, s(Wt) < s, and the individual supplies less

hours, H(Wt) < H, which in fact raises the effective risk aversion. Since the saving rate is

decreasing in wealth, the risk premium is concave with lower bound e−θαν(1 − eν)λ.

An empirically testable implication is the correlation between hours and consumption. In

the data, hours and consumption are positively correlated which in turn implies a negative

correlation between consumption and leisure (cf. Lettau and Uhlig, 2000). We may infer this

property directly from the policy functions. For ρ = ρ̄ there is zero correlation, while for

ρ < ρ̄ consumption and hours are concave functions of financial wealth (which has the usual

interpretation of the capital stock per effective worker), and we obtain a positive correlation.

It is only for ρ > ρ̄ that the optimal policy function for hours is convex. In turn this implies

a counterfactual negative correlation as long as the consumption function is concave. Thus,

the empirically most plausible case ρ < ρ̄ implies strictly concave policy functions for both
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consumption and hours, as well as time-varying and asymmetric risk premia similar to the

benchmark case of constant labor supply ψ = 0.

Summarizing, the extension to endogenous labor supply is able to generate empirically

plausible correlations for consumption and leisure. Though our main results on the shape

and the time-varying property of the risk premium are not affected, the ability to buffer

risk trough the labor-leisure choice makes it even more challenging to generate sizable risk

premia in production economies. One interesting extension could therefore examine the role

of different types of non-linearities such as capital adjustment cost and/or habit formation

which would affect effective risk aversion and thus the risk premium (cf. Jermann, 2010).

4 Conclusion

In this paper we study how non-linearities affect asset pricing implications in a production

economy. We derive closed-form solutions of the Lucas’ fruit-tree model and compare the

implicit risk premium to those obtained from models which account for non-linearities in the

form of a neoclassical production function. For this purpose, we formulate our DSGE models

in continuous time which gives analytical benchmark solutions for numerical analysis. Our

key result is that these non-linearities can generate time-varying and asymmetric risk premia

over the business cycle. The economic intuition is that individual’s effective risk aversion,

except for singular cases, is not constant in a neoclassical production economy. We show that

non-normalities in the form of rare disasters substantially increase the economic relevance

of these (empirical) key features.

From a methodological point of view, this paper shows that formulating the endowment

economy or non-trivial production models in continuous time gives analytical solutions for

reasonable parametric restrictions or functional forms. Analytical solutions are useful for

macro-finance models for at least two reasons. First, they are points of reference from which

numerical methods can be used to explore a broader class of models. Second, they shed light

on asset market implications without relying purely on numerical methods. This circumvents

problems induced by approximation schemes which could be detrimental when studying the

effects of uncertainty. Along these lines, we propose the continuous-time formulation of

DSGE models as a workable paradigm in macro-finance.
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A Appendix

A.1 Lucas fruit-tree model in continuous-time

A.1.1 Deriving the budget constraint

Consider a portfolio strategy which holds nt units of the risky asset and n0(t) units of the

riskless asset with default risk, such that

Wt = n0(t)p0(t) + ptnt

denotes the portfolio value. Using Itô’s formula, it follows that

dWt = p0(t)dn0(t) + n0(t)p0(t)rdt+ ptdnt + wtµWtdt+ wtσWdBt

+ (wt−Jt + (1 − wt−)Dt)Wt−dNt,

where wtWt ≡ ntpt denotes the amount invested in the risky asset. Since investors use their

savings to accumulate assets, assuming no dividend payments, p0(t)dn0(t) + ptdnt = −Ctdt,

dWt = ((µ− r)wtWt + rWt − Ct) dt+ σwtWtdBt

+ ((Jt −Dt)wt− +Dt)Wt−dNt.

Finally, we obtain the budget constraint (6) by defining

µM ≡ (µ− r)wt + r, σM ≡ wtσ, ζM(t) ≡ (Dt − Jt)wt −Dt.

A.1.2 The short-cut approach

As a necessary condition for optimality the Bellman’s principle gives at time s

ρV (Ws) = max
Cs

{

u(Cs) +
1

dt
EsdV (Ws)

}

. (55)

Using Itô’s formula (see e.g. Sennewald, 2007),

dV (Ws) =
(
(µMWs − Cs)VW + 1

2
σ2
MW

2
s VWW

)
dt+ σMWsVWdBt + (V (Ws) − V (Ws−))dNt

=
(
(µMWs − Cs)VW + 1

2
σ2
MW

2
s VWW

)
dt+ σMWsVWdBt

+(V ((1 − ζM(t−))Ws−) − V (Ws−))dNt,

where σ2
M is the instantaneous variance of the risky asset’s return from the Brownian motion

increments. If we take the expectation of the integral form, and use the property of stochastic
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integrals, we may write using ζM ≡ E(ζM(t)|Dt = exp(κ) − 1) = 1 − eκ − (eν1 − eκ)w and

ζ0

M ≡ E(ζM(t)|Dt = 0) = (1 − eν2)w,

EsdV (Ws) =
(
(µMWs − Cs)VW + 1

2
σ2
MW

2
s VWW

+(V ((1 − ζM)Ws)q + V ((1 − ζ0

M)Ws)(1 − q) − V (Ws))λ
)
dt.

Inserting into (55) gives the Bellman equation

ρV (Ws) = max
Cs

{
u(Cs) + (µMWs − Cs)VW + 1

2
σ2
MW

2
s VWW

+(V ((1 − ζM)Ws)q + V ((1 − ζ0

M)Ws)(1 − q) − V (Ws))λ
}
.

The first-order condition (9) makes consumption a function of the state variable. Using

the maximized Bellman equation for all s = t ∈ [0,∞),

ρV (Wt) = u(C(Wt)) + (µMWt − C(Wt))VW + 1
2
σ2
MW

2
t VWW

+(V ((1 − ζM)Wt)q + V ((1 − ζ0

M)Ws)(1 − q) − V (Wt))λ.

Use the envelope theorem to compute the costate

ρVW = (µMVW + (µMWt − C(Wt))VWW + σ2
MWtVWW + 1

2
σ2
MW

2
t VWWW

+(VW ((1 − ζM)Wt)(1 − ζM)q + VW ((1 − ζ0

M)Ws)(1 − ζ0

M)(1 − q) − VW (Wt))λ.

Collecting terms, we obtain

(ρ− µM + λ)VW = (µMWt − C(Wt))VWW + σ2
MWtVWW + 1

2
σ2
MW

2
t VWWW

+(VW ((1 − ζM)Wt)(1 − ζM)q + VW ((1 − ζ0

M)Ws)(1 − ζ0

M)(1 − q))λ. (56)

Using Itô’s formula, the costate obeys

dVW (Wt) = (µMWt − Ct)VWWdt + 1
2
σ2
MW

2
t VWWWdt+ σMWtVWWdBt

+(VW ((1 − ζM(t−))Wt−) − VW (Wt−))dNt

=
(
(ρ− µM + λ)VW − σ2

MWtVWW − VW ((1 − ζM)Wt)(1 − ζM)qλ

−VW ((1 − ζ0

M)Ws)(1 − ζ0

M)(1 − q)λ
)
dt

+σMWtVWWdBt + (VW ((1 − ζM(t−))Wt−) − VW (Wt−))dNt,

where we inserted the costate from (56). As a final step we insert the first-order condition

and obtain the Euler equation (10).
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A.1.3 Proof of Proposition 2.1

The idea of this proof is to show that using an educated guess of the value function, the

maximized Bellman equation and the first-order condition (9) are both fulfilled. For constant

relative risk aversion, θ, the utility function has the form

u(Ct) = C1
C1−θ
t

1 − θ
+ C2, θ > 0, (C1,C2) ∈ R+ × R. (57)

From (8), we obtain the maximized Bellman equation using the functional equation for

consumption from the condition (9), i.e., C(Wt) = C
1/θ
1 V

−1/θ
W . We use the educated guess

V̄ = C0C1
W 1−θ

t

1 − θ
+ C2/ρ, (58)

where V̄W = C0C1W
−θ
t and V̄WW = −θC0C1W

−θ−1
t , to solve the resulting equation. Note

that optimal consumption is linear in wealth, C(Wt) = C
−1/θ
0 Wt, and we arrive at

ρC0C1
W 1−θ

t

1 − θ
+ C2 = C1

C
− 1−θ

θ

0 W 1−θ
t

1 − θ
+ C2 +

(

µMWt − C
−1/θ
0 Wt

)

VW + 1
2
σ2
MW

2
t VWW

+
(
(1 − ζM)1−θq + (1 − ζ0

M)1−θ(1 − q) − 1
)

C0C1
W 1−θ

t

1 − θ
λ.

Collecting terms gives

ρ = C
−1/θ
0 + (1 − θ)

(
µM − C

−1/θ
0

)
− (1 − θ)1

2
σ2
Mθ

+
(
(1 − ζM)1−θq + (1 − ζ0

M)1−θ(1 − q) − 1
)
λ

⇒ C
−1/θ
0 =

ρ− (1 − θ)µM + λ− (1 − ζM)1−θqλ− (1 − ζ0

M)1−θ(1 − q)λ

θ
+ (1 − θ)1

2
σ2
M

=
ρ− (1 − θ)µM + λ− (1 − ζM)1−θλ

θ
+ (1 − θ)1

2
σ2
M ,

where the last equality used that in general equilibrium asset prices in (16) imply ζM = ζ0

M .

This proofs that the guess (58) indeed is a solution, and by inserting the guess together with

the constant, we obtain the policy function for consumption.
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Table A.1: Calibrated model and the risk premium (endowment economy)

(1) (2) (3) (4) (5) (6) (7)
Parameters

No Low High Low Low Low
disasters Baseline θ λ q µ̄ ρ

θ (coef. of relative
risk aversion) 4 4 3 4 4 4 4

σ̄ (s.d. of growth rate,
no disasters) 0.02 0.02 0.02 0.02 0.02 0.02 0.02

ρ (rate of time
preference) 0.03 0.03 0.03 0.03 0.03 0.03 0.02

µ̄ (growth rate,
deterministic part) 0.025 0.025 0.025 0.025 0.025 0.020 0.025

λ (disaster probability) 0 0.017 0.017 0.025 0.017 0.017 0.017
q (default probability

in disaster) 0 0.4 0.4 0.4 0.3 0.4 0.4

1 − eν̄ (size of disaster) 0 0.4 0.4 0.4 0.4 0.4 0.4

1 − eκ (size of default) 0 0.4 0.4 0.4 0.4 0.4 0.4

Variables
Default risk 0 0.021 0.012 0.03 0.016 0.021 0.021
Disaster risk 0 0.031 0.019 0.046 0.036 0.031 0.031
Residual risk 0.002 0.002 0.001 0.002 0.002 0.002 0.002
Implicit risk premium 0.002 0.054 0.032 0.078 0.054 0.054 0.054

Expected market rate 0.128 0.06 0.067 0.028 0.06 0.04 0.05
Expected bill rate 0.126 0.031 0.051 -0.013 0.026 0.011 0.021
Market premium 0.002 0.029 0.016 0.041 0.033 0.029 0.029
Expected market rate,

conditional 0.128 0.066 0.074 0.038 0.066 0.046 0.056
Face bill rate 0.126 0.034 0.054 -0.009 0.028 0.014 0.024
Market premium, conditional 0.002 0.033 0.02 0.047 0.038 0.033 0.033
Sharpe ratio, conditional 0.08 1.641 0.996 2.366 1.901 1.641 1.641

Expected growth rate 0.025 0.016 0.016 0.012 0.016 0.011 0.016
Expected growth rate,

conditional 0.025 0.025 0.025 0.025 0.025 0.02 0.025
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Table A.2: Calibrated model and the risk premium (endowment economy)

(1) (2) (3) (4) (5) (6) (7)
Parameters

No High High High Low Low
default Baseline σ̄ λ q 1 − eν̄ 1 − eκ

θ (coef. of relative
risk aversion) 4 4 4 4 4 4 4

σ̄ (s.d. of growth rate,
no disasters) 0.02 0.02 0.05 0.02 0.02 0.02 0.02

ρ (rate of time
preference) 0.03 0.03 0.03 0.03 0.03 0.03 0.03

µ̄ (growth rate,
deterministic part) 0.025 0.025 0.025 0.025 0.025 0.025 0.025

λ (disaster probability) 0.017 0.017 0.017 0.2 0.017 0.017 0.017
q (default probability

in disaster) 0 0.4 0.4 0.4 1 0.4 0.4

1 − eν̄ (size of disaster) 0.4 0.4 0.4 0.034 0.4 0.2 0.4

1 − eκ (size of default) 0.4 0.4 0.4 0.034 0.4 0.4 0.2

Variables
Default risk 0 0.021 0.021 0.003 0.052 0.007 0.01
Disaster risk 0.052 0.031 0.031 0.004 0 0.002 0.042
Residual risk 0.002 0.002 0.01 0.002 0.002 0.002 0.002
Implicit risk premium 0.054 0.054 0.062 0.009 0.054 0.01 0.054

Expected market rate 0.06 0.06 0.047 0.102 0.06 0.108 0.06
Expected bill rate 0.013 0.031 0.01 0.099 0.058 0.106 0.022
Market premium 0.047 0.029 0.037 0.002 0.002 0.003 0.038
Expected market rate,

conditional 0.066 0.066 0.054 0.108 0.066 0.112 0.066
Face bill rate 0.013 0.034 0.013 0.102 0.065 0.108 0.023
Market premium, conditional 0.054 0.033 0.041 0.006 0.002 0.003 0.043
Sharpe ratio, conditional 2.681 1.641 0.824 0.292 0.08 0.162 2.161

Expected growth rate 0.016 0.016 0.015 0.019 0.016 0.021 0.016
Expected growth rate,

conditional 0.025 0.025 0.024 0.025 0.025 0.025 0.025
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Table A.3: Calibrated model and the risk premium (production economy)

(1) (2) (3) (4) (5) (6) (7)
Parameters

No High Low Low High High
disasters Baseline θ α δ λ |ν|

θ (coef. of relative
risk aversion) 4 4 6 4 4 4 4

α (output elasticity
of capital) 0.75 0.75 0.75 0.33 0.75 0.75 0.75

δ (capital depreciation,
deterministic part) 0.1 0.1 0.1 0.1 0.05 0.1 0.1

ρ (rate of time
preference) 0.05 0.05 0.05 0.05 0.05 0.05 0.05

σ (s.d. of stochastic
depreciation, no disasters) 0 0 0 0 0 0 0

σ̄ (s.d. of TFP growth) 0 0 0 0 0 0 0
µ̄ (growth rate TFP,

deterministic part) 0 0 0 0 0 0 0
λ (disaster probability) 0 0.017 0.017 0.017 0.017 0.02 0.017
1 − eν (size of disaster) 0 0.4 0.4 0.4 0.4 0.4 0.5

Variables
Implied knife-edge value ρ̄ 0.200 0.230 0.435 0.035 0.130 0.236 0.251

Implicit risk premium
steady state, conditional 0 0.024 0.034 0.014 0.027 0.028 0.045
zero wealth (left limit) 0 0.032 0.068 0.013 0.032 0.037 0.068

Market rate, steady state (gross) 0.150 0.131 0.116 0.147 0.077 0.128 0.122
Bill rate, steady state (gross) 0.150 0.107 0.081 0.133 0.051 0.101 0.078
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A.2 A model of growth under uncertainty

A.2.1 The Bellman equation and the Euler equation

As a necessary condition for optimality the Bellman’s principle gives at time s

ρV (Ws, As) = max
Cs

{

u(Cs) +
1

dt
EsdV (Ws, As)

}

.

Using Itô’s formula yields

dV = VW (dWs − JsWs−dNt) + VAdAs + 1
2

(
VAAσ̄

2A2
s + VWWσ

2W 2
s

)
dt

+[V (Ws, As) − V (Ws−, As−)]dNt

= ((rs − δ)Ws + wLs − Cs)VWdt+ VWσWsdZs + VAµ̄Asdt+ VAσ̄AsdBs

+1
2

(
VAAσ̄

2A2
s + VWWσ

2W 2
s

)
dt+ [V (eνWs−, As−) − V (Ws−, As−)]dNt.

Using the property of stochastic integrals, we may write

ρV (Ws, As) = max
Cs

{
u(cs) + ((rs − δ)Ws + wLs − Cs)VW + 1

2

(
VAAσ̄

2A2
s + VWWσ

2W 2
s

)

+VAµ̄As + [V (eνWs, As) − V (Ws, As)]λ}

for any s ∈ [0,∞). Because it is a necessary condition for optimality, we obtain the first-order

condition (29) which makes optimal consumption a function of the state variables.

For the evolution of the costate we use the maximized Bellman equation

ρV (Wt, At) = u(C(Wt, At)) + ((rt − δ)Wt + wLt − C(Wt, At))VW + VAµ̄At

+1
2

(
VAAσ̄

2A2
t + VWWσ

2W 2
t

)
+ [V (eνWt, At) − V (Wt, At)]λ, (59)

where rt = r(Wt, At) and wLt = w(Wt, At) follow from the firm’s optimization problem, and

the envelope theorem (also for the factor rewards) to compute the costate,

ρVW = µ̄AtVAW + ((rt − δ)Wt + wLt − Ct)VWW + (rt − δ)VW + 1
2

(
VWAAσ̄

2A2
t + VWWWσ

2W 2
t

)

+VWWσ
2Wt + [VW (eνWt, At)e

ν − VW (Wt, At)]λ.

Collecting terms we obtain

(ρ− (rt − δ) + λ)VW = VAW µ̄At + ((rt − δ)Wt + wLt − Ct)VWW + 1
2

(
VWAAσ̄

2A2
t + VWWWσ

2W 2
t

)

+σ2VWWWt + VW (eνWt, At)e
νλ.

Using Itô’s formula, the costate obeys

dVW = VAW µ̄Atdt+ VAW σ̄AtdBt +
1
2

(
VWAAσ̄

2A2
t + VWWWσ

2W 2
t

)
dt

+((rt − δ)Wt + wLt − Ct)VWWdt+ VWWσWtdZt + [VW (Wt, At) − VW (Wt−, At−)]dNt,
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where inserting yields

dVW = (ρ− (rt − δ) + λ)VWdt− VW (eνWt, At)e
νλ− σ2VWWWtdt+ VAWAtσ̄dBt

+VWWWtσdZt + [VW (eνWt−, At−) − VW (Wt−, At−)]dNt,

which describes the evolution of the costate variable. As a final step, we insert the first-order

condition (29) to obtain the Euler equation (30).

A.2.2 Proof of Proposition 3.1

The idea of this proof is to show that using an educated guess of the value function, the

maximized Bellman equation (59) and the first-order condition (29) are both fulfilled. We

guess that the value function reads

V (Wt, At) =
C1W

1−θ
t

1 − θ
+ f(At). (60)

From (29), optimal consumption is a constant fraction of wealth,

C−θ
t = C1W

−θ
t ⇔ Ct = C

−1/θ
1 Wt.

Now use the maximized Bellman equation (59), the property of the Cobb-Douglas technology,

FK = αAtK
α−1
t L1−α and FL = (1−α)AtK

α
t L

−α
t , together with the transformationKt ≡ LWt,

and insert the solution candidate,

ρ
C1W

1−θ
t

1 − θ
=

C
− 1−θ

θ

1 W 1−θ
t

1 − θ
+ (αAtW

α−1
t Wt − δWt + (1 − α)AtW

α
t − C

−1/θ
1 Wt)C1W

−θ
t

−1
2
θC1W

1−θ
t σ2 − g(At) + (e(1−θ)ν − 1)

C1W
1−θ
t

1 − θ
λ,

where we defined g(At) ≡ ρf(At)− fAµ̄At−
1
2
fAAσ̄

2A2
t . When imposing the condition α = θ

and g(At) = C1At it can be simplified to

(ρ− (e(1−θ)ν − 1)λ)
C1W

1−θ
t

1 − θ
+ g(At) =

C
− 1−θ

θ

1 W 1−θ
t

1 − θ
+ (AtW

α−θ
t − δW 1−θ

t − C
−1/θ
1 W 1−θ

t )C1

−1
2
θC1W

1−θ
t σ2

⇔ (ρ− (e(1−θ)ν − 1)λ)W 1−θ
t = θC

−1/θ
1 W 1−θ

t − (1 − θ)δW 1−θ
t − 1

2
θ(1 − θ)W 1−θ

t σ2,

which implies that

C
−1/θ
1 =

ρ− (e(1−θ)ν − 1)λ+ (1 − θ)δ + 1
2
θ(1 − θ)σ2

θ
.

This proofs that the guess (60) indeed is a solution, and by inserting the guess together with

the constant, we obtain the optimal policy function for consumption.
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A.2.3 Proof of Proposition 3.5

The idea of this proof follows Section A.2.2. An educated guess of the value function is

V (Wt, At) =
C1W

1−αθ
t

1 − αθ
A−θ
t . (61)

From (29), optimal consumption is a constant fraction of income,

C−θ
t = C1W

−αθ
t A−θ

t ⇔ Ct = C
−1/θ
1 W α

t At.

Now use the maximized Bellman equation (59), the property of the Cobb-Douglas technology,

FK = αAtK
α−1
t L1−α and FL = (1−α)AtK

α
t L

−α, together with the transformationKt ≡ LWt,

and insert the solution candidate,

ρV (Wt, At) =
C

− 1−θ

θ

1 W α−αθ
t A1−θ

t

1 − θ
+ ((rt − δ)Wt + wLt − C(Wt, At))VW + VAµ̄At

+1
2

(
VAAσ̄

2A2
t + VWWσ

2W 2
t

)
+ [V (eνWt, At) − V (Wt, At)]λ,

Inserting the guess and collecting terms gives

ρ+ θµ̄− 1
2

(
θ(1 + θ)σ̄2 − αθ(1 − αθ)σ2

)
+ (1 − αθ)δ =

(
θ

1 − θ
C

−1/θ
1 + 1

)

(1 − αθ)AtW
α−1
t ,

which has a solution for C
−1/θ
1 = (θ − 1)/θ and

ρ = (e(1−αθ)ν − 1)λ− θµ̄+ 1
2

(
θ(1 + θ)σ̄2 − αθ(1 − αθ)σ2

)
− (1 − αθ)δ.

This proofs that the guess (61) indeed is a solution, and by inserting the guess together with

the constant, we obtain the optimal policy function for consumption.

A.3 A model of growth under uncertainty with leisure

A.3.1 The Bellman equation and the Euler equation

As a necessary condition for optimality the Bellman’s principle gives at time s

ρV (Ws, As) = max
Cs,Hs

{

u(Cs, Hs) +
1

dt
EsdV (Ws, As)

}

.

Using Itô’s formula yields

dV = VW (dWs − (eν − 1)Ws−dNt) + VAdAs + 1
2

(
VAAσ̄

2A2
s + VWWσ

2W 2
s

)
dt

+[V (Ws, As) − V (Ws−, As−)]dNt

= ((rs − δ)Ws +Hsw
H
s − Cs)VWdt+ VWσWsdZs + VAµ̄Asdt+ VAσ̄AsdBs

+1
2

(
VAAσ̄

2A2
s + VWWσ

2W 2
s

)
dt+ [V (eνWs−, As−) − V (Ws−, As−)]dNt.
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Using the property of stochastic integrals, we may write

ρV (Ws, As) = max
Cs,Hs

{
u(Cs, Hs) + ((rs − δ)Ws +Hsw

H
s − Cs)VW

+1
2

(
VAAσ̄

2A2
s + VWWσ

2W 2
s

)
+ VAµ̄As + [V (eνWs, As) − V (Ws, As)]λ

}

for any s ∈ [0,∞). Because it is a necessary condition for optimality, we obtain the first-

order conditions (45) and (46) which make optimal consumption and hours functions of the

state variables, Ct = C(Wt, At) and Ht = H(Wt, At), respectively.

For the evolution of the costate we use the maximized Bellman equation

ρV (Wt, At) = u(C(Wt, At), H(Wt, At)) + ((rt − δ)Wt +H(Wt, At)w
H
t − C(Wt, At))VW

+VAµ̄At +
1
2

(
VAAσ̄

2A2
t + VWWσ

2W 2
t

)
+ [V (eνWt, At) − V (Wt, At)]λ, (62)

where rt = r(Wt, At) and wLt = w(Wt, At) follow from the firm’s optimization problem, and

the envelope theorem (also for the factor rewards) to compute the costate,

ρVW = µ̄AtVAW + ((rt − δ)Wt +Htw
H
t − Ct)VWW + (rt − δ)VW

+1
2

(
VWAAσ̄

2A2
t + VWWWσ

2W 2
t

)
+ VWWσ

2Wt + [VW (eνWt, At)e
ν − VW (Wt, At)]λ.

Collecting terms we obtain

(ρ− (rt − δ) + λ)VW = VAW µ̄At + ((rt − δ)Wt +Htw
H
t − Ct)VWW

+1
2

(
VWAAσ̄

2A2
t + VWWWσ

2W 2
t

)
+ σ2VWWWt + VW (eνWt, At)e

νλ.

Using Itô’s formula, the costate obeys

dVW = VAW µ̄Atdt+ VAW σ̄AtdBt +
1
2

(
VWAAσ̄

2A2
t + VWWWσ

2W 2
t

)
dt+ VWWσWtdZt

+((rt − δ)Wt +Htw
H
t − Ct)VWWdt + [VW (Wt, At) − VW (Wt−, At−)]dNt,

where inserting yields

dVW = (ρ− (rt − δ) + λ)VWdt− VW (eνWt, At)e
νλ− σ2VWWWtdt+ VAWAtσ̄dBt

+VWWWtσdZt + [VW (eνWt−, At−) − VW (Wt−, At−)]dNt,

which describes the evolution of the costate variable. As a final step, we insert the first-order

condition (45) to obtain the Euler equation (48).

A.3.2 Proof of Proposition 3.5

The idea of this proof follows Section A.2.2. An educated guess of the value function is

V (Wt, At) =
C1W

1−αθ
t

1 − αθ
A−θ
t . (63)
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From the first-order conditions (45) and (46), we obtain

C−θ
t (1 −Ht)

(1−θ)ψ = C1W
−αθ
t A−θ

t ,

ψC1−θ
t (1 −Ht)

(1−θ)ψ−1 = wHt C1W
−αθ
t A−θ

t ⇒ ψCt/(1 −Ht) = (1 − α)AtW
α
t H

−α
t .

Suppose that optimal hours are constant, Ht = H, then optimal consumption becomes

a constant fraction of income,

Ct = (1 − s)AtW
α
t H

1−α, 1 − s ≡ (1 − α)
1 −H

ψH
, ψ 6= 0.

Inserting everything into (62) and collecting terms gives

(
ρ + (1 − αθ)δ +

(
θµ̄− 1

2

(
θ(1 + θ)σ̄2 − αθ(1 − ασ)σ2

))
− (eν(1−αθ) − 1)λ

) C1W
1−αθ
t

1 − αθ
A−θ
t =

(
(1 − s)1−θH(1−θ)(1−α)(1 −H)(1−θ)ψ +

(
H1−α − (1 − s)H1−α

)
(1 − θ)C1

) A1−θ
t W α−αθ

t

1 − θ
.

Hence, for ρ = ρ̄ and

C1 = −
(1 − s)1−θH(1−α)(1−θ)(1 −H)(1−θ)ψ

(1 − θ)H1−α − (1 − θ)(1 − s)H1−α
,

the constant saving rate is indeed the optimal solution. The optimal hours can be obtained

from the first-order condition for consumption

Ct(1 −H)−
1−θ

θ
ψ = C

−1/θ
1 W α

t At

⇔
1 − α

ψ
H−α(1 −H)1− 1−θ

θ
ψ = C

−1/θ
1 .

Inserting the condition for C1, we obtain

(
1 − α

ψ

)−θ

Hαθ(1 −H)−θ+(1−θ)ψ = −
(1 − s)1−θH(1−α)(1−θ)(1 −H)(1−θ)ψ

(1 − θ)H1−α − (1 − θ)(1 − s)H1−α

⇔
ψ

1 − α
= −

1 −H

(1 − θ)H − (1 − θ)(1 − α)(1 −H)/ψ
.

Collecting terms yields

ψ = −
(1 − α)(1 −H)

(1 − θ)H − (1 − θ)(1 − α)(1 −H)/ψ

⇔ −ψ(1 − θ)H = θ(1 − α)(1 −H)

⇔ H =
θ(1 − α)

θ(1 − α) − ψ(1 − θ)

which are admissible solutions if and only if 0 < H < 1, which holds for θ > 1.
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A.3.3 Obtaining the reduced form

In order to keep notation simple, this section provides the full derivation for a deterministic

system (λ = 0). The complete derivation for the stochastic system is available on request

from the author. Observe that the dynamic system can be summarized as

dCt = −
uC
uCC

(rt − ρ− δ) dt−
uCH
uCC

dHt,

dHt =
uHCuC − uCCuH

YHH/YHuHuCC + ū
(ρ− (rt − δ))dt

−
uCCuH

YHH/YHuHuCC + ū

YHK
YH

((rt − δ)Wt +Htw
H
t − Ct)dt,

dWt = ((rt − δ)Wt +Htw
H
t − Ct)dt.

We can neglect the first equation because in equilibrium Ct = C(H(Wt)). We find that

dHt =
−(1 − θ)ψC−2θ

t (1 −Ht)
2(1−θ)ψ−1 − θψC−2θ

t (1 −Ht)
2(1−θ)ψ−1

YHH/YHθψC
−2θ
t (1 −Ht)2(1−θ)ψ−1 + ū

(ρ− (rt − δ))dt

−
θψC−2θ

t (1 −Ht)
2(1−θ)ψ−1

YHH/YHθψC
−2θ
t (1 −Ht)2(1−θ)ψ−1 + ū

YHK
YH

((rt − δ)Wt +Htw
H
t − Ct)dt,

where

ū = (1 − θ)2ψ2C−2θ
t (1 −Ht)

2(1−θ)ψ−2 + (θψ2 − θ2ψ2 − ψθ)C−2θ
t (1 −Ht)

2(1−θ)ψ−2

=
(
(1 − θ)2ψ2 + θψ2 − θ2ψ2 − ψθ

)
C−2θ
t (1 −Ht)

2(1−θ)ψ−2

= ψ (ψ − θψ − θ)C−2θ
t (1 −Ht)

2(1−θ)ψ−2.

Hence, inserting ū and collecting terms yields

dHt =
−1

YHH/YHθ + ((1 − θ)ψ − θ) (1 −Ht)−1
(ρ− (rt − δ))dt

−
θ

YHH/YHθ + ((1 − θ)ψ − θ) (1 −Ht)−1

YHK
YH

((rt − δ)Wt +Htw
H
t − Ct)dt.

Inserting remaining partial derivatives yields,

dHt =
−ρ + rt − δ

−αθH−1
t + ((1 − θ)ψ − θ) (1 −Ht)−1

dt+
−θ(rt − αδ − αCt/Wt)

−αθH−1
t + ((1 − θ)ψ − θ) (1 −Ht)−1

dt

=
ρ− rt + δ + θ(rt − αδ − αCt/Wt)

αθH−1
t + (θ − (1 − θ)ψ) (1 −Ht)−1

dt.

To summarize, the reduced form description of the deterministic model can be written as

dHt =
ρ + (1 − αθ)δ − (1 − θ)rt − αθCt/Wt

αθH−1
t + (θ − (1 − θ)ψ) (1 −Ht)−1

dt

dWt = ((rt − δ)Wt +Htw
H
t − Ct)dt,

where Ct = C(H(Wt),Wt).
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Figure A.1: Risk premia in a production economy
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Notes: These figures illustrate the optimal policy functions for consumption (left panel), for hours (middle panel) and the risk
premium (right panel) as functions of individual wealth for different levels of relative risk aversion for the case of σ = σ̄ = µ̄ = 0,
for calibrations (ρ, α, θ, δ, λ, 1 − eν , ψ) = (.05, .75, ·, .1, .017, .4, 0) where θ = .75 (dotted), θ = 4 (dashed), and θ = 6 (solid).
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Notes: These figures illustrate the optimal policy functions for consumption (left panel), for hours (middle panel) and the risk
premium (right panel) as functions of individual wealth for different levels of relative risk aversion for the case of σ = σ̄ = µ̄ = 0,
for calibrations (ρ, α, θ, δ, λ, 1 − eν , ψ) = (.05, .75, ·, .1, .017, .4, 1) where θ = .75 (dotted), θ = 4 (dashed), and θ = 6 (solid).
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Figure A.2: Risk premia in a production economy
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Notes: These figures illustrate the optimal policy functions for consumption (left panel), for hours (middle panel) and the risk
premium (right panel) as functions of individual wealth for different levels of relative risk aversion for the case of σ = σ̄ = µ̄ = 0,
for calibrations (ρ, α, θ, δ, λ, 1 − eν , ψ) = (.03, .75, ·, .25, .017, .4, 0) where θ = .75 (dotted), θ = 4 (dashed), and θ = 6 (solid).
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Notes: These figures illustrate the optimal policy functions for consumption (left panel), for hours (middle panel) and the risk
premium (right panel) as functions of individual wealth for different levels of relative risk aversion for the case of σ = σ̄ = µ̄ = 0,
for calibrations (ρ, α, θ, δ, λ, 1 − eν , ψ) = (.03, .75, ·, .25, .017, .4, 1) where θ = .75 (dotted), θ = 4 (dashed), and θ = 6 (solid).

41



CESifo Working Paper Series 
for full list see Twww.cesifo-group.org/wp T 
(address: Poschingerstr. 5, 81679 Munich, Germany, office@cesifo.de) 

___________________________________________________________________________ 
 
3069 Andrey Launov and Klaus Wälde, Estimating Incentive and Welfare Effects of Non-

Stationary Unemployment Benefits, May 2010 
 
3070 Simon Gächter, Benedikt Herrmann and Christian Thöni, Culture and Cooperation, June 

2010 
 
3071 Mehmet Bac and Eren Inci, The Old-Boy Network and the Quality of Entrepreneurs, 

June 2010 
 
3072 Krisztina Molnár and Sergio Santoro, Optimal Monetary Policy when Agents are 

Learning, June 2010 
 
3073 Marcel Boyer and Donatella Porrini, Optimal Liability Sharing and Court Errors: An 

Exploratory Analysis, June 2010 
 
3074 Guglielmo Maria Caporale, Roman Matousek and Chris Stewart, EU Banks Rating 

Assignments: Is there Heterogeneity between New and Old Member Countries? June 
2010 

 
3075 Assaf Razin and Efraim Sadka, Fiscal and Migration Competition, June 2010 
 
3076 Shafik Hebous, Martin Ruf and Alfons Weichenrieder, The Effects of Taxation on the 

Location Decision of Multinational Firms: M&A vs. Greenfield Investments, June 2010 
 
3077 Alessandro Cigno, How to Deal with Covert Child Labour, and Give Children an 

Effective Education, in a Poor Developing Country: An Optimal Taxation Problem with 
Moral Hazard, June 2010 

 
3078 Bruno S. Frey and Lasse Steiner, World Heritage List: Does it Make Sense?, June 2010 
 
3079 Henning Bohn, The Economic Consequences of Rising U.S. Government Debt: 

Privileges at Risk, June 2010 
 
3080 Rebeca Jiménez-Rodriguez, Amalia Morales-Zumaquero and Balázs Égert, The 

VARying Effect of Foreign Shocks in Central and Eastern Europe, June 2010 
 
3081 Stephane Dees, M. Hashem Pesaran, L. Vanessa Smith and Ron P. Smith, Supply, 

Demand and Monetary Policy Shocks in a Multi-Country New Keynesian Model, June 
2010 

 
3082 Sara Amoroso, Peter Kort, Bertrand Melenberg, Joseph Plasmans and Mark 

Vancauteren, Firm Level Productivity under Imperfect Competition in Output and 
Labor Markets, June 2010 

 
 



 
3083 Thomas Eichner and Rüdiger Pethig, International Carbon Emissions Trading and 

Strategic Incentives to Subsidize Green Energy, June 2010 
 
3084 Henri Fraisse, Labour Disputes and the Game of Legal Representation, June 2010 
 
3085 Andrzej Baniak and Peter Grajzl, Interjurisdictional Linkages and the Scope for 

Interventionist Legal Harmonization, June 2010 
 
3086 Oliver Falck and Ludger Woessmann, School Competition and Students’ 

Entrepreneurial Intentions: International Evidence Using Historical Catholic Roots of 
Private Schooling, June 2010 

 
3087 Bernd Hayo and Stefan Voigt, Determinants of Constitutional Change: Why do 

Countries Change their Form of Government?, June 2010 
 
3088 Momi Dahan and Michel Strawczynski, Fiscal Rules and Composition Bias in OECD 

Countries, June 2010 
 
3089 Marcel Fratzscher and Julien Reynaud, IMF Surveillance and Financial Markets – A 

Political Economy Analysis, June 2010 
 
3090 Michel Beine, Elisabetta Lodigiani and Robert Vermeulen, Remittances and Financial 

Openness, June 2010 
 
3091 Sebastian Kube and Christian Traxler, The Interaction of Legal and Social Norm 

Enforcement, June 2010 
 
3092 Volker Grossmann, Thomas M. Steger and Timo Trimborn, Quantifying Optimal 

Growth Policy, June 2010 
 
3093 Huw David Dixon, A Unified Framework for Using Micro-Data to Compare Dynamic 

Wage and Price Setting Models, June 2010 
 
3094 Helmuth Cremer, Firouz Gahvari and Pierre Pestieau, Accidental Bequests: A Curse for 

the Rich and a Boon for the Poor, June 2010 
 
3095 Frank Lichtenberg, The Contribution of Pharmaceutical Innovation to Longevity 

Growth in Germany and France, June 2010 
 
3096 Simon P. Anderson, Øystein Foros and Hans Jarle Kind, Hotelling Competition with 

Multi-Purchasing: Time Magazine, Newsweek, or both?, June 2010 
 
3097 Assar Lindbeck and Mats Persson, A Continuous Theory of Income Insurance, June 

2010 
 
3098 Thomas Moutos and Christos Tsitsikas, Whither Public Interest: The Case of Greece’s 

Public Finance, June 2010 
 
3099 Thomas Eichner and Thorsten Upmann, Labor Markets and Capital Tax Competition, 

June 2010 



 
3100 Massimo Bordignon and Santino Piazza, Who do you Blame in Local Finance? An 

Analysis of Municipal Financing in Italy, June 2010 
 
3101 Kyriakos C. Neanidis, Financial Dollarization and European Union Membership, June 

2010 
 
3102 Maela Giofré, Investor Protection and Foreign Stakeholders, June 2010 
 
3103 Andrea F. Presbitero and Alberto Zazzaro, Competition and Relationship Lending: 

Friends or Foes?, June 2010 
 
3104 Dan Anderberg and Yu Zhu, The Effect of Education on Martial Status and Partner 

Characteristics: Evidence from the UK, June 2010 
 
3105 Hendrik Jürges, Eberhard Kruk and Steffen Reinhold, The Effect of Compulsory 

Schooling on Health – Evidence from Biomarkers, June 2010 
 
3106 Alessandro Gambini and Alberto Zazzaro, Long-Lasting Bank Relationships and 

Growth of Firms, June 2010 
 
3107 Jenny E. Ligthart and Gerard C. van der Meijden, Coordinated Tax-Tariff Reforms, 

Informality, and Welfare Distribution, June 2010 
 
3108 Vilen Lipatov and Alfons Weichenrieder, Optimal Income Taxation with Tax 

Competition, June 2010 
 
3109 Malte Mosel, Competition, Imitation, and R&D Productivity in a Growth Model with 

Sector-Specific Patent Protection, June 2010 
 
3110 Balázs Égert, Catching-up and Inflation in Europe: Balassa-Samuelson, Engel’s Law 

and other Culprits, June 2010 
 
3111 Johannes Metzler and Ludger Woessmann, The Impact of Teacher Subject Knowledge 

on Student Achievement: Evidence from Within-Teacher Within-Student Variation, 
June 2010 

 
3112 Leif Danziger, Uniform and Nonuniform Staggering of Wage Contracts, July 2010 
 
3113 Wolfgang Buchholz and Wolfgang Peters, Equity as a Prerequisite for Stable 

Cooperation in a Public-Good Economy – The Core Revisited, July 2010 
 
3114 Panu Poutvaara and Olli Ropponen, School Shootings and Student Performance, July 

2010 
 
3115 John Beirne, Guglielmo Maria Caporale and Nicola Spagnolo, Liquidity Risk, Credit 

Risk and the Overnight Interest Rate Spread: A Stochastic Volatility Modelling 
Approach, July 2010 

 
3116 M. Hashem Pesaran, Predictability of Asset Returns and the Efficient Market 

Hypothesis, July 2010 



 
3117 Dorothee Crayen, Christa Hainz and Christiane Ströh de Martínez, Remittances, 

Banking Status and the Usage of Insurance Schemes, July 2010 
 
3118 Eric O’N. Fisher, Heckscher-Ohlin Theory when Countries have Different 

Technologies, July 2010 
 
3119 Huw Dixon and Hervé Le Bihan, Generalized Taylor and Generalized Calvo Price and 

Wage-Setting: Micro Evidence with Macro Implications, July 2010 
 
3120 Laszlo Goerke and Markus Pannenberg, ‘Take it or Go to Court’ – The Impact of Sec. 

1a of the German Protection against Dismissal Act on Severance Payments -, July 2010 
 
3121 Robert S. Chirinko and Daniel J. Wilson, Can Lower Tax Rates be Bought? Business 

Rent-Seeking and Tax Competition among U.S. States, July 2010 
 
3122 Douglas Gollin and Christian Zimmermann, Global Climate Change and the 

Resurgence of Tropical Disease: An Economic Approach, July 2010 
 
3123 Francesco Daveri and Maria Laura Parisi, Experience, Innovation and Productivity – 

Empirical Evidence from Italy’s Slowdown, July 2010 
 
3124 Carlo V. Fiorio and Massimo Florio, A Fair Price for Energy? Ownership versus Market 

Opening in the EU15, July 2010 
 
3125 Frederick van der Ploeg, Natural Resources: Curse or Blessing?, July 2010 
 
3126 Kaisa Kotakorpi and Panu Poutvaara, Pay for Politicians and Candidate Selection: An 

Empirical Analysis, July 2010 
 
3127 Jun-ichi Itaya, Makoto Okamura and Chikara Yamaguchi, Partial Tax Coordination in a 

Repeated Game Setting, July 2010 
 
3128 Volker Meier and Helmut Rainer, On the Optimality of Joint Taxation for Non-

Cooperative Couples, July 2010 
 
3129 Ryan Oprea, Keith Henwood and Daniel Friedman, Separating the Hawks from the 

Doves: Evidence from Continuous Time Laboratory Games, July 2010 
 
3130 Mari Rege and Ingeborg F. Solli, The Impact of Paternity Leave on Long-term Father 

Involvement, July 2010 
 
3131 Olaf Posch, Risk Premia in General Equilibrium, July 2010 


	Posch riskpremia.pdf
	Introduction
	An endowment economy
	Lucas' fruit-tree model with rare disasters
	Description of the economy
	The short-cut approach
	General equilibrium prices
	Components of the risk premium
	Explicit solutions
	Stochastic discount factor


	A neoclassical production economy
	A model of growth under uncertainty
	Description of the economy
	The short-cut approach
	Explicit solutions
	Numerical solutions
	Human wealth and financial wealth

	An extension: endogenous labor supply
	Description of the economy
	The short-cut approach
	Explicit solutions
	Numerical solutions
	Results


	Conclusion
	Appendix
	Lucas fruit-tree model in continuous-time
	Deriving the budget constraint
	The short-cut approach
	Proof of Proposition 2.1

	A model of growth under uncertainty
	The Bellman equation and the Euler equation
	Proof of Proposition 3.1
	Proof of Proposition 3.5

	A model of growth under uncertainty with leisure
	The Bellman equation and the Euler equation
	Proof of Proposition 3.5
	Obtaining the reduced form






