Anderson, Simon P.; Foros, Øystein; Kind, Hans Jarle

Working Paper

Hotelling competition with multi-purchasing: Time Magazine, Newsweek, or both?

CESifo Working Paper, No. 3096

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Anderson, Simon P.; Foros, Øystein; Kind, Hans Jarle (2010) : Hotelling competition with multi-purchasing: Time Magazine, Newsweek, or both?, CESifo Working Paper, No. 3096, Center for Economic Studies and Ifo Institute (CESifo), Munich

This Version is available at:
http://hdl.handle.net/10419/38952

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Hotelling Competition with Multi-Purchasing: Time Magazine, Newsweek, or both?

Simon P. Anderson
Øystein Foros
Hans Jarle Kind

CESifo WORKING PAPER NO. 3096
CATEGORY 11: INDUSTRIAL ORGANISATION
JUNE 2010

An electronic version of the paper may be downloaded
• from the SSRN website: www.SSRN.com
• from the RePEc website: www.RePEc.org
• from the CESifo website: www.CESifo-group.org/wp
Hotelling Competition with Multi-Purchasing:
Time Magazine, Newsweek, or both?

Abstract

Equilibrium prices behave quite differently if consumers single-purchase (buy either Time Magazine or Newsweek) or if some consumers multi-purchase (buy both). Prices are strategic complements under single-purchase, and increase with magazine quality. In a multi-purchase regime prices are strategically independent because firms then act monopolistically by pricing the incremental benefit to marginal consumers. Furthermore, prices can decrease with magazine quality due to overlapping content. Higher preference heterogeneity increases prices and profits in equilibrium with single-purchase, but decreases them with multi-purchase. We determine when each regime holds, and present a detailed reaction function analysis which applies more generally to duopoly pricing.

Keywords: magazine competition, multi-purchase, incremental pricing, content competition.

Simon P. Anderson
University of Virginia
sa9w@virginia.edu

Øystein Foros
Norwegian School of Economics and Business Administration
øystein.foros@nhh.no

Hans Jarle Kind
Norwegian School of Economics and Business Administration
hans.kind@nhh.no

We thank Yiyi Zhou for spirited research assistance.
1 Introduction

Time Magazine, Newsweek, or both? Readers may subscribe to more than one magazine, but they rarely buy more than one copy of the same issue. This practice is similar for an array of different information services. Some people install both Scientific Workplace and Mathematica on their computers, while others buy only one. However, people never (knowingly) buy more than one copy of the same software. While buying several units of the same good does not increase the variety of characteristics available for consumption, buying several different goods may enable consumers to enjoy more different characteristics, which fits with Lancaster’s (1966) characteristics representation of goods (see also the discussion in Gabszewicz and Wauthy, 2003).

The readers’ choices of single-purchase (Time or Newsweek) or multi-purchase (Time and Newsweek) depend on the prices and contents offered. At first glance, one might expect that better news coverage (which could be interpreted as higher quality) at Time and Newsweek makes multi-purchase more likely. We show that the opposite could be true. The reason is that while better news coverage clearly increases the magazines’ attractiveness, it also makes it less imperative for news-hungry readers to buy both magazines. The latter effect tends to reduce the prices that the magazines can charge, possibly generating a hump-shaped relationship between equilibrium prices and news coverage under multi-purchase. We thus show that if the coverage is sufficiently good, it might be a dominant strategy for each magazines to sacrifice some sales and set such high prices that no-one will buy both magazines. Only if the readers have a strong interest in reading the same kind of story in both magazines (to get a "second opinion") will higher news coverage unambiguously increase the likelihood of multi-purchase.

The key property of multi-purchasing is that infra-marginal readers are not indifferent between buying or not, nor between switching brands. The multi-purchase equilibrium is a special type of monopoly regime. Rival’s quality, not the rival’s price, shapes demand, and prices are strategically independent even though they are determined by the quality levels at both magazines.
The starkly different properties of the purchase regimes are underscored by their comparative static properties. If the market is covered but consumers buy a single variant, equilibrium prices and profits are increasing in preference heterogeneity. By contrast, they are decreasing in preference heterogeneity under joint purchase.

These results have implications for management decisions, insofar as a market situation with some multi-purchasing may be very poorly approximated by a traditional model of single purchases. To take into account that some consumers are multi-purchasing is fundamental for pricing strategy decisions in the same way as it is crucial to understand whether goods are substitutes or complements (see Gentzkow, 2007, who analyzes competition between print and online newspapers).

Spatial differentiation à la Hotelling (1929) is a standard tool for analyzing media economics, see e.g. Anderson and Coate (2005), Gabszewicz et al. (2004), Liu et al. (2004), and Peitz and Valletti (2008). The present paper is novel for the way the quality is introduced in the Hotelling framework: we assume that the greater is the difference between a magazine’s profile and the reader’s ideal type, the smaller his utility gain from an improved content quality in the magazine. This seems like a reasonable assumption in the current setup as well as for media and content goods in general. Left-wing and Right-wing presentations of a Presidential scandal have different values to different readers (depending on readers’ political views, for example).

We show that this has the important implication that even if both Left-wing and Right-wing magazines improve their quality levels under single-purchase, they will be able to charge higher prices and make higher operating profits. This is in sharp contrast to standard results in Hotelling models, where prices are independent of whether firms provide high-quality or low-quality goods in a symmetric equilibrium.

\[\text{For a debate concerning the results of Liu et al. (2004), see Chou and Wu (2006) and Liu et al. (2006). For analysis of media market competition in non-Hotelling frameworks, see for instance Godes et al. (2009) and Kind et al. (2009).} \]

\[\text{To our knowledge, the only paper that uses a somewhat similar formulation is Waterman (1989). In an extension in his analysis of the tradeoff between quality and variety in a Salop-framework, he allows quality to interact with transportation costs. He does not focus on the features of this formulation highlighted in the present paper.} \]
with market coverage. This novelty of the present model may also be of interest in more traditional circumstances with a single discrete choice between the goods offered. The quality formulation in the present paper is somewhat reminiscent of the Mussa and Rosen (1978) formulation of vertical differentiation insofar as some consumers have higher willingness to pay for incremental quality: the horizontal taste differences also imply that those with a higher willingness to pay for one good’s quality have a lower willingness to pay for the other’s.

The present paper is also related to de Palma, Leruth, and Regibeau (1999), who analyze multi-purchase in a setting with Cournot competition and network effects (see also Ambrus and Reisinger, 2006), and to Gabszewicz and Wauthy (2003). The latter extends the Mussa and Rosen (1978) framework by allowing for multi-purchasing. Two firms sell vertically differentiated goods, and consumers may buy both variants. As in the present paper, consumers do not buy two units of the same good, and the outcome depends on the incremental utility gained by consumers from buying both products. In contrast to Gabszewicz and Wauthy, we allow for quality to interact with the distance-based utility, and we endogenize investments in quality (content), and look at the incentives to provide content.

The equilibrium properties are also quite different from those in Gabszewicz and Wauthy. While they find no pure strategy equilibrium for some parameter values, we always have a pure strategy price equilibrium. We provide a detailed analysis of demand and reaction functions for our context, and derive more general properties which apply to duopoly differentiated products pricing games. These results hopefully prove useful for other applications, e.g. in spatial models where kinks in demand are quite natural. We therefore give results for generalizations of our model, and then illustrate. For example, we find that local monopoly equilibrium cannot coexist with competitive equilibria, and there can be at most two competitive equilibria.

The rest of the paper is organized as follows. In Section 2 we describe the basic set-up of the model, and in Sections 3 and 4 we analyze competition under single-purchase and multi-purchase, respectively, with exogenous quality levels. Then in Section 5 we offer a conceptual discussion of demand and reaction functions when we
allow for both single-purchase and multi-purchase. The incentives to make quality investments are analyzed in Section 6, while Section 7 concludes and discusses some routes for future research. Some of the proofs are relegated to the Appendix.

2 The model

Consider a model with two magazines, \(i = 0, 1 \), which provide news of interest for the readers (e.g. on foreign affairs or the state of the economy). We normalize the universe of possible news (\(\mathcal{Q} \)) to 1, and denote the news coverage of magazine \(i \) as \(\mathcal{Q}_i \subseteq \mathcal{Q} \). The larger is the set \(\mathcal{Q}_i \), the more attractive is the magazine for readers.\(^4\)

Letting \(q_i \in [0, 1] \) denote the measure of magazine \(i \)'s coverage, the magazines are thus vertically differentiated if \(q_1 \neq q_2 \).

The magazines are located at either end of a “Hotelling line” of length equal to 1. Magazine 0 is at the far left (point 0) and magazine 1 at the far right (point 1). Consumer tastes are uniformly distributed along the line, with the idea being that the magazines are horizontally differentiated in terms of the slant or spin they give to coverage, or indeed the way they present the news or tell the story. A consumer who is located at a distance \(x \) from point 0 receives utility equal to \(R - tx \) from reading magazine 0 if the magazine has uncovered all possible news (\(q_0 = 1 \)). Here \(R \) is interpreted as a reservation price, and \(t \) is the distance disutility parameter from not getting the most preferred type of product - we refer to this below as the “transportation costs” as is common in models with a distance disutility, even though here distance is defined over differences in offered characteristics from ideal ones. More generally, with a magazine price equal to \(p_0 \), consumer \(x \)'s surplus from buying magazine 0 alone is given by

\[
 u_0 = (R - tx) q_0 - p_0. \tag{1}
\]

The surplus from buying magazine 1 alone is similarly given by

\[
 u_1 = [R - t(1 - x)] q_1 - p_1. \tag{2}
\]

\(^4\)In the same vain, using the software examples from the introduction, we may interpret \(\mathcal{Q}_i \) as the space of functionalities offered by program \(i \).
Note that with risk neutral consumers, we might interpret q_i either as a measure of magazine i's news coverage or as the probability that the magazine contains a given main news story (like a Presidential scandal).\footnote{The latter interpretation of q_i works better for subscription than for newsstand sales. The reason for this is that it could be argued that the consumer can tell from the cover or riffling through the magazine whether there is a pertinent story if the decision to buy is made at the newsstand.} The values of q_0 and q_1 are assumed to be common knowledge under both interpretations, and might for instance depend on the number of journalists employed by each magazine.

The above describes preferences if consumers buy one magazine or the other, but we are also interested in the possibility of consuming both magazines. In Section 4 we describe the utility in the case of multi-purchase, where consumers possibly enjoy greater benefit by buying both magazines.

It is worth noting at this juncture that the formulations in (1) and (2) have an interest in their own right for the study of a single discrete choice between magazines. The formulation is novel for the way the "quality" variable is introduced, as it interacts with the distance-based utility.\footnote{A more standard way would set $u_0 = Rq_0 - tx - p_0$ etc: see Ziss (1993) for example.} In particular, the formulation implies that a greater news coverage at magazine 0 (higher q_0) is more valuable for a left-winger than for a right-winger, other things equal. As noted in the Introduction, this is reminiscent of the Mussa-Rosen (1978) formulation of vertical differentiation.

Aggregating the individual choices generates demands, $D_0(.)$ and $D_1(.)$. We assume away marginal production costs of magazines. Let the profit function of magazine i be given by

$$\pi_i = p_iD_i - C(q_i), \quad i = 0, 1,$$

where $C(q_i) \geq 0$ is the cost of investing in quality, with $C'(q_i) > 0$ and $C''(q_i) > 0$. We assume that $C(q_i)$ is sufficiently convex to ensure the existence of a stable, symmetric equilibrium. We shall though for the first part of the analysis consider the sub-games induced for given q_i's, in order to elucidate the differences between the market outcomes at which each consumer buys a single magazine (single-purchase)
or else some consumers buy both magazines (multi-purchase).\footnote{In the recent two-sided markets literature (see the survey by Armstrong (2006), and the overview by Rochet and Tirole (2006)), these cases correspond to “single-homing” and “multi-homing.”}

3 Single-purchase

Assume for now that each consumer buys one and only one of the magazines (single-purchase). We restrict attention to a range of parameter values which guarantee that all consumers are served and that both magazines are operative (market coverage and market-sharing). Below, we show that there is such an equilibrium if and only if:\footnote{For higher t values than those obeying Assumption 1 there is a continuum of constrained monopoly equilibria where the market is fully covered yet each magazine does not wish to cut price and directly compete with its rival. The reader indifferent between the two magazines is also indifferent between buying and not. For still higher t values there is unconstrained local monopoly: recall $u_0 = (R - tx) q_0 - p_0$ so that 0’s monopoly demand is $x = \left(R - \frac{p_0}{q_0} \right) \frac{1}{t}$. Its monopoly price, $R q_0 / 2$, implies that equilibrium $x = \frac{R}{2t}$. Thus for $x < \frac{1}{2}$; equivalently, $R < t$, we have a local monopoly. We do not dwell on these parameter ranges in the subsequent development of the model, though they are analyzed in some detail in Section 5. Note though that demands are piecewise linear, and the kink is the "right" direction, i.e., downward, so that these monopoly segments in demand do not cause any equilibrium existence problems in the price sub-games, whatever parameters (conditional on assuming no joint purchases, which are dealt with below). Demand functions are linear, in 2 segments, shallow in the high-price "monopoly" region, and steeper in the lower price duopoly region. The kink gives rise to a marginal revenue discontinuity which is at the heart of the multiplicity noted above, and discussed at further length in Section 5.}

Assumption 1: $R \geq \frac{3}{2} t$

Solving $u_0 = u_1$ from (1) and (2) we find the location of the consumer who is indifferent between buying magazine 0 and magazine 1. This consumer’s location is given by

$$\hat{x} = \frac{t q_0 + (R - t) (q_0 - q_1) - (p_0 - p_1)}{t (q_0 + q_1)}.$$ \tag{4}

Demand for magazine 0 is thus $D_0 \equiv \hat{x}$, while demand for magazine 1 is $D_1 \equiv 1 - \hat{x}$.

6
For given \(q_0 \) and \(q_1 \), the magazines compete in prices, and setting \(\partial \pi_i / \partial p_i = 0 \) generates the price reaction function for Firm \(i \)

\[
p_i = \frac{p_j + (R - t)(q_i - q_j) + tq_i}{2}, \quad i, j = 0, 1 \text{ and } i \neq j.
\]

Equation (5) makes it clear that prices are strategic complements: \(\partial p_i / \partial p_j > 0 \). The linear reaction function has the standard fifty-cents-on-the-dollar property familiar from Hotelling models. The price-quality interaction is quite novel though, as \(\partial p_i / \partial q_j = -(R - t)/2 > 0 \). The higher are the transportation costs, the less will the reaction function shift down when the rival’s quality improves. This is due to the way quality enters the readers’ utility function. In this regard, note that the traditional way of incorporating quality in Hotelling models is to let \(u_i = Rq_i - t(|x - x_i|) - p_i \) (see e.g. Ziss, 1993). With that specification, \(\partial p_i / \partial q_j = -R/2 \), so that the shift is independent of \(t \).

Solving the price reaction functions (for an interior solution, \(\partial \pi_0 / \partial p_0 = \partial \pi_1 / \partial p_1 = 0 \)) implies that the outcome of the last stage is

\[
p_i^* = \frac{R(q_i - q_j) + t(q_i + 2q_j)}{3}, \quad i, j = 0, 1 \text{ and } i \neq j.
\]

From (6) we find, as expected, that the sub-game equilibrium price satisfies \(dp_i^* / dq_i > 0 \), which is consistent with the property noted above that the own reaction function shifts up more than the rival’s shifts back. Note also that the price charged by magazine \(i \) is increasing in the consumers’ reservation price, \(R \), if \(i \) has an expected quality which is higher than that of its rival, \(j \).

The relationship between \(p_i \) and \(q_j \) is less clear-cut; the “direct effect” of better quality in magazine \(j \) is to reduce \(p_i \) (see (5)). However, since magazine prices are strategic complements, the fact that \(\partial p_j / \partial q_j > 0 \) tends to make \(p_i \) an increasing function of \(q_j \). We thus find an ambiguous relationship between \(p_i \) and \(q_j \):

\[
\frac{dp_i^*}{dq_j} = \frac{2}{3} \left(t - \frac{1}{2}R \right) \leq 0.
\]

If the magazine has sufficiently high market power (i.e., the

\(^9\)Already the symmetric equilibrium and the rationale for A1 can be seen here: under symmetry, \(p = tq \). This is the heart of the result that the duopoly region does cover the market: recall \(u_0 = (R - tx)q_0 - p_0 \) and so at \(x = 1/2 \) we have \((R - t/2)q - tq \) which is therefore positive iff A1 holds.
transportation costs are so high that \(t > \frac{1}{2} R \), but still satisfy \(A1 \), magazine \(i \) will increase its price if the rival’s quality goes up.

Inserting (6) into (3) and (4) we obtain the sub-game equilibrium values:

\[
\begin{align*}
D^*_i &= \frac{R(q_i - q_j) + t(q_i + 2q_j)}{3t(q_i + q_j)} \\
\pi^*_i &= \frac{[R(q_i - q_j) + t(q_i + 2q_j)]^2}{9t(q_i + q_j)} - C_i(q_i), \quad i, j = 0, 1 \text{ and } i \neq j.
\end{align*}
\]

From (6)-(8) it follows that the magazine with the higher quality has the higher demand, price and operating profits. It can further be verified that a higher quality of magazine \(i \) always reduces its rival’s output and profitability.

It is now useful to characterize the equilibrium if the quality levels of the magazines are exogenously given by a common value \(q^S \) (we use superscript \(S \) for single-purchase). In this case the equilibrium common price (see (6)) is \(p^S = q^S t \) and operating profits are \(\pi^S = q^S t/2 \). In summary:

Proposition 1: Single-purchase. In a symmetric equilibrium with \(q_i = q^S \) \((i = 0, 1)\), the magazines’ operating profits are increasing in

a) the heterogeneity of the readers \((d\pi^S/dt > 0)\), and

b) in the quality levels \((d\pi^S/dq^S > 0)\).

The result that equilibrium prices are increasing in \(t \) is standard (though it does not hold under multi-purchase, as we show below).\(^{10} \) The intuition is simply that higher brand preference entails more inelastic demands, more market power, and higher prices. However, the quality result in Proposition 1 is in sharp contrast to standard results in symmetric Hotelling models, where prices and profits are independent of the quality of the goods.\(^{11} \) To see why \(dp^S/dq^S = t > 0 \), note from equations (1) and (2) that \(\frac{\partial}{\partial x} \left(\frac{\partial u_0}{\partial q_0} \right) = \frac{\partial}{\partial (1-x)} \left(\frac{\partial u_1}{\partial q_1} \right) = -t < 0 \). This means that

\(^{10}\)An alternative interpretation of \(t \) is that it measures the degree of product differentiation between the magazines. The larger \(t \), the more differentiation there is, and so the more inelastic is demand. This induces higher equilibrium prices for any given \(q^S \).

\(^{11}\)This is the obverse facet of the result that profits are independent of (common) marginal costs. Basically, competition determines mark-ups independently of common costs: see the discussion in Armstrong (2006) for ramifications in the context of two-sided markets.
the larger is the difference between a given magazine’s profile and the one preferred by a reader, the smaller is his utility gain from a greater news coverage in that magazine. If both magazines invest more in quality, the willingness to pay will thus increase most for the consumers in each magazine’s own turf. An increase in \(q^S \) thereby implies that each magazine can charge higher prices; magazine 0 gains higher market power over consumers to the left of \(x = 1/2 \), while magazine 1 gains higher market power over consumers to the right of \(x = 1/2 \).

As noted above, quality is usually incorporated in Hotelling models by assuming that

\[
\frac{\partial}{\partial x} \frac{\partial u_i}{\partial q_i} = 0.
\]

With this specification, a symmetric increase in the quality would thus not enhance the magazines’ market power over any of their consumers. This is why the equilibrium price is independent of whether firms provide high-quality or low-quality goods in standard symmetric Hotelling models.

This section provides a catalogue of results for the classic case of single-purchase. While some of them are standard, the way quality has been introduced leads to several differences. However, the main usefulness of the results above is to contrast them with what happens for multi-purchase. This we turn to next.

4 Multi-purchase

We shall now open up the possibility that at least some of the consumers buy both magazines. When they do so, they need to determine the value of buying a second one. Bear in mind that they naturally prefer the coverage of the magazine closer to their own position, and so will read that first. How much they gain from reading the other magazine depends on the degree of overlap in news coverage.

The interpretation of overlap differs a little according to the source of the quality of the magazines. If quality refers to the probability of carrying a particular news story, then, assuming that magazines’ draws are independent, we can interpret \((1 - q_0) q_1\) as the probability that the story is covered by magazine 1 but not by magazine 0, while \(q_0 q_1\) is the probability that the story is covered by both magazines. Alternatively, if \(Q_i\) is interpreted as the fraction of the possible universe of
stories carried by magazine i, then we can interpret q_0q_1 as a measure of (expected) news overlap in the two magazines and $(1 - q_0)q_1$ as a measure of non-overlapping news. Under both interpretations we let the value of a second opinion be $1 - \beta$ per overlapped story.12 The incremental benefit from first reading q_0 stories in magazine 0 and then q_1 stories in magazine 1 is thus $(1 - q_0)q_1 + (1 - \beta)q_0q_1 = (1 - \beta q_0)q_1$.

The case $\beta = 1$ corresponds to a zero extra value of reading stories based on the same underlying information in a second magazine. In this case there would clearly be no reason to buy both magazines if $q_0 = q_1 = 1$. However, if $\beta < 1$ the consumer finds it valuable per se to read both the left-wing and right-wing magazine even if the papers have the same news coverage. The case $\beta = 0$ means that all stories in the second outlet are fully valued, regardless of whether they have already been read. Of course, they are still subject to the disutility of not being of the optimal "spin."

We must distinguish between the case where everyone buys both magazines, and the case where only a share of the consumers do so. However, the former is quite trivially straightforward (as will become apparent from the analysis below: it involves pricing to make the most resistant consumer indifferent to adding the magazine, a form of monopoly pricing). We therefore deal with the latter case. Figure 1 illustrates one possible market outcome, where consumers located to the left of point A only read magazine 0, those between points A and B read magazine 0 first and then magazine 1. The consumers located between B and C likewise read magazine 1 first and then magazine 0, while those to the right of C only read magazine 1.

![Figure 1: Possible market outcome with multi-purchase.](image)

12Hence β represents the value "lost" to a magazine from having a story read elsewhere first.
The utility of a consumer who reads magazine 0 first and then 1 equals

\[u_{01} = u_0 + \{ [R - t(1 - x)](1 - \beta q_0) q_1 - p_1 \}. \]

(9)

The first term on the right-hand side of (9) is the expected utility that the consumer gets from buying magazine 0. The second term is the additional utility that consumer obtains from also buying magazine 1.

Analogous to equation (9), we can write the expected utility of reading magazine 1 first and then 0 as

\[u_{10} = u_1 + \{ (R - tx)(1 - \beta q_1) q_0 - p_0 \}. \]

(10)

With some degree of multi-purchase, demand for each magazine is by definition smaller than one \((D_i < 1)\). Note that the consumer who is indifferent between reading magazine 1 first and then 0 and only reading magazine 1, is given by \(u_{10} = u_1\) (location \(C\) in Figure 1). Clearly, for this consumer the price of magazine 1 is immaterial. Solving \(u_{10} = u_1\) we thus find

\[x_C = \frac{1}{t} \left[R - \frac{p_0}{q_0(1 - \beta q_1)} \right], \]

(11)

so that demand for magazine 0 depends on own price and the expected quality of the two magazines, and not on the price charged by the rival. This key property of the multi-purchase regime is not an artefact of the uniform reader distribution in the Hotelling model, but is more fundamental property. It stems from the nature of recognizing the demand as the incremental value, and that infra-marginal consumers are not indifferent between buying and not buying, nor between switching brands.\(^{13}\)

The above makes it clear that the multi-purchase equilibrium is a special type of monopoly regime. Rival quality – but not rival price – shapes demand. This property is what makes the regime particularly interesting – prices are strategically

\(^{13}\)The property would not hold for example if the demand were specified as a "random choice" discrete utility model with i.i.d. idiosyncratic tastes, if choices were defined over all alternatives (including the joint one). However, it would seem more natural to define choices in the incremental manner done above, and then the property would hold still.
independent though they are determined by journalism quality at both papers. The strategic independence here stems directly from profit independence of rival price.\footnote{Profit independence is sufficient but not necessary for strategic independence – consider the case of Cournot competition and exponential demands (and zero cost), where profits are not independent, but quantities are strategically independent.}

Inserting (11) into equation (3) and solving $\partial \pi_0 / \partial p_0 = 0$ we find $p_0 = \frac{Rq_0 (1 - \beta q_0)}{2}$ and $D_0 = \frac{R}{2t}$. For magazine 1 we likewise have $p_1 = \frac{Rq_1 (1 - \beta q_1)}{2}$ and $D_1 = \frac{R}{2t}$. Provided that $\frac{1}{2} < D_i = \frac{R}{2t} < 1$ (or $t < R < 2t$), the candidate equilibrium outcomes are thus given by:

$$
p_i^* = \frac{Rq_i (1 - \beta q_j)}{2}; \quad D_i^* = \frac{R}{2t}; \quad \pi_i^* = \frac{R^2 q_i (1 - \beta q_j)}{4t} - C(q_i), \quad i, j = 0, 1 \text{ and } i \neq j.
$$

The restriction that $t < R < 2t$ ensures that each magazine’s output lies between one half and one; this is a necessary condition for there to be an equilibrium where some consumers (but not all) buy both magazines.\footnote{The outcome that a higher quality induces a higher price holds generally, while the equality of demands is a property of the uniform distribution in the Hotelling model. Suppose that the consumer density were $f(x)$. Then $\pi_0 = p_0 F(x_C)$ and $\frac{dp_0}{dp_0} = F(x_C) - p_0 f(x_C) t q_0 (1 - \beta q_0)$ and the candidate equilibrium price is $p_0 = \frac{F(x_C)}{f(x_C)} t q_0 (1 - \beta q_0)$. As long as $F(.)$ is log-concave, the RHS is decreasing in p_0 and the magazine with the higher quality again has the higher price.}

Under single-purchase, we found that the magazines’ operating profits are strictly increasing in their expected quality levels and in the heterogeneity of the consumers. From (12) we find that the opposite may be true under multi-purchase:

Proposition 2: Multi-purchase. In a symmetric equilibrium with $q_i = q^M$ ($i = 0, 1$), the magazines’ operating profits are

a) decreasing in the heterogeneity of the readers ($d\pi^M / dt < 0$), and

b) hump-shaped functions of the expected quality levels if $\beta > 1/2$ (with $d\pi^M / dq^M >$
0 for \(q^M < \frac{1}{2\beta} \) and \(d\pi^M/dq^M < 0 \) for \(q^M > \frac{1}{2\beta} \).

Under single-purchase, when consumers become more heterogenous, each magazine’s market power over its own consumers increases, resulting in higher prices and higher profits \((d\pi^S/dt > 0) \). Under multi-purchase, on the other hand, greater consumer heterogeneity implies that each magazine will have a smaller market \((dD_i/dt < 0) \) and thus lower profits \((d\pi^M/dt < 0) \). The intuition for this result is the fundamental property outlined above that prices are strategically independent under multi-purchase, which in turn implies that prices are independent of \(t \). The effect of greater consumer heterogeneity is consequently only to reduce the share of the population which is willing to pay for both magazines.

At the outset, the second part of Proposition 2 might seem even more surprising. To see the intuition for this result, note that there are two opposing effects for the magazines of an increase in \(q^M \). The positive effect is that a higher quality level increases the consumers’ willingness to pay for the magazines, as under single-purchase. The negative effect of a higher \(q \) is to make it less imperative for any of the consumers to buy both magazines, thereby tending to increase the competitive pressure between the media firms. This negative effect dominates if \(q^M > \frac{1}{2\beta} \). Only if \(\beta < 1/2 \), so that consumers have a strong value from reading both magazines, will prices and profits be strictly increasing in \(q^M \).

4.1 Exogenous quality levels: single-purchase vs. multi-purchase

In this sub-section we compare the multi-purchase and single-purchase outcomes from the perspectives of the media firms and the consumers, under the constraint that the magazines have the same (exogenous) quality levels. We further determine under which conditions single-purchase and multi-purchase equilibria actually exist. To limit the number of cases to consider, we assume that \(\frac{3t}{2} \leq R \leq 2t \). This ensures that there will be full market coverage under single-purchase (this requires that \(\frac{3t}{2} \leq R, \text{ cf. Assumption 1} \) and that there might exist an equilibrium with multi-purchase (as shown above, a necessary condition for an outcome where some, but
not all, consumers buy both goods is that \(t \leq R \leq 2t \).

In the Appendix we prove the following:

Proposition 3: Assume that \(\frac{3}{2} t \leq R \leq 2t \), and that the expected quality levels of both magazines are equal to \(q \). Compared to single-purchase, multi-purchase yields

a) lower magazine prices (\(p^M < p^S \)) and higher expected consumer surplus (\(CS^M > CS^S \)) and

b) higher magazine profits if and only if \(q < q^* \equiv \frac{R^2 - 2t^2}{\beta R^2} \).

Figure 2, where we have set \(\beta = 1 \), might be helpful to grasp the intuition for Proposition 3.\(^{16}\) The left-hand side panel of the Figure shows that magazine prices are strictly increasing in \(q \) under single-purchase; a higher expected quality unambiguously allows the magazines to charge higher prices. This in turns implies that the magazines’ operating profits are increasing in \(q \) under single-purchase, as shown by the right-hand side panel of the Figure. Under multi-purchase, on the other hand, magazine prices and profits are hump-shaped functions of \(q \), as stated in Proposition 3. Note in particular that \(p^M \to 0 \) and \(\pi^M \to 0 \) as \(q \to 1 \). The intuition for this is that the additional benefit of buying a second magazine vanishes in this case. If magazine prices do not approach zero, readers to the left of \(x = 1/2 \) will thus buy only magazine 0 and those to the right of \(x = 1/2 \) will buy only magazine 1.\(^{17}\) If \(\beta < 1 \), we always have \(p^M > 0 \) and \(\pi^M > 0 \). However, unless \(\beta \) is so small that \(\frac{R^2 - 2t^2}{\beta R^2} > 1 \), profits will necessarily be lower under multi-purchase than under single-purchase for sufficiently high values of \(q \).

Despite the fact that magazine prices are lower under multi-purchase than under single-purchase, the second part of Proposition 3 shows that \(\pi^M > \pi^S \) if \(q \) is sufficiently small (\(q < q^* \)). In the left-hand side panel of Figure 2 this is true if \(q < 0.38 \). The reason is simply that the price differences under the two regimes are then so small that the higher magazine sales under multi-purchase (\(D^M > D^S = 1/2 \)) more than outweighs the lower profit margins. Note that if \(\beta << 1 \), we might have \(q^* > 1 \), in which case multi-purchase always generates the higher operating profits.

\(^{16}\)The other parameter values in Figure 2 are \(t = 1 \) and \(R = 1.8 \).

\(^{17}\)This is straightforward to see from the term in the bracket of equations (9) and (10).
Let us now analyze whether both single-purchase and multi-purchase constitute possible equilibria. For this purpose, let $q^{**} \equiv \left(4\sqrt{R(R-t)} + 2t - 3R\right) / R\beta$. It can be shown that $q^{**} > q^*$ \footnote{To see that $q^{**} > q^*$, define $z \equiv \frac{R}{t}$ (with $\frac{3}{2} \leq z \leq 2$). We then have $q^{**} - q^* = \frac{2}{\beta R^{2}} (A - B)$, where $A \equiv 2z\sqrt{z(z-1)}$ and $B = (2z + 1)(z-1)$. As both A and B are positive, it follows that $q^{**} - q^* > 0$ if $A > B$. This is true, since $A^2 - B^2 = 1 + 3z > 0$.}. We have (see Appendix):

Proposition 4: Assume that $\frac{3}{2}t \leq R \leq 2t$ and $q^{**} < 1$. In this case there exists

- a unique equilibrium with multi-purchase for $q < q^*$,
- multiple equilibria for $q \in (q^*, q^{**})$; one with single-purchase and one with multi-purchase,
- a unique equilibrium with single-purchase for $q > q^{**}$.

Proposition 4 is illustrated in Figure 3, where we have set $\beta = 0.9$ (so that both p^M and π^M are strictly positive for all values of q). The existence of an equilibrium is shown by a solid curve, and non-existence of the candidate by a dotted curve.

Consistent with Proposition 3, the left-hand side panel shows that consumer surplus is always higher with multi-purchase, while the right-hand side panel shows that magazine profits might be higher under single-purchase. However, for $q < q^*$ the media firms also prefer multi-purchase; a magazine which deviates from this equilibrium could charge a higher price and only sell to those consumers who do not buy the rival magazine, but that would excessively reduce sales. The quality
of the magazines is simply too low to allow for a sufficiently high single-purchase price. This is different for \(q > q^{**} \); single-purchase prices are then so high that each magazine prefers to sell only to its most "loyal" consumers, even if the rival should set the relatively low multi-purchase price and thus capture the larger share of the market. The magazines thereby unambiguously end up in the high price-high profit equilibrium. For \(q \in (q^*, q^{**}) \), though, it is unprofitable for either magazine to charge a high single-purchase price unless the rival does the same.

![Figure 3: Single-purchase vs. multi-purchase. Multiple equilibria.](image)

5 Discussion of demand and reaction functions

Finding the equilibria for this model is somewhat elaborate because of the various kinks in demand. What we find is rather particular: there are either two equilibria or one (along with a possibility of a continuum of local monopoly equilibria that preclude any other equilibrium). Gabszewicz and Wauthy (2003) find for a vertical differentiation model with the option of multi-purchase that there is also the additional possibility of no equilibrium. This is not true, and we want to explain why. In doing so, we will establish various properties of the reaction functions which are instrumental in describing the equilibrium. The properties, and the techniques we use, pertain to several other duopoly problems which exhibit kinks in demand, e.g., in spatial models where kinks in demand are quite natural. (e.g., Anderson, 1988, Anderson and Neven, 1991, Peitz and Valletti, 2008). We therefore give a detailed presentation about how to find the reaction functions and the implications for the
nature of equilibria. We work through the details for the current example, but the techniques and short-cuts have a wider applicability.

5.1 Finding the reaction functions

The duopoly problem involves best-reply price choices where different price pairs correspond to different demand segments. Typically, price choices can be bounded below by constant marginal cost (here zero) and some maximum (reservation) price at which no consumer will buy. In the present case, the maximal price is Rq_i, $i = 1, 2$, which is the maximum the most dedicated consumer (the one located at the firm location) will pay. The strategy space is then a rectangle (a compact and convex set).

Next, divide this strategy space into the constituent regimes corresponding to the demand regimes (e.g., local monopoly and single-purchase, etc.) We then find the conditional reaction functions, which are the profit maximizing prices conditional upon being in a particular demand regime. Assuming (as we do henceforth) that each demand regime entails a strictly (-1)-concave demand, these conditional reaction functions are simply the solution to the first order condition, because profits are then quasi-concave over the demand regime.\(^{19}\)

When the conditional reaction function lies within its corresponding regime in the joint price space, the conditional reaction function represents a local maximum in profit. If the conditional reaction function solution lies above the relevant regime in the price space (i.e., at a higher price), then profit is increasing in own price throughout the region. This follows from quasi-concavity of profit. Conversely, if the conditional reaction function lies below its price-space region, profits are falling throughout the regime.

We can now deal simply with the boundaries between regimes in the price space. First, if profits rise towards a boundary from both above and below, then the boundary is a local maximum to profit. This situation corresponds to a downward kink\(^ {19}\)

\(^{19}\)In the present problem, demands are piecewise linear and so conditional profits are quadratic functions.
in demand (i.e., steeper demand for lower prices). Second, if profits rise in both
directions away from the boundary, the boundary is ruled out as being part of the
reaction function since it is a local minimum. This corresponds to an upward kink
in the demand function (and a corresponding jump up from negative to positive
marginal revenue).

The full solution is either a higher or a lower price, and this is the indication that
profits will need to be evaluated to find the solution. Last, if profits rise towards a
boundary and continue rising once it is passed, the solution is not on the boundary.
This can occur for both types of kink noted above. Either marginal revenue each
side of the kink is negative, or it is positive. In the latter case, profits rise as price
falls, while profits rise as price rises in the former case.

The upshot is that the conditional reaction functions indicate whether profits
are increasing, decreasing, or locally maximized within a region. This is illustrated
in Figure 4 below for the case at hand. Note that profits are always increasing from
the boundary towards the interior of the price space, because pricing at marginal
cost yields zero profit, and pricing at the reservation price yields zero profits as long
as almost all consumers do not buy at that price (as is true here and most usually).
Local maxima are then determined by the direction of profit increases. A unique global maximum is indicated by profit increases toward it from all points below and above. Note that this may be a boundary (corresponding to the second type of demand kink noted above), and this will occur if there is no interior conditional reaction function crossed for the rival price considered. There remains the case of multiple local maxima, and these need to be directly compared (although there may still be short-cuts to choosing which is operative, as per the analysis below).

The reaction functions already enable us to give some characterizations of equilibrium. We focus here on the properties of the present game, which are nonetheless shared with several other contexts. First, if the reaction functions are continuous, there is at least one equilibrium (since they must cross). Second, if the only jumps are upward, then there always exists an equilibrium if firms are symmetric (in the present case, if \(q_0 = q_1 \)). This is because the reaction function must then cross the 45-degree line (\(p_0 = p_1 \)). However, notice that without symmetry, and if the reac-

Figure 4: Conditional reaction functions, general case.
tion function slopes down over some of its traverse (as it does here), it may a priori be possible that one reaction function goes through the discontinuity in the other, and so jeopardizes equilibrium existence. Nonetheless, in the current problem, and others of its like, this cannot happen.

The reason is as follows (and this property is shared by other models with similar properties). For high enough (joint) prices, there is a natural monopoly regime. The boundary of this regime (in the joint price space) is downward-sloping, and occurs where prices are such that the market is fully covered and the indifferent consumer at the market boundary between firms is also indifferent between buying and not. Call this the Local Monopoly (LM) boundary. Below that regime, reaction functions slope up, and any discontinuities are upward jumps.

Then there are two cases. Either the reaction functions have already crossed (at least once) before reaching the local monopoly boundary, or they have not. If they have not, then they must cross on the boundary or above it. The reason is that the reaction function follows the boundary down after touching it, and is then independent of the rival’s price (in the interior of the local monopoly regime). There is then either a continuum of local monopoly equilibria on the boundary, or else a single one in the interior of the local monopoly region (with some consumers not buying). This means there must be an equilibrium (involving local monopoly) if there is no “competitive” equilibrium. The converse is also true: if there is a competitive equilibrium then there is no local monopoly equilibrium. To see this, suppose then that the reaction functions have already crossed. When they reach the boundary, they move down it, and then strike out independently. This means that they cannot cross again.

There is a further property of note in the present problem (also shared with other problems). First, if the reaction functions have positive slope below one in the competitive regions, and no jumps, there is at most one competitive equilibrium, and, by the results above, there is only one equilibrium. Second, if there is a single jump up, and still the reaction functions have positive slope below one in the competitive regions, there are at most two equilibria in the competitive regions.\footnote{With k such jumps, there can be at most $k + 1$ competitive equilibria.}
By the results above, there is no other equilibrium.

In summary, under the conditions given, there is always at least one equilibrium. If there is an equilibrium with each firm a strict local monopoly, then there is no other equilibrium. There are at most two competitive equilibrium, and if there is such, there can be no local monopoly equilibrium. Finally, there can be a continuum of “touching” local monopoly equilibria on the local monopoly boundary, in which case there is no other equilibrium.

5.2 Application to the specific example

We now analyze the firms’ demand and reaction functions in more detail. There are at most 3 interior segments to the individual magazines’ demand functions.

There are two “monopoly” segments to demand. For high prices (of both firms), each magazine is a local monopoly. Then inverse demand for Magazine 0 is given by setting the single magazine utility (1) to zero as

\[p_0 = q_0 (R - t\hat{x}), \]

where \(\hat{x} \) is here and below the number of copies of Magazine 0 sold.

The other “monopoly” region is for low prices, when some readers buy both magazines. They buy 0 as long as its incremental value is positive; from (11), 0’s inverse demand is

\[p_0 = q_0 (1 - \beta q_1) (R - t\hat{x}). \]

Comparing to (13), (14) is lower, with flatter slope. Both demands emanate from the same horizontal intercept: when \(p_0 = 0, \hat{x} = R/t \). We will suppose for the discussion below that this exceeds 1 (i.e., \(R \geq t \)), which is the case throughout the paper. This implies that demand will be capped at 1 (everyone buys) at a price above zero.

The last segment is the competitive segment imposed by the single-purchase regime. From (4),

\[p_0 = tq_1 + R(q_0 - q_1) + p_1 - t(q_0 + q_1)\hat{x}, \]

21
which is steeper than both of the other monopoly segments above. This segment moves out parallel as rival price \(p_1 \) rises, while the other segments stay put.

Now superimpose the 3 segments on the same diagram along with the vertical segment at 1: see Figure 4. Where they intersect is where regimes shift. The critical values are calculated below, and are given on the Figure: the demand function is shown in red dots. The inverse demand function is thus given by the flattest segment, (13), until this hits (15) at a price

\[
p_{0}^{LS} = \left(2R - t - \frac{p_1}{q_1} \right) q_0
\]

(16)

It then follows the steepest segment, (15), until it hits the flatter segment, (14), at

\[
p_{0}^{SM} = \left(2R - t - \frac{p_1}{q_1} \right) q_0 \frac{1 - \beta q_1}{\beta q_0 + 1},
\]

(17)

which it then follows till it reaches the market constraint (unit demand). Of course, depending on the value of \(p_1 \), the single-purchase segment may dominate one or both of the others over the relevant range. The two kinks in the demand, one up and one down, generate two different types of behavior in the reaction function.

The reaction function diagram is usefully broken up into 3 regions, corresponding to the 3 segments above. From (13) and the analogous condition for Magazine 1, Local Monopoly for both transpires if 0’s monopoly demand, \(\left(R - \frac{p_0}{q_0} \right) \frac{1}{t} \) plus 1’s demand, \(\left(R - \frac{p_1}{q_1} \right) \frac{1}{t} \), sum to no more than 1. This means \(\left(2R - \frac{p_0}{q_0} - \frac{p_1}{q_1} \right) \leq t \).

When the inequality is weak, the market is not fully covered. On the boundary of this regime, the locus \(\left(2R - \frac{p_0}{q_0} - \frac{p_1}{q_1} \right) = t \) (the Local Monopoly boundary), demands sum to 1 but there is a consumer with zero surplus. This is the region in the top right of Figure 5.

At the other extreme, there is joint purchase by some customers if the two magazines’ demands sum to more than 1. (If each is 1, there is joint purchase by all readers.) From (14), Magazine 0’s demand is \(\left(R - \frac{p_0}{q_0(1-\beta q_1)} \right) \frac{1}{t} \), and similarly 1’s demand is \(\left(R - \frac{p_1}{q_1(1-\beta q_0)} \right) \frac{1}{t} \), so the condition is \(\left(2R - \frac{p_0}{q_0(1-\beta q_1)} - \frac{p_1}{q_1(1-\beta q_0)} \right) > t \), which is the region in the bottom left around the origin in Figure 5. In between these regions lies the single-purchase region. Its boundaries correspond to the kinks in the demand curve.
We know from the earlier text what the conditional reaction functions must look like, conditional on being in a particular region. That is, we can find the reaction function corresponding to each demand segment, as if that linear demand constituted the actual demand, and intersect it with the region of applicability. As noted in the preceding sub-section, that is not sufficient to find the reaction function, since magazines may deviate to another conditional reaction function, or indeed to the higher boundary. This can only happen if another conditional reaction function (or boundary) lies vertically above or below.

The conditional reaction functions and the derivation of the reaction function are shown in Figure 5. Recall that a deviation from a region to its own boundary is not profitable since such point was already viable (and revealed not preferred) on the region’s demand segment. Second, the lower boundary cannot constitute a most profitable deviation since the demand kink there is upward, corresponding to an upward jump in marginal revenue.

Figure 5: Conditional reaction functions.
The conditional reaction function for Magazine 0 in the joint purchase region is flat right across the region. The next region out is single-purchase, which comprises a stripe on top of the joint purchase region; the reaction function is upward sloping (slope 1/2) across this region. The final conditional reaction function is the flat one in the Local Monopoly region.

Any price \(p_1 \) left of the point \(\alpha \) in Figure 5 entails a unique local maximum, which is therefore a global maximum, on the lowest conditional reaction function. For any price \(p_1 \) above the point \(\beta \), there is again a unique local maximum, which is therefore global. It is on the middle conditional reaction function (the single-purchase one) until this conditional reaction function reaches the Local Monopoly boundary. The local maximum (hence the global maximum and the reaction function) then follow the Local Monopoly boundary down until it reaches the highest of the conditional reaction functions, the local monopoly one, which is then followed to the highest possible \(p_1 \).

Between the points \(\alpha \) and \(\beta \) there are two conditional reaction functions operative, and so two local maxima. It is straightforward to argue that there is a jump up in the reaction function from the lower to the middle conditional reaction function at some point between \(\alpha \) and \(\beta \). Note that at point \(\alpha \) the global maximum is on the lower conditional reaction function: the higher conditional reaction function, having just begun, represents an inflection point at \(\alpha \). Likewise, at point \(\beta \) the global maximum is on the higher conditional reaction function because the lower conditional reaction function represents an inflection point. By profit continuity along the conditional reaction functions, there is a switch between conditional reaction functions where they have equal profits. Notice that profit on the lower conditional reaction function is constant as a function of \(p_1 \). However, along the higher conditional reaction function, profit is increasing with \(p_1 \). Therefore there is a unique rival price, \(\hat{p}_1 \), where profits are equal, as shown in Figure 5, and the reaction function follows the single-purchase conditional reaction function beyond that.

We summarize this in Figure 6, where we illustrate the three types of competitive equilibria. In the first panel there are two equilibria (one single-purchase and one multi-purchase). In the second panel there is a unique multi-purchase equilibrium,
while in the third panel there is a unique single-purchase equilibrium.

Figure 6: Competitive equilibrium types.

6 Investment incentives

In this final section we endogenize investments. We first derive the general first-order conditions for optimal investments under single-purchase and then under multi-purchase.

6.1 Investment incentives under single-purchase

The first-order condition for optimal investments in quality for magazine \(i \) under single-purchase is found by differentiating equation (8) with respect to \(q_i \). This yields

\[
\frac{\partial \pi^*_i}{\partial q_i} = p_i^* \frac{\partial D^*_i}{\partial q_i} + D^*_i \frac{\partial p_i^*}{\partial q_i} - C''(q_i) = 0, \quad i = 0, 1, \quad (18)
\]
where \(\frac{\partial D^*_i}{\partial q_i} = \frac{(2R-t)q_i}{3(q_0+q_1)^2} > 0 \) and \(\frac{\partial q^*_i}{\partial q_i} = \frac{R+t}{3} > 0 \). By investing more in investigative journalism, the magazine thus expects to be able to increase its equilibrium output and to charge a higher price. These positive market responses are clearly increasing in the consumers’ reservation price \(R \) (which puts an upper limit on the price that the magazines can charge). We further find the comparative static result:

Proposition 5: Single-purchase. In a symmetric equilibrium with \(q_i = q^S \) \((i = 0, 1)\), the media firms invest more in journalism the more heterogenous are the magazine readers \(dq^S/dt > 0 \).

Proof:

Setting \(q_0 = q_1 = q^S \) and inserting for (6) and (7) into (18) we find the first order condition when evaluated at a symmetric solution is:

\[
\frac{4R + t}{12} = C'(q^S),
\]

and hence \(dq^S/dt = \frac{1}{12C''(q^S)} > 0 \). Q.E.D..

The reason why \(dq^S/dt > 0 \), is simply that the more heterogenous is the population of magazine readers, the higher is each magazine’s market power on its own turf. An increase in \(t \) thus allows the magazines to set higher prices, making it more profitable to invest in journalism in order to increase output. Of course, in equilibrium the magazines still share the market equally, so that they actually gain no more output. But the higher \(q^S \) induced from a higher \(t \) is not a zero-sum game, since the equilibrium price, \(tq^S \), is increasing in the common quality level.

6.2 Investment incentives under multi-purchase

To find optimal investments under multi-purchase, we use (12) to solve \(\partial \pi_i / \partial q_i = 0 \). By subsequently imposing symmetry, and setting \(q_i = q^M \) for \(i = 1, 2 \), this yields the first order condition:

\[
R^2 \frac{1 - \beta q^M}{4t} = C'(q)
\]

From the comparative static properties of this expression, we can state:
Proposition 6: Multi-purchase ($R < 2t$). In a symmetric equilibrium with $q_i = q^M$, the magazines’ investments in quality are smaller

a) the more heterogenous are the magazine consumers ($dq^M/dt < 0$) and

b) the weaker are the consumers’ preferences for being informed by both magazines ($dq^M/d\beta < 0$).

Proof:

$$\frac{dq^M}{dt} = - \frac{(1 - \beta q^M) R^2}{R^2 \beta t + 4t^2 C'(q^M)} < 0 \quad \text{and} \quad \frac{dq^M}{d\beta} = - \frac{q^M R^2}{R^2 \beta t + 4t C'(q^M)} < 0. \quad Q.E.D.$$

Note that the relationship between the heterogeneity of the consumers and the investment incentives is the opposite in this case compared to single-purchase. The reason why $dq^M/dt < 0$, is that the larger is t, the smaller is the size of the market for each magazine (recall that $D_i = R/2t$). The gain from investing more in quality to increase the magazine price is therefore strictly decreasing in t under multi-purchase.

7 Conclusions

In this paper we analyze a Hotelling model where the consumers are not restricted to buy only one variety. We show that this fundamentally changes firms’ pricing strategies. An environment where some consumers buy both variants available in the market while others buy only one seems to be a reasonable description for a wide range of products. In particular this is the case for information goods; e.g., magazines and software programs. Game platforms are another example; some people buy only Playstation3 or X-Box, while others buy both. Likewise, some people prefer to have both an iPhone and a conventional mobile handset (Nokia for instance), while most people still just buy one type.

We have assumed that the consumers’ willingness to pay for quality improvements of the goods we consider declines with the transportation cost (disutility from the horizontal product type). With a higher quality Playstation3, the willingness to pay for the good increases more for Playstation-lovers than for X-Box-lovers. This seems reasonable for most examples mentioned above.
Under single-purchase, prices and operating profits are strictly increasing in quality levels. Under multi-purchase, in contrast, prices and profits can be hump-shaped functions of the quality levels. If the quality levels of both goods are sufficiently high, the additional benefit of buying the second variant might vanish. Other things equal, competition will then press prices down towards marginal costs. However, in this case it is a dominant strategy for the firms to set such high prices that no-one will buy more than one of the varieties.

One topic for further research is to analyze multi-purchase in a two-sided market structure. Many information goods, such as online newspapers, are financed by advertising. Since these goods are offered for free in order to attract more customers (and thus increase advertising revenue), the degree of multi-purchasing (termed “multi-homing” in this context) is by its very nature high. It should also be noted that a scoop published by an online newspaper typically becomes available from rival outlets within minutes. As a consequence, the willingness to pay for a second online newspaper will presumably be small. This may help explain the observation that online newspapers rarely charge readers.

Finally, we have not addressed here the possible endogenous choice of magazine locations, and instead we have situated the magazines at the ends of the Hotelling line. This question is a topic for our further research: it remains to be seen whether firms will avoid the lower prices associated to multiple purchases by locating apart, or whether it is possible that they will capitalize on the non-overlapping parts of their qualities and serve the market from its mid-point (i.e., minimum differentiation).

8 Appendix

Proof of Proposition 3:

Inserting $q_i = q_j = q$ into (6) and (8) we find $p^S = qt$ and $\pi^S = qt/2 - C(q)$, while (12) yields $p^M = Rq(1 - \beta q)/2$ and $\pi^M = Rq(1 - \beta q)/4t - C(q)$. This implies that

$$p^S - p^M = \frac{2t - R(1 - q\beta)}{2}q > 0$$
for all relevant values of β and q. We further have

$$\pi^S - \pi^M = q \frac{2t^2 - R^2 (1 - q\beta)}{4t} > 0$$

for $q > q^* = \frac{R^2 - 2t^2}{\beta R^2}$.

The consumers who buy only one magazine are clearly better off under multi-purchase, since $p^S > p^M$. To show that the same is true for those who read both magazines, it suffices to show that the utility of the consumer located at $x = 1/2$ is higher if he buys both magazines under multi-purchase ($u^M_{ij}(x = 1/2)$) than if he buys only one magazine under single-purchase ($u^S_i(x = 1/2)$). This is true, since

$$u^M_{ij}(x = 1/2) - u^S_i(x = 1/2) = \frac{qt(1 + q\beta)}{2} > 0.$$

Q.E.D.

Proof of Proposition 4:

If both magazines price according to single-purchase, we have $\pi^S = qt/2$. Suppose that magazine i deviates (superscript D), and sets the price that maximizes profits if he also sells to some of the consumers who buy the rival magazine. This optimal price is independent of the price charged by the rival - cf. the discussion leading to equation (11)) - such that $p^D_i = \frac{Rq(1 - \beta q)}{2}$ and $\pi^D_i = \frac{R^2 q(1 - \beta q)}{4t} - C(q)$. Since $\pi^D_i = \pi^M$, it follows that magazine i deviates from single-purchase if and only if $\pi^M > \pi^S$, in which case also the rival will do the same. This proves Proposition 5a).

To prove Propositions 5b) and 5c), suppose that magazine i believes that the rival sets the multi-purchase price; $p_j = Rq(1 - \beta q)/2$. Will it be optimal for magazine i to charge a higher price, and accept that he will not sell to any of the readers who buys magazine j? The location of the reader who is indifferent between the two magazines is then given by $u_0 = u_1$. Inserting for $p_j = Rq(1 - \beta q)/2$ this yields

$$D_i = \frac{2(qt - p_i) + qR(1 - q\beta)}{4qt}.$$

Solving $\partial\pi_i/\partial p_i = 0$ we find

$$p_i = \frac{R(1 - q\beta) + 2t}{4}$$

and

$$\pi_i = q \frac{(2t + R(1 - q\beta))^2}{32t} - C(q).$$

Since

$$\pi_i > \pi^M$$

for $q > q^{**} = \frac{4\sqrt{R(R - t) + 2t - 3R}}{R\beta}$,
it is thus optimal for firm i to deviate from multi-purchase and sell only to those who do not buy the rival magazine if and only if $q > q^{**}$. If $q > q^{**}$ it follows that both the magazines will have incentives to set single-purchase prices. However, for this to be an equilibrium, it must also be true that the readers will actually not buy both papers at these prices. To check out that this holds, we insert for $p_i = p_j = p^S$ into equations (1) and (9) for $x = 1/2$ to find:

\[
\begin{align*}
 u_i^{p=p^S} &= rac{2R - 3t}{2} q \\
 u_{ij}^{p=p^S} &= \frac{2(2R - 3t) - q\beta(2R - t)}{2} q.
\end{align*}
\]

If $u_i^{p=p^S} > u_{ij}^{p=p^S}$ the reader located at $x = 1/2$ will only buy one of the magazines at $p = p^S$. This requires that $q > q^{***} \equiv \frac{2R - 3t}{\beta(2R - t)}$ (such that the single-purchase prices are sufficiently high). Calculating the difference between q^{**} and q^{***} we obtain

\[
q^{**} - q^{***} = \frac{2\sqrt{R(R-t)}(2R-t) - (R-t)(4R-t)}{R\beta(2R-t)}. \tag{21}
\]

The denominator in (21) is always positive. It can further be shown that the numerator is positive if $R^2t(R-t)(R(8R-5t)+t^2) > 0$, which is always the case for $t < R < 2t$. The readers will consequently not buy both magazines if $p = p^S$ and $q > q^{**}$. Q.E.D.

9 References

Economic Theory, 18, 301-317.

3033 Steven Brakman, Robert Inklaar and Charles van Marrewijk, Structural Change in OECD Comparative Advantage, April 2010

3034 Dirk Schindler and Gutorm Schjelderup, Multinationals, Minority Ownership and Tax-Efficient Financing Structures, April 2010

3035 Christian Lessmann and Gunther Markwardt, Decentralization and Foreign Aid Effectiveness: Do Aid Modality and Federal Design Matter in Poverty Alleviation?, April 2010

3036 Eva Deuchert and Conny Wunsch, Evaluating Nationwide Health Interventions when Standard Before-After Doesn’t Work: Malawi’s ITN Distribution Program, April 2010

3037 Eric A. Hanushek and Ludger Woessmann, The Economics of International Differences in Educational Achievement, April 2010

3038 Frederick van der Ploeg, Aggressive Oil Extraction and Precautionary Saving: Coping with Volatility, April 2010

3039 Ainura Uzagalieva, Evžen Kočenda and Antonio Menezes, Technological Imitation and Innovation in New European Union Markets, April 2010

3040 Nicolas Sauter, Jan Walliser and Joachim Winter, Tax Incentives, Bequest Motives, and the Demand for Life Insurance: Evidence from two Natural Experiments in Germany, April 2010

3041 Matthias Wrede, Multinational Capital Structure and Tax Competition, April 2010

3042 Burkhard Heer and Alfred Maussner, A Note on the Computation of the Equity Premium and the Market Value of Firm Equity, April 2010

3043 Kristiina Huttunen, Jukka Pirttilä and Roope Uusitalo, The Employment Effects of Low-Wage Subsidies, May 2010

3044 Matthias Kalkuhl and Ottmar Edenhofer, Prices vs. Quantities and the Intertemporal Dynamics of the Climate Rent, May 2010

3045 Bruno S. Frey and Lasse Steiner, Pay as you Go: A New Proposal for Museum Pricing, May 2010

3046 Henning Bohn and Charles Stuart, Population under a Cap on Greenhouse Gas Emissions, May 2010

3047 Balázs Égert and Rafal Kierzenkowski, Exports and Property Prices in France: Are they Connected?, May 2010
3048 Thomas Eichner and Thorsten Upmann, Tax-Competition with Involuntary Unemployment, May 2010

3049 Taiji Furusawa, Kazumi Hori and Ian Wooton, A Race beyond the Bottom: The Nature of Bidding for a Firm, May 2010

3050 Xavier Vives, Competition and Stability in Banking, May 2010

3051 Thomas Aronsson and Erkki Koskela, Redistributive Income Taxation under Outsourcing and Foreign Direct Investment, May 2010

3052 Michael Melvin and Duncan Shand, Active Currency Investing and Performance Benchmarks, May 2010

3053 Sören Blomquist and Laurent Simula, Marginal Deadweight Loss when the Income Tax is Nonlinear, May 2010

3054 Lukas Menkhoff, Carol L. Osler and Maik Schmeling, Limit-Order Submission Strategies under Asymmetric Information, May 2010

3055 M. Hashem Pesaran and Alexander Chudik, Econometric Analysis of High Dimensional VARs Featuring a Dominant Unit, May 2010

3056 Rabah Arezki and Frederick van der Ploeg, Do Natural Resources Depress Income Per Capita?, May 2010

3057 Joseph Plasman and Ruslan Lukach, The Patterns of Inter-firm and Inter-industry Knowledge Flows in the Netherlands, May 2010

3058 Jenny E. Ligthart and Sebastian E. V. Werner, Has the Euro Affected the Choice of Invoicing Currency?, May 2010

3060 Richard Cornes, Roger Hartley and Yuji Tamura, A New Approach to Solving Production-Appropriation Games with Many Heterogeneous Players, May 2010

3061 Ronald MacDonald and Flávio Vieira, A Panel Data Investigation of Real Exchange Rate Misalignment and Growth, May 2010

3062 Thomas Eichner and Rüdiger Pethig, Efficient Management of Insecure Fossil Fuel Imports through Taxing(!) Domestic Green Energy?, May 2010

3063 Vít Bubák, Evžen Kočenda and Filip Žikeš, Volatility Transmission in Emerging European Foreign Exchange Markets, May 2010

3064 Leonid V. Azarnert, Après nous le Déluge: Fertility and the Intensity of Struggle against Immigration, May 2010
William E. Becker, William H. Greene and John J. Siegfried, Do Undergraduate Majors or Ph.D. Students Affect Faculty Size?, May 2010

Johannes Becker, Strategic Trade Policy through the Tax System, May 2010

Omer Biran and Françoise Forges, Core-stable Rings in Auctions with Independent Private Values, May 2010

Torben M. Andersen, Why do Scandinavians Work?, May 2010

Simon Gächter, Benedikt Herrmann and Christian Thöni, Culture and Cooperation, June 2010

Mehmet Bac and Eren Inci, The Old-Boy Network and the Quality of Entrepreneurs, June 2010

Krisztina Molnár and Sergio Santoro, Optimal Monetary Policy when Agents are Learning, June 2010

Marcel Boyer and Donatella Porrini, Optimal Liability Sharing and Court Errors: An Exploratory Analysis, June 2010

Guglielmo Maria Caporale, Roman Matousek and Chris Stewart, EU Banks Rating Assignments: Is there Heterogeneity between New and Old Member Countries? June 2010

Assaf Razin and Efraim Sadka, Fiscal and Migration Competition, June 2010

Shafik Hebous, Martin Ruf and Alfons Weichenrieder, The Effects of Taxation on the Location Decision of Multinational Firms: M&A vs. Greenfield Investments, June 2010

Alessandro Cigno, How to Deal with Covert Child Labour, and Give Children an Effective Education, in a Poor Developing Country: An Optimal Taxation Problem with Moral Hazard, June 2010

Bruno S. Frey and Lasse Steiner, World Heritage List: Does it Make Sense?, June 2010

Henning Bohn, The Economic Consequences of Rising U.S. Government Debt: Privileges at Risk, June 2010

Rebeca Jiménez-Rodriguez, Amalia Morales-Zumaquero and Balázs Égert, The VARying Effect of Foreign Shocks in Central and Eastern Europe, June 2010

Stephane Dees, M. Hashem Pesaran, L. Vanessa Smith and Ron P. Smith, Supply, Demand and Monetary Policy Shocks in a Multi-Country New Keynesian Model, June 2010
3082 Sara Amoroso, Peter Kort, Bertrand Melenberg, Joseph Plasman and Mark Vancauteren, Firm Level Productivity under Imperfect Competition in Output and Labor Markets, June 2010

3083 Thomas Eichner and Rüdiger Pethig, International Carbon Emissions Trading and Strategic Incentives to Subsidize Green Energy, June 2010

3084 Henri Fraisse, Labour Disputes and the Game of Legal Representation, June 2010

3085 Andrzej Baniak and Peter Grajzl, Interjurisdictional Linkages and the Scope for Interventionist Legal Harmonization, June 2010

3086 Oliver Falck and Ludger Woessmann, School Competition and Students’ Entrepreneurial Intentions: International Evidence Using Historical Catholic Roots of Private Schooling, June 2010

3087 Bernd Hayo and Stefan Voigt, Determinants of Constitutional Change: Why do Countries Change their Form of Government?, June 2010

3088 Momi Dahan and Michel Strawczynski, Fiscal Rules and Composition Bias in OECD Countries, June 2010

3089 Marcel Fratzscher and Julien Reynaud, IMF Surveillance and Financial Markets – A Political Economy Analysis, June 2010

3090 Michel Beine, Elisabetta Lodigiani and Robert Vermeulen, Remittances and Financial Openness, June 2010

3091 Sebastian Kube and Christian Traxler, The Interaction of Legal and Social Norm Enforcement, June 2010

3092 Volker Grossmann, Thomas M. Steger and Timo Trimborn, Quantifying Optimal Growth Policy, June 2010

3094 Helmut Cremer, Firouz Gahvari and Pierre Pestieau, Accidental Bequests: A Curse for the Rich and a Boon for the Poor, June 2010

3095 Frank Lichtenberg, The Contribution of Pharmaceutical Innovation to Longevity Growth in Germany and France, June 2010

3096 Simon P. Anderson, Øystein Foros and Hans Jarle Kind, Hotelling Competition with Multi-Purchasing: Time Magazine, Newsweek, or both?, June 2010