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Job Assignment with Multivariate Skills ∗

Stefanie Brilon

May 2010

Abstract

This paper analyzes the job assignment problem faced by a firm
when workers’ skills are distributed along several dimensions and jobs
require different skills to varying extent. I derive optimal assignment
rules with and without slot constraints, and show that under certain
circumstances workers may get promoted although in their new job
they are expected to be less productive than in their old job. This can
be interpreted as a version of the Peter Principle which states that
workers get promoted up to their level of incompetence.

Keywords: job assignment, worker selection, internal hiring, Peter Principle,
slot constraints, multi-dimensional skills.

JEL Classification: J0, J62, M12, M51.

1 Introduction

Under which circumstances can performance in one job act as an indicator
for performance in another job? Why would an employer want an employee
to work first in job 1 before letting him do job 2? Two explanations seem
plausible: (i) worker selection: by observing a worker’s performance in job
1, the employer learns more about the worker’s ability; and (ii) training:
Working in job 1 provides the worker with training and skills that are useful
in job 2.

∗I thank Martin Hellwig for many helpful discussions, as well as Felix Bierbrauer,
Christoph Engel, Guido Friebel, Alia Gizatulina, Baptiste Massenot, Tobias Salz, Konrad
Stahl, and Philipp Weinschenk for their comments and suggestions.
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In the following, I concentrate on the first option. To do so, I abstract
from any considerations concerning wage costs or workers’ incentives to ex-
ert effort. Instead, I focus on the employer’s task assignment problem when
workers vary in their skill levels and different tasks require different combina-
tions of skills. Workers in the model are characterized by a skill combination
(x, z) where x and z are two different skills that are independently distributed
across the worker population. However, only a worker’s overall performance
in a given task is observable, not his exact skill profile.The employer there-
fore faces the problem of how to allocate workers to tasks that put different
weights on both skills.

The first part of the paper analyzes the task assignment of current and new
workers if the employer faces no constraints concerning the number of workers
he can assign to each task. I derive assignment rules and show that there may
be a tradeoff between maximizing short-term and long-term output when new
workers are hired for two periods: in the short run, output is maximized by
assigning new workers to the task where the expected output of an unscreened
worker is maximal. However, if this task plays a much more important
role in the overall production of the firm, the employer may prefer first to
hire workers for the other task, which is thus used as a screening stage for
maximizing output in the long run. That is, the employer will prefer to
forego some first-period output in order to make more informed choices in
the long run.

The second part of the paper abandons the assumption of unconstrained
assignment possibilities. At least in the short run, firms often need a fixed
number of workers in each task, i.e., there is a given number of jobs in
each activity. Given such slot constraints, the second part of the paper
determines under what circumstances workers are reallocated between jobs.
It thus describes situations in which firms prefer internal over external hiring
of workers.

Furthermore, the analysis provides theoretical evidence for a version of the
Peter Principle, after Peter and Hull (1969), which states that workers are
promoted up to their level of incompetence. In the present model, something
similar may arise over a certain range of output realizations: workers produc-
ing output in this range will get reallocated although, at least in expected
terms, they will be less productive at their new job. Nevertheless, the real-
location of these workers is efficient: when the employer has to fill an open
position, he prefers to reallocate a mediocre worker on whom he has at least
some information, rather than hiring an unknown worker.

The paper is structured as follows: the following section summarizes the re-
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lated literature. Section 3 describes the optimal task assignment of workers
when there are two tasks that require two skills, and there are no slot con-
straints. This latter assumption is relaxed in Section 4, which analyzes under
which circumstances workers are reallocated between jobs if there is a fixed
number of workers needed in each job. Additionally, Section 5 generalizes
the model to J jobs and I skills, and Section 6 discusses assignment patterns
such as job rotation. Section 7 concludes.

2 Related Literature

Although there is a large literature on job assignment, as nicely summarized
in Sattinger (1993) and Valsecchi (2000), most papers on the topic assume
that workers’ abilities vary along a single dimension (“general ability”) but
do not take into account that workers may possess many skills that matter
for their performance. Others note that workers may have a comparative
advantage in one task, but then often reduce the analysis to a problem with
only two types. Only recently, the concept of task-specific skills has been
introduced by Gibbons and Waldman (2004, 2006). Building on this concept,
Gathmann and Schonberg (2010) analyze empirically to what extent skills are
transferable across jobs, the underlying idea being that different occupations
combine tasks and thus task-specific skills in different ways.

Like Gathmann and Schonberg (2010), the present paper uses the idea that
workers possess many skills and that their skill profile matters for their per-
formance in different tasks. It then derives conditions under which employers
prefer to recruit workers internally.

There is a lot of empirical evidence that firms indeed tend to hire internally,
as for instance shown in DeVaro and Morita (2009), in Agrawal, Knoeber, and
Tsoulouhas (2006), and in Lauterbach, Vu, and Weisberg (1999). The theo-
retical literature on this topic has proposed several explanations for this phe-
nomenon. For instance, Chan (1996) stresses the incentives created through
promotions as a reason for limiting external hiring which would decrease the
chances of promotion of current employees.1 Another explanation is given
by Greenwald (1986), who proposes a model where employers prefer internal
hiring because they know the ability of workers they have employed for one

1Waldman (2003), in a similar setup, points out that the firm may face a time in-
consistency problem: ex ante, the incentive aspect is more important, but at the date
of promotion, i.e., when effort has already been spent, the assignment aspect becomes
more important. That may cause a time inconsistency problem which can be resolved by
establishing an internal labor market.
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period. Finally, Demougin and Siow (1994) show that, with positive hiring
costs, firms may prefer to train and screen workers themselves. By contrast,
no such costs are needed in the present model to make internal recruiting
attractive: it is enough that the employer has slightly better information
about current employees compared to new ones.2

Finally, this paper is linked to other models on the Peter Principle such as
Fairburn and Malcomson (2001), Faria (2000), and Lazear (2004), which is
closest to the present paper. Lazear (2004) explains the Peter Principle as
the outcome of a statistical process that displays regression to the mean.
By contrast, this paper shows that workers may get reallocated in the first
place, although they are expected to be less competent after reallocation.
Rather than being a statistical matter, the Peter Principle hence arises as a
consequence of incomplete information about job candidates.

3 Optimal Task Assignment

Suppose there are two kinds of activities or tasks in a firm. A worker engaged
in either of these two activities produces an output yj, j = 1, 2, according to
the following production functions

y1 = α · x + (1 − α) · z

y2 = β · x + (1 − β) · z ,

where x and z are two different skills needed in both activities, and α and β
are the weights assigned to skill x, with α, β ∈ [0, 1].

Skills x and z can, for instance, be thought of as technical and analytical
skills respectively. Let us assume that skill x is more important in activity 1
than in activity 2, whereas it is the other way round for skill z. That is, the
following assumption holds:

Assumption 1 α > β.

The cross-section distribution of the two skills is assumed to be normal with
x ∼ N(µx, σx) and z ∼ N(µz, σz), and zero correlation between the two
skills. These statistical properties are common knowledge. Furthermore, the
employer can observe the output produced by a worker, but not the worker’s
specific skill level (x, z). The employer can hire workers for 2 periods of time
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Initial task
assignment
to task j

Observe
first period
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Reassignment? Observe
second period

output

Figure 1: Time line.

at most and may reassign them after the first period. That is, upon hiring a
worker he faces a sequence of decisions as shown in Figure 1.

For the rest of this section, it is assumed that the employer may assign any
number of workers to any of the two tasks.That is, the employer faces no slot
constraints in his allocation problem but can concentrate on the question
how a given worker is optimally allocated to one of the two tasks.

The resulting allocation problem is of course different for workers whose
performance in one of the two tasks has already been observed and for new
workers on whom the employer has no special information. The following
two sections therefore consider these two considerations in turn.

3.1 Internal Reallocation of Current Workers

Let us first consider the allocation decision of an employer who has observed
workers for one period. That is, we look at the (re-)allocation problem the
employer faces after the first period in Figure 1.

In order to decide whether a worker should be reallocated or not, the employer
will have to calculate the worker’s expected performance in either task given
his performance so far.

For instance, a worker whose observed output in task 1 has been ŷ1 can be
expected to produce E[y2|ŷ1] as follows if reassigned to task 2:

E(y2|ŷ1) = E[y2] + k1 · (ŷ1 − E[y1]) , (1)

where k1 is defined as

k1 :=
αβσ2

x + (1 − α)(1 − β)σ2
z

α2σ2
x + (1 − α)2σ2

z

=
Cov(y1, y2)

V ar(y1)
.

2Still, the model in Demougin and Siow (1994) is in some respects similar to the analysis
presented here, for instance in its consideration of slot constraints.
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That is, k1 is equal to the ratio between the covariance of output in tasks
1 and 2 and the variance of output in task 1. For more information on the
calculation of the conditional expected output, see the Appendix.

Suppose that the employer wants to maximize the overall sum of outputs y1

and y2. Then it is efficient to reallocate an employee if

E[y2|ŷ1] > ŷ1 , (2)

i.e., if the expected performance of a worker in task 2 is higher than his
observed current performance in task 1, ŷ1. Taking into account expression
(1), one can rewrite the above inequality as

(k1 − 1)ŷ1 ≥ k1E[y1] − E[y2] .

As a consequence, there exists a critical value ỹ1 of the form

ỹ1 = [k1E[y1] − E[y2]]
1

k1 − 1
, (3)

such that, if k1 > 1, then reallocation is efficient if the observed output ŷ1 is
higher than ỹ1. Note that k1 > 1 if

σ2
z >

α

1 − α
σ2

x , (4)

that is, if the variance of skill z in the population is high enough or α is
sufficiently low or both. If this is true, i.e., if k1 > 1, then the best performing
workers in task 1 are likely to be even better in task 2.

Otherwise, for k1 < 1, reallocation is efficient if ŷ1 is smaller than ỹ1. Then
only the worst performers in task 1 are likely to do better in task 2. This is
the case if σ2

z < α
1−α

σ2
x.

By a similar reasoning, a reallocation from task 2 to task 1 is efficient if the
worker’s task 2 output is higher (lower) than a critical output level

ỹ2 = [k2E[y2] − E[y1]]
1

k2 − 1
, (5)

for k2 larger (smaller) than 1, where k2 is defined as

k2 :=
Cov(y1, y2)

V ar(y2)
=

αβσ2
x + (1 − α)(1 − β)σ2

z

β2σ2
x + (1 − β)2σ2

z

.

Note that k2 is larger than 1 if

σ2
z <

β

1 − β
σ2

x . (6)
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| |
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1−β
α
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Case 1
k1 < 1, k2 > 1

Case 2
k1 < 1, k2 < 1

Case 3
k1 > 1, k2 < 1

Figure 2: Possible combinations for k1 and k2, depending on σ2
z/σ

2
x.

By definition, one has

k1 · k2 =
(Cov(y1, y2))

2

V ar(y1) · V ar(y2)
= ̺2

y1y2
.

Since the correlation coefficient ̺y1y2
can be at most equal to one, it follows

directly that the variables k1 and k2 cannot both at the same time be larger
than 1.

Therefore the following proposition holds:

Proposition 1 For k1 > 1, there exists a critical task 1 output level ỹ1 as
defined in (3) such that for y1 > ỹ1 it is efficient to reallocate a worker from
task 1 to task 2. At the same time, there exists a critical task 2 output level
ỹ2 as defined in (5) such that for y2 < ỹ2 it is efficient to reallocate workers
from task 2 to task 1.

As a corollary to this proposition, we get that if k2 > 1, then it is efficient
to reallocate workers with an observed output ŷ1 < ỹ1 to task 2 and workers
with ŷ2 > ỹ2 to task 1.

Furthermore the case may arise that k1 < 1 and k2 < 1, and hence only the
worst performers get reallocated, i.e., workers with ŷ1 < ỹ1 and with ŷ2 < ỹ2.
This result also holds when the covariance between tasks 1 and 2 is negative.

Which of these constellations is relevant depends on the relative size of the
variances of skill x and z. As we have seen, k1 > 1 is equivalent to σ2

z/σ
2
x >

α/(1− α) and k2 > 1 if σ2
z/σ

2
x < β/(1− β). Furthermore, given Assumption

1, we know that α/(1 − α) > β/(1 − β). We can thus derive three cases,
which are defined as follows:

• Case 1 : If σ2
z/σ

2
x < β/(1 − β), then k1 < 1 and k2 > 1.

• Case 2 : If β/(1 − β) ≤ σ2
z/σ

2
x ≤ α/(1 − α), then k1 < 1 and k2 < 1.
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• Case 3 : If α/(1 − α) < σ2
z/σ

2
x, then k1 > 1 and k2 < 1.

These cases are also summarized in Figure 2. In Cases 1 and 2, reallocation
from task 1 to task 2 takes place if workers produce an output ŷ1 < ỹ1,
whereas in Case 3 workers get reallocated to task 2 if they produce ŷ1 > ỹ1.
Reallocation from task 2 to task 1 is optimal in Cases 2 and 3 if ŷ2 < ỹ2, and
in Case 1 if ŷ2 > ỹ2.

3.2 Assignment of New Workers

So far, the reallocation of current workers has been considered. But how
about new workers? To which task should they be allocated first? There
are two criteria that may possibly play a role: (i) Which task provides the
employer with more precise information about the employee? (ii) Where can
an unscreened worker be expected to produce more?

If new workers get hired for only one period, then learning about the employee
obviously does not play a role, and the employer will therefore prefer to
allocate new workers to the task where the expected output of an unknown
worker is higher, and thus the second motive dominates. The same is true if
workers get hired for several periods, but cannot be reallocated or fired.

If workers instead get hired for two periods and reallocation is possible, then
there may be a tradeoff between the two motives, i.e., between learning and
output maximization of unscreened workers. To see this, let us make the
following assumption:3

Assumption 2 E[y1] > E[y2].

That is, an unscreened worker is expected to be more productive in task
1. The employer can hire the worker for either of the two tasks j = 1, 2.
After one period of work, he will observe the worker’s first period output
ŷj. According to the rules derived in the previous section, he will then
either let the worker continue to work on his current task or he will reassign
him. Assuming that k1 > 1 and k2 < 1, this means that workers who
were first assigned to task 1 get reallocated to task 2 if their conditional
expected output in task 2, E[y2|ŷ1], is greater than their current output, ŷ1.
As shown in Proposition 1, this is the case if ŷ1 greater than ỹ1 as defined
in (3). Similarly, workers who were first hired for task 2 get reassigned to

3This assumption is used to illustrate clearly the results in the remainder of the paper.
All findings still apply if E[y1] 6= E[y2], which should hold generically.
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Initial task
Assignment

ŷ1

Task 1

ŷ2

Task 2

ŷ1

Task 1

E[y2|ŷ1]

Task 2

E[y1|ŷ2]

Task 1

ŷ2

Task 2

t = 0

t = 1

t = 2

Figure 3: Decision Tree.

task 1 if they are likely to produce a higher output in this position, i.e., if
E[y1|ŷ2] > ŷ2. This is the case if ŷ2 ≤ ỹ2 which was defined in (5). All
other workers continue to work on the same task. Figure 3 illustrates these
considerations.

From an ex ante point of view, the expected output of a worker hired for two
periods and first assigned to task 1 therefore is

E[y1] + [E[y1|ŷ1 < ỹ1] · Prob(ŷ1 ≤ ỹ1)] + [E[y2|ŷ1 > ỹ1] · Prob(ŷ1 > ỹ1)],

i.e., the worker’s expected first period production in task 1 plus his second
period output conditional on his observed performance ŷ1 in the first period.
Note that a worker’s performance at a given task does not change over time.
That is, his second period output in task 1 is the same as in the first period,
ŷ1. His expected second period performance in task 2 is given by equation
(1). Taking this into account, one can rewrite the above expression as

E[y1] + [y1 · Prob(y1 ≤ ỹ1)] + [E[y2] + k1(y1 − E[y1])] · Prob(y1 > ỹ1) .

Let F (·) be the cumulative distribution function of y1.
4 Then the expected

output of a worker hired for two periods is

E[y1] + [F (ỹ1)] + [E[y2] + k1(1 − F (ỹ1)) − k1E[y1]] . (7)

A similar reasoning applies when workers first work on task 2. After observing
their first-period performance ŷ2, the employer will reassign them to task 1

4Given the assumptions about x and z, y1 is normally distributed with mean αµx +
(1 − α)µz and variance α2σ2

x
+ (1 − α)2σ2

z
.
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if ŷ2 ≤ ỹ2 and otherwise let them continue to work on task 2. From an ex
ante point of view, the expected output of a worker hired for two periods
and first assigned to task 2 hence is

E[y2] + [E[y1|ŷ2 < ỹ2] · Prob(ŷ2 ≤ ỹ2)] + [E[y2|ŷ2 > ỹ2] · Prob(ŷ2 > ỹ2)]

= E[y2] + [E[y1] + k2(y2 − E[y2])] · Prob(ŷ2 ≤ ỹ2) + [y2 · Prob(ŷ2 > ỹ2)] .

Let G(·) be the cumulative distribution function of y2.
5 Then the above

expression can be rewritten as

E[y2] + [E[y1] + k2G(ỹ2) − k2E[y2]] + [1 − G(ỹ2)] . (8)

By comparing (7) and (8), we can determine which strategy is more promis-
ing, and thus derive the following proposition:

Proposition 2 Given Assumptions 1 and 2, if k1 > 1, then an employer
who hires workers for two periods of time will prefer to hire them first for
task 1 if

E[y1] <
k2

k1
E[y2] +

k1 − 1

k1
(1 − F (ỹ1)) +

1 − k2

k1
G(ỹ2) , (9)

and for task 2 otherwise.

That is, the employer hires workers first to task 1 only if the expected output
in task 1 is not too high compared to task 2. Otherwise, if the unconditional
expected output in task 1 is much higher than in task 2, such that condition
(9) no longer holds, the employer puts unscreened workers first on task 2.
He does this even though an unscreened worker would be more productive in
task 1, at least in expected terms. The employer thus prefers to sacrifice a
certain amount of first-period production in order to have more information
on workers that are assigned to the task that is likely to generate a higher
output. This tradeoff is similar to the one described in Grossman, Kihlstrom,
and Mirman (1977), who show that individuals or firms may find it profitable
to modify their behavior in order to base their future decisions on better
information. That is, they experiment in order to gain information.

The same is true in the present model. It would seem natural that the
employer should assign workers to the job where they can be expected to
produce the highest output. However, if task 1 is sufficiently more important
than task 2, or if performance in task 2 is much more informative about

5y2 is normally distributed with mean βµx +(1−β)µz and variance β2σ2

x
+(1−β)2σ2

z
.
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workers’ skills, then the employer may find it worthwhile to assign workers
first to task 2, thus basically buying information on workers at the cost of
a lower expected output in the short run. Or, in the terms of the model by
Grossman, Kihlstrom, and Mirman (1977): the employer decides to “exper-
iment” if the benefits from more informed future choices outweigh the costs
incurred because he modifies his behavior relative to what would be optimal
if there was no learning.6

Note, however, that, while it is possible that such “experimentation” arises,
it is not necessarily the case. Depending on the exact distributions of y1 and
y2, it may very well be the case that E[y1] > E[y2] and at the same time
condition (9) is not fulfilled. That is, there is not necessarily a tradeoff be-
tween maximizing the first-period output of an unknown worker and learning
about his skills. In that case, the employer will be better off assigning new
workers to task 1 where they are expected to produce a higher output.

4 Job Assignment with Slot Constraints

The previous section has established criteria for assigning both new and old
workers to one of two activities in the firm. These criteria are relevant if the
employer faces no constraints concerning the number of employees working
on each task. However, the employer may not be able to assign any number
of workers to any task. At least in the short run he is likely to face slot
constraints in the sense that he needs a fixed number of employees in each
activity.

Let us assume that the firm needs n workers to do task 1 and m workers for
task 2. That is, there are n jobs of type 1 and m jobs of type 2. All prices
are normalized to one and the firm’s objective function is given by

n∑

i=1

yi
1 +

m∑

i=1

yi
2 ,

i.e., the principal wants to maximize the sum of outputs while keeping the
number of workers in each task fixed. In the following, only the employer’s
short-term perspective is considered, i.e., he wants to maximize the sum of
outputs in the next period. To fill all available slots, the employer can either
reallocate current workers or hire new unscreened workers for either of the
two jobs. So when does the firm choose which option?

6Similar behavior may be found on the side of employees: as Antonovics and Golan
(2007) show, if workers don’t know their type, they may also engage in experimentation
in order to learn more about their skills.
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4.1 External Recruiting vs. Internal Reallocation

Suppose the firm has to fill one open position in job 2.7 Should it fill the
position in job 2 with someone who has worked in job 1 before, or should it
hire an unknown worker?

If the firm promotes worker i from job 1 to job 2 and fills the opening in job
1 with an unknown worker, its expected profit in the next period is

E[y1] + E[yi
2|ŷ

i
1] ,

i.e., the sum of the expected output of an unknown worker in job 1 and the
expected output of worker i in job 2, conditional on his observed performance
ŷi

1 in his current job.

If the firm does not promote worker i and hires an unknown worker for job
2, its expected profits are

ŷi
1 + E[y2] ,

i.e., worker i will continue to produce the same output ŷi
1 as before, and the

new worker has expected job 2 output E[y2].

Promoting worker i is hence the better option if

E[y1] + E[yi
2|ŷ

i
1] > ŷi

1 + E[y2]

⇔ E[y1] + E[y2] + k1(ŷ
i
1 − E[y1]) > ŷi

1 + E[y2]

⇔ (k1 − 1)ŷi
1 > (k1 − 1)E[y1] .

As before, one has to distinguish two cases: if k1 > 1, then promotion is
profitable for ŷi

1 > E[y1]. In the opposite case, i.e., if k1 < 1, promotion is
only profitable if the current output is below the expected output in this job,
i.e., if ŷi

1 < E[y1]. The analogue reasoning applies for job 2.

Proposition 3 For k1 > 1, rather than hiring a new worker, the employer
prefers to reallocate a current worker from job 1 to job 2 if his output ŷ1 >
E[y1], and from job 2 to job 1 if ŷ2 < E[y2].

As a corollary, we get that for k2 > 1 reallocation from job 1 to 2 is profitable
if ŷ1 < E[y1] and from job 2 to 1 if ŷ2 > E[y2]. If both k1 and k2 are smaller
than one, then reallocation is profitable for ŷ1 < E[y1] and ŷ2 < E[y2].

7If there is an opening in job 1, the employer’s considerations run along the same lines
as those outlined in the following.
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4.2 Internal Recruiting and the Structure of the Firm

The results so far suggest that internal hiring becomes more likely if the
number of positions n and m to fill in task 1 and 2 is very uneven. Suppose,
for instance, that k1 > 1 holds8 and hence above average workers in task
1 (i.e., with output ŷ1 > E[y1]) are candidates for reallocation to task 2.
The chances that one of the current job 1 workers is above average increases
of course with the number of workers n in this job. As a consequence, it
becomes more likely that all job 2 workers are recruited internally, if n is
relatively high and m relatively low.

Supposing that job 2 ranks above job 1 in a hierarchy, this finding is in line
with the empirical literature on internal recruiting, which generally finds that
larger firms are more likely to recruit internally. DeVaro and Morita (2009)
also show that this is particularly true in more “bottom heavy” firms, i.e.,
with a lot more workers on lower levels of the hierarchy. A similar finding
is also reported by Hutchens (2006), who examines why firms sometimes
employ older workers, but tend to not hire new older workers for the same
job. He shows that older workers often hold jobs that are simply not filled
from the outside, and that this phenomenon is more likely to occur in firms
with a larger number of workers in lower-level jobs.

4.3 The Peter Principle: Inefficient Reallocation?

The paper has derived two rules for the reassignment of workers: while Sec-
tion 3.1 has focused on the optimal reassignment of workers without slot con-
straints, Section 4.1 considered reassignment when there is a limited number
of positions in each task that have to be filled.

When we compare the two resulting reassignment rules, it becomes clear
that they usually do not coincide: if there are no constraints on the num-
ber of workers in each task, the optimal assignment of a worker currently
employed in task j = 1, 2 depends on his performance relative to a critical
output level ỹj as summarized in Proposition 1. By contrast, if there are
slot constraints, what matters is just the worker’s performance relative to
the average performance of an unscreened worker, i.e., E(yj), as shown in
Proposition 3.

Take, for example, the case where k1 > 1 and Assumption 2 holds, i.e.,
E[y1] > E[y2].

9 In this case, which is illustrated in Figure 4, ỹ1 > E[y1].

8This corresponds to Case 3 as defined in Section 3.1.
9This corresponds to Case 3 in the above.
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Figure 4: Individual efficiency and profitability of reallocation for k1 > 1.

Any worker producing an output above E[y1] is a candidate for reallocation
according to Proposition 3. However, only workers whose output also exceeds
ỹ1 can be expected to be more productive after reallocation according to
Proposition 1. That is, workers producing output ỹ1 > ŷ1 > E[y1] are
candidates for reallocation according to Proposition 3, even though they are
likely to be less productive after reallocation than they are in their current
job.

This immediately brings to mind the well-known Peter Principle,10 which
states that workers get promoted up to their level of incompetence. If this
principle applies in the present model, then after reallocation, there must be
some workers who are less competent or less productive in their new job than
they were in their previous job.

This “Peter effect” can indeed be found for workers who get reallocated from
job 1 to job 2 if Assumption 2 holds, no matter what the size of of k1 and k2.

11

Workers producing an output level between ỹ1 and E[y1] will be candidates
for reallocation to job 2, even though they are likely to perform worse after
reallocation. In other words: given their observed performance in job 1, these
workers are likely to be more productive or “more competent” in their current
job. Nevertheless, they may get transferred to job 2. The model therefore
predicts indeed that there are some workers who get reallocated although
they can be expected to be less productive or less competent afterwards, as
suggested by the Peter Principle.

10After Peter and Hull (1969).
11Note that if Assumption 2 does not hold, then the Peter effect appears for workers

who are candidates for reallocation from job 2 to job 1. The effect only depends on the
relative size of E[y1] and E[y2].
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Proposition 4 For j = 1, 2 and E[yj ] > E[y−j ], workers in job j who
produce an output between ỹj and E[yj] are candidates for reallocation to
job −j even though they are expected to be less productive after reallocation.

This effect becomes more relevant the further apart the two critical values
E[yj ] and ỹj are that determine reallocation from job j to job −j. The
distance between these two values is bigger the lower the coefficient kj, and
the larger the difference in expected output between the two jobs, i.e., the
larger |E[y1] − E[y2]|.

In the previous literature on the Peter Principle, Fairburn and Malcomson
(2001) discuss how promotions can limit the effect of influence activities of
workers and show that depending on the degree of risk aversion, promotions
may take place that are not justified by reasons of job assignment (what
the authors refer to as the “Peter Principle effect”). In Lazear (2004), the
Peter Principle is explained as follows: workers’ performance depends both
on ability and other random factors such as luck which exhibit regression to
the mean. As a consequence, workers’ expected performance after promotion
is lower than their observed performance on which the promotion decision
is based. Furthermore, after promoting the best job 1 workers, the average
performance of job 1 workers left behind is lower than it was before. That
is, ability appears lower after promotion purely as a statistical matter.

The present model proposes a different explanation. It shows that workers
get promoted as soon as they produce more than the average unscreened
worker, even if they are likely to be less able and hence less productive after
promotion. This is due to the fact that the employer faces an opportunity
cost of hiring an unknown worker, and therefore always prefers to fill an open
position with a worker on whom he has at least some (positive) information.

Note however, that this is an efficient assignment policy. The Peter Prin-
ciple here occurs as a by-product of a labor market where workers’ skills
are difficult to assess. If the employer’s information on outside candidates12

improves, the scope for the Peter effect as described above diminishes.

5 Generalization of the Model

In the basic model described above the weights of skills in a given task always
summed up to one, thus putting the focus on the relative importance of skills

12For instance, the employer may be able to observe past performance of workers with
a different employer or he may get a signal on a worker’s skill level in one of the relevant
skills.
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in each task. However, all the results still hold if this is not true. Also, the
model can be further generalized to encompass both more tasks and skills,
as well as external shocks: suppose that there are j = 1, .., J possible tasks
and i = 1, .., I skills. Each skill has a different weight cij in each task.
Furthermore let yj denote the output in task j. The production function for
task j then can be written as

yj =
I∑

i=1

cij · xi + ǫj ,

where xi denotes the endowment of a worker with skill i, and ǫ is a noise
term. Skills are assumed to be independently distributed in the population
according to N(µxi

, σxi
). The noise term is also assumed to be independently

distributed across tasks and across time periods according to N(0, σǫ). This
generalization allows for external productivity shocks, which makes it better
comparable to existing models of job assignment.

The analysis from the previous section also applies to this more general ver-
sion of the model: given an observed output in task j, ŷj, the expected output
of a worker in task k 6= j is

E[yk|ŷj] = E[yk] +
Cov(yj, yk)

V ar(yj)
· [ŷj − E[yj]] . (10)

If kept in the same task for another period, the worker has an expected
output of

E[yj|ŷj] = E[yj] +
Cov(yj, yj)

V ar(yj)
· [ŷj − E[yj]] , (11)

where – in a slight abuse of notation – Cov(yj, yj) denotes the covariance of
output in the same task across periods.

If there are no slot constraints, then a worker should be reallocated to task
k whenever his expected output in task k as given in (10) is greater than
his expected output in task j, as given in (11). That is, as before, one can
determine an output level ỹ(j,k) that is critical for the decision whether a
worker should be kept in task j or whether he can be expected to be more
productive in task k.

If, however, there are slot constraints and the employer has to decide between
hiring new workers and worker reallocation, then this decision is determined
by workers’ performance in task j, ŷj, relative to the expected performance
of a new worker, E[yj ].
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That is, as in the basic model, we get two critical values that drive the
reallocation decision, depending on whether there are slot constraints or not,
namely ỹ(j,k) and E[yj]. These two values will usually not coincide, and we
thus can get the same effects as in the basic model. In particular, the Peter
effect described above may still occur.

6 Career Paths

In the model presented here, the employer can only learn more about a
worker’s type if he assigns the worker to different jobs. This raises the ques-
tions how an employer wants to structure a possible career path. Will con-
secutive jobs be closely related to each other? When is job rotation a useful
mechanism?

Consider the following specification of the model: there are four jobs that
use four different skills as follows:

y1 = c11x1 + c12x2

y2 = c22x2 + c23x3

y3 = c33x3 + c34x4

y4 = c41x1 + c42x2 + c43x3 + c44x4

Suppose that job 4 is a management job. In order to choose candidates for
this job, the employer faces the option of letting a worker move gradually
through jobs 1, 2, and 3, i.e., structure his career path as a job ladder. Or
he may want to let workers do job 1 and 3 before moving them to job 4, i.e.,
implement a job rotation between quite different jobs (1 and 3).

The latter structure allows the employer to extract the most information
about the worker in just two time periods. However, switching a job 1 worker
to job 3 promises the same expected job 3 output as hiring a completely new
worker for the job. Also, by letting a worker work his way through job 1 to
3, the employer gets more observations and hence a better estimate of the
worker’s skills.

A job ladder hence provides the employer with a more thorough candidate
screening, but it also takes more time. A job rotation program, by contrast, is
a speedier way to collect some information about aspiring managers, though
at the cost of possibly getting a very low performance of workers in job 3.

This cost can, however, be mitigated if the employer has better information
about workers before hiring them for a job rotation program. Supposing
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workers can signal their skills through education, previous work, extracur-
ricular activities, and so on, workers with good signals from various fields
therefore seem to be more likely to be selected into job rotation schemes,
such as, for example, high-profile trainee programs.13

Of course, the analysis in this paper also neglects a second aspect that may
play an important role here, namely that the structuring of a career path
also affects the learning process of the employee. This aspect is analyzed
in Gibbons and Waldman (2004), who introduce task-specific human capital
that is acquired through learning by doing.14 Reallocating workers to similar
jobs, i.e., specialization, hence makes the most efficient use of this capital.
However, for a manager it may be more important to be somewhat knowl-
edgeable in several fields, rather than being an expert in just one, which
would explain the existence of job rotation.

So which of these two explanations – learning by the employer or learning by
the employee – goes the longer way in explaining why firms adopt job rotation
practices? The papers by Ortega (2001) and Eriksson and Ortega (2006)
consider exactly this question.15 While they find evidence that both employer
and employee learning may play a role, the evidence for the former seems
slightly stronger. In particular, the authors find that tenure in the firm has
a significant negative effect on rotation, whereas tenure in the industry does
not, thus suggesting that rotation is a means to get to know the employee,
rather than a training device. Furthermore, firms with more hierarchy levels
and broader recruiting strategies, as well as growing firms, are more likely to
adopt job rotation, all of which supports the employer learning hypothesis.

7 Conclusion

The paper proposed a simple task assignment model with multidimensional
skills and derived conditions, under which the employer can increase out-
put by reallocating workers. However, there is a potential tradeoff between
short-term output maximization and learning about the employee’s skills. If

13This would correspond to the results of the studies by Campion, Cheraskin, and
Stevens (1994) and Kusunoki and Numagami (1998), which both suggest that rotation
may be good for a worker’s career and possibly is used to generate the promotion pool for
new managers.

14Note that this is an important difference to the present model, where workers’ skill
levels are given from the outset and at best may be improved through learning by doing.

15Ortega (2001) and Eriksson and Ortega (2006) also identify a third motive for job
rotation, namely motivating employees by mitigating boredom. However, they find little
evidence in support of this motive.
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one task is sufficiently important, then the employer may be interested in
choosing workers for this task in a more sophisticated way. For instance,
he can get more information on these workers by first assigning them to an-
other task with lower expected output, thus reducing his short-run expected
output for the sake of making a more informed choice in the future.

While this first part of the paper thus looked at the optimal assignment of a
given worker if the employer is free to assign him to any task he sees fit, the
second part considered a setting where the employer has to fill a given job
with a worker which he may choose from within or outside the firm. In such
a setting, workers may get reassigned to another job even if, in expectation,
they will be less productive after reassignment. This simply arises because
employers prefer to reallocate workers on whom they have some information,
rather than hire completely new workers on the market.

The paper thus provides a new explanation for the Peter Principle: workers
may indeed get reallocated in such a way that, in the end, they are actually
less suited for their current than for their previous job. However, this policy is
efficient, since the employer otherwise has to fill his open positions with new
applicants on whom he has less information than on his current workers. The
Peter Principle thus arises as a by-product of insufficient knowledge about
outside candidates and its relevance varies with the availability of information
on workers.

Whether this effect plays a role therefore depends crucially on the trans-
parency of the relevant labor market. The transparency of the labor mar-
ket, in turn, and hence the information available on candidates, depends on
market structures, the degree of competition, and the availability of reliable
signals on workers’ capabilities. While these aspects are beyond the current
model, it may be interesting to explore them further.
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8 Appendix

Conditional Normal Distributions: General Theorem

How to calculate the conditional expectation of x and z? A nice summary is
provided in Greene (2003): Let x = (x1, x2, · · · , xn)′ be a vector of n random
variables with mean vector µ and covariance matrix Σ. Let x1 be any subset
of variables, and let x2 be the remaining variables. Likewise, partition µ and
Σ so that

µ =

(
µ1

µ2

)

and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)

.

Then the conditional distribution of x1 given x2 is normal as well:

x1|x2 ∼ N(µ1.2, Σ11.2) ,

with

µ1.2 = µ1 + Σ12Σ
−1
22 (x2 − µ2) ,

Σ11.2 = Σ11 − Σ12Σ
−1
22 Σ21

Application to the Production Function

Consider the production function y = ax + bz, where variables x and z are
normally distributed.16 The production function can be rewritten in matrix
notation as





x
z
y



 =





1 0
0 1
a b





︸ ︷︷ ︸

:=A

(
x
z

)

.

The covariance matrix Σ̂ of this vector of normally distributed variables is
calculated as AΣA′,17 where A is the matrix of constants defined above and

16The weighted sum y is also normally distributed with mean µy and variance σ2
y
, which

corresponds to Σ22 as calculated below.
17See Greene (2003), Appendix B.11.
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Σ is the covariance matrix of x and z, i.e.,

Σ =

(
σ2

x σxσz

σxσz σ2
z

)

.

So the covariance matrix of vector (x, z, y)′ is given by

Σ̂ =





σ2
x σxσz aσ2

x + bσxσz

σxσz σ2
z aσxσz + bσ2

z

aσ2
x + bσxσz aσxσz + bσ2

z a2σ2
x + b2σ2

z + 2abσxσz



 .

So, we have a set of normally distributed variables (x, z, y) with mean vector
(µx, µz, µy) and covariance matrix Σ̂, which we will partition into two subsets,
namely in vector (x, z)′ and (y). The mean vector and the covariance matrix
Σ̂ are also partitioned accordingly, such that we can rewrite matrix Σ̂ as

Σ̂ =

(
Σ11 Σ12

Σ21 Σ22

)

,

where

Σ12 :=

(
aσ2

x + bσxσz

aσxσz + bσ2
z

)

,

and

Σ22 :=
(

a2σ2
x + b2σ2

z + 2abσxσz

)
.

Following the above-mentioned theorem, the expectation of x, respectively
z, given the observed value of y then is

E
[(

x
z

)

|y
]

=

(
µx

µz

)

+ Σ12Σ
−1
22 (y − µy))

=

(
µx

µz

)

+

(
aσ2

x + bσxσz

aσxσz + bσ2
z

)

·
y − aµx − bµz

a2σ2
x + b2σ2

z + 2abσxσz

This can, in turn, be used to calculate the worker’s expected output in the
second job, given his performance in the first.

With Independently Distributed Skills

If x, z are independently distributed, their covariance is zero, and the condi-
tional expectation of x and z given y then simplifies to

E
[(

x
z

)

|y
]

=

(
µx

µz

)

+

(
aσ2

x

bσ2
z

) (
1

a2σ2
x+b2σ2

z

)

(y − aµx − bµz)
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