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Price and Inventory Dynamics in an Oligopoly Industry:

A Framework for Commodity Markets∗

Alexander Steinmetz†

University of Würzburg

April 21, 2010

Abstract

This paper analyzes the interaction between price and inventory decisions in an

oligopoly industry and its implications for the dynamics of prices. The work extends

existing literature and especially the work of Hall and Rust (2007) to endogenous

prices and strategic oligopoly competition. We show that the optimal decision rule

is an (S, s) order policy and prices and inventory are strategic substitutes. Fixed

ordering costs generate infrequent orders. Consequently, with strategic competition

in prices, (S, s) inventory behavior together with demand uncertainty generates en-

dogenous cyclical patterns in prices without any exogenous shocks. Hence, the devel-

oped model provides a promising framework for explaining dynamics of commodity

markets and especially observed autocorrelation in price fluctuations.

Keywords: Inventory dynamics, price competition, oligopoly, (S, s) order pol-

icy, commodity markets.

JEL classification numbers: D21, D43, E22, L81.

1 Introduction

This paper analyzes the interaction between price and inventory decisions in an oligopoly

industry and its implications for the dynamics of prices such as price dispersion. Cross-

sectional price dispersion is a common feature in many retail markets. Since Stigler’s

(1961) seminal work price dispersion has usually been explained by consumer search

∗I am grateful to Norbert Schulz for continuous encouragement and Vı́ctor Aguirregabiria, who mo-

tivated this work, for insightful guidance and invaluable advice. I also thank seminar participants at the

7th BGPE research workshop for helpful comments and suggestions.
†University of Würzburg and Bavarian Graduate Program in Economics, Sanderring 2, 97070

Würzburg, Germany. Phone: +49 - 931 - 31 - 89818, e-mail: alex.steinmetz@uni-wuerzburg.de, web:

www.vwl.uni-wuerzburg.de/vwl3.
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costs. In contrast, Aguirregabiria (1999) shows that retail inventories can generate (S, s)

dynamics of inventories which in turn can explain time variability of prices of super-

market chains.1 However, as in his model monopolistic competition is analyzed price

dispersion between different firms can not be observed.

Extending the described work, this paper addresses the question how oligopolistic

competition affects these dynamics.2

Previous papers have characterized the optimal decision rules of similar dynamic

models. In addition to Aguirregabiria (1999) who analyzes price and inventories with

lump-sum costs under monopolistic competition Hall and Rust (2007) study optimal

inventory decisions with lump-sum costs under perfect competition. Their paper extends

the framework of Aguirregabiria (1999) in some ways but is otherwise limited to one

decision variable as prices are taken as given. Hall and Rust (2007) show that in their

perfect competition model the (S, s) policy is an optimal order strategy.3 To the best

of our knowledge, these two works studying extreme cases of competition are by far the

most elaborated papers investigating these decision problems.4 The analysis of optimal

decision rules under oligopolistic competition forms an obvious gap in the literature.

However, related studies of oligopolistic competition exists. Dutta and Sundaram

(1992) and Dutta and Rustichini (1995) analyze a discrete choice stochastic duopoly

game with lump-sum costs. In these frameworks the one abstract decision variable af-

fecting both firms’ payoffs cannot be interpreted as being related to inventory. Never-

theless, the optimality of an (S, s) policy can also be shown. More recently, Besanko and

Doraszelski (2004) study decisions about prices and capacity. However, the main and

important difference between inventory and capacity is that excess capacity is worthless

while keeping inventory affects future competition. Hence, additional strategic effects due

to kept stock are at place. This is especially important when investigating oligopolistic

competition.

This paper extends the literature by characterizing an equilibrium in a model of

price and inventory competition in oligopoly. We allow oligopolistic firms to interact

strategically. This allows for studying price dispersion between firms.

1Under an (S, s) rule inventory moves between the target inventory level, S, and the order threshold,

s, with s < S. Whenever the firm’s inventory level falls below the order threshold, a new order is placed

such that the target inventory level S is attained.
2Additionally, the main focus of the paper by Aguirregabiria is an empirical analysis building on a

numeric simulation. The formal theoretical proof of the optimality of the considered inventory decision

is therefore not rigourously done and incomplete. Thus, our paper is the first to formally prove the

optimality of (S, s) policy with endogenous prices.
3Thereby Hall and Rust (2007) extend earlier work like Sethi and Cheng (1997) and Cheng and Sethi

(1999) to a more general specification of the Markov process.
4There exist also some papers analyzing dynamic oligopoly with inventories without considering lump-

sum ordering cost, like Kirman and Sobel (1974) or more recently Bernstein and Federgruen (2004).

However, without ordering cost stationary optimal strategies result which are in essence identical to

those of the corresponding static single period game.
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Besides, such a model that is incorporating inventory and oligopoly in dynamic com-

petition provides the most plausible framework for retail industries. Retail industries

have become highly concentrated, i.e., in most categories like grocery, supermarkets,

and office supplies just a handful of rivals compete locally. In the supermarket industry

for example a small number of firms capture the majority of sales as supermarkets com-

pete in tight regional oligopolies. Thus, this industry is a prime example of oligopoly.

Besides, inventory costs are of major importance. Supermarkets invest in state of the art

distribution systems to minimize storage and transportation costs (see e.g. Beresteanu &

Ellickson, 2006; Ellickson, 2007). Hence, deciding the optimal inventory and store offer

forms an important optimization problem for supermarket chains.

In this work we study the decision problem of a central store, i.e., its decision about

retail prices and orders to suppliers, facing oligopolistic competition and taking into

account the existence of lump-sum ordering cost. We develop a model of retail competi-

tion in which the impact of inventories on competition and prices can be evaluated. We

analyze the characteristics of the optimal decision rule.

The main findings of our theoretical model of oligopoly support the simulation results

of Aguirregabiria (1999) studying monopoly. Key factors for price fluctuations are lump-

sum ordering costs and demand uncertainty. Lump-sum ordering cost generate (S, s)

inventory behavior. Demand uncertainty creates a positive probability of excess demand,

i.e., stockouts. The positive stockout probability has a negative effect on expected sales

which in turn creates substitutability between prices and inventories in the profit function

such that in equilibrium prices depend negatively and very significantly on the level of

inventories. This results in a cyclical pattern of inventories and prices where prices decline

significantly when an order is placed and consequently inventory reduction generates

price increase. The pricing behavior in this model can generate cross-sectional price

dispersion with cyclical patterns even without menu costs.

The rest of the paper is organized as follows. Section 2 introduces the model and

shows important characteristics of firms’ expected sales. Section 3 characterizes the op-

timal decision rules. Section 4 concludes while the Appendix contains the proofs of the

results stated in the text.

2 The Model

Consider an oligopoly market where risk neutral firms, indexed by i ∈ {1, 2, ..., N},

sell differentiated storable products. Each firm sells a variety of the product. Firms

compete in prices and they have uncertainty about temporary demand shocks. In the

short run, firms cannot respond to these temporary shocks neither by changing prices

nor by increasing supply, in case of excess demand. Firms do not face any delivery lags

and cannot backlog unfilled orders. Thus, whenever demand exceeds quantity on hand,
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the residual unfilled demand is lost. Therefore, the quantity sold by firm i at period t is

the minimum of supply and demand:

yit = min {sit + qit, dit} , (1)

where yit is the quantity sold; sit is the level of inventories at the beginning of period t;

qit represents new orders to wholesalers during period t; and dit is consumers’ demand.

Every period t a firm knows the levels of inventories of all the firms in the market, i.e.,

the vector st ≡ {s1t, s2t, ..., sNt}.
5 Given this information, the firm decides on prices and

new orders (pit, qit) to maximize its expected value Et(
∑∞

r=1 β
rΠi,t+r), where β ∈ (0, 1)

is the discount factor and Πit is the current profit of firm i at period t.

A firm’s current profit is equal to revenue minus ordering cost and inventory holding

cost:

Πit = pityit − ciqit − kiI{qit > 0} − hisit, (2)

where ci is the unit ordering cost; ki is the fixed or lump-sum ordering cost; and hi is

the inventory holding cost.

The transition rule of inventories, i.e., state variables, is:

sit+1 = sit + qit − yit = max{0, sit + qit − dit}. (3)

Firms have uncertainty about current demand. The demand of product i at period t

is

dit = exp{εit}d
e
it.

Here, εit is a temporary and idiosyncratic demand shock that is independently and iden-

tically distributed over time with cumulative distribution function F (·) that is continu-

ously differentiable on the Lebesgue measure. These shocks are unknown to firms when

they decide prices and orders. Furthermore, deit is the expected demand that depends on

the endogenous prices and the exogenous qualities of all products. The expected demand

deit is a function of the prices of all firms such that it is strictly increasing in the own

price, strictly decreasing in the prices of competitors, and the revenue function pid
e
i is

strictly concave in pi. By definition of expected demand, we have that E(exp{εit}) = 1.

For technical reasons it is useful to assume that F (·) is such that the respective hazard

rate h(·) = f(·)
1−F (·) is smaller than one.6 For examples and numerical exercises it may be

useful to consider a logit demand model for the expected demand:

deit =
exp{wi − αpit}

1 +
∑N

j=1 exp{wj − αpjt}
, (4)

where {wi : i = 1, 2, ..., N} are exogenous parameters that represent product qualities,

and α is a parameter that represents the marginal utility of income. The logit demand

5This is a very reasonable assumption as firms can observe prices and are therefore able to learn and

deduce stock levels.
6This assumption is especially helpful for proving Lemma 2, although it is only a sufficient but not

necessary condition.
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model is convenient for the derivation and illustration of some future results, but it can

be relaxed for all our results.7

2.1 Implications of Demand Uncertainty for Expected Sales

As a firm does not know the temporary demand shock εit, it does not know actual sales

yit. Expected profits are Πe
it = pit yeit − ci qit − ki I{qit > 0} − hisit, where yeit repre-

sents expected sales, i.e., yeit = E[min{dit, sit+ qit}]. Demand uncertainty has important

implications for the relationship between prices and inventories.

Lemma 1. Expected sales yeit are equal to expected demand deit times a function

λ
(

sit+qit
de
it

)

, i.e.,

yeit = deitλ

(

sit + qit
deit

)

. (5)

The function λ(x) is defined as
∫

min{x, exp(ε)}dF (ε) and it has the following properties:

(i) It is continuously differentiable;

(ii) it is strictly increasing;

(iii) λ(0) = 0;

(iv) λ(∞) = E(exp(ε)) = 1; and

(v) for x > 0, λ′(x) =
∫ ln(x)
−∞ dF (ε) = 1− F (ln(x)) ∈ (0, 1).

Proof: See Appendix A.1.

In case of a very small (close to zero) supply-to-expected-demand-ratio sit+qit
de
it

stock-

out probability is very large such that expected sales are much lower than expected de-

mand (approaching zero). On the other hand, a high ratio (approaching infinity) yields

low probability for stockouts such that expected sales are almost equal to expected de-

mand. The higher the supply-to-expected-demand-ratio the lower gets the probability

of stockout and the more do expected sales converge to expected demand. This is for-

malized in properties (ii) - (iv). From property (v) yielding λ′′(x) < 0 it is now clear

that the gain of a higher supply-to-expected-demand-ratio for expected sales is higher

the lower the ratio. For low ratios the gain is almost equal to the increase of stock as

one unit more in stock in essence is a unit more sold. For high ratios the probability of

selling an additional unit in stock decreases to zero.

Therefore, variability over time in the supply-to-expected-demand-ratio can generate

significant fluctuations in expected sales and thus in optimal prices.

7See Aguirregabiria (2007) for a derivation of this demand model from a model of consumer behavior

under possible excess demand.
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2.2 Markov Perfect Equilibrium

The model has a Markov structure and we assume that firms play Markov strategies.

That is, a firm’s strategy depends only on payoff relevant state variables, which in this

model is the vector of inventories st. Therefore, a strategy for firm i is a function σi(st)

from the space of the vector of inventories, RN
+ , into the space of the decision variables

(pit, qit), R
2
+, i.e., σi(st) is a function from RN

+ into R2
+. Let σ ≡ {σi : i = 1, 2, ..., N} be a

set of strategy functions, one for each firm. Suppose that firm i considers the rest of the

firms to behave according to their respective strategies in σ. Under this condition, other

firms’ inventories, s−it, follow a Markov transition probability function F σ
s−i

(s−it+1|s−it).

Note that this transition probability function depends on the other firms’ strategies in

σ. Taking F σ
s−i

as given, firm i’s decision problem can be represented using the Bellman

equation:

V σ
i (st) = max

{pi,qi}

{

Πσ
i (pi, sit + qi) + β

∫

V σ
i (si,t+1, s−it+1)dF (εit)dF

σ
s−i

(s−it+1|s−it)

}

.

(6)

The (expected) profit function is continuously differentiable and the standard regularity

conditions apply such that the value function V σ
i is uniquely determined as the fixed

point of a contraction mapping. Note that this value function is conditional to the other

firms’ strategies. A Markov perfect equilibrium (MPE) is a set of equilibrium strategies

σ such that for every firm i and for every vector st ∈ R
N
+ we have that

σi(st) = arg max
{pi,qi}

{

Πσ
i (pi, sit + qi)

+ β

∫

V σ
i (si,t+1, s−it+1)dF (εit)dF

σ
s−i

(s−it+1|s−it)

}

. (7)

3 Optimal Decision Rule

Let us now characterize the optimal decision rule for a firm in this game of oligopolistic

competition.

In this section we will show that the (S, s) rule is indeed the best response not only

to an (S, s) rule but to any given strategy of the opponents. This, of course, implies that

the equilibrium resulting from (S, s) strategies by all players is a MPE.

In order to represent the optimal decision rule of the oligopolists, it is convenient to

represent the decision problem in terms of the variables pit and zit ≡ sit+qit. The variable

zit represents the total supply of the product during period t. It is also useful to define

the following ”value” function which is independent of the firm’s own current inventory,

i.e., the only state variable the firm can influence (however, it is not independent of the
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current state per se), and taking the other firms’ strategies in σ and so F σ
s−i

as given:

Qσ
i (zit, pit; s−it) ≡ −czit + pit

∫

min {zit; e
εitdeσit (pit)} dF (εit)

+ β

∫

V σ
i (max {0; zit − eεitdeσit (pit)} ; s−it+1) dF (εit)dF

σ
s−i

(s−it+1|s−it) (8)

such that

V σ
i (st) = max

{pi,qi}

{

Qσ
i (sit + qi, pi; s−it)− (hi − ci)sit − kiI{qi>0}

}

.

Given the function Qσ
i , it is clear that an oligopolist chooses (zit, pit) as a best

response to the other firms’ strategies in σ, i.e., other firms order and pricing decisions,

to maximize Qσ
i (zit, pit; s−it)− kI{zit > sit}. Making use of this ”value” function Qσ

i we

can derive important characteristics of competition in prices and inventories:

Lemma 2. The function Qσ
i is such that:

(i) Qσ
i is strictly concave in prices, i.e., ∂2Qσ

i (zi, pi)/∂pi∂pi < 0.

(ii) Prices and total supply are strategic substitutes, i.e., ∂2Qσ
i (zi, pi)/∂pi∂zi ≤ 0.

Proof: See Appendix A.2.

The positive stockout probability has a negative effect on expected sales which in turn

creates substitutability between prices and inventories in the profit function. This is the

case as with low inventory optimal expected demand (under given demand uncertainty)

is low and thus optimal price is high.

Using σσ
p (s) and σσ

z (s) to represent the optimal response rules for p and z, respec-

tively, we have

{σσ
iz(s), σ

σ
ip(s)} = arg max

{zi≥si,pi≥0}
{Qσ

i (zi, pi; s−it)− kI{zi > si}} .

We define the optimal price as a function of current supply:

p̄σi (zi; s−i) ≡ argmax
{pi}

Qσ
i (zi, pi; s−i). (9)

Since Qσ
i is continuously differentiable and strictly concave in prices, p̄σi (z; s−i) is im-

plicitly defined by the first order condition
∂Qσ

i
(zi,p̄i;s−i)
∂p̄i

= 0.

It is now possible to show that the best response to any strategy is an (S, s) rule:

Proposition 1. Firm i considers the rest of the firms to behave according to their

respective strategies in σ. Taking F σ
s−i

as given, let firm i’s best response rule for total

supply and prices be σσ
iz(s) and σσ

ip(s), respectively. These functions are such that:

1. σσ
ip(s) = p̄σi (σiz(s); s−i), where p̄σi (zi; s−i) is continuous and strictly decreasing in

zi; and
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2. σσ
iz(s) has the following form:

σσ
iz(s) =







s∗σi (s−i) if sit ≤ sσi (s−i)

sit if sit > sσi (s−i),
(10)

where s∗σi and sσi are scalars, with s∗σi > sσi ∀s−i, and the following definitions:

s∗σi (s−i) ≡ argmax
{zi}

Qσ
i (zi, p̄i(zi); s−i), (11)

sσi (s−i) ≡ inf{si|Q
σ
i (s

∗σ
i , p̄i(s

∗σ
i ); s−i)− k ≤ Qσ

i (si, p̄(si); s−i)}. (12)

Proof: See Appendix A.3.

The proposition shows that consideration of oligopolistic competition does not affect

the optimality of (S, s) inventory rules.8 Fixed ordering costs generate infrequent orders.

The upper band s∗σi is defined as the optimal order quantity when the firm has no

inventory on hand, i.e., the optimal inventory level. The lower band sσi is the smallest

value of inventory such that the desired order quantity is zero. This order policy might

appear to be a very natural and intuitive strategy. However, as shown in the appendix

the value function is not concave such that a much more complex decision rule could in

principle be optimal. Additionally, oligopolistic competition assures that no additional

assumption on prices like the ”no expected loss condition” of Hall and Rust (2007) is

necessary for the optimal trading strategy to be of the (S, s) form.9

This (S, s) inventory behavior together with demand uncertainty generates cyclical

patterns in prices. The optimal price is a strictly decreasing function of a firm’s inventory

on hand zi as the positive probability of stockouts creates strategic substitutability

between prices and inventories. Thus, the price increases between two orders when the

stock level decreases and it drops down when new orders are placed. This is the case as

with low inventories the optimal expected demand is lower and hence the optimal price

is higher. When the level of inventories decreases between two orders, the probability of

stockout increases and so expected sales decrease and become more inelastic with respect

to the price. Thus, the optimal price increases between two orders, and decreases when

the elasticity of sales goes up as the result of positive orders.

The largest price increase occurs just after a positive order and the increments tend

to be smaller when we approach to the next positive order. The reason for this behavior

is that the cyclical path of prices generates a cyclical behavior in sales. The largest sales

and, consequently, the largest stock reductions and price increases, occur just after a

positive order.

8However, as thresholds depend on the competitors’ inventories, we have an (S(s−i), s(s−i)) decision

rule.
9The ”no expected loss condition” requires that the exogenous nonconstant retail price exceeds a

certain (endogenous) nonconstant threshold any time. With endogenous prices, we do not need to impose

such a condition.
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The interesting result here is that the pricing behavior in this model can generate

cross-sectional price dispersion with cyclical patterns even without menu cost. The mag-

nitude of this price dispersion will depend on the magnitude of lump-sum ordering costs,

the sensitivity of the price elasticity of sales to changes in the probability of stockout,

and the degree of correlation between the demand shocks at individual firms.

4 Conclusion

We have shown that the best response not only to (S, s) strategies but to any strategy

is an (S, s) rule. This result extends earlier findings of models without price competition

(Hall & Rust, 2007) and models without strategic competition (Aguirregabiria, 1999)

where fixed ordering costs generate infrequent orders. Thus, the (S, s) policy might

appear to be a very robust strategy. However, it is not hard to change assumptions in

ways that destroy its optimality.

Additionally, with strategic competition in prices (S, s) inventory behavior together

with demand uncertainty generates cyclical pattern in prices.

The model developed in this paper provides a very promising alternative for studying

commodity markets.

Commodity prices are extremely volatile and papers of the respective literature

strand are concerned whether theory is capable of explaining the actual behavior of

prices. The more recent literature on this topic (see for example Deaton & Laroque,

1992, 1996, and Pindyck, 1994) builds on the supply and demand tradition (see e.g.

Ghosh, Gilbert, & Hughes Hallett, 1987, for a review), but with explicit modeling of the

behavior of competitive speculators who hold inventories of commodities in the expec-

tation of making profits.10 However, perfect competition and the absence of lump-sum

ordering cost is always assumed in these papers. The studies are trying to explain ex-

tremely volatile prices as a result of exogenous shocks by modeling the behavior of

competitive speculators holding inventories.

Results are rather unsatisfying: In contrast to the models’ predictions, real price

fluctuations are not randomly distributed over time and this autocorrelation cannot be

explained by these types of models. In addition, some probably important characteristics

of commodity markets are not captured in this literature. Studies of these characteristics

(e.g. Carter & MacLaren, 1997, and Slade & Thille, 2006) find that commodity markets

are best described by oligopoly instead of perfect competition. Besides, lump-sum order-

ing cost are realistic in some markets (e.g. at London Metal Exchange where orders can

result in physical delivery and all contracts assume delivery). Incorporating oligopoly

competition and lump sum ordering costs could be important to study the dynamics of

some commodity prices. In a model like ours we are able to generate some kind of time

dependent pattern which is apparently in line with empirical evidence. This is in contrast

10As even estimating the models is computational demanding authors mostly use simulations.
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to the usual hypothesis that price fluctuations are the result of exogenous shocks and

therefore randomly distributed over time.

Making use of the developed model it should now be possible to relate findings

to commodity price dynamics and show that lump-sum ordering cost and oligopoly

competition can be important to explain extremely volatile prices and especially time

dependencies in price fluctuations.

However, due to the relatively high complexity of the framework further research

requires numerical experiments. By this means, other topics like precise reactions of

firms on competitors’ orders provide scope for interesting studies. This important work

is left for future research.
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A Appendix

A.1 Expected Sales: Proof of Lemma 1

Proof. For notational simplicity, we omit here the firm and time subindexes. By defini-

tion, expected sales ye are:

ye =

∫

min{s+ q, de exp(ε)}dF (ε) = deλ

(

s+ q

de

)

where λ (x) is defined as
∫

min{x, exp(ε)}dF (ε). The function λ(x) has the following

properties:

lim
x→0

λ(x) =

∫

min{0, exp(ε)})dF (ε) = 0.

Also,

lim
x→∞

λ(x) = lim
x→∞

∫

min{x, exp(ε)})dF (ε) =

∫

exp(ε)dF (ε) = 1.

Finally,

λ′ (x) =

∫

I{x < exp(ε)}dF (ε) = 1− F (lnx) .

A.2 The ”Value” Function: Proof of Lemma 2

Proof. We use backwards induction and first show that the properties of Lemma 2 hold

for the finite horizon problem with time horizon equal to T .

Let us consider Qσ
iT (·) to represent the profit function in the last period, i.e.,

Qσ
iT (zi, pi; s−i) = −czi + piy

eσ
i (zi, pi)

= −czi + pid
eσ
i (pi)λ

(

zi
deσi (pi)

)

= −czi + pi

∫

min {zi; e
εideσi (pi)} dF (εi).

Therefore,
∂Qσ

iT (·)

∂pi
= yeσi (zi, pi) + pi

∂yeσi (zi, pi)

∂pi
,

and
∂2QiT (·)

∂p2i
= 2

∂yeσi (zi, pi)

∂pi
+ pi

∂2yeσi (zi, pi)

∂p2i
. (13)

Given that yeσi (zi, pi) = deσi (pi)λ
(

zi
deσ
i

(pi)

)

, we have that

∂yeσi (zi, pi)

∂pi
=

∂deσi (pi)

∂pi
F (ln zi − ln deσi (pi)),

and

∂2yeσi (zi, pi)

∂p2i
=

∂2deσi (pi)

∂p2i
F (ln zi − ln deσi (pi))−

(

∂deσi (pi)

∂pi

)2 f(ln zi − ln deσi (pi))

deσi (pi)
.

11



Inserting these expressions in equation (13), we get:

∂2Qσ
iT (·)

∂p2i
=2

∂deσi (pi)

∂pi
F (ln zi − ln deσi (pi))

+ pi

(

∂2deσi (pi)

∂p2i
F (ln zi − ln deσi (pi))

−

(

∂deσi (pi)

∂pi

)2 f(ln zi − ln deσi (pi))

deσi (pi)

)

=F (ln zi − ln deσi (pi))

(

2
∂deσi (pi)

∂pi
+ pi

(

∂2deσi (pi)

∂p2i

))

−

(

∂deσi (pi)

∂pi

)2 f(ln zi − ln deσi (pi))

deσi (pi)
.

The first term is negative because
(

2
∂deσ

i
(pi)

∂pi
+ pi

(

∂2deσ
i

(pi)

∂p2
i

))

is just the second deriva-

tive of the function pid
eσ
i (pi), that is strictly concave by assumption. It is clear that the

second term is also negative. Therefore, ∂2QiT (·)
∂p2

i

< 0.

Furthermore, since
∂Qσ

iT
(·)

∂pi
= yeσi (zi, pi) + pi

∂yeσ
i

(zi,pi)
∂pi

, we have that

∂2Qσ
iT (·)

∂pi∂zi
=

∂yeσi (zi, pi)

∂pi
+ pi

∂2yeσi (zi, pi)

∂pi∂zi
. (14)

As we have shown above,
∂yeσ

i
(zi,pi)
∂zi

= λ′
(

zi
deσ
i

(pi)

)

= 1−F (ln zi− ln deσi (pi)). We have

also shown that
∂yeσ

i
(zi,pi)
∂pi

=
∂deσ

i
(pi)

∂pi
F (ln zi − ln deσi (pi)), and therefore

∂2yeσi (zi, pi)

∂pi∂zi
=

∂deσi (pi)

∂pi

f(ln zi − ln deσi (pi))

zi
.

Inserting these expressions into the equation (14), we get:

∂2Qσ
iT (·)

∂pi∂zi
= 1− F (ln zi − ln deσi (pi)) +

pi
zi

∂deσi (pi)

∂pi
f(ln zi − ln deσi (pi)).

With ηd(pi) ≡ −
∂deσ

i
(pi)

∂pi
pi

deσ
i

(pi)
> 0 as the elasticity of expected demand, and

ηλ

(

zi
deσ
i

(pi)

)

≡ −λ′
(

zi
deσ
i

(pi)

)

zi
λ(·)deσ

i
(pi)

< 0 as the elasticity of the λ(·)-function the above

expression can be written as

∂2Qσ
iT (·)

∂pi∂zi
= λ′(·)(1 − ηd(·)(1 − ηλ(·))) + λ(·)ηd(·)η

′
λ(·) (15)

with

η′λ(·) = −

zi
deσ
i

(pi)
λ′(·)2 + λ(·)(λ′(·) + zi

deσ
i

(pi)
λ′′(·))

λ(·)2
.

The term η′λ(·) is negative as λ
′(·)+ zi

deσ
i

(pi)
λ′′(·) = 1−F (·)−f(·) is positive for 1−F (·) >

f(·) which is fulfilled by assumption. Thus, the second term of equation (15) is negative.

Now, let’s particularize expression (15) at (z, p̄T (z)). We can write

∂Qσ
iT (·)

∂pi
= yeσ(zi, pi) (1− ηd(·) (1− ηλ(·)))

12



such that 1−ηd(·) (1− ηλ(·)) can never be positive at the optimal decision and therefore
∂2Qσ

iT
(·)

∂pi∂zi
< 0 holds.

We will now show that if Qσ
it+1(·) is strictly concave in prices and prices and supply

are strategic substitutes in t+ 1, then Qσ
it(·) is strictly concave in prices and prices and

supply are strategic substitutes in t as well.

We make use of the fact that the profit function is bounded from above. More specif-

ically,

max
si≥0

max
{zi≥si,pi≥0}

{

pid
eσ
i (pi)λ

(

zi
deσi (pi)

)

− cizi − kiI{zi>si}

}

is smaller than some constant τ < ∞. This property guarantees that for any values of

zi and pi

Qσ
i (zi, pi) = lim

T→∞
Qσ

iT (zi, pi).

Thus, as in t+ 1 the ”value” function given as

Qσ
i (zit+1, pit+1; ·) ≡ −czit+1 + pit+1

∫

min
{

zit+1; e
εit+1deσit+1(pit+1)

}

dF (εit+1)

+ β

∫

V σ
i

(

max
{

0; zit+1 − eεit+1deσit+1(pit+1)
}

; ·
)

dF (εit+1)dF
σ
s−i

(s−it+2|s−it+1)

is strictly concave in prices and prices and supply are strategic substitutes, so is the

function in t. This completes the proof.

A.3 Optimal Decision Rule: Proof of Proposition 1.

Following Scarf (1960), the key to proving that the optimal strategy is of the (S, s) form

is to show that the value function V is k-concave. Our proof exploits several properties

of k-concave functions.

A real-valued function f(s) is a k-concave function if and only if for every s0 and s1

such that s0 ≤ s1 and every scalar δ ∈ (0, 1):

δf(s0) + (1− δ)f(s1) ≤ (1− δ)k + f(δs0 + (1− δ)s1). (16)

Consider the following properties of k−concave functions:

(i) If f is strictly k-concave it has a unique global maximum.

(ii) If f is strictly k-concave, and s∗ is the global maximum, then the equation f(z) =

f(s∗)−k has two solutions, sL and sH with sL < sH . Furthermore, f(s) > f(s∗)−k

if and only if s ∈ (sL, sH).

(iii) If f(x, y) is k-concave in x for any value of y, and k-concave in y for any value of

x, and y∗(x) ≡ argmaxy f(x, y), then g(x) ≡ f(x, y∗(x)) is k-concave.

(iv) If f1(·) is k1-concave, f2(·) is k2-concave, and α1, α2 are two positive scalars, then

α1f1 + α2f2 is (α1k1 + α2k2)-concave.

13



Before starting with the formal proof, we will briefly illustrate the main idea of why

k-concavity is important.

Consider the k-concave function V (s) to be a firm’s value function. If V is a contin-

uous differentiable function from k-concavity V (s1) − k − V (s0) − (s1 − s0)V
′(s0) ≤ 0

directly follows. Thus for each local extremum s′ with V ′(s′) = 0, it is the case that

V (s′) ≥ V (s) − k ∀s ≥ s′. This means that each local extremum (minimum) s′ is at

most k units below a function’s maximum right of this local minimum. This property is

illustrated in Figure 1. The function on the left hand side is an arbitrary value function

that is not k-concave, while the function on the right graph fulfills the condition above.

Order Order OrderNo Order No Order No Order

s
1
s 

*
s

2
s s

V

k

k

Order Ordddddeeeer OrddderNo Order No OOOrder No Order

*

Order No Order

s
1
s 

*
s

2
s s

V

k

k

Order No Order

*

Figure 1: Non-concave value function and respective order decisions when the value

function is not k-concave (left) and when it is k-concave (right).

With lump-sum ordering cost of k and a firm’s value function like the one depicted

on the left hand side a complex optimal order policy results where the firm orders when

inventory is below s or around s′1 such that inventory level s∗ is attained. Additionally,

the firm orders such that an even higher target level is reached when inventory is around

s′2 (which is even above s∗).

With the value function being k-concave like the one depicted on the right hand side,

it is easy to see that the optimal strategy is of (S, s) type. In that case firms never order

with inventory above s∗ and firms never order around a local minimum in between the

inventory threshold s and the optimal inventory level s∗.

In the following we will make use of this idea with regard to the decision problem of

our model.

Proof. Suppose that Qσ
i is strictly k-concave in zi for any value of pi and strictly

k-concave in pi for any value of zi for all values of s−it.

The optimal price decision can be written as

σσ
ip(s) ≡ p̄σi (zi; s−i).

14



That means, giving the optimal pricing function p̄σi (z; s−i) the firm chooses inventory

level σσ
iz(s) which results in pricing σσ

ip(s) as a function of the pre-order inventory.

As Qσ
i (·) is strictly k-concave, s∗σi (s−i) and p̄σi (s

∗σ
i (s−i), s−i) are unique and p̄σi (·, ·)

is a real function. Furthermore, Qσ
i (zi, p̄

σ
i (zi); s−i) is also strictly k-concave.

By definition of σσ
iz(s), s

∗σ
i (s−i), and p̄σi (s

∗σ
i (·), ·), it is clear that

σσ
iz(s) =







s∗σi (s−i) if Qσ
i (s

∗σ
i , p̄σi (s

∗σ
i ); ·) − k > Qσ

i (si, p̄
σ
i (si); ·)

si if Qσ
i (s

∗σ
i , p̄σi (s

∗σ
i ); ·) − k ≤ Qσ

i (si, p̄
σ
i (si); ·).

Due to the k-concavity of Qσ
i (zi, p̄

σ
i (zi); ·) the equation Qσ

i (s
∗σ
i , p̄σi (s

∗σ
i ); ·) − k =

Qσ
i (si, p̄

σ
i (si); ·) has only two solutions.

Let these two solutions be sLi (·) and sHi (·), where sLi (·) ≤ s∗σi (·) ≤ sHi (·). Then,

k-concavity implies

Qσ
i (s

∗σ
i , p̄σi (s

∗σ
i ); ·) − k ≤ Qσ

i (si, p̄
σ
i (si); ·) ⇔ sLi (·) ≤ si(·) ≤ sHi (·).

It is clear that the conditions si > sHi and si ≤ sHi do not play any role because the

stock level is always lower or equal to s∗σi . With sσi as the smaller of the two solutions

by definition we can write the optimal decision as

σσ
iz =







s∗σi if si ≤ sσi ,

si if si > sσi .

The according optimal pricing decision for the inventory before ordering is

σσ
ip(s) = p̄σ(σiz(s)) =







p̄σ(s∗σi ) if si ≤ sσi ,

p̄σ(si) otherwise.

It further remains to show that Qσ
i is indeed k-concave.

We proceed in three steps:

(a) If V σ
i (s) is strictly k-concave in si, then Qσ

i (·) is strictly k-concave in zi for any value

of pi.

(b) If V σ
i (s) is strictly k-concave in si, then Qσ

i (·) is strictly k-concave in pi for any value

of zi.

(c) V σ
i (s) is strictly k-concave in si.

(a) We will now show that if V σ
i (s) is strictly k-concave in si, then Qσ

i (zi, pi; s−i) is

strictly k-concave in zi for any value of pi.
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By the first part of the proof, there exist s∗σi and sσi satisfying 0 ≤ sσi ≤ s∗σi for which

V σ
i can be represented as

V σ
i (s) = V (Q)σi (s, σ

σ
ip(s)) =







Qσ
i (s

∗σ
i , p̄i(s

∗σ
i ); s−i) + csi − h(si)− k if si ∈ [0, sσi ),

Qσ
i (si, σp(si); s−i) + csi − h(si) if s ≥ s.

(17)

V σ
i (s) can be extended to be a function defined on R×Rn−1

+ :

V σ
i (s) =







V σ
i (0, s−i) + csi if si ≤ 0,

V σ
i (s) else,

which is needed as the proof of (c) implies that Vi is k-concave in si over R.

We can write Qσ
i as

Qσ
i (·) = QσR

i (·) + βQσV
i (·),

where

QσR
i (·) ≡ −czi + pi

∫

min {zi; e
εideσi (pi)} dF (εi)

= −czi + pid
eσ
i (pi)λ

(

zi
deσi (pi)

)

and

QσV
i (·) ≡

∫

V σ
i (max {0; zit − eεitdeσit (pit)} ; s−it+1) dF (εit)dF

σ
s−i

(s−it+1|s−it).

Let us now consider the function
∫

V σ
i (si − eεideσi (·); ·) dF (εi)dF

σ
s−i

. Since each V σ
i (·)

is k-concave in si over R, and since positive linear combinations of pointwise limits of

k-concave functions are k-concave, it follows that
∫

V σ
i (si − eεideσi (·); ·) dF (εi)dF

σ
s−i

is

k-concave in si on R. With ε̄i(·) as the value of εi for which demand is equal to supply

zi, i.e. zi = exp(ε̄i(zi))d
eσ(·), we have

∫

V σ
i (si − eεideσi (·); ·) dF (εi)dF

σ
s−i

=

∫ ε̄i(si)

−∞
V σ
i (si − eεideσi (·); ·) dF (εi)dF

σ
s−i

+

∫ ∞

ε̄i(si)
V σ
i (si − eεideσi (·); ·) dF (εi)dF

σ
s−i

=

∫ ε̄i(si)

−∞
V σ
i (si − eεideσi (·); ·) dF (εi)dF

σ
s−i

+ V σ
i (0; ·)

∫ ∞

ε̄i(si)
dF (εi)dF

σ
s−i

+ c

∫ ∞

ε̄i(si)
(si − eεideσi (·)) dF (εi)

=QσV
i (si, pi, ·) + c

∫ ∞

ε̄i(si)
(si − eεideσi (·)) dF (εi).
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Using the definition of Qσ
i , we have

Qσ
i (·) =QσR

i (·) + βQσV
i (·)

=pi

∫

min {zi; e
εideσi (pi)} dF (εi)− czi

+ β

∫ ε̄i(zi)

−∞
V σ
i (zi − eεideσi (·); ·) dF (εi)dF

σ
s−i

+ β

∫ ∞

ε̄i(zi)
V σ
i (zi − eεideσi (·); ·) dF (εi)dF

σ
s−i

− βc

∫ ∞

ε̄i(zi)
(zi − eεideσi (·)) dF (εi).

The sum of the third and fourth terms in the last equation is k-concave since
∫

V σ
i (si − eεideσi (·); ·) dF (εi)dF

σ
s−i

is k-concave. Since czi is a linear and hence convex

function of zi, a sufficient condition for the k-concavity of Qσ
i (·) is that the function

pid
eσ
i (pi)λ

(

zi
deσi (pi)

)

− βc

∫ ∞

ε̄i(zi)
(zi − eεideσi (·)) dF (εi)

is concave in zi. The function is continuously differentiable in zi with second derivatives

(pi − βc)(1 − F (ln zi − ln deσi (·))).

As F (·) < 1, this expression is non-positive and hence Qσ
i is k-concave as long as pi ≥ βci.

(Obviously, a weaker condition for that result exists.)

For proving that Qσ
i is indeed k-concave we need to show that σσ

ip(s)−βc ≥ 0 holds.

Recall

Qσ
i (zi, pi; s−i) ≡ −czi + pid

eσ
i (pi)λ

(

zi
deσi (pi)

)

+ β

∫

V σ
i (max {0; zi − eεideσi (pi)} ; s−it+1) dF (εi)dF

σ
s−i

(s−it+1|s−i)

and

V σ
i (st) = max

{pi,qi}

{

Qσ
i (sit + qi, pi; s−it)− (hi − ci)sit − kiI{qi>0}

}

.

where the expected sales deσi (pi)λ
(

zi
deσ
i

(pi)

)

are always smaller than or equal to total

supply zi. Let’s suppose to the contrary that there is an optimal price σσ
ip < βc < c.

In that case −czi + pid
eσ
i (pi)λ

(

zi
deσ
i

(pi)

)

would be negative. Thus, without a new order

the current value V σ
i (st) would be smaller than the expected value V σ

i (st+1) after selling

the goods at price σp(st) although the inventory is larger, i.e., sit > sit+1. This cannot

be the case in equilibrium. The same is true in the case with ordering. Ordering goods

and simultaneously selling them for a price lower than the purchase price cannot be an

optimal strategy. Thus, the optimal price σσ
ip is always greater c.
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(b) We will show that if V σ
i (s) is strictly k-concave in si, then Qσ

i (·) is strictly k-

concave in pi for any value of zi.

We can represent the function QσR
i (·) as −czi + piy

σe(zi, pi; s−i), where yσe(·) is the

expected sales function. The function QσR
i (·) is the same as the function Qσ

i at the last

period Qσ
iT . We have shown in the proof of Lemma 2 that this function is convex.

Therefore,
∂2QσR

i
(·)

∂p2
i

< 0.

An argumentation analogous to part (a) yields a similar sufficient condition for the

k-concavity of Qσ
i (·) in pi, namely that the function

pid
eσ
i (pi)λ

(

zi
deσi (pi)

)

− βc

∫ ∞

ε̄i(zi)
(zi − eεideσi (·)) dF (εi)

is concave in pi. The function is continuously differentiable in pi with a second derivative

that is negative. Therefore, Qσ
i (·) is k-concave in pi.

(c) Finally, we show that V σ
i (s) is strictly k-concave in si.

Like in proof of Lemma 2 we make use of the fact that the profit function is bounded

from above. This property guarantees that for any value of si

V σ
i (si; ·) = lim

T→∞
V σ
iT (si; ·)

with V σ
iT (si) as the value function for the finite horizon problem with time horizon equal

to T . We prove k-concavity by induction.

For T = 1 we have Qσ
i1(·) is strictly concave in zi and pi due to (a) and (b). Using the

result of the first part of the proof, the optimal decision for this one-period problem has

the form of equations (9) and (10). Hence, the value function of this one period problem

is

V σ
i1(si, ·) = I(si < sσi1) (Q

σ
i1(s

∗σ
i1 , p̄

σ
i1(s

∗σ
i1 ))− k) + I(si ≥ sσi1)Q

σ
i1(si, p̄

σ
i1(si, ·))− (hi − ci)si.

With Qσ
i1(·) being concave, it is simple to verify that V σ

i1(si, ·) fulfills the definition of

strict k-concavity.

Assume now that for any t ≥ 1, V σ
it (si, ·) is strictly k-concave. Then,

Qσ
it+1(zi, p̄

σ
it+1(·); s−it+1) = −czi + p̄σit+1(·)d

eσ
i (p̄σit+1(·))λ

(

zi
deσi (p̄σit+1(·))

)

+ β

∫

V σ
i

(

max
{

0; zi − eεideσi (p̄σit+1(·))
}

; ·
)

dF (εi)dF
σ
s−i

(s−it+2|s−it+1).

As p̄σit+1(·)d
eσ
i (p̄σit+1(·))λ

(

zi
deσ
i

(p̄σ
it+1

(·))

)

− czi is again strictly concave and V σ
it (si, ·) is

strictly k-concave, due to property (iv) of k-concave functions, Qσ
it+1(zi, p̄

σ
it+1(·); ·) is also

strictly k-concave. Hence, the optimal decision has again the form of equations (9) and

(10) and the value function of this finite-horizon problem is

V σ
it+1(si, ·) =I(si < sσit+1)

(

Qσ
it+1(s

∗σ
it+1, p̄

σ
it+1(s

∗σ
it+1))− k

)

+ I(si ≥ sσit+1)Q
σ
it+1(si, p̄

σ
it+1(si, ·)) − (hi − ci)si.
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Similar to V σ
i1(si, ·), this value function is strictly k-concave which completes the proof

by induction. Therefore, V σ
i (si; ·) = limT→∞ V σ

iT (si; ·) is strictly k-concave.

This completes the proof of the optimality of the described ordering strategy.

Properties of the optimal price. We complete the proof of Proposition 1 by showing

that p̄(·) is a continuous and strictly decreasing function.

The function p̄σi is the value of pi that maximizes Qσ
i in pi for a given zi. Since Q

σ
i is

continuously differentiable and strictly concave in prices, p̄σi (z; s−i) is implicitly defined

by the first order condition
∂Qσ

i
(zi,p̄;s−i)
∂pi

= 0. By the implicit function theorem, we have

that dp̄i(zi)σ

dzi
= −

∂2Qσ

i
(zi,p̄i)/∂pi∂zi

∂2Qσ

i
(zi,p̄i)/∂pi∂pi

, that by Lemma 2 is negative.

This completes the proof.
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