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Abstract 
 
This paper extends the analysis of infinite dimensional vector autoregressive models (IVAR) 
proposed in Chudik and Pesaran (2010) to the case where one of the variables or the cross 
section units in the IVAR model is dominant or pervasive. This extension is not 
straightforward and involves several technical difficulties. The dominant unit influences the 
rest of the variables in the IVAR model both directly and indirectly, and its effects do not 
vanish even as the dimension of the model (N) tends to infinity. The dominant unit acts as a 
dynamic factor in the regressions of the non-dominant units and yields an infinite order 
distributed lag relationship between the two types of units. Despite this it is shown that the 
effects of the dominant unit as well as those of the neighborhood units can be consistently 
estimated by running augmented least squares regressions that include distributed lag 
functions of the dominant unit. The asymptotic distribution of the estimators is derived and 
their small sample properties investigated by means of Monte Carlo experiments. 
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1 Introduction

The econometric theory of vector autoregressive (VAR) models is well developed when the dimen-

sion of the model (N) is small and �xed whilst the number of time series observations (T ) is large

and expanding. This framework, however, is not satisfactory for many empirical applications where

both dimensions N and T are large. Prominent examples include modelling of regional and national

interactions, the panel data analysis of a large number of �rms or industries over time. It is clear

that without restrictions the parameters of the VAR model can not be consistently estimated in

cases where both N and T are large, since in such cases the number of unknown parameters grows

at a quadratic rate in N . To circumvent this �curse of dimensionality�, several techniques have

been suggested in the literature that can be broadly characterized as: (i) data shrinkage, and (ii)

parameter shrinkage. Factor models are examples of the former (see Geweke (1977), Sargent and

Sims (1977), Forni and Lippi (2001), Forni et al. (2000), and Forni et al. (2004)). Spatial models,

pioneered by Whittle (1954), and further developed by Cli¤ and Ord (1973), Anselin (1988), and

Kelejian and Robinson (1995), and Bayesian type restrictions (e.g. Doan, Litterman, and Sims

(1984)) are examples of the latter.

The analysis of in�nite dimensional VAR (IVAR) models is considered in Chudik and Pesaran

(2010), who propose an alternative solution to the curse of dimensionality based on an a priori

classi�cation of the units into neighbors and non-neighbors. The coe¢ cients corresponding to the

non-neighboring units are restricted to vanish in the limit as N ! 1, whereas the neighborhood
e¤ects are left unrestricted. Neighbors could be individual units or, more generally, linear combi-

nations of the units (such as spatial or local averages). Such limiting restrictions on the parameters

of the VAR model turns out to be equivalent to data shrinkage as N ! 1. Chudik and Pesaran
(CP) show that the properties of the IVAR model crucially depend on the extent of the cross

section dependence across the units. In the case where such dependencies are weak (in the sense

formalized by Chudik, Pesaran and Tosetti (2009)), CP establish that the IVAR model de-couples

into separate individual regressions that can be estimated consistently. They also consider the case

where the cross section units are strongly correlated, but con�ne their analysis to situations where

the source of strong cross section dependence is external to the model and originate from a �nite

set of exogenously given factors. For the latter case they propose a cross sectionally augmented

least squares (CALS) estimator that they show to be consistent and asymptotically normal.

The present paper extends the analysis of CP to the case where one of the cross section units in

the IVAR model is dominant or pervasive, in the sense that it can in�uence the rest of the system

in a way that results in strong cross section dependence.1 For example in the context of global

macroeconomic modelling the assumption that world consists of many small open economies could

not be satisfactory since the US economy alone accounts for more than a quarter of world output

and, in addition, the US is found to have an important in�uence on �nancial markets around the

globe, see for example Pesaran, Schuermann, and Weiner (2004). This raises not only the question

of how to model the US macroeconomic variables, but also how to model the remaining economies.

1Concepts of strong and weak cross section dependence, introduced in Chudik, Pesaran and Tosetti (2009), will
be applied to VAR models.
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Another example could be the modelling of house prices in di¤erent regions in the UK, where

developments in London have a large in�uence on many other regions; see Holly, Pesaran, and

Yamagata (2010) for a recent application.

Allowing for the presence of a dominant unit is clearly important, but to date little is known

about the estimation of such systems. This paper contributes to the literature in this direction.

This extension is not straightforward and involves several technical di¢ culties. The dominant unit

in�uences the rest of the variables in the IVAR model both directly and indirectly, and its e¤ects do

not vanish even as the dimension of the model (N) tends to in�nity. The dominant unit acts as a

dynamic factor in the regressions of the non-dominant units and yields an in�nite order distributed

lag relation between the two types of units. Despite this it is shown that the e¤ects of the dominant

unit as well as those of the neighborhood units can be consistently estimated by running augmented

least square (ALS) regressions that include distributed lag functions of the dominant unit. The

asymptotic distribution of the estimators is derived and their small sample properties investigated

by means of Monte Carlo experiments.

The remainder of this paper is organized as follows. Section 2 sets up the IVAR model with a

dominant unit. Section 3 derives in�nite order moving average or autoregressive approximations for

the cross section units and discusses the conditions under which the IVAR model yields a dynamic

factor model with the dominant unit acting as the factor. The asymptotic distribution of the ALS

estimator is derived and discussed in Section 4. Section 5 investigates �nite sample properties of

the ALS estimator by means of Monte Carlo experiments. Section 6 provides some concluding

remarks. Selected proofs and other technical details are given in the Appendix.

Notations: kAk1 � max
1�j�N

PN
i=1 jaij j denotes the column matrix norm of the N �N matrix A,

kAk1 � max
1�i�N

PN
j=1 jaij j is the row matrix norm ofA. kAk =

p
% (A0A) is the spectral norm ofA;

where % (A) is the spectral radius of A.2 All vectors are column vectors. The ith row of A with its

ith element replaced by a 0 is denoted by a0�i = (ai1; ai2; :::; ai;i�1; 0; ai;i+1; :::; ai;N ). The i
th row ofA

with its �rst and ith elements replaced by 0 is denoted by a0�1;�i = (0; ai2; :::; ai;i�1; 0; ai;i+1; :::; ai;N ).

a1 = (a11; a21; :::; aN1)
0 denotes the �rst column vector of A. A matrix constructed from A by

replacing its �rst column by a column vector of zeros is denoted as A�1. kxtkLp is Lp-norm of a

random variable xt, de�ned as (E jxtjp)1=p. (N;T )
j! 1 denotes joint asymptotics in N and T;

with N and T ! 1, in no particular order. an = O(bn) denotes that the deterministic sequence

fang is at most of order bn. xn = Op (yn) states that random variable xn is at most of order yn
in probability. R is the set of real numbers, N is the set of natural numbers, and Z is the set of
integers. Convergence in distribution and convergence in probability are denoted by d! and

p!,
respectively. Convergence in quadratic mean, and convergence in L1 norm are denoted by

q:m:! and
L1!, respectively. We use K and � to denote positive real numbers that do not vary with N and/or

T .
2Note that if x is a vector, then kxk =

p
% (x0x) =

p
x0x corresponds to the Euclidean length of vector x.
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2 The IVAR Model with a Dominant Unit

Suppose we have T time series observations on N cross section units indexed by i 2 S(N) �
f1; ::; Ng � N. Both dimensions, N and T , are assumed to be large. For each point in time, t,

and for each N 2 N, the N cross section observations are collected in the N dimensional vector,

x(N);t =
�
x(N);1t; x(N);2t; :::; x(N);Nt

�0, and it is assumed that x(N);t follows the VAR(1) model
x(N);t = �(N)x(N);t�1 + u(N);t, (1)

where �(N) is an N � N matrix of unknown coe¢ cients and u(N);t is an N � 1 vector of error
terms. To distinguish high dimensional VAR models from the standard speci�cations we refer to

the sequence of VAR models (1) of growing dimensions (N !1) as the in�nite dimensional VARs
or IVARs for short.3 The extension of the IVAR(1) to the pth order IVAR model where p is �xed,

is relatively straightforward and will not be attempted in this paper.

The explicit dependence of the variables and the parameters of the IVAR model on N is sup-

pressed in the remainder of the paper to simplify the notations, but it will be understood that

in general they vary with N , unless stated otherwise. In what follows we shall also focus on the

problem of estimation of the parameters of individual units in (1). In particular, we consider the

equation for the ith unit that we write as

xit =
NX
j=1

�ijxj;t�1 + uit; for t = 1; 2; :::; T: (2)

Clearly, it is not possible to estimate all the N coe¢ cients �ij , j = 1; ::; N , when N and T grow

at the same rate, unless suitable restrictions are placed on some of the coe¢ cients. One such

restriction is the �cross section absolute summability condition�,

NX
j=1

���ij�� < K for any N 2 N and any i 2 f1; ::; Ng , (3)

which ensures that the variance of xit conditional on information available at time t � `, for any

�xed ` > 0, exits for all N and as N !1. The Lasso and Ridge shrinkage methods also use similar
constraints.4 Condition (3) implies that many of the coe¢ cients are in�nitesimal (as N ! 1).
However, assuming a mere existence of an upper bound K in (3) need not be su¢ cient to deal

with the dimensionality problem and we impose additional restrictions below. We follow CP and

suppose that in addition to (3), it is possible, for each i 2 N, to divide the units into �neighbors�
3The sequence of models obtained from (1) for di¤erent values of N is compatible with both cases where

cov
�
x(N);it; x(N);jt

�
changes with N or is invariant to N . We allow for both possibilities since in some applica-

tions the covariance between individual units could change with the inclusion of a new unit - as it is likely to be the
case when modelling �rms or assets within expanding markets. For further details see Chudik and Pesaran (2010).

4These �data mining�methods attempt at estimating all the unknown coe¢ cients of the ith equation, �ij , j =
1; ::; N , by minimizing

PT
t=1 u

2
it subject to

PN
j=1

���ij�� � K (Lasso) or
PN

j=1 �
2
ij � K (Ridge). But the outcome,

perhaps not surprisingly, only yields a relatively small number of non-zero estimates. See Chapter 3.4.3 of Hastie,
Tibshirani, and Friedman (2001) for detailed descriptions of Lasso and Ridge regression shrinkage methods.
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and �non-neighbors�. But depart from CP by allowing one of the units, which we take to be the

�rst unit without loss of generality, to be dominant or pervasive in the sense to be made precise

below. Also given our focus, to simplify the analysis we abstract from the e¤ects of other neighbors

apart form that of the dominant unit and own lags. In a dynamic sense the lagged value of the ith

unit can also be viewed as the ith neighbor.

ASSUMPTION 1 (Neighbors and non-neighbors) The neighbors of unit i are units 1 and i, and
the remaining units are non-neighbors. That is, the following conditions are satis�ed. Coe¢ cients

corresponding to neighbors, namely �i1 and �ii, for i = 1; 2; :::, do not change with N . There exists

a constant K < 1 (independent of i and N) such that the coe¢ cients corresponding to neighbors

satisfy j�iij < K, j�i1j < K, for all i 2 N,

NX
i=1

j�i1j = O (N) , (4)

and the coe¢ cients corresponding to non-neighbors satisfy

��11 = max
j2f2;::;Ng

���1j�� < K

N
, (5)

and ��1;�i1 = max
j2f2;::;Ngrfig

���ij�� < K

N
, (6)

for any N 2 N and any i 2 f2; 3; :::; Ng, where ��1 = (0; �12; �13; :::; �1N )0 and
��1;�i =

�
0; �i2; :::; �i;i�1; 0; �i;i+1; ::; �iN

�0.
The division of units in Assumption 1 imposes su¢ cient number of constraints that allows us to

tackle the dimensionality problem. Consider the problem of estimation of the unknown coe¢ cient

�ii. We have

xit = �iixi;t�1 + �i1x1;t�1| {z }
Neighbors

+
X
j 6=1;i

�ijxj;t�1| {z }
Non�neighbors

+ uit, (7)

for i = 2; 3; :::; N , and the estimation of the neighboring coe¢ cients, �ii and �i1, depends on the

stochastic behavior of the cross section average
P
j 6=1;i �ijxj;t�1, which captures the aggregate spa-

tiotemporal impact of non-neighbors. CP shows that if fxitg is cross sectionally weakly dependent,
then the aggregate impact of non-neighbors

q:m:! 0 as N ! 1 and therefore ignoring the non-

neighbors would not be a problem for estimation of �ii. However, in our set-up, the unit 1 can

potentially have a large impact on any of the remaining N � 1 units and therefore fxitg could be
cross sectionally strongly dependent. In the case of strong cross section dependence, the aggregate

impact of non-neighbors is Op (1), and it will not be possible to consistently estimate the coe¢ cients

of the neighboring units by ignoring the non-neighborhood e¤ects.

The coe¢ cients in the �rst column of matrix � correspond to the direct lagged impact of unit

1 on the rest of the system. The pervasive nature of unit 1 as characterized by (4) represents an

5



important departure from the set up in CP, where the in�uence of any of the cross section units

on the rest of the system is restricted by assumption k�k < K. In this paper k�k is allowed to be
unbounded in N , but only through the dominant e¤ect of unit 1.

Similar considerations also apply to contemporaneous dependence of the units through the error

terms, ut = (u1t; u2t; :::; uNt)0. Let

ut = R"t; (8)

where R is the N �N matrix of non-stochastic coe¢ cients, and "t = ("1t; "2t; :::; "Nt)
0 is an N � 1

vector of random variables. This formulation is quite general and includes all models of spatial

dependence considered in the literature, where it is assumed that R has bounded row and column

matrix norms.5 In the assumption below we relax this condition and allow for the �rst column of

R to be unbounded.

ASSUMPTION 2 (Error terms and contemporaneous dominance) The contemporaneous depen-
dence of the errors ut = (u1t; u2t; :::; uNt)

0 in (1) is characterized by (8), where the individual

elements of the double index array f"it; i 2 N; t 2 Zg are independently distributed with mean 0, �-
nite variances, and �nite fourth moments uniformly bounded in i 2 N. Consider the decomposition
of R

R = r1s
0
1 +R�1; (9)

where r1 = (r11; r21; ::::; rN1)0 is the �rst column of R, coe¢ cients in r1 do not change with N , s1
is an N � 1 selection vector, s1 = (1; 0; :::; 0)0, and R�1 is obtained from R by replacing its �rst

column with a vector of zeros. Assume that rii = 1 for all i 2 N (without the loss of generality)

and that there exists a constant K <1 (independent of i and N) such that

V ar ("it) = �2"i < K, (10)

kR�1k1 < K, kR�1k1 < K, (11)

and

kr�1k1 = max
j2f2;::;Ng

jr1j j <
K

N
, (12)

for any N 2 N, where r�1 = (0; r12; r13; :::; r1N )0 is the N � 1 column vector constructed from the

�rst row of R�1. In addition, jri1j < K, for all i 2 N, and

NX
i=1

jri1j = O (N) . (13)

Under this assumption the error of the �rst cross section unit acts as a (static) common factor

for the rest of the units. Condition (13) allows for the �rst cross section unit to have a dominant

e¤ect on all the other cross section units. The boundedness of R�1 ensures that no other cross

section units has a dominant e¤ect on the rest of the units.
5See Pesaran and Tosetti (2009) for further details.
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The above set up can be generalized to two or more dominant units so long as the number of

such units is �xed and does not change with N . In this paper we focus on IVAR models with one

dominant unit and assume that the dominant unit is known a priori. The analysis of models with

more than one dominant units and the problem of how to identify such units will be outside the

scope of the present paper.

3 Large N Representations

The presence of a dominant unit in the IVAR model considerably complicates the analysis. This

is because the e¤ects of the dominant unit show up in all other units both contemporaneously as

well as being distributed over time in the form of in�nite order moving average or autoregressive

representations. For empirical analysis it is important that conditions under which such in�nite

order processes can be well approximated by time series models with a �nite number of unknown

parameters are met. To this end we introduce a number of further assumptions restricting the

behavior of � and R for a �nite N as well as when N !1.

ASSUMPTION 3 (Starting values and stationarity) Available observations are x0;x1; :::;xT with
x0 =

P1
`=0�

`u (�`), and there exists a real positive constant � < 1 (independent of N) such that
for any N 2 N

j�1 (�)j � �. (14)

ASSUMPTION 4 (Bounded variances and invertibility of large N ARMA representations) Sim-

ilarly to (9) let

� = �1s
0
1 +��1; (15)

where ��1 is obtained from � by replacing its �rst column with a column of zeros and �1 is the

�rst column of �. Assume that there exists a real positive constant � < 1 (independent of N) such

that for any N 2 N :
k��1k1 � �, k��1k1 � �, (16)

and

k�1k1 = max
1�i�N

j�i1j � �. (17)

Furthermore,

max i2N jri1j � 1. (18)

Remark 1 Condition (14) of Assumption 3 is a well known su¢ cient condition for covariance
stationarity for any �xed N 2 N. This condition, however, is not su¢ cient for V ar(xit) to remain
bounded as N ! 1. As shown in Chudik and Pesaran (2010), k�k � � < 1 would be su¢ cient

for bounded variances (as N ! 1), but in our set-up k�k is unbounded due to the presence of
a dominant unit in the IVAR model. Assumption 4 provides additional su¢ cient conditions for

bounded variances (as N ! 1) and also for the existence of an invertible large N AR(1) and
MA(1) processes for the dominant unit.
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Using the notations introduced in Assumptions 2 and 4 (see equations (9) and (15)), model (1)

can be written as

xt =
�
�1s

0
1 +��1

�
xt�1 +

�
r1s

0
1 +R�1

�
"t,

= �1x1;t�1 +��1xt�1 + r1"1t + et, (19)

where

et = R�1"t. (20)

Solving for xt by backward substitution yields

xt =
1X
`=0

�`�1�1x1;t�1�` +
1X
`=0

�`�1r1"1;t�` + �t, (21)

where

�t =

1X
`=0

�`�1et�`: (22)

Lemma 1 Suppose Assumption 2-4 hold. Then for any N � 1 vector a satisfying condition kak =
O
�
N�1=2� we have

V ar
�
a0�t

�
= V ar

 
a0

1X
`=0

�`�1et�`

!
= O

�
N�1� ,

where �t is de�ned by (22).

Proof.

V ar
�
a0�t

�
=
V ar �a0�t� =


1X
`=0

a0�`�1R�1V ar ("t�`)R
0
�1�

`0
�1a

 ,
� kak2 kR�1k2

1X
`=0

k��1k2` kV ar ("t�`)k . (23)

But kR�1k2 � kR�1k1 kR�1k1 = O (1) by condition (11) of Assumption 2, kV ar ("t�`)k < K (for

any ` = 0; 1; 2; :::) by condition (10) of Assumption 2, kak2 = O
�
N�1�, k��1k �pk��1k1 k��1k1 �

� by condition (16) of Assumption 4 and
P1
`=0 k��1k

2` �
P1
`=0 �

2` < K . Hence, kV ar (a0�t)k =
O
�
N�1�, as required.
Lemma 1 establishes that �t is cross sectionally weekly dependent (CWD), and in particular

a0�t = Op
�
N�1=2� for any vector a satisfying kak = O

�
N�1=2�. For the non-dominant units, i > 1,

using (21) we have

xit = di (L)x1;t�1 + bi (L) "1t + �it, (24)

where �it = s0i�t,

di (L) =
1X
`=0

�
s0i�

`
�1�1

�
L`; (25)

8



bi (L) =

1X
`=0

�
s0i�

`
�1r1

�
L`, (26)

and si is an N � 1 dimensional selection vector with sij = 0 for j 6= i and sii = 1. In the case of

the dominant unit (i = 1) equation (21) yields,

c (L)x1t = b1 (L) "1t + �1t, (27)

where

b1 (L) =
1X
`=0

�
s01�

`
�1r1

�
L`, (28)

c (L) = 1� d1 (L)L = 1�
1X
`=0

�
s01�

`
�1�1

�
L`+1, (29)

and �1t = s01�t. Note that �1t can be written as

�1t =

1X
`=0

s01�
`
�1et�` = e1t +

1X
`=1

s01�
`
�1et�`

= e1t + s
0
1��1

1X
`=1

�`�1�1 et�`:

But s01��1 = �
0
�1; and

1X
`=1

�`�1�1 et�` =
1X
`=0

�`�1et�`�1 = �t�1:

Hence

�1t = e1t + �
0
�1�t�1: (30)

Also it is easily seen that e1t = s01R�1"t = r
0
�1"t; and �t�1 =

P1
`=1�

`�1
�1 R�1"t�` both have zero

means and are uncorrelated. Therefore

V ar (�1t) = V ar
�
r0�1"t

�
+ V ar

�
�0�1�t�1

�
= O

�
N�1� , (31)

where

V ar
�
r0�1"t

�
= r0�1V ar ("t) r�1 � kr�1k

2 kV ar ("t)k ,

kr�1k2 � kr�1k1 kr�1k1 = O
�
N�1� by (12) of Assumption 2 , kV ar ("t)k < K by condition (10)

of Assumption 2, and V ar
�
�0�1�t�1

�
= O

�
N�1� follows from Lemma 1 by setting a = ��1 and

noting that
��1 �q��11 ��11 = O

�
N�1=2� by condition (5) of Assumption 1. Therefore,

since E (�1t) = 0, then

�1t = Op

�
N�1=2

�
, (32)

and equation (27) can be written as

c (L)x1t = b1 (L) "1t +Op

�
N�1=2

�
, (33)
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which is a large N ARMA(1;1) representation of the process for the dominant unit.
The next lemma establishes invertibility of polynomials b1 (L) and c (L).

Lemma 2 Suppose Assumption 4 holds. Then inverses of the polynomials b1 (L) and c (L), de�ned
by (28) and (29), respectively, exist for any N 2 N, and coe¢ cients of polynomials b�11 (L) and

c�1 (L) decay at an exponential rate uniformly in N . Also, there exist real positive constants K <1
and � < 1 such that

ja`j < K�`, for any ` 2 f0; 1; 2; :::g and any N 2 N, (34)

where

a (L) =
1X
`=0

a`L
` = b�11 (L) c (L) . (35)

Proof. Coe¢ cients of the polynomial c (L) =
P1
`=0 c`L

`, as de�ned by equation (29), satisfy:

c0 = 1, and jc`j =
���s01�`�1�1 �1

��� � �`�1�1


1
k�1k1 for any ` 2 N. Conditions (16) and (17) of

Assumption 4 postulate that k��1k1 � � < 1 and k�1k1 � � < 1, which implies that jc`j � �` for

any ` 2 N. Invertibility of c (L) and exponential decay of the coe¢ cients in c�1 (L) now directly
follows from Lemma A.1. Exponential decay of the coe¢ cients in c�1 (L) is uniform in N , because

� does not depend on N 2 N.
Coe¢ cients of the polynomial b1 (L) =

P1
`=0 b1`L

`, as de�ned by equation (28), satisfy b10 = 1,

and jb1`j =
��s01�`�1r1�� � �`�11 kr1k1 for any ` 2 N. Conditions (16) and (18) of Assumption

4 imply
�`�11 kr1k1 � �`, which establishes jb1`j � �` for any ` 2 N. Invertibility of b1 (L)

and the exponential decay of the coe¢ cients in b�11 (L) now follows from Lemma A.1. Similarly to

c�1 (L), the coe¢ cients of b�11 (L) exponentially decay uniformly in N 2 N.
Noting that jc`j � �` for any ` = 0; 1; 2; ::, and that the coe¢ cients of b�11 (L) decay exponen-

tially, it follows that the coe¢ cients of a (L) = b�11 (L) c (L) must also decay at an exponential rate.

This completes the proof.

It is worth noting that conditions k��1k1 � � < 1 and k�1k1 � � < 1 of Assumption 4 are

su¢ cient to ensure that c (L) is invertible and the coe¢ cients of c�1(L) decay exponentially. On

the other hand conditions k��1k1 � � < 1 and maxi2N jri1j � 1, are su¢ cient in ensuring that

b1 (L) is invertible and the coe¢ cients of b�11 (L) decay exponentially. The exponential decay of the

coe¢ cients in these polynomials will be relevant for the selection of truncation lags in empirical

applications as discussed below.

3.1 Large N AR and MA representations for the dominant unit

Multiplying both sides of (27) by b�11 (L) we obtain

a (L)x1t = "1t + #bt, (36)

10



where #bt = b�11 (L) �1t. By Lemma 2 the coe¢ cients of b�11 (L) decay exponentially and hence are

absolute summable, and in view of (31) we have

V ar (#bt) = O
�
N�1� . (37)

Also since E (#bt) = 0, it follows that

#bt = b�11 (L) �1t = Op

�
N�1=2

�
. (38)

Using this result in (36) yields the following large N AR(1) representation for the dominant unit,

a (L)x1t = "1t +Op

�
N�1=2

�
. (39)

Similarly, multiplying both sides of (27) by c�1 (L) we obtain

x1t = a�1 (L) "1t + #ct, (40)

where a�1 (L) = c�1 (L) b1 (L), and #ct = c�1 (L) �1t. Using similar arguments as in derivation of

(37)

V ar (#ct) = O
�
N�1� , (41)

and since E (#ct) = 0, then

#ct = c�1 (L) �1t = Op

�
N�1=2

�
; (42)

and we have the following large N MA(1) representation for x1t,

x1t = a�1 (L) "1t +Op
�
N�1=2

�
. (43)

3.2 Large N representation for the non-dominant units i > 1

Consider now the equation for unit i > 1. Using (1) we have (noting that uit = ri1"1t + eit)

xit = �iixi;t�1 + �
0
�1;�ixt�1 + �i1x1;t�1 + ri1"1t + eit. (44)

Multiplying both sides of (21) by �0�1;�i yields

�0�1;�ixt = pi (L)x1;t�1 + ki (L) "1t + �
0
�1;�i�t, (45)

where

pi (L) =

1X
`=0

�
�0�1;�i�

`
�1�1

�
L`, (46)

and

ki (L) =
1X
`=0

�
�0�1;�i�

`
�1r1

�
L`. (47)

11



Substituting (45) in (44) and using (27) to eliminate "1t from (44) we have

xit = �iixi;t�1 + �i (L)x1t + eit + �it, (48)

where

�i (L) = �i1L+ pi (L)L
2 + [ri1 + ki (L)L] a (L) , (49)

and

�it = �
0
�1;�i�t�1 � [ri1 + ki (L)L]#bt. (50)

Taking L2-norm of (50) and using triangle inequality we obtain

k�itkL2 �
�0�1;�i�t�1L2 + k[ri1 + ki (L)L]#btkL2 . (51)

But under condition (6) in Assumption 1, we have
��1;�i1 = O

�
N�1� uniformly in i 2 f2; 3; :::g,

which implies that
��1;�i = O

�
N�1=2�, and it follows from Lemma 1 (by setting a = ��1;�i)

that

V ar
�
�0�1;�i�t�1

�
= O

�
N�1� , uniformly in i 2 f2; 3; :::g ,

and (noting that E (�t) = 0)�0�1;�i�t�1L2 = O
�
N�1=2

�
, uniformly in i 2 f2; 3; :::g . (52)

Also by (37) and noting that the coe¢ cients of ki(L) decay exponentially to zero uniformly in

i 2 f2; 3; :::g (see proof of Lemma 3 below) and E (#bt) = 0, we have

k[ri1 + ki (L)L]#btkL2 = O
�
N�1=2

�
, uniformly in i 2 f2; 3; :::g . (53)

Using (52) and (53) in (51) and noting that E (�it) = 0, we have

V ar (�it) = k�itk2L2 = O
�
N�1� , uniformly in i 2 f2; 3; :::g , (54)

and

�it = Op

�
N�1=2

�
, uniformly in i 2 f2; 3; :::g : (55)

Hence, the large N representation of the process for the non-dominant unit i > 1 is given by

xit = �iixi;t�1 + �i (L)x1t + eit +Op
�
N�1=2

�
. (56)

It is valid to exclude the contemporaneous values of x1t from (56) if and only if ri1 = 0; for i > 1.

However, x1;t�1 enters the regression equation for the ith unit even if ri1 = �i1 = 0. Note also that

in general the polynomial �i (L) is of in�nite order, and the errors, eit; are serially uncorrelated

but cross sectionally weakly dependent.

Lemma 3 Suppose Assumption 4 holds. Then there exist real positive constants K < 1 and

12



0 < � < 1 such that

j�i`j < K�` for any ` 2 f0; 1; 2; :::g , any N 2 N and any i 2 f1; 2; :::; Ng , (57)

where �i` is de�ned by the coe¢ cients of polynomial �i (L) =
P1
`=0 �i`L

` in (49).

Proof. Existence of real positive constants K < 1 and 0 < � < 1 (independent of N) such

that ja`j < K�` was established in Lemma 2. Coe¢ cients of polynomials pi (L) =
P1
`=0 pi`L

` and

ki (L) =
P1
`=0 ki`L

`, as de�ned by equations (46) and (47), respectively, satisfy:

jpi`j �
�0�1;�i�`�1�11 < K�`, and jki`j �

�0�1;�i�`�1r11 < K�`, (58)

where
�0�1;�i1 =

P
j 6=1;i

���ij�� < K by (6) of Assumption 1,
�`�11 � �` < 1 by (16) of

Assumption 4, k�1k1 � � < 1 by (17) of Assumption 4, and kr1k1 = maxi=1;::;N jri1j � 1 by (18)
of Assumption 4. Result (57) now directly follows by noting that linear combinations and products

of polynomials with exponentially decaying coe¢ cients are also polynomials with exponentially

decaying coe¢ cients.

4 Asymptotic Distribution of the Augmented Least Squares Esti-

mator

4.1 Speci�cation of Augmented Regressions

Based on the large N representation (39) for the dominant unit, and the representation (56) for

the non-dominant units (i > 1), we consider the following regressions:

xit = g
0
it�i + �it, for i = 1; 2; :::; N , (59)

where

git =

(
(x1;t�1; x1;t�2; :::; x1;t�m)

0 , for i = 1

(xi;t�1; x1t; x1;t�1; :::; x1;t�m)
0 for i > 1

, (60)

�i =

(
� (a1; a2; :::; am)0 , for i = 1

(�ii; �i0; �i1; :::; �im)
0 for i > 1

, (61)

�it =

(
 m1t + #bt + "1t, for i = 1

 mit + �it + eit for i > 1
, (62)

and

 mit =

(
�
P1
`=m+1 a`x1;t�`, for i = 1P1
`=m+1 �i`x1;t�` for i > 1

. (63)

Note that there are m regressors (and m unknown coe¢ cients) in the regression for the dominant

unit i = 1, and m+ 2 regressors in the regressions for the non-dominant units, i > 1.

The error term �it in (62) is decomposed into three parts: the component  mit is due to the
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truncation of the in�nite order lag polynomials a (L) in the case of the dominant unit and �i (L),

for i > 1. Since the coe¢ cients in these polynomials are absolutely summable, we have

 mit
q:m:! 0, as m!1,

for any N 2 N, any i 2 f1; 2; :::; Ng and any t 2 f1; 2; :::; Tg. The second terms, #bt (in the case
of the dominant unit), and �it, for i > 1 , are Op

�
N�1=2�. (See (38) and (55)). These terms arise

from aggregation of weak dependencies in the individual-speci�c equations of the IVAR model,

(1). The third terms in (62) are serially uncorrelated errors, with "1t being orthogonal to eit for

any i > 1. Also as noted above eit are cross sectionally weakly dependent, although ignoring such

dependencies does not adversely impact the consistency of the estimators to be proposed here.

For future references, let

hit =

( �
�1;t�1; �1;t�2; :::; �1;t�m

�
for i = 1�

�i;t�1; �1t; �1;t�1; :::; �1;t�m
�
for i > 1

, (64)

and

Ci = E
�
hith

0
it

�
, (65)

where

a (L) �1t = "1t, (66)

and

(1� �iiL) �it = �i (L) �1t + eit, for i = 2; 3; :::N . (67)

Process f�itg is large N counterpart of fxitg in the following sense,

xit � �it = Op

�
N�1=2

�
, for any i 2 N. (68)

Note that for any i; �it is a linear stationary process with absolute summable autocovariances.

4.2 Consistency of the Augmented Least Squares Estimator

In what follows we focus on the estimation of the parameters of the non-dominant units, i > 1. The

results for the dominant unit can be derived in a similar way and are not included to save space.

We denote the least squares estimator of the vector of unknown coe¢ cients �i as

b�1
m�1

=

0BBBB@
�ba1
�ba2
...

�bam

1CCCCA and b�i
(m+2)�1

=

0BBBB@
b�iib�i0
...b�im

1CCCCA , for i > 1,

where b�ii refers to the augmented least squares (ALS) estimator of the own lag coe¢ cient �ii,b�i`, ` = 0; 1; 2; :::;m, denote the estimators of the �rst m + 1 coe¢ cients in �i(L), and ba` for
14



` = 1; 2; :::;m denote the estimators of the corresponding coe¢ cients in a(L).

Note that the �rst two coe¢ cients in �i(L), as de�ned by (49), are (for i = 2; 3; ::::; N)

�i0 = ri1, (69)

and

�i1 = �i1 + ri1a1 + ki0a0 = �i1 � ri1
�
�0�1r1 + �11

�
+ �0�1;�ir1, (70)

where ki0 = �0�1;�ir1. See ki (L) de�ned by (47). Also using c (L) and b1 (L) given by (29) and

(28), respectively, we have ,

c0 = 1; c1 = ��11; and b10 = 1; b11 = �0�1r1:

Hence, (using a (L) in (35)) we have

a0 = 1, a1 = ��11 � �0�1r1, (71)

The higher order lag coe¢ cients, �i` and a` for ` = 2; 3; :::, in general depend on all elements of �

and r1 and can be obtained similarly.

Result (69) shows that the contemporaneous e¤ects of the dominant unit on the rest of the units,

ri1; for i > 1, can be identi�ed from �i0 and consistently estimated by b�i0. The own-lag e¤ects of the
non-dominant units, �ii (for i > 1), can also be consistently estimated using the unit-speci�c ALS

regressions in (59). But due to the feedback e¤ects from non-dominant units, the own-lag e¤ect of

the dominant unit, �11, cannot be identi�ed from a1. Using (71) we have �11 = �a1+�0�1r1, where
�0�1r1 = �

N
i=2�1iri1, maxi>1 j�1ij < KN�1, and ri1, i > 1, are coe¢ cients that do not vary with N .

Hence �0�1r1 is O(1) and does not vanish as N !1. Using the estimates from the regressions for

the non-dominant units we are able to identify ri1. But due to the negligible lagged e¤ects from

the non-dominant units on the dominant unit, the parameters �1i, for i > 1 can not be identi�ed

when N !1. As a result a consistent estimate of �Ni=2�1iri1 can not be obtained. Consequently,
�11 is not identi�ed when N ! 1. Accordingly, in the Monte Carlo experiments below, we shall
only consider the �nite sample properties of b�i0 and b�ii.

It is convenient to re-write (59) for t = m+ 1;m+ 2; :::; T in a matrix form as

xi� = Gi�i + �i�, for i > 1; (72)

where

Gi
(T�m)�(m+2)

=

0BBBB@
g0i;m+1
g0i;m+2
...

g0i;T

1CCCCA , xi�
(T�m)�1

=

0BBBB@
xi;m+1

xi;m+2
...

xi;T

1CCCCA , and �i�
(T�m)�1

=

0BBBB@
�i;m+1

�i;m+2
...

�i;T

1CCCCA . (73)
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Hence, b�i = �G0
iGi

��1
Gixi� . (74)

In the general case where �i (L) is not a �nite order polynomial the truncation lag m has to be

selected depending on the available time series data, T; so that omission of the higher order lags

of x1t is asymptotically negligible. We use subscript T to denote this explicit dependence of the

truncation lag on the available time series data in the remainder of this paper, namely we set

mT = m (T ), and consider the following types of convergence for N; T and mT .

ASSUMPTION B1 m3
T =T ! {1, where 0 < {1 <1; as T !1:

ASSUMPTION B2 (N;T )
j!1 at any order.

ASSUMPTION B3 (N;T )
j!1; and T=N ! {2, where 0 < {2 <1.

Remark 2 Assumption B1 presents a su¢ cient condition on the truncation lag mT under whichb�i is consistent and asymptotically normal. Assumption B1 can also be replaced by the following
two conditions:

m2
T =T ! 0, (75)

and

lim
T!1

�mT
p
T = 0 for any 0 < � < 1. (76)

Condition (76) ensures that mT increase su¢ ciently rapidly so that the omitted variable problem

from truncation of higher order lags is asymptotically negligible. Condition (75) ensures a su¢ cient

degree of freedom to reliably estimate individual coe¢ cients. Under Assumption B1 both of the above

two conditions will be satis�ed.

Identi�cation of �i requires invertibility of G0
iGi, which is postulated in the following assump-

tion.

ASSUMPTION 5 There exist integers T0 2 N and N0 2 N such that for all T � T0; and N � N0,

matrix G0
iGi is invertible.

Let bCi = 1

T
G0
iGi. (77)

Substitute (72) in (74) to obtain

p
T (b�i � �i) = bC�1i G0

i�i�p
T
,

=
�bC�1i �C�1i

� G0
i�i�p
T
+C�1i

G0
i�i�p
T

=
�bC�1i �C�1i

� G0
i�i�p
T
+

+C�1i

�
(Gi �Hi)

0 ei�p
T

+
H0
iei�p
T
+
G0
i�i�p
T
+
G0
i i�p
T

�
, for i > 1, (78)
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where

Hi
(T�mT )�(mT+2)

=

0BBBB@
h0i;mT+1

h0i;mT+2
...

h0i;T

1CCCCA , (79)

and

ei�
(T�mT )�1

=

0BBBB@
ei;mT+1

ei;mT+2

...

eiT

1CCCCA , �i�
(T�mT )�1

=

0BBBB@
�i;mT+1

�i;mT+2
...

�iT

1CCCCA ,  i�
(T�mT )�1

=

0BBBB@
 mT ;i;mT+1

 mT ;i;mT+2
...

 mT iT

1CCCCA . (80)

Note that �i� = ei� + �i� + i�, for i > 1, see (62).

We deal with the estimation of in�nite order lag polynomials in a similar way as in Said and

Dickey (1984) or Berk (1974). The following lemmas are needed to establish the consistency of b�i.
Lemmas 4-6 are required for dealing with in�nite lag orders, and Lemmas 7 and 8 are needed for

averaging out the e¤ects of weak dependencies (after conditioning on current and lagged values of

the dominant unit) in the IVAR model (1).

Lemma 4 Suppose xt is given by model (1) and Assumptions 1-4, B1, and B2 hold. Then for any
i > 1 we have, bCi �Ci

1

p! 0,

where Ci and bCi are de�ned by (65) and (77), respectively.
Proof. bCi �Ci

1
= max
j2f1;::;mT+2g

mT+2X
`=1

jbcij` � cij`j , (81)

where cij` and bcij` denote the (j; `)th elements of Ci and bCi, respectively. Liapunov�s inequality
and Lemma A.3 in Appendix establish

E jbcij` � cij`j �rE h(bcij` � cij`)2i � K
1p
T
, (82)

where K < 1 does not depend on N; mT 2 N, and j; ` 2 f1; 2; :::;mT + 2g. Taking expectations
of both sides of (81) and making use of (82) yields

E
bCi �Ci

1
� K

�
mT + 2p

T

�
.

But under Assumption B1, m2
T =T ! 0, and hence

bCi �Ci
1

L1! 0. Convergence in L1 norm

implies convergence in probability.
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Lemma 5 Suppose xt is given by model (1) and Assumptions 1-5, B1 and B2 hold. Then for any
i > 1 we have, bC�1i �C�1i


1

p! 0,

where Ci and bCi are de�ned by (65) and (77), respectively.
Proof. Let pc =

C�1i 1, qc = bC�1i �C�1i

1
, and rc =

bCi �Ci
1
. Using triangle inequality

and submultiplicative property of matrix norm k:k1, we have

qc =
bC�1i �

Ci � bCi�C�1i 1 ,
�

bC�1i 1 rcpc,

�
�bC�1i �C�1i

�
+C�1i


1
rcpc,

� (pc + qc) rcpc,

and (subtracting rcpcqc from both sides)

(1� rcpc) qc � p2crc. (83)

Note that rc
p! 0 by Lemma 4, and pc = O (1) since �it, for i 2 f1; 2; :::; Ng, is a stationary

invertible process with absolute summable autocovariances. Therefore

(1� rcpc)
p! 1, (84)

and

p2crc
p! 0. (85)

Results (83)-(85) imply that qc
p! 0, as desired.6

Lemma 6 Suppose xt is given by model (1) and Assumptions 1-4, B1 and B2 hold. Then for any
i > 1 we have, G0

i i�p
T


1

p! 0,

where  i� is de�ned by (80), and Gi is de�ned by (73).

Proof. Each of the individual elements of G0
i i�=

p
T can be expressed as

1p
T

TX
t=mT+1

xj;t�s mT it,

6Here we have used the fact that for any real constant 0 < � < 1, the probability of rcpc > � can be made
arbitrarily small by choosing T su¢ ciently large, since rcpc

p! 0.
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for a suitable choice of j 2 f1; ig, and s 2 f0; 1; 2; :::;mT g, where  mT it is de�ned by (63). We have

E

����� 1pT
TX

t=mT+1

xj;t�s it

����� � 1p
T

TX
t=mT+1

E jxj;t�s itj

� 1p
T

TX
t=mT+1

h
E (xj;t�s)

2E ( it)
2
i1=2

� 1p
T

TX
t=mT+1

max
j2f1;2;:::Ng

�
E
�
x2j;t�s

��1=2 1X
`=mT+1

j�i`j
�
E
�
x21;t�`

��1=2
,(86)

where the second inequality follows from the Cauchy-Schwarz inequality and the third inequality

uses the triangle inequality, which implies k itkL2 �
P1
`=mT+1

j�i`j kx1;t�`kL2 . But by Lemma A.2
maxj2f1;2;:::;NgE

�
x2jt

�
< K, and (86) now yields

E

����� 1pT
TX

t=mT+1

xj;t�s it

����� � K
p
T

1X
`=mT+1

j�i`j .

But using Lemma 3 (for 0 < � < 1)

p
T

1X
`=mT+1

j�i`j � K

p
T�mT+1

1� � ;

and under Assumptions B1-B2, and noting that K <1 does not depend on N; or T , we have

p
T

1X
`=mT+1

j�i`j ! 0; as T !1;

and hence G0
i i�p
T


1

L1! 0.

Convergence in L1 norm implies convergence in probability.

Lemma 7 Suppose xt is generated according to (1) and Assumptions 1-4, B1 and B3 hold. Then
for any i > 1, G0

i�i�p
T


1

p! 0, (87)

where matrix Gi is de�ned by equation (73), and �i� is de�ned by equation (80). Consider now the

case where Assumption B2 is replaced by the weaker Assumption B2, but the other assumptions are

maintained. Then for any i > 1, G0
i�i�
T


1

p! 0. (88)

19



Proof. The �rst element of the (mT + 2)� 1 dimensional vector G0
i�i�=

p
T is

1p
T

TX
t=mT+1

xi;t�1�it. (89)

Multiplying equation (27) by c�1 (L) and substituting the outcome into equation (24) for x1;t�1
yields the following relation for the non-dominant unit.

xit = fi (L) "1t + di (L) c
�1 (L) �1;t�1 + �it, for i > 1, (90)

where

fi (L) = Ldi (L) c
�1 (L) b1 (L) + bi (L) . (91)

The process �it as de�ned in (50) can be written as,

�it = �
0
�1;�i�t�1 � gi (L) �1t, (92)

where

gi (L) = [ri1 + ki (L)L] b
�1
1 (L) . (93)

Coe¢ cients in the polynomials c�1 (L), b1 (L), and b�11 (L) are absolute summable (see Lemma 2).

(58) implies absolute summability of the coe¢ cients in ki (L), and using the same arguments as in

proof of Lemma 3, we have

jdi`j =
s0i�`�1�11 < K�`, and bi` =

s0i�`�1r11 < K�`. (94)

It follows that polynomials fi (L), di (L) c�1 (L), and gi (L) in (90) and (92) are absolute summable.

Vector ��1;�i satis�es
��1;�i1 = O

�
N�1� by condition (6) of Assumption 1 and result (A.26)

of Lemma A.5 in Appendix imply (for � = �0�1;�i, and p = q = 1)

1p
T

TX
t=mT+1

"1;t�1�
0
�1;�i�t�1

L1! 0. (95)

Result (A.27) of Lemma A.5 imply (by setting p = 1, and q = 0)

1p
T

TX
t=mT+1

"1;t�1�1t
L1! 0. (96)

Noting again that
��1;�i1 = O

�
N�1�, result (A.46) of Lemma A.6 imply (for i = 1, p = 2, and

� = ��1;�i)

E
�
�1;t�2�

0
�1;�i�t�1

�
= O

�
N�1� . (97)
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(97) and result (A.24) of Lemma A.5 in Appendix yields (for � = s1, � = �0�1;�i, p = 1, and q = 2)

1p
T

TX
t=mT+1

�1;t�2�
0
�1;�i�t�1

L1! 0: (98)

Result (A.47) of Lemma A.6 yields (for p = 2 and i = 1)

E (�1;t�2�1t) = O
�
N�1� . (99)

(99) and result (A.25) of Lemma A.5 in Appendix imply (for � = s1, p = 0 and q = 2)

1p
T

TX
t=mT+1

�1;t�2�1t
L1! 0. (100)

Similarly to (98) and (100), results (A.24) and (A.25) of Lemma A.5 in Appendix can be used (for

a suitable choice of �, �, p and q) to show that

1p
T

TX
t=mT+1

�i;t�1�
0
�1;�i�t�1

L1! 0; (101)

and
1p
T

TX
t=mT+1

�i;t�1�1t
L1! 0; (102)

where we have also used Lemma A.6 (for a suitable choice of p, i and �), which implies

E
�
�i;t�1�

0
�1;�i�t�1

�
= O

�
N�1� , (103)

and

E (�i;t�1�1t) = O
�
N�1� . (104)

Substituting equation (90) for xi;t�1 and de�nition of �it (see (92)) in (89), and using results (95),

(96), (98), (100), (101) and (102) establish

E

����� 1pT
TX

t=mT+1

xi;t�1�it

�����! 0, (105)

where we have used the fact that the coe¢ cients of the polynomials fi (L), di (L) c�1 (L), and gi (L)

are absolute summable. Similarly to proof of result (105), Lemma A.5 in Appendix can be used

repeatedly for a suitable choice of p,q, � and � to show that

max
p2f0;1;2;:::;mT g

E

����� 1pT
TX

t=mT+1

x1;t�p�it

�����! 0, (106)
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where x1t is given by (40). Results (105),(106) complete the proof of (87) by noting that convergence

in L1 norm implies convergence in probability. Proof of result (88) can be constructed in the same

way, but this time Lemma A.4 is used instead of Lemma A.5 and the expansion rates considered

for N and T under Assumptions B1 and B2.

Lemma 8 Suppose xt is generated according to (1), and Assumptions 1-4, B1 and B3 hold. Then
for any i > 1, (Gi �Hi)

0 ei�p
T


1

p! 0, (107)

where Gi and Hi are de�ned by (73), and (79), respectively. Consider now the case where Assump-

tion B3 is replaced by the weaker Assumption B2, but the other assumptions are maintained. Then

for any i > 1, (Gi �Hi)
0 ei�

T


1

p! 0. (108)

Proof. Since j�iij < 1 by condition (16) of Assumption 4, polynomial (1� �iiL)�1 exists (for any
i = 2; 3; :::; N). Multiplying equation (A.8) in Appendix by (1� �iiL)�1 yields

xit � �it = (1� �iiL)�1 [�i (L)#ct + �it] , for i = 2; 3; :::; N , (109)

where �it is given by (92). Under Assumptions B1 and B3, and using (109) and Lemma A.5 in

Appendix (results (A.28) and (A.29)), it can be shown that (for a suitable choice of p, q and vector

�, similarly as in proof of Lemma 7), for any i > 1 we have

max
j2f1;ig, p2f1;2;:::;mT g

E

����� 1pT
TX

t=mT+1

�
xj;t�p � �j;t�p

�
eit

�����! 0, (110)

and

E

����� 1pT
TX

t=mT+1

(x1t � �1t) eit

�����! 0. (111)

Noting that

git � hit =
( �

x1;t�1 � �1;t�1; x1;t�2 � �1;t�2; :::; x1;t�mT � �1;t�mT

�
for i = 1�

xi;t�1 � �i;t�1; x1t � �1t; x1;t�1 � �1;t�1; :::; x1;t�mT � �1;t�mT

�
for i > 1

,

then (110)-(111) establish (107). Proof of (108) is identical, but this time Lemma A.4 is used

instead of Lemma A.5, together with Assumptions B1 and B2.

Using Lemmas 4-8, it is now straightforward to establish consistency of b�i in the following
theorem.

Theorem 1 (Consistency) Suppose xt is given by model (1) and Assumptions 1-5, B1, and B2
hold. Then

kb�i � �ik1 p! 0, for any i 2 N, (112)
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that is b�i de�ned by equation (74) is a consistent estimator of �i.
Proof. Suppose i > 1. Taking maximum absolute row-sum matrix norms of both sides of equation
(78), we have

kb�i � �ik1 �

�
G0
iGi

T

��1
�C�1i


1

G0
i�i�
T


1

+
C�1i 1�(Gi �Hi)

0 ei�
T


1
+

H0
iei�
T


1
+

G0
i�i�
T


1
+

G0
i i�
T


1

�
,

where
C�1i 1 = O (1) since �it is a stationary invertible process with absolute summable auto-

covariances. The desired result (112), for i > 1, now follows using Lemmas 4-8 and noting that

kH0
iei�=Tk1

p! 0 by results (A.15) and (A.16) of Lemma A.4 in Appendix. Consistency of b�1 can
be established in a similar manner.

4.3 Asymptotic Distribution of b�i
We continue to focus on the estimates b�i for i > 1. Derivation of the asymptotic results for b�1 can
be established in a similar manner.

Theorem 2 (Asymptotic normality) Suppose xt is given by model (1) and Assumptions 1-5, B1,
and B3 hold. Then for any sequence of (mT + 2)�1 dimensional vectors a such that kak1 = O (1),

we have p
T
1

�i
a0C

1
2
i (b�i � �i) d! N (0; 1) , for any i 2 f2; 3; :::g , (113)

where b�i and Ci are de�ned by (74) and (65), respectively, and �2i = V ar (eit). In addition, for

any sequence of mT � 1 dimensional vectors b such that kbk1 = O (1), we have

p
T
1

�"1
b0C

1
2
1 (b�1 � �1) d! N (0; 1) , (114)

where b�1 and C1 are de�ned by (74) and (65), respectively, and �2"1 = V ar ("1t).

Proof. Suppose i > 1.pT 1�ia0C 1
2
i (b�i � �i)� 1

�i
a0C

� 1
2

i

H0
iei�p
T


1

�
 1�ia0C 1

2
i


1
�

�
pT (b�i � �i)�C�1i H0

iei�p
T


1
, (115)
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where

 1�ia0C 1
2
i


1
= O (1). Using (78) we have

pT (b�i � �i)�C�1i H0
iei�p
T


1

�

�
G0
iGi

T

��1
�C�1i


1

G0
i�i�p
T


1

+
C�1i 1�(Gi �Hi)

0 ei�p
T


1
+

G0
i�i�p
T


1

�
+
C�1i 1 G0

i i�p
T


1

p! 0, (116)

where the convergence follows from Lemmas 4-8. Furthermore,

1

�i
a0C

� 1
2

i

H0
iei�p
T

d! N (0; 1) (117)

is a standard time series result, which can be established using the martingale di¤erence array

central limit theorem (Theorem 24.3 of Davidson (1994)) in the same way as Lemma 6 of Chudik and

Pesaran (2010). Equations (115)-(117) establish result (113), as desired. Asymptotic distribution

of b�1 can be established in a similar manner.
4.4 Extensions

Straightforward relaxation of Assumption 1 would be to incorporate more general neighborhood

e¤ects with a priori known spatial weights matrix or a priori known selection matrix that selects

neighbors for unit i. This extension is straightforward along the lines of CP and we provide below

some Monte Carlo evidence in case of three neighbors per unit. The presence of deterministic terms

or observed and unobserved common factors could also be tackled along the same lines as in CP. It

is also possible to allow for more than one dominant unit in the IVAR model so long as the number

of dominant units is �xed and the identity of the dominant units is known a priori.

5 Monte Carlo Experiments

In this section we report some evidence on the small sample properties of the augmented least

squares estimator b�i. The data generating process (DGP) is given by the following stationary
IVAR featuring the dominant unit and augmented by an unobserved common factor.

(xt � ft) = � (xt�1 � ft�1) + ut, (118)

where

ut = R"t = r1"1t + et, (119)

which corresponds to model (1) augmented by unobserved common factor ft and residuals corre-

spond to (8) and (20). Our focus is on estimation of the lagged own coe¢ cient in equation for the
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non-dominant unit i = 2, namely �22, the lagged neighbor coe¢ cient, �23, and �20 = r21 in (69),

when  = 0.7 Corresponding ALS estimators for these coe¢ cients are denoted by b�22, b�23, andb�20, respectively.
The elements of� are generated so that unit 1 is dominant, and there are non-zero neighborhood

e¤ects. To this end we �rst generate

!ij =

8<:
& ijP

j =2f1;i;i+1g & ij
, for j =2 f1; i; i+ 1g

0, for j 2 f1; i; i+ 1g
,

with & ij � IIDU (0; 1). This ensures that !ij = Op(N
�1), and

PN
j=1 !ij = 1. Individual elements

of the matrix � are then generated as follows:

1. (Dominant Unit i = 1) �11 = 0:7, and �1j = �1!1j for j = 2; 3; :::; N , with �1 = 0:1.

2. (Unit i = 2) �21 = 0:1, �22 = 0:5, �23 = 0:1, and �2j = �2!2j for j = 3; 4; :::; N , with

�2 = 0:1.

3. (Remaining units i > 2) �ii � IIDU (0:3; 0:5), �i1 � IIDU (0; 0:1), �i;i+1 � IIDU (�0:2; 0:2),
and �ij = �i!ij for j =2 f1; i; i+ 1g, where �i � IIDU (�0:05; 0:15).

The focus parameters of the dominant unit 1, and unit i = 2 are �xed across all experiments.

The remaining parameters are generated randomly. In all experiments � is generated such that

k�k1 � 0:95, which is a su¢ cient condition for stationarity of the IVAR model.
Two sets of factor loadings are considered,  = 0 (no unobserved common factor) and  6= 0.

Under the latter we set 1 = 1, 2 = �0:5, and the remaining factor loadings are generated
randomly as i � 0:5�ii + IIDN (1; 1) for i = 3; 4; :::; N . The factor loadings are generated to

depend on �ii, so that the robustness of the ALS estimator to this type of dependency can be

evaluated. The common factor ft is generated as

ft = �fft�1 + "ft,

where "ft � IIDN
�
0; 1� �2f

�
, which yields V ar (ft) = 1. We choose relatively persistent common

factor with �f = 0:9. We set e1t = 0 and generate the remaining error terms fe2t; e3t; :::; eNtg from
a stationary spatial process in order to show that our estimators are invariant to the weak cross

section dependence of innovations. The following bilateral Spatial Autoregressive Model (SAR) is

considered.

eit =
ae
2
(ei�1;t + ei+1;t) + �eit, (120)

where �eit � IIDN
�
0; �2�e

�
. As established by Whittle (1954), the unilateral SAR(2) scheme

eit = �e1ei�1;t + �e2ei�2;t + �eit, (121)

7Similar results are also obtained for other cross section units.
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with �e1 = �2be; �e2 = b2e and be =
�
1�

p
1� a2e

�
=ae, generates the same autocorrelations as the

bilateral SAR(1) scheme (120). The error terms are generated using the unilateral scheme (121)

with 50 burn-in data points (i = �49;�48; :::; 0), and the initializations e�51 = e�50 = 0. The

spatial AR parameter, ae; is set to 0:4, which ensures that the process feitg is cross sectionally
weakly dependent. �2�e = V ar (�eit) is chosen so that the variance of errors eit is equal to 0:1.

8

"1t � IIDN (0; 0:15) and r11 = 1, which implies that V ar(u1t) = 0:15. The second element of r1
in (119) is set to r21 = 0:1 and the remaining elements are generated as ri1 � IIDU (0; 0:2) for

i = 3; 4; :::; N .

We consider three di¤erent types of augmentation. In addition to the lagged neighbor unit 3,

the regression for unit i = 2 is augmented by the following set of regressors: (i) the current and

lagged values of the dominant unit, fx1;t�`gmT

`=0, (ii) the simple cross section averages fxt�`g
mT
`=0,

and (iii) fx1;t�`; xt�`gmT

`=0. In all the three cases mT is set to the integer value of T 1=3, which we

denote by
�
T 1=3

�
.9 For example, under case (i) the ALS regression for unit i = 2 is speci�ed as:

x2t = c2 + �22x2;t�1 + �23x3;t�1 +

[T 1=3]X
`=0

b1`x1;t�` + �2t. (122)

5.1 Monte Carlo results

We report results for experiments without the unobserved common factor �rst. Table 1 summarizes

the results for the own coe¢ cient �̂22, and Table 2 summarizes the results for the neighbor coe¢ -

cient, �23. Each table gives the bias and the root mean squared error (RMSE) of the estimator as

well as the empirical size and power of tests based on it. The results for �̂23 are a little better but

overall similar to those for �̂22. The bias and RMSE of these estimators decline as N and T are

increased irrespective of the augmentation procedure adopted. This is because in the absence of a

common factor the dominant unit and the cross section averages are asymptotically equivalent and

either set of variables (with long enough lags) are su¢ cient to deal with the cross section depen-

dence and the omitted variable problems in the IVAR model. The augmentation by cross section

averages has the advantage that it works regardless of whether strong cross section dependence is

due to a dominant unit, or due to a di¤erent source such as an unobserved common factor. Full

augmentation by the dominant unit as well as the cross section averages is not necessary in the

absence of a common factor, and yields worse outcomes in terms of RMSEs. See the third panel of

Tables 1 and 2.

The empirical size of the tests for values of T > 50 are also close to the 5 percent nominal level.

For smaller values of T , however, there is a negative bias and the tests are oversized. This is the

familiar time series bias where even in the absence of cross section dependence the LS estimators of

autoregressive coe¢ cients are biased in small T samples. But the size of the tests does not change

much with N , which is in the line with the �ndings reported in CP. Overall, these �ndings suggest

that N need not to be very large for the ALS estimator to work.

8The variance of errors feitg is given by �2 = (1 + �e2)
��
1� �2e2

�
� �2e1

�
= (1� �e2).

9mT = 2; 3; 4; 4; 5 for T = 25; 50; 75; 100; 200, respectively.

26



Results for b�20 are reported in Table 3. The top panel summarizes the results when the regres-
sion is augmented with fx1;t�`gmT

`=0, as suggested by the theory. In this case the bias and RMSE

of b�20 declines with N and T , and the empirical size is close to the nominal value of the test, very

much in line with the results reported for �̂22 and �̂23. In contrast, the estimates at the bottom

panel of Table 3 that are based on regressions augmented by fx1;t�`; xt�`gmT

`=0, behave less well and

for a given T the RMSEs deteriorate as N increases. The inclusion of cross section averages lead to

a multicollinearity problem since fx1;t�`gmT

`=0 and fxt�`g
mT
`=0 will be asymptotically equivalent. But

this asymptotic multicollinearity problem does not a¤ect the estimation of �22 and �23.

Results for the experiments with the unobserved common factor are reported in Table 4 (own

coe¢ cient �22) and Table 5 (neighbor coe¢ cient �23).
10 Theory suggests that augmentation by the

dominant unit or by the cross section averages alone is not enough for consistent estimation in the

presence of a dominant unit as well as a common factor, ft. This is con�rmed by the MC results

in Tables 4 and 5, which indeed show substantial biases and signi�cant size distortions in cases

without the full augmentation (the empirical sizes are in the range 17%� 70% for N = T = 200).

The ALS estimator based on the full augmentation is correctly sized for larger values of N and

T and overall its performance is very similar to the experiments without the unobserved common

factor.

6 Concluding Remarks

This paper has extended the analysis of in�nite dimensional vector autoregressive (IVAR) models

by Chudik and Pesaran (2010) to the case where one variable or a cross section unit is dominant in

the sense that it has non-negligible contemporaneous and/or lagged e¤ects on all other units even as

the cross section dimension rises without a bound. We showed that the asymptotic normality of the

augmented least squares (ALS) estimator continues to hold once the individual auxiliary regressions

are correctly speci�ed. Satisfactory �nite sample performance was documented by means of Monte

Carlo experiments.

How to specify the individual regressions is an important topic, and the correct speci�cation

depends on a number of assumptions, namely the presence of dominant units, observed and un-

observed common factors and spatiotemporal neighborhood e¤ects. How to identify the dominant

unit(s), the number of the unobserved common factors (if any), and the nature of (spatial) contem-

poraneous dependencies are issues of utmost importance that lie outside the scope of the present

paper. These topics together with the extension of the analysis to nonstationary IVAR models

must be left to future studies.

10Results for b�20 are not reported in this case since only in the absence of common factor, coe¢ cient �20 corre-
sponding to the contemporaneous value of the dominant unit equals r21, as shown in equation (69).
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A Supplementary Lemmas and Proofs

Lemma A.1 Let  (L) =
P1

`=0  `L
`,  0 = 1 and there exists a real positive constant 0 < � < 1 such that j `j � �`

for any ` 2 N. Then there exists polynomial � (L) =
P1

`=0 �`L
` such that  (L) � (L) = 1,

j�`j �
�
1 +

` (`� 1)
2

�
�` for any ` 2 N, (A.1)

and there also exist real constants K <1; and 0 < �1 < 1 such that

j�`j � K�`1 for any ` 2 N. (A.2)

Proof. We have

�0 = 1,

�1 = � 1,

�2 = � 1�1 �  2,

�3 = � 1�2 �  2�1 �  3,

�4 = � 1�3 �  2�2 �  3�1 �  4.

Note that

j�1j = j 1j ,

j�2j � j 1j j�1j+ j 2j ,

j�3j � j 1j j�2j+ j 2j j�1j+ j 3j ,

j�4j � j 1j j�3j+ j 2j j�2j+ j 3j j�1j+ j 4j ,

and by recursive substitution

j�1j = j 1j ,

j�2j � j 1j j�1j+ j 2j = j 1j
2 + j 2j ,

j�3j � j 1j j�2j+ j 2j j�1j+ j 3j � j 1j
�
j 1j

2 + j 2j
�
+ j 2j j 1j+ j 3j ,

j�3j � j 1j
3 + 2 j 2j j 1j+ j 3j ,

j�4j � j 1j
4 + 3 j 1j

2 j 2j+ 2 j 1j j 3j+ j 2j
2 + j 4j .

Suppose that j ij � �i and 0 < � < 1. Then in general

j�sj �
 
1 +

s�1X
j=1

j

!
�s,

j�sj �
�
1 +

s(s� 1)
2

�
�s;

Choose a positive real constant � > 0 such that � < 1� �. We have

j�sj �
�
1 +

s(s� 1)
2

�
(1� �)s

�
�

1� �

�s
,

j�sj �
��
1 +

s(s� 1)
2

�
�s2

�
�s1,

where �1 � �= (1� �), �2 � 1� �, and note that 0 < �1 < 1, 0 < �2 < 1. Also,�
1 +

s(s� 1)
2

�
�s2 ! 0; as s!1,
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which implies existence of a real constant K <1 such that�
1 +

s(s� 1)
2

�
�s2 < K.

It follows that j�sj < K�s1, as desired.

Lemma A.2 Suppose xt is generated according to (1), and Assumptions 1-4, B1, and B2 hold. Then

max
1�i�N

E
�
x2it
�
< K, (A.3)

for any N 2 N, and any t 2 Z, where constant K does not depend on N .

Proof. Taking L2-norm of (40) and using triangle inequality, we obtain

kx1tkL2 = k�1t + #ctkL2 � k�1tkL2 + k#ctkL2 , (A.4)

where �1t = a�1 (L) "1t (see (66)). Noting that E (#ct) = 0, (41) implies

k#ctkL2 = O
�
N�1=2

�
. (A.5)

Since coe¢ cients of a�1 (L) = c�1 (L) b1 (L) are absolute summable (see Lemma 2), E ("1t) = 0, and �2"1 = V ar ("1t)

is bounded under Assumption 2 (condition (10)), we have

k�1tkL2 < K. (A.6)

Using (A.5) and (A.6) in (A.4), we obtain

E
�
x21t
�
= kx1tk2L2 < K <1, (A.7)

where K does not depend on N .

Now suppose i > 1. Subtracting (67) from (48) yields

(1� �iiL)xit = (1� �iiL) �it + �i (L)#ct + �it, (A.8)

where #ct = x1t � �1t (see (40) and (66)), and �it is given by (50). j�iij � � < 1 by condition (16) of Assumption 4,

and therefore polynomial (1� �iiL) is invertible for any i 2 f2; 3; :::g. Multiplying (A.8) by (1� �iiL)
�1, taking L2

norm and using triangle inequality yields

kxitkL2 =
�it + (1� �iiL)

�1 �i (L)#ct + (1� �iiL)
�1 �it


L2

� k�itkL2 +
(1� �iiL)

�1 �i (L)#ct

L2
+
(1� �iiL)

�1 �it

L2

But coe¢ cients of (1� �iiL)
�1 and �i (L) are absolute summable, see Lemma 3. Using (41) and (54), noting that

E (#ct) = 0; and11

k�itkL2 < K; for any N 2 N, and any i = f2; 3; :::; Ng , (A.9)(1� �iiL)
�1 �i (L)#ct


L2
= O

�
N�1=2

�
; and

(1� �iiL)
�1 �it


L2
= O

�
N�1=2

�
;

we obtain

E
�
x2it
�
= kxitk2L2 < K for any N 2 N and any i = f2; 3; :::; Ng . (A.10)

Results (A.8) and (A.10) establish (A.3), as desired.

11Result (A.9) follows from de�nition of stationary process �it (given by (67)) by noting that V ar (eit) is bounded
under Assumption 2 (conditions (10) and (11)), coe¢ cients in polynomial �i (L) are absolute summable (see Lemma
3) and that (A.6) holds.
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Lemma A.3 Suppose xt is generated according to (1), and Assumptions 1-4, B1, and B2 hold. Then there exists a

constant K <1, which does not dependent on N; mT 2 N, i; j 2 f1; 2; :::; Ng, and s 2 f1; 2; :::;mT g, such that

E

0@ 1

T

TX
t=mT+1

xitxj;t�s � E
�
�it�j;t�s

�1A2

� K

T
, (A.11)

where �it, for i 2 f2; 3; :::g, is de�ned by equation (67) and �1t is de�ned by (66).

Proof. (A.11) can be established in a similar way to the proof of equations (2.10) and (2.11) in Berk (1974).

Lemma A.4 Suppose Assumptions 1-4, B1, and B2 hold. Then for any p; q 2 f0; 1; 2; :::g, any i 2 f2; 3; :::g, any
N � 1 dimensional vectors �, � and a, such that k�k1 = O (1), k�k = O (1) and kak = O (1), we have

1

T

TX
t=mT+1

�0�t�p�
0�t�q � E

�
�0�t�p�

0�t�q
� L1! 0, (A.12)

1

T

TX
t=mT+1

"1;t�p�
0�t�q

L1! 0, (A.13)

1

T

TX
t=mT+1

�0�t�pa
0"t�q � E

�
�0�t�pa

0"t�q
� L1! 0, (A.14)

1

T

TX
t=mT+1

�1;t�peit
L1! 0, (A.15)

and
1

T

TX
t=mT+1

�i;t�1eit
L1! 0, (A.16)

where convergence is uniform in p, and �t is de�ned by (22).

Proof. Let TN = T (N) and mTN = m (TN ) be any increasing integer valued functions of N satisfying Assumptions

B1 and B2. De�ne the following two-dimensional array12

�Nt =
1

TN
�0"1;t�p�t�q,

and the non-stochastic array

cNt =
1

TN
,

for any t 2 Z, and any N 2 N. Consider now the triangular array
�n

�Nt
cNt

;FNt
oTN
t=�1

�1
N=1

, where fFNtg denotes an

array of �-�elds that is increasing in t for each N; and �Nt is measurable with respect to FNt. Using independence
of et = R�1"t and "1t0 for any t; t

0 2 Z (see Assumption 2), we have

E

�
�Nt
cNt

j FN;t�n
�

= E

 1X
`=0

�0�`
�1et�q�`"1;t�p j FN;t�n

!
,

=

8><>:
0 for p < n

1P
`=`1(n;q)

�0�`
�1et�q�`"1;t�p for p � n

,

where

`1 (n; q) = max fn� q; 0g .

12Note that �Nt is also a function of p and q but we ommit these subscripts to simplify notations.
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Also,

sup
p2f0;1;:::g

E

(�
E

�
�Nt
cNt

j Ft�n
��2)

= �2"1
1P

`=`1(n;q)

�0�`
�1R�1E

�
"t"

0
t

�
R0
�1�

0`
�1�,

� &nq,

where

&nq = �2"1 kV ar ("t)k kR�1k2 k�k2
1P

`=`1(n;q)

k��1k2` .

Condition (11) of Assumption 2 implies kR�1k � kR�1k1 kR�1k1 = O (1), �2"1 < K and kV ar ("t)k < K by

condition (10) of Assumption 2, and k��1k �
p
k��1k1 k��1k1 � � < 1 under Assumption 4, condition (16).

Since also k�k = O (1), it follows that (for any �xed q 2 N0)

&0;q < K and &nq ! 0 as n!1.

Therefore, array f�Nt=cNtg is uniformly bounded in L2 norm, which establishes uniform integrability. Furthermore,

using Liapunov�s inequality, two-dimensional array f�Nt;FNtg is L1-mixingale with respect to non-stochastic array
fcNtg. Noting that

lim
N!1

TNX
t=mTN

+1

cNt = lim
N!1

TNX
t=mTN

+1

1

TN
=
TN �mTN

TN
= 1 <1, (A.17)

lim
N!1

TNX
t=mTN

+1

c2Nt = lim
N!1

TNX
t=mTN

+1

1

T 2N
=
TN �mTN

T 2N
= 0, (A.18)

it follows that the array f�Nt;FNtg satis�es conditions of a mixingale weak law,13 which implies
PTN

t=mTN
+1 �Nt

L1! 0,

uniformly in p since the upper bound &nq does not depend on p. This completes the proof of result (A.13).

Result (A.14) is established in a similar fashion as result (A.13). This time we de�ne

�Nt =
1

TN

�
�0�t�pa

0"t�q � E
�
�0�t�pa

0"t�q
��
,

for any t 2 Z, and any N 2 N. Again let fFNtg denote array of �-�elds that is increasing in t for each N and �Nt is

measurable with respect to FNt. We have

E

�
�Nt
cNt

j FN;t�n
�
=

8><>:
1P

`=`2(p;n)

�0�`
�1R�1 ["t�p�`a

0"t�q � E ("t�p�`a
0"t�q)] for q � n

0 for q < n

, (A.19)

where

`2 (p; n) = max fn� p; 0g .

De�ne

ztpq` =
�
�0�`

�1R�1"t�p�`
� �
a0"t�q

�
. (A.20)

Using (A.20) in (A.19), we obtain

E

(�
E

�
�Nt
cNt

j FN;t�n
��2)

=

8><>:
1P

`=`2(p;n)

1P
h=`2(p;n)

[E (ztpq`ztpqh)� E (ztpq`)E (ztpqh)] for q � n

0 for q < n

. (A.21)

Note that

E (ztpq`) =

(
0 for ` 6= p� q

�0�`
�1R�1V ar ("t)a for ` = p� q

.

13See Theorem 19.11 in Davidson (1994).
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This implies that

1P
`=`2(p;n)

E (ztpq`) =

(
�0�p�q

�1 R�1V ar ("t�q)a for p� q � max fp� n; 0g
0 p� q < max fp� n; 0g

.

But �0�`
�1R�1V ar ("t�q)a

 � k�k k��1k` kR�1k kV ar ("t�q)k kak

< K,

where as before k�k = O (1), kak = O (1), k��1k �
p
k��1k1 k��1k1 � � < 1 (by condition (16) of Assumption

4), kR�1k � kR�1k1 kR�1k1 = O (1) (by condition (11) of Assumption 2) and kV ar ("t�q)k = O (1) (by condition

(10) of Assumption 2). It follows that for q � n,

sup
p2f0;1;2;:::g

1P
`=`2(p;n)

E (ztpq`)
1P

h=`2(p;n)

E (ztpqh) < K. (A.22)

Using similar arguments (and noting that fourth moments of "it are uniformly bounded in i), it can be shown that

sup
p2f0;1;2;:::g

1P
`=`2(p;n)

1P
h=`2(p;n)

E (ztpq`ztpqh) < K for q � n. (A.23)

Results (A.21), (A.22) and (A.23) now establish the existence of a non-stochastic array, &nq; such that

sup
p2f0;1;2;:::g

E

(�
E

�
�Nt
cNt

j FN;t�n
��2)

< &nq,

where for a �xed q 2 f0; 1; 2; :::g,
&0q < K and &nq ! 0 as n!1.

Therefore, array f�Nt=cNtg is uniformly bounded in L2 norm, which establishes uniform integrability. Furthermore,

using Liapunov�s inequality, two-dimensional array f�Nt;FNtg is L1-mixingale with respect to non-stochastic array
fcNtg. Noting that equations (A.17)-(A.18) hold, it follows that the array f�Nt;FNtg satis�es conditions of a
mixingale weak law,14 which implies

PTN
t=mTN

+1 �Nt
L1! 0, uniformly in p since the upper bound &nq does not depend

on p. This completes the proof of (A.14).

Results (A.15) and (A.16) can also be established in the similar fashion as result (A.13), but this time we de�ne

�Nt =
1
TN
�1;t�peit to establish result (A.15), and �Nt =

1
TN
�i;t�1eit in order to establish result (A.16). Result (A.14)

can be established in the same way as Lemma 1 in Chudik and Pesaran (2010). This completes the proof.

Lemma A.5 Let assumptions 1-4, B1, and B3 hold. Then for any i 2 f1; 2; 3; :::g ; any j 2 f2; 3; :::g, any p; q 2
f0; 1; 2; :::g, and any N � 1 dimensional vectors � and �, such that k�k1 = O (1) and k�k1 = O

�
N�1�,

1p
T

TX
t=mT+1

�0�t�p�
0�t�q �

p
{2E

�p
N�0�t�p�

0�t�q
�
L1! 0, (A.24)

1p
T

TX
t=mT+1

�1;t�p�
0�t�q �

p
{2E

�p
N�1;t�p�

0�t�q
�
L1! 0, (A.25)

1p
T

TX
t=mT+1

"1;t�p�
0�t�q

L1! 0, (A.26)

1p
T

TX
t=mT+1

"1;t�p�1;t�q
L1! 0, (A.27)

14See Theorem 19.11 in Davidson (1994).
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1p
T

TX
t=mT+1

�0�t�pei;t�q �
p
{2E

�p
N�0�t�pei;t�q

�
L1! 0, (A.28)

and
1p
T

TX
t=mT+1

�1;t�pej;t�q
L1! 0, (A.29)

where convergence is uniform in p, �t is de�ned by equation (22), et is de�ned by (20), and {2 = lim(T=N) as

(N;T )
j!1.

Proof. We have

1p
T

TX
t=mT+1

�0�t�p�
0�t�q =

r
T

N

0@ 1

T

TX
t=mT+1

�p
N�
�0
�t�p�

0�t�q

1A , (A.30)

where pN� =qN k�k1 k�k1 = O (1) . (A.31)

Using now result (A.12) of Lemma A.4 yields

1

T

TX
t=mT+1

b0�t�p�
0�t�q � E

�
b0�t�p�

0�t�q
� L1! 0 uniformly in p, (A.32)

under Assumptions B1 and B2, where b =
�p

N�
�0
, and kbk = O (1) by (A.31). Multiplying (A.32) by (T=N)1=2,

and noting that Assumption B3 is a special case of Assumption B2, where (N;T )
j!1 at any rate, and that under

Assumption B3, r
T

N
!
p
{2 <1,

we obtain
1p
T

TX
t=mT+1

�0�t�p�
0�t�q �

p
{2E

�p
N�0�t�p�

0�t�q
�
L1! 0 uniformly in p,

under Assumptions B1 and B3, as desired. This completes the proof of (A.24). Similarly, result (A.26) follows

directly from result (A.13). Result (A.28) can also be established in a similar way by using (A.14) and noting that

ei;t�q = a
0"t�q for a = R0

�1si and that kR0
�1sik �

p
kR�1k1 kR�1k1 = O (1) by condition (11) of Assumption 2.

To establish result (A.27), we make use of equation (30), which implies

�1t = r
0
�1"t + �

0
�1�t�1, (A.33)

where r0�1"t = e1t and vector ��1 satis�es ��11 = O
�
N�1� , (A.34)

by condition (5) of Assumption 1. Using result (A.26) for � = ��1 we have

1p
T

TX
t=mT+1

"1;t�p�
0
�1�t�q

L1! 0 uniformly in p, (A.35)

for any p; q 2 f0; 1; 2; :::g, under Assumptions B1 and B3. Similarly, r�1 satis�es

kr�1k1 = O
�
N�1� , (A.36)

by condition (12) of Assumption 2. Noting that �t reduces to

�t =

1X
`=0

�`
�1R�1"t = "t for ��1 = 0 and R�1 = I�1,

where I�1 is identity matrix with the �rst column replaced by zeros, result (A.26) implies (for � = r�1,��1 = 0 and
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R�1 = I�1) that

1p
T

TX
t=mT+1

"1;t�pr
0
�1"t�q

L1! 0, uniformly in p, (A.37)

for any p; q 2 f0; 1; 2; :::g, under Assumptions B1 and B3. (A.33), (A.35), and (A.37) now establish (A.27), as desired.
Result (A.29) is established in a similarly way by making use of (A.28) and (A.33). For � = ��1 (see (A.34)),

(A.28) implies

1p
T

TX
t=mT+1

�0�1�t�pei;t�q �
p
{2E

�p
N�0�1�t�pei;t�q

�
L1! 0 uniformly in p, (A.38)

under Assumptions B1 and B3, where

E
�p

N�0�1�t�pei;t�q
�
=

( p
N�0�1�

q�p
�1 E (et�qei;t�q) for q � p

0 for q < p
, (A.39)

E �pN�0�1�t�pei;t�q�
1
�
p
N
��11 k��1kq�p1 kE (et�qei;t�q)k1 = O

�
N� 1

2

�
,��11 = O

�
N�1� by condition (5) of Assumption 1, k��1kq�p1 � �q�p � 1, for q � p, by condition (16) of

Assumption 4,

kE (et�qei;t�q)k1 � kR�1k1 kR�1k1 kV ar ("t)k1 ,

kR�1k1 kR�1k1 < K by condition (11) of Assumption 2, and kV ar ("t)k1 < K by condition (10) of Assumption 2.

For � = r�1,��1 = 0 and R�1 = I�1, (A.28) implies

1p
T

TX
t=mT+1

r0�1"t�pei;t�q �
p
{2E

�p
Nr0�1"t�pei;t�q

�
L1! 0 uniformly in p, (A.40)

under Assumptions B1 and B3, where

E
�p

Nr0�1"t�pei;t�q
�
=

( p
Nr0�1R�1si for q = p

0 for q 6= p
, (A.41)

E �pNr0�1"t�pei;t�q�
1
�
p
N kr�1k1 kR�1k1 = O

�
N� 1

2

�
, (A.42)

kr�1k1 = O
�
N�1� and kR�1k1 < K by Assumption 2 (see conditions (12) and (11), respectively). (A.38)-(A.42)

establish (A.29), as desired.

Result (A.25) is also established by making use of equation (A.33). For � = ��1 (noting that ��1 satis�es

(A.34)) and for any vector � such that k�k1 = O (1), (A.24) implies

1p
T

TX
t=mT+1

�0�1�t�p�
0�t�q �

p
{2E

�p
N�0�1�t�p�

0�t�q
�
L1! 0 uniformly in p, (A.43)

under Assumptions B1 and B3. Result (A.14) of Lemma A.4 implies by setting a =
p
Nr�1 and noting that kak =p

N kr�1k =
p
N
p
kr�1k1 kr�1k1 = O (1) (see (A.36)), we have

1

T

TX
t=mT+1

�0�t�p
p
Nr�1"t�q � E

�
�0�t�p

p
Nr�1"t�q

�
L1! 0 uniformly in p, (A.44)

under Assumptions B1, and B2. Using same arguments as in (A.30), it follows from (A.44) that

1p
T

TX
t=mT+1

�0�t�pr�1"t�q �
p
{2E

�
�0�t�p

p
Nr�1"t�q

�
L1! 0 uniformly in p, (A.45)

under Assumptions B1, and B3. (A.33), (A.43) and (A.45) establish (A.25), as desired. This completes the proof.

Lemma A.6 Suppose that Assumptions 1 to 4 hold. Then for any i 2 N, any p 2 f0; 1; 2; :::g, and any N � 1
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dimensional vector � such that k�k1 = O
�
N�1�,
E
�
s0i�t�p�

0�t�1
�
= O

�
N�1� , (A.46)

and

E
�
s0i�t�p�1t

�
= O

�
N�1� , (A.47)

where si is an N � 1 dimensional selection vector with sij = 0 for j 6= i and sii = 1, and �t is de�ned by equation

(22).

Proof. We have

s0i�t�p�
0�t�1 = s

0
i�t�p�

0
t�1� =

1X
`=0

s0i�
`
�1R�1"t�p�`

1X
`=0

"0t�1�`R
0
�1�

0`
�1�. (A.48)

Taking expectations of (A.48) and noting that "t is independently distributed of "t0 for any t 6= t0, we obtain

E
�
s0i�t�p�

0�t�1
�

=
X

`=maxf1;pg

s0i�
`�p
�1 R�1E

�
"t�`"

0
t�`
�
R0
�1�

0`�1
�1 �

� kR�1k1 kR�1k1 k�k1 kV ar ("t)k1
X

`=maxf1;pg

k��1k`�p1 k��1k`�11 ,

where kR�1k1 kR�1k1 = O (1) by condition (11) of Assumption 2, k�k1 = O
�
N�1�, kE ("t"t)k1 = kV ar ("t)k1 =

O (1) by condition (10) of Assumption 2, and k��1k1 � � < 1, k��1k`1 � � < 1 by condition (16) of Assumption 4.

It follows that E (s0i�t�p�
0�t�1) = O

�
N�1�, as required.

To establish result (A.47), we make use of equation (A.33). We have

E
�
s0i�t�p�1t

�
= E

�
s0i�t�pr

0
�1"t

�
+ E

�
s0i�t�p�

0
�1�t�1

�
.

Noting that
��11 = O

�
N�1� by condition (5) of Assumption 1, result (A.46) (for � = ��1) implies E �s0i�t�p�0�1�t�1� =

O
�
N�1�. Furthermore,

E
�
s0i�t�pr

0
�1"t

�
=

(
0 for p > 0

s0iR�1E ("t"
0
t) r�1 for p = 0

,

where

s0iR�1E
�
"t"

0
t

�
r�1 � kR�1k1 kV ar ("t)k1 kr�1k1 = O

�
N�1� ,

using the same arguments as in derivation of (A.46) and noting that kr�1k1 = O
�
N�1� by condition (12) of

Assumption 2. It follows that E (s0i�t�p�1t) = O
�
N�1�, as required.

References

Anselin, L. (1988). Spatial Econometrics: Methods and Models. Dordrecht, The Netherlands: Kluwer Academic

Publishers.

Berk, K. N. (1974). Consistent autoregressive spectral estimates. The Annals of Statistics 2, 489�502.

Chudik, A. and M. H. Pesaran (2010). In�nite dimensional VARs and factor models. Revised version of the ECB

Working Paper No. 998, January 2009.

Cli¤, A. and J. Ord (1973). Spatial autocorrelation. London: Pion.

Davidson, J. (1994). Stochastic Limit Theory. Oxford University Press.

Doan, T., R. Litterman, and C. Sims (1984). Forecasting and conditional projections using realistic prior distrib-

utions. Econometric Reviews 3, 1�100.

Forni, M., M. Hallin, M. Lippi, and L. Reichlin (2000). The generalized dynamic factor model: Identi�cation and

estimation. Review of Economics and Statistic 82, 540�554.

40



Forni, M., M. Hallin, M. Lippi, and L. Reichlin (2004). The generalized dynamic factor model: Consistency and

rates. Journal of Econometrics 119, 231�235.

Forni, M. and M. Lippi (2001). The generalized factor model: Representation theory. Econometric Theory 17,

1113�1141.

Geweke, J. (1977). The dynamic factor analysis of economic time series. In D. Aigner and A. Goldberger (Eds.),

Latent variables in socio-economic models. Amsterdam: North-Holland.

Hastie, T., R. Tibshirani, and J. Friedman (2001). The Elements of Statistical Learning. Springer Series in Statistics.

Holly, S., M. H. Pesaran, and T. Yamagata (2010). Spatial and temporal di¤usion of house prices in the UK.

CESifo Working Paper No. 2913.

Kelejian, H. and D. Robinson (1995). Spatial correlation: A suggested alternative to the autoregressive model. In

L. Anselin and R. Florax (Eds.), New directions in spatial econometrics, pp. 75�95. Berlin: Springer-Verlag.

Pesaran, M. H., T. Schuermann, and S. Weiner (2004). Modelling regional interdependencies using a global error-

correcting macroeconometric model. Journal of Business and Economics Statistics 22, 129�162.

Pesaran, M. H. and E. Tosetti (2009). Large panels with common factors and spatial correlations. Revised version

of the CESifo Working Paper No. 2103, September 2007.

Said, E. and D. A. Dickey (1984). Testing for unit roots in autoregressive-moving average models of unknown

order. Biometrika 71, 599�607.

Sargent, T. J. and C. A. Sims (1977). Business cycle modeling without pretending to have too much a-priori

economic theory. In C. Sims (Ed.), New methods in business cycle research. Minneapolis: Federal Reserve

Bank of Minneapolis.

Whittle, P. (1954). On stationary processes on the plane. Biometrika 41, 434�449.

41



CESifo Working Paper Series 
for full list see Twww.cesifo-group.org/wp T 
(address: Poschingerstr. 5, 81679 Munich, Germany, office@cesifo.de) 

___________________________________________________________________________ 
 
2993 Axel Dreher, Stephan Klasen, James Raymond Vreeland and Eric Werker, The Costs of 

Favoritism: Is Politically-driven Aid less Effective?, March 2010 
 
2994 Sven Neelsen and Thomas Stratmann, Effects of Prenatal and Early Life Malnutrition: 

Evidence from the Greek Famine, March 2010 
 
2995 Claude Hillinger and Bernd Süssmuth, The Quantity Theory of Money: An Assessment 

of its Real Linchpin Prediction, March 2010 
 
2996 Matthew M. Chingos and Martin R. West, Do More Effective Teachers Earn More 

Outside of the Classroom?, March 2010 
 
2997 Laurence Jacquet and Dirk Van de gaer, A Comparison of Optimal Tax Policies when 

Compensation or Responsibility Matter, March 2010 
 
2998 Valentina Bosetti, Carlo Carraro, Romain Duval and Massimo Tavoni, What Should we 

Expect from Innovation? A Model-Based Assessment of the Environmental and 
Mitigation Cost Implications of Climate-Related R&D, March 2010 

 
2999 Scott Alan Carson, Nineteenth Century Stature and Family Size: Binding Constraint or 

Productive Labor Force?, March 2010 
 
3000 Jukka Pirttilä and Ilpo Suoniemi, Public Provision, Commodity Demand and Hours of 

Work: An Empirical Analysis, March 2010 
 
3001 Bertrand Candelon and Franz C. Palm, Banking and Debt Crises in Europe: The 

Dangerous Liaisons?, March 2010 
 
3002 Joan Costa-i-Font and Marin Gemmill-Toyama, Does Cost Sharing really Reduce 

Inappropriate Prescriptions?, March 2010 
 
3003 Scott Barrett, Climate Treaties and Backstop Technologies, March 2010 
 
3004 Hans Jarle Kind, Tore Nilssen and Lars Sørgard, Price Coordination in Two-Sided 

Markets: Competition in the TV Industry, March 2010 
 
3005 Jay Pil Choi and Heiko Gerlach, Global Cartels, Leniency Programs and International 

Antitrust Cooperation, March 2010 
 
3006 Aneta Hryckiewicz and Oskar Kowalewski, Why do Foreign Banks Withdraw from 

other Countries? A Panel Data Analysis, March 2010 
 
3007 Eric A. Hanushek and Ludger Woessmann, Sample Selectivity and the Validity of 

International Student Achievement Tests in Economic Research, March 2010 
 



 
3008 Dennis Novy, International Trade and Monopolistic Competition without CES: 

Estimating Translog Gravity, April 2010 
 
3009 Yin-Wong Cheung, Guonan Ma and Robert N. McCauley, Renminbising China’s 

Foreign Assets, April 2010 
 
3010 Michel Beine and Sara Salomone, Migration and Networks: Does Education Matter 

more than Gender?, April 2010 
 
3011 Friedrich Schneider, Tilman Brück and Daniel Meierrieks, The Economics of Terrorism 

and Counter-Terrorism: A Survey (Part I), April 2010 
 
3012 Friedrich Schneider, Tilman Brück and Daniel Meierrieks, The Economics of Terrorism 

and Counter-Terrorism: A Survey (Part II), April 2010 
 
3013 Frederick van der Ploeg and Steven Poelhekke, The Pungent Smell of “Red Herrings”: 

Subsoil Assets, Rents, Volatility and the Resource Curse, April 2010 
 
3014 Vjollca Sadiraj, Jan Tuinstra and Frans van Winden, Identification of Voters with 

Interest Groups Improves the Electoral Chances of the Challenger, April 2010 
 
3015 Guglielmo Maria Caporale, Davide Ciferri and Alessandro Girardi, Time-Varying Spot 

and Futures Oil Price Dynamics, April 2010 
 
3016 Scott Alan Carson, Racial Differences in Body-Mass Indices for Men Imprisoned in 19th 

Century US Prisons: A Multinomial Approach, April 2010 
 
3017 Alessandro Fedele, Paolo M. Panteghini and Sergio Vergalli, Optimal Investment and 

Financial Strategies under Tax Rate Uncertainty, April 2010 
 
3018 Laurence Jacquet, Take it or Leave it: Take-up, Optimal Transfer Programs, and 

Monitoring, April 2010 
 
3019 Wilhelm Kohler and Jens Wrona, Offshoring Tasks, yet Creating Jobs?, April 2010 
 
3020 Paul De Grauwe, Top-Down versus Bottom-Up Macroeconomics, April 2010 
 
3021 Karl Ove Aarbu, Demand Patterns for Treatment Insurance in Norway, April 2010 
 
3022 Toke S. Aidt and Jayasri Dutta, Fiscal Federalism and Electoral Accountability, April 

2010 
 
3023 Bahram Pesaran and M. Hashem Pesaran, Conditional Volatility and Correlations of 

Weekly Returns and the VaR Analysis of 2008 Stock Market Crash, April 2010 
 
3024 Stefan Buehler and Dennis L. Gärtner, Making Sense of Non-Binding Retail-Price 

Recommendations, April 2010 
 
3025 Leonid V. Azarnert, Immigration, Fertility, and Human Capital: A Model of Economic 

Decline of the West, April 2010 



 
3026 Christian Bayer and Klaus Wälde, Matching and Saving in Continuous Time: Theory 

and 3026-A Matching and Saving in Continuous Time: Proofs, April 2010 
 
3027 Coen N. Teulings and Nick Zubanov, Is Economic Recovery a Myth? Robust 

Estimation of Impulse Responses, April 2010 
 
3028 Clara Graziano and Annalisa Luporini, Optimal Delegation when the Large Shareholder 

has Multiple Tasks, April 2010 
 
3029 Erik Snowberg and Justin Wolfers, Explaining the Favorite-Longshot Bias: Is it Risk-

Love or Misperceptions?, April 2010 
 
3030 Doina Radulescu, The Effects of a Bonus Tax on Manager Compensation and Welfare, 

April 2010 
 
3031 Helmut Lütkepohl, Forecasting Nonlinear Aggregates and Aggregates with Time-

varying Weights, April 2010 
 
3032 Silvia Rocha-Akis and Ronnie Schöb, Welfare Policy in the Presence of Unionised 

Labour and Internationally Mobile Firms, April 2010 
 
3033 Steven Brakman, Robert Inklaar and Charles van Marrewijk, Structural Change in 

OECD Comparative Advantage, April 2010 
 
3034 Dirk Schindler and Guttorm Schjelderup, Multinationals, Minority Ownership and Tax-

Efficient Financing Structures, April 2010 
 
3035 Christian Lessmann and Gunther Markwardt, Decentralization and Foreign Aid 

Effectiveness: Do Aid Modality and Federal Design Matter in Poverty Alleviation?, 
April 2010 

 
3036 Eva Deuchert and Conny Wunsch, Evaluating Nationwide Health Interventions when 

Standard Before-After Doesn’t Work: Malawi’s ITN Distribution Program, April 2010 
 
3037 Eric A. Hanushek and Ludger Woessmann, The Economics of International Differences 

in Educational Achievement, April 2010 
 
3038 Frederick van der Ploeg, Aggressive Oil Extraction and Precautionary Saving: Coping 

with Volatility, April 2010 
 
3039 Ainura Uzagalieva, Evžen Kočenda and Antonio Menezes, Technological Imitation and 

Innovation in New European Union Markets, April 2010 
 
3040 Nicolas Sauter, Jan Walliser and Joachim Winter, Tax Incentives, Bequest Motives, and 

the Demand for Life Insurance: Evidence from two Natural Experiments in Germany, 
April 2010 

 
3041 Matthias Wrede, Multinational Capital Structure and Tax Competition, April 2010 
 
 



 
3042 Burkhard Heer and Alfred Maussner, A Note on the Computation of the Equity 

Premium and the Market Value of Firm Equity, April 2010 
 
3043 Kristiina Huttunen, Jukka Pirttilä and Roope Uusitalo, The Employment Effects of 

Low-Wage Subsidies, May 2010 
 
3044 Matthias Kalkuhl and Ottmar Edenhofer, Prices vs. Quantities and the Intertemporal 

Dynamics of the Climate Rent, May 2010 
 
3045 Bruno S. Frey and Lasse Steiner, Pay as you Go: A New Proposal for Museum Pricing, 

May 2010 
 
3046 Henning Bohn and Charles Stuart, Population under a Cap on Greenhouse Gas 

Emissions, May 2010 
 
3047 Balázs Égert and Rafal Kierzenkowski, Exports and Property Prices in France: Are they 

Connected?, May 2010 
 
3048 Thomas Eichner and Thorsten Upmann, Tax-Competition with Involuntary 

Unemployment, May 2010 
 
3049 Taiji Furusawa, Kazumi Hori and Ian Wooton, A Race beyond the Bottom: The Nature 

of Bidding for a Firm, May 2010 
 
3050 Xavier Vives, Competition and Stability in Banking, May 2010 
 
3051 Thomas Aronsson and Erkki Koskela, Redistributive Income Taxation under 

Outsourcing and Foreign Direct Investment, May 2010 
 
3052 Michael Melvin and Duncan Shand, Active Currency Investing and Performance 

Benchmarks, May 2010 
 
3053 Sören Blomquist and Laurent Simula, Marginal Deadweight Loss when the Income Tax 

is Nonlinear, May 2010 
 
3054 Lukas Menkhoff, Carol L. Osler and Maik Schmeling, Limit-Order Submission 

Strategies under Asymmetric Information, May 2010 
 
3055 M. Hashem Pesaran and Alexander Chudik, Econometric Analysis of High Dimensional 

VARs Featuring a Dominant Unit, May 2010 




